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Green’s tensor of subsonic transport boundary value
problem for elastic half-space
L.A. Alexeyeva

Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
e-mail: alexeeva@math.kz

Communicated by: Altynshash Naimanova

Received: 05.08.2019 * Final Version: 05.08.2019 = Accepted/Published Online: 27.09.2019

Abstract. The first boundary value problem of the theory of elasticity for an elastic half-space at the
movement on its surface of subsonic trans loads is considered. The speed of motion is less or more
than the speed of distribution of elastic Rayleigh waves. On the basis of the generalized Fourier's
transformation the fundamental solution of the task is constructed which describes the dynamics of the
massif at the movement of the concentrated force on and along its surface. Based on this, the analytical
solution is constructed for arbitrary transport loads distributed over the surface, moving with the pre-
Rayleigh and super-Rayleigh velocities. It is shown that when the Rayleigh wave velocity is exceeded,
the transport loads generate surface Rayleigh waves. The task is a model for research of the stress-strain
state of the massif in the vicinity of road constructions under the action of trans loads moving with high

velocities.

Keywords. Isotropic elastic half-space, transport load, first boundary value problem, subsonic speed.

1 Introduction

Trans loads are very widespread in practice. As those we understand the moving loads
which form does not change over time, but their position are changing in the environment.
Dynamic deformation processes, which arise in the ground under their influence, expand
with different speeds, which depend on elastic properties of the medium. In isotropic elastic
medium there are two sound speeds of propagation of dilatation and shift waves. The relation
of speed of trans load to the sound velocities significantly influences to the stresses and
deformations in the elastic medium. We consider here the subsonic case, when speeds of
loads are less then speed of shift waves. This case is a characteristic for trans problems as the
speed of the movement of the most modern vehicles is many less then the speeds of elastic

2010 Mathematics Subject Classification: 74B05.
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Green’s tensor of subsonic transport BV ... 7

waves propagation. From trans loads we especially distinguish stationary ones which move
in the fixed direction with a constant speed (transport loads). This class of loads allows to
investigate diffraction processes in isotropic elastic medium in the analytical form.

In papers [1]-[3] the fundamental and generalized solutions of the Lame’s equations are
constructed and investigated which describe the movement of elastic medium at the action
of concentrated on an axis and distributed loading in all range of speeds (subsonic, sound,
transonic and supersonic ones). On this basis in [4]-[7] the method of boundary integral
equations has been developed for solving the transport BVP in elastic medium with cylindrical
boundaries. This class of problems is very important for applications in the field of dynamics
of underground constructions, trans tunnels and excavations of deep laying.

However there is a class of model trans tasks (for example, road problems) when loadings
move on the surface of a half-space. It is known that there is also sound speed in an elastic
half-space with which superficial Rayleigh waves are propagating. The Rayleigh’s speed is
lower, but is very close to the speed of shift waves [10], [11]. Rayleigh’s waves don’t create
tensions on half-space border, but significantly influence on the tensions and deformations of
the massif near a free surface.

For the first time such task was considered and solved for a subsonic pre-Rayleigh case by
flat deformation (2D-space) in [9]. Here the analytical solution of this task in 3D-statement
is constructed also in a subsonic case, when the speed of subsonic trans load is less or more
than the Rayleigh’s speed.

2 The statement of transport BVP for elastic half-space

FElastic isotropic medium, with Lame’s parameters A, u and the density p occupies half-
space 1 > 0, n(z) = (—1,0,0) is a unit vector of the external normal to its boundary
D= {:U ER3:z = 0}. Constants ¢; and co are the velocities of elastic waves propagation

[11] (sonic speeds):
[A+2
ha H C2 = \/> c2 < (1.

Boundary transport load P(z,t) are moving with a constant subsonic speed ¢ < ¢a < ¢1)
along the axis Xs3: P(z,t) = up; (1132, xg+ct)e;. Components of stress tensor o;; are connected
with medium displacements u(z,t) by Hook’s law [11]:

Oij = Adivu 5ij + ,u(ui,j FUj,4 )

For the dynamics problems it is better to write this law in the unitless form:

Hook’s law: )
. 2 '

7 = <2 — ) le’U,(SZ'j + (ui,j +Uj i ) (1)

Here and everywhere further on the identical indexes the tensor convolution have been made.

Partial derivatives on the corresponding coordinate are designated by the index after comma:

KAZAKH MATHEMATICAL JOURNAL, 19:3 (2019) 6-19



8 L.A. Alexeyeva

O .
Ui, = a—l; d;; = 6! is Kronecker symbol. The stationary movement has been considered
Py
that allows to pass into mobile coordinates system connected with transport load. Further
we use designations: = = (x1,x2), z = x3 + ct.
It is supposed that components of the load allow the Fourier’s transformation, i.e. they
are representable in the form of Fourier’s integrals:

Pj(x% Z) = Uj1(07 X2, Z) = # f ﬁn(ﬁ’ () exp(_i($277 + Cv Z))dﬂd%
R2

(2)
Pn(1,6) = [ pnlx2, 2) exp(i(zan + 2¢))dwadz.
R2

The Lame’s equations for displacements of elastic half-space in mobile coordinates system
have the form [1]:

-2 ar—2 s —2A _ 2\ 5J C
(M2 — M;?) D0, + (M5°A = (8.)°) 6] | uj =0. (3)

We denote this operator by L;;(01,02,0,). Here two Mach’s numbers are introduced:
My =c/ci, My =c/cy,

which characterize the velocity of transport load in relation to the sound speeds of elastic
waves. Here and everywhere there is tensor convolution over repealed indexes.

Egs. (3) were studied in [2], [3]. There are three cases: subsonic (¢ < ¢3), transonic
(c2 < ¢ < ¢1), supersonic (¢ > ¢1) and two sonic cases (¢ = ¢2, ¢ = ¢1). In the first case (M; <
1, My < 1) the system (3) is elliptic, in the second one (M; < 1, My > 1) it has the
mixed elliptic-hyperbolic type. In supersonic case (M; > 1, My > 1) this system is strong
hyperbolic. By sonic speeds it is mixed parabolic-elliptic if M; < 1, Ms = 1, and it is
hyperbolic-parabolic if M; =1, My > 1.

By sonic and supersonic velocities the shock waves can appear in elastic medium. There
are the next conditions on the jumps on their fronts F:

[ujlp =0 = hefuiglp = hylui:]p;
(4)
h] [Uz]]F = Pczhz [ui72]F7 Z?] = 17 27 3.

Here h(z1,22,2) = (hi,ho,h3 = h,) is a wave vector, ||h|| = 1. It is perpendicular to the
front F' in the direction of wave propagation.

The continuity of elastic medium gives the first condition. The second condition is conti-
nuity of tangent derivatives at the front of a wave; it is consequence from the first one. The
third formula is the law of momentum conservation on waves fronts.

KAZAKH MATHEMATICAL JOURNAL, 19:3 (2019) 6-19



Green’s tensor of subsonic transport BV ... 9

Here we consider the subsonic case. It is required to find the solution of the BVP which
must satisfy the attenuation condition on infinity:

u—0 by z1— 400 or z— *oo. (5)
Also we will enter some additional radiation conditions later by construction of the BVP
solution.
3 Green’s tensor of transport BVP

To solve the problem, we use the methods of distribution theory [12]. At first we construct
the Green’s tensor H? of the boundary value problem in a moving coordinate system. For
its determination we have the following boundary value problem. Find the tensor solution of
homogeneous motion equations:

M2 g2y =2 Mza— EN SV o, qjk—1,2,3 6
<(1_ 2)3%3%4’(2 —522>z> i =% bLhrE=14,49 (6)

in the region x; > 0, which must satisfy the attenuation condition at infinity:

H?(:r,z) =0 for |[(z,2)] — oo. (7)
Corresponding stress tensor Z;?;;, which are calculated by using Hook’s law (2), has the form:

M=ol 0k + (I +I015 ) = S;»k(al, 02, 011" (21, x2, 2),

(8)

Theorem. The solution of the boundary value problem can be represented in the following
integral form
o
uj(w1,12,2) = /H?(l’hm — Y2, 2 — Y3)Pn (Y2, y3) dyadys, j=1,2,3, (9)
R4

where tensor 7 must satisfy to following singular conditions on the free surface for x1 = 0:

H=alll’ pon + (L7, +107",; ) = 6;"0(22)d(2), i,m,k=1,2,3. (10)
where §(x;) is generalized Dirac function, o = % = (% - ) = (%ﬁj - 2)-

Proof. Indeed, by virtue of (1), (10) and the convolution properties we have on the boundary
of the half-space:
o0
/29”1(0, T2 — Y2, 2 — Y3)Pm (Y2, y3) dyadys = 67"0(x2)0(2) * pm (22, 2) = pj(w2, 2).
Ra

KAZAKH MATHEMATICAL JOURNAL, 19:3 (2019) 6-19



10 L.A. Alexeyeva

Here, on the right, there is a functional convolution along the half-space boundary and a
tensor convolution by the index m. The displacements (9) satisfy the Lame homogeneous
transport equations (3) in the half-space:

o

Lﬁ&ﬁ%@mfz/@Amw@d@h@@mnﬂmaamauﬁ@ﬂmzo
Ra

in view of (6) and of the invariance of these equations with respect to the shift at the boundary
of the half-space.

This tensor II(x, z) gives possibility to use formula (9) for determination of displacements
in a half-space for any load on its surface. Stresses at any point of the elastic half-space on
an area with a normal n are determined by the formula

S(xy, 22, 2,n) = o)k (21, T2, 2)N5€4

(11)

o
= pegny [ Xhi(x1, 20 = y2,2 — y3)pi(y2, y3) dyadys.
Ra

Thus, the definition of the fundamental displacement tensor determines the solution of the
problem.
We construct the tensor II(z, z) using scalar and vector elastic Lame’s potentials.

4 Statement of the transport BVP for Lame’s potentials

The displacements of the elastic medium can be represented in terms of scalar and vector
Lame’s potentials [1], [11]:

u = gradyp + roty. (12)

Since three components of the displacements are determined through four potential com-

ponents, vector potential is usually associated with Gaussian or Lorentz gauge. Here it is
convenient to use representation:

W = 1prez + rot (ges) ,

which uniquely links three components of displacements with three potentials. If the dis-
placements satisfy the homogeneous Lame equations, then potentials satisfy d’Alembert’s
wave equation with the corresponding velocity:

2
AAp — %Tf =0, i~

BAY, — TV =0, k=12,

KAZAKH MATHEMATICAL JOURNAL, 19:3 (2019) 6-19



Green’s tensor of subsonic transport BV ... 11

where A is a Laplace operator. In the moving coordinate system these equations are trans-
formed to the form:

(14)

To construct a tensor H;-, we use similar potentials. Namely, we represent it in the form:
I (21, 22, 2) = Dy, (01,02, 0.) 7
= O PV + €1i30;PY" + ep;1€1i30;0; 5",
D,,(01,02,0,) = O, (15)
D, 5(01,02,0-) = eriz0;,
Dy5(01,02,0.) = epjie1i30;0;.
Here i,7,k,l,m = 1,2,3, e;; is a Levi-Civita pseudotensor. The first potential describes

the gradient component of the displacements field, and the other two potentials describe the
rotor (solenoidal) components. The potentials satisfy the transport wave equations:

m 232(1);?1 .
AR — Mj— - =0, j=123. (16)

We call them fundamental potentials. To calculate them we use boundary conditions: by
xr1 = 0
oIl g i + (I"1 +I7",5 ) = 656(22)6(2),

where
I = APT" + €30, 0; Py + erj1€1i301,0;0;P3",

I 1 = 0;01 Q7" + €in30,01 Py + €451€113010;01 Py,

T?i = 8,61(1)?”‘ + elkgako”’i@g” + eljlelkgakajﬁiq)gn.
We can write it in the form:

Bm(ﬁl,@g,@z)@ﬁ = 5:”5(.%‘2)5(2), n,m= 1, 2,3, (17)

KAZAKH MATHEMATICAL JOURNAL, 19:3 (2019) 6-19



12 L.A. Alexeyeva

where

Bin @ = [20;01 27" + Ok {(eir301 + e1x30;) @5 + 05 (esjieins0r + e1jiens0;) ®5'}]

+« [A(I)T + 619]-33]98]'(1)31 + ekjlelsgﬁkasﬁfbgl] i1 =

Bin(01,02,0:) P (b1 A + 2010;) P + O (adirerj30; + €irz0r + e130;) PY
+00;j {adiiejiers30s + (esjiensor + e1jiewnsos)t 5
= (aM?610.0; + 2010;) 7" + O) (it erj30; + €in3dr + e1k30;) Y
+01,0; {adirerjiers30s + (esjiersOr + erjiensds) } 5.
This implies
B;1(01,02,0,) = (aMféilazaz + 2818i) ,
Bi2(01,02,0;) = Ok (ads1€1530; + €301 + €1130;),
Bi3(01, 02, 0,) = Ox0; {adirenjiers30s + (€ijieinsor + erjieinss) }-

Using the properties of the permutation of the indices of the Levi-Civita tensor and the
formula for its convolution:

€lijelkm = Oik0jm — OimOkj,

these operators can be greatly simplified:
B11(01,0s,0.) = (aM{02 +207) ,
B21(01,09,0,) = 20102, B31(01,02,0.) = 20,05,
B12(01, 02,0.) = Ok (cver;30; + e1x301 + e1x301) = (aver;30,0; + 20102)
= a (€1230102 + €2130201) + 20105 = 20102,
B2y(01, 02, 0.) = O (ad21€130; + €21301 + €14302)
= (2130101 + €1230202) = 0202 — 0101,

B32(01,02,0.) = Ok (e3k301 + €14303) = 0203,

KAZAKH MATHEMATICAL JOURNAL, 19:3 (2019) 6-19



Green’s tensor of subsonic transport BV ... 13

B13(01, 02, 0.) = 0,0; {aerjieim3Om + (e1jiein301 + erjieirsor)}
=« (6km5j3 — 5kj5m3) 8k838m + (61k5j3 — 5135]'19) 818;49]-

+ (61k5j3 — 5135]'1@) 818k8j =« (838m8m — 838j8j) + 2010103 = 2010103,
B3 (01, 02,0.) = €2;1e11301010; + €11€11302010;

= (02103 — 02301) 0105,0f + (011053 — 01301) 020,05 = 2010203,
B33 (01, 02,0.) = €2;1e11301010; + €11€11302010;
= (52k5j3 — 5235kj) 818k8j + (51k6j3 — 5135jk) 828k8j = 2010903.

As a result, we get:

Bii = (aM79,0, + 207) , Biz = 20102, Biz = 20705,
B21(81, 82, az) = 28182, B22(617827az) = 8262 — alala
Bo3 (01, 02,0) = 2010203, Bs1(01,05,0.) = 20105,

B3 (01, 02,0;) = 20302, Bg3(01,02,0;) = 2010:203.

Thus the problem of constructing the transformants of the unknown tensors reduces to
determining the Lame potentials which satisfy equations (14), the boundary conditions on
the free surface and the damping conditions at infinity:

k
OE =0 by |(@.2)l| > oo, (19)
and certain radiation conditions which we will write later.

5 Determination of Fourier transforms of fundamental potentials

To construct the solution, we use the Fourier transform of the potentials with respect to
To,z. In the space of Fourier transforms, they correspond to variables 1, (. Their Fourier
transforms are defined by the relations:

o = /@m(az, z) exp(inxe + iCz)dzdzs,
R2
m 1 M . .
d — [ ®"(x,n, <) exp(—inze — iz)dsdn. (20)

- 4x2
R2

KAZAKH MATHEMATICAL JOURNAL, 19:3 (2019) 6-19



14 L.A. Alexeyeva

In the space of Fourier transforms the equations for the potentials (14) have the form:

d? (1)7'71 2Fm 2,2Fm —
J 5 5 2 ;
7 % - <I>j —ajC <I>j =0, aj—\/l—i Mj, 7=1,2,3. (21)

The expression under the radical is positive, because we consider the subsonic case. The
boundary conditions are transformed to the form:

Bik(alv _“7; _ig)ézn(xlv mn, C) = 6;” by xr1 = 0. (22)
Conditions for damping at infinity are: for ¥n,
®7(x1,m,¢) =0 by x1 — o0 (23)

By these conditions the solution of Eq. (22) has the form:

& = k(1,6 exp (a1 + 032), Reyfn2 +a3¢2 > 0. (24)

Functions qb?(ﬁa ¢) are determined from boundary conditions (22):

3
> Bin(—y/n? + 3%, —in, —iQ)oy = 6", k=1,2,3. (25)
j=1

Thus for each fixed m, we have the linear system of three equations for determination "
from which we find
m_ A7(1,0)

= AmO (26)

Here A;” is corresponding to algebraic complement, and the denominator is equal to

A(na C) = det{Bkj(i \/ 7]2 + O‘?C2a *inv 71<)}

This is Rayleigh’s determinant. In this case it has the form:

A = 4,,2\/,,2 - M§g2\/y2 — M3 — (207 — M3¢?)?%, v =+

The properties of Rayleigh’s determinant are known. For transport problems, it was well
studied in [1]. In particular,

An,{)=0
by
n=nE) = ME 1 e <= =+ (27)

JME 1
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Green’s tensor of subsonic transport BV ... 15

where Mg = c¢/cpr, cgr is the velocity of Rayleigh surface wave, which is subsonic (cr < ¢2).
It can be determined from the equation:

4\/1—m%\/1—m§—(2—m§)2:0, mj = cr/c;j. (28)

Formulas (24), (26) formally resolve the problem in the potentials. However, in order to
reconstruct the originals, it is necessary to investigate the properties of the transformants —
integrand functions, i.e., in (20), which essentially depend on the speed of a transport load.

6 Restoration of originals by pre-Rayleigh speeds
From (15) we get
1:[71? = Dk‘n(ah —un, _ig)(i)zl(xla m, ()

B D, (01, —in, —is) exp <—x1\/772+—an§2) = (29)

I = "((7’ g) Dy, (=v/1? + ans?, —in, —ic) exp (—xlx/nQ + ang2>,
ﬁ;gn(xh , C) = Dkn(_ \/ 772 + a?c27 _”77 _ZC)(bnm(xl? 7, C) eXp(_ml \V 772 + a%CQ) (30)

Using the inverse Fourier transform, we obtain

(27T)2H $1>$27 fRZ 1‘17777 C) eXP(_i(n@ =+ (Z))‘kdn

= [z Dy (=1 /7 + a5¢2,i0,iC) 877 (0, €) exp(—z14/n? 4+ 32 — inzy — iCz)dsdn (31)
D n(_ 772+Oé2C2,’LT],Z<)AT(77,C) . .
= [pe ot AJ(T],C) exp(—x14/n% + a?CQ — inxe — i(z)dsdn.

Let us calculate the fundamental stresses and their transformants. For this, we use
formulas (11), from which we obtain

S = AT 6k + o (T 1075 ) =S4, (01, 05, 0:)11

= 51.(01,02,0:) Dy, (91, 02, 0,) @ (1, 2, 2) = Tjen (01, D, 0z) B (21, w2, 2), (32)

Tjn = Sk (01, 0,0:) Dy, (01, 02, 0z.).

Hence we get

S = Tjn(—V/0? + ans?, —in, —ic) & (x1,7,5)
. .\ A™
i (— /0% + G2, —in, —is) Fr S exp (—a:1 VP + an<2>.
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16 L.A. Alexeyeva

The original of the stress tensor at any point (z, z) is calculated by using formula

SR (1, 22, 7) = (27) "2 / S (21,7, ) expl—i(nza + C2))dsdn. (33)
RZ

For ¢ < cp determinant A(n,() # 0 for any real {,n. That is, at the pre-Rayleigh
velocities all the integrands are continuous and tend exponentially to zero when (7, () tends
to infinity. Therefore, the integrals exist and satisfy the damping conditions at infinity.

When z; = 0, (x2,2) # (0,0), the integrands in (31) and (33) are also continuous and
integrable, since they are oscillating and have the order of damping not lower O ((n2 + g2)_1).

7 Determination of displacements and stresses at pre-Rayleigh speeds of trans-
port load

To calculate the displacements of the medium for arbitrary transport load, we find the
Fourier transform of the displacements. According to (9) and to the convolution properties
we get

’I_Lj(wl, m, C) = FX2,Z[U’j<x17 €2, Z)] = H?(.Tl, m, g)ﬁﬂ(”? §). (34)
Substituting it in (30), we have

ﬁk(l'l, , C) = pm(n:()’)f?)(n’ C) Dkn(_ \% 772 + Oén§2, _2777 —’L.§) exp <_x1 V 772 + Oén§2) .

Returning to the original, we obtain formulas for calculating the displacements at pre-
Rayleigh speeds:

1 .
wi(orsanz) = o [ [ walenn ¢ exp(itaan + 20)dnds.
s R2
To determine stresses, we use formula (11), which for the Fourier transforms has the form:

1

O-kj(xlv 2, Z) = m

/iZj(xh 1, O)Pn(n, <) exp(—i(w2n + z¢))dndc.

R2

At pre-Rayleigh velocities in formulas (33) and (34), all the integrands are continuous and
tend exponentially to zero when x1 — oco. Therefore, the integrals exist and satisfy the damp-

ing conditions at infinity. The asymptotic behavior of displacements at infinity is determined
by the asymptotic of the transport load on the surface of the half-space.

8 Construction of Green’s tensor at super-Rayleigh speed

If the subsonic speed ¢ is more than the Rayleigh speed cr: cp < ¢ < ¢, then for
constructing the solution we transform contour of integration in the e—vicinity of the point
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Cr(n) at any fixed n by moving along the circle of radius ¢ in upper half-plane of complex ¢
(z > 0) and in under half-plane (z < 0) to get under sign of integral the waves, which tend
to zero by |z| — oco. If € — 0, then, using the theorem on residue of complex analysis, we get
the Green’s tensor in the form:

472 I (21, 2, 2)

= [ {V.P.{O Z?:l dis(n, Q) exp(—z14 /1% + a2 — i(z)dg} e~ 2y (35)

—0o0

202 , 4
—imsgnz ) s f 3251 Rl (n, ) exp <_"31 RS vess: >€_Z(m2+zc’*("))dn,

where

m _ [ - n (1, 6)
kj(’r/?C) _Dkn(_ n +O‘2C2 ”772() AO%C) )

ME—1 """ R A, G ()

Here, to calculate the Value Principle integral we can use the formulae:

V.P. [ D, (—/7? + af 2¢2, zn,zC) oo (77 C) exp(—x14/n? —I—Oé]2-<2 —iCz)ds
i (w1, 2,1,6) + Y(w1, 2,1, =) exp(—z14 /7% + aZ(?)ds,

iz
TP (21, 2,1,6) = Dy, (— /0% + 022, i, i) SEGD S

The last integral does not have singularities in Rayleigh’s points and can be calculated
numerically. The second summand in formula (35) describes the surface Rayleigh waves,
which are generated by transport load when cr < ¢ < ca. By ¢ = cg the stationary solution
of this problem does not exist.

Rdj5(n,¢) = Dyn | — Inl

9 Conclusion

The solutions of boundary value problems presented here are very useful for applications
when assessing the impact of road trans on the environment. This allows to determine the
stress-strain state of the rock massif, depending on its elastic properties, the type of the
acting load and the speed of the vehicle. This is especially actual now with the development
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18 L.A. Alexeyeva

of high-speed road and rail trans, the speed of which can have a devastating impact on the
surrounding areas. The obtained solutions allow us to determine the range of possible speeds
of movement, taking into account the strength properties of the rock massif and the road
surface, which makes it possible to ensure the safety and reliability of operation of modern
vehicles.
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Asexceesa JL.A. CEPIIIM/II YKAPTBLJIAT KEHICTIK YIIIH JBIBBICKA JTEMIHTT
KOJIKTIK IIETTIK ECENTIH I'PUH TEH30PHI

CepuiMIiIiK TeOpPUsICHIHBIH JIbIOBICKA JEHiHr KOIIKTIK KyKTeMmeaep OeTiMeH KO3FaJsibIC
ke3ireri 6ipinimi meTTik ecebi cepriMIl KapThlIail KEHICTIK YIMiH KapacThIpbliaibl. OJiapiabiH,
KO3FaJIbIC KBLIIAMIBIFB P13l cepriMai 6eTTiK TOMKBIHIAPBIHBIH, Tapay KbLIIAMIbIFHIHAH
Kimn Hemece yiakeH 60saabl den 6oskananbl. Ecenrin dbymmamenTanapr merriMi — ['pun Ten-
30pbl Pyphbe KaINbLIaHFaH TYPJIEHIIPYi HETI3iHAe TYPFBIZBLIIbI, OJ1 MACCUBTIH, JUHAMUKACHIH
IIOFBIPJIAHFAH KYIITiH OHBIH OeTiHiH OOMBIMEH KO3FaJbIChl KesiHmae cumarTaiiabr. 2Kapreimait
KeHiCcTiK OeTiMeH TapaJiFfaH Ke3 KeJITeH KOIIKTIK KYKTeMeJiep YIIH IMeTTiK eCenTiH aHaJIuTu-
KaJIbIK, Tenrimi Pajteit XKbl11aMIbIFbIHAH TOMEH YKoHe Pajieil K bLT1aMIBIFbIHAH KOFAPHI XK bILI-
JAMIBIKTAP Ke31HJe TYPFBI3BLIABI. Pajeil TOMKBIHBIHBIH, KbLIIAMIBIFBI ITaMaJIaH ThIC APTKAH
Ke3/e, KOMKTIK KyKTemesaep Pajeit 6aTTiK TOMKBIHIAPBIH TyIbIpaThIHbI KopceTiami. Kapac-
TBIPBLJIFAH €CEIl »KOJI FUMapaTTapblHa ©Te YKAaKbIH OPHAJACKAH »KBIHBIC MAaCCHUBIHIH »KOFAPFbI
JKBLUIIAMIBIKIIEH KO3FAJIAThIH KOJIKTIK KYKTeMesIep 9cepiHeH KepHey i-medopMaliusiiaHraH
KYii >KaraafiblH 3epTTey VIIiH MOMEIbIIK ecell OOJIBIT TabbLIaIb.

Kinrrix ceszmep. M3oTponThl cepriMai KapThLaail KEHICTIK, KOJIKTIK KyKTeme, Oipimrmi
MIETTIK ecell, MBIOBICKA MeMiHTI >KBLIIAMIBIK.

Anexceesa JI.A. TEH30P I'PMHA JIO3BYKOBOI TPAHCIIOPTHON KPAEBOU
BAIAYN JIJI1 YIIPYT'OT'O ITOJIVIIPOCTPAHCTBA

PaccmaTrpuBaercs mepBast KpaeBasi 3ajada TEOPUHM YIIPYTOCTU JIJIsi YIIPYTOTO MOJIYIIPO-
CTpaHCTBa IIPpU JBUZKEHUU II0 €ro IMOBEPXHOCTU JO3BYKOBBIX TPAaHCIIOPTHBIX HaI'PY30K. Hpe;[‘—
OJIATAETCsI, 9TO CKOPOCTh WX JBUYKEHUsI MEHDINe WM OOJIbINEe CKOPOCTH PaclpOCTPaHEHUsT
VIPYTUX MOBEPXHOCTHBIX BOJHBI Pajiesa. Ha ocnose obobienHoro npeobpaszosanus Oypobe 1mo-
CTpoeHO (PYHIAMEHTATBHOE PEIIeHNe 33/1a91 — TeH30p | prHa, KOTOPBI OMUCHIBAET TNHAMUKY
MAacCHUBa TIPU JABUKEHUHU COCPEIOTOYUEHHON CUJIBbI BIIOJIBb ero nmoBepxHoctu. [locTpoeno anau-
THYECKOe peIieHne KPaeBol 3aJIadn JJjIs MPOU3BOJIBHBIX TPAHCIIOPTHBIX HATPY30K, PacIpe-
JIEJIEHHBIX T10 IMOBEPXHOCTU TOJIYIIPOCTPAHCTBA, IPU JIOPEJICEBCKUX U CBEPXPEIEEBCKUX CKO-
poctsx. ITokazano, 94TO TpY TPEBBIMTIEHUN CKOPOCTH BOJIHBI P3jiess TpaHCIOPTHBIE HATDY3KH
PEeHEPUPYIOT TTOBEPXHOCTHBIE BOJIHBI Pajiest. 3ajada sBJIsIeTCS MOJETBHON JIJIsT UCCIIeIOBAHUS
HaIPSKEeHHO-1ePOPMUPOBAHHOIO COCTOSIHUSI TIOPOJHOI'O MACCHBa B HEIOCPEICTBEHHON OJiu-
30CTH OT JIOPOXKHBIX COOPYKEHUH O JefiCTBHEM TPAHCIIOPTHBIX HATPY30K, JIBUXKYIIIXCS C
BBICOKMMH CKOPOCTAMMH.

Kmrouesnre csioBa. M3oTpornnoe ympyroe mMOJIYIPOCTPAHCTBO, TPAHCIOPTHAs Harpys3ka,
nepBas KpaeBasl 3aJiada, JI03BYKOBas CKOPOCTb.
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Abstract. The paper considers a new type of oscillations for shunting inhibitory cellular neural net-
works (SICNNs), unpredictable solutions, which continue the line of periodic, almost periodic, recurrent
oscillations. The dynamics admits useful numerical characteristics and can be convenient for analysis
of cognitive tasks, artificial intelligence and robotics development. Since the oscillations are robustly
related to chaos, the results are advantageous for research of sophisticated dynamics in neuroscience.
The existence and stability of an unpredictable solution for SICNN is proved. Numerical example is

given to show the feasibility of the obtained results. Results of the paper were announced in [1], [2].

Keywords. Unpredictable oscillations, Shunting inhibitory cellular neural networks, Asymptotical stabil-
ity.

1 Introduction and preliminaries

In paper [3] deterministic unpredictable functions were introduced as a new type of oscil-
lations. The existence of unpredictable solutions proves Poincaré chaos for a Hopfield type
neural networks [4] and the motions admit numerical characteristics, which can be useful for
the analysis of neural processes. The description of such functions relies on the dynamics of
unpredictable points, which were presented in the study [5]. The research of unpredictable so-
lutions unites the theoretical advantages and challenges which are proper for both oscillations
and chaos, and will open up many interesting prospects in neuroscience.

Shunting inhibitory cellular neural networks (SICNNs), which have been introduced by
Bouzerdoum and Pinter in [6], play exceptional role in psychophysics, robotics, adaptive
pattern recognition, vision and image processing. In the last several decades there have been
published many results concerning the dynamics of the neural networks.
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In its original formulation [6], the SICNN model is a two-dimensional grid of processing
cells. We will follow the description in the present reseach. Let C;; denote the cell at the
(i,7) position of the lattice. Denote by N, (4, j) the r-neighbourhood of Cj;, such that

Ny (ir5) = {Chp - max(k — il, [p— jl) <1 <k <m,1 <1< n},

where m and n are fixed natural numbers. In SICNNs, neighbouring cells exert mutual
inhibitory interactions of the shunting type. The dynamics of the cell Cj; is described by the
following nonlinear ordinary differential equation

d:ng k
o —agay— Y O Fa®)ey + vg(t), (1)
C}CPGN'I‘(L])

where z;; is the activity of the cell Cjj, v;;(t) is the external input to the cell Cj;, the constant
a;;j represents the passive decay rate of the cell activity, C’ff > 0 is the connection or coupling
strength of postsynaptic activity of the cell C,, transmitted to the cell C;; and the activation
f(xp) is a positive continuous function representing the output or firing rate of the cell Cj,,
v;;(t) is the external input to the cell Cj;.

Throughout the paper, R and N will stand for the sets of real and natural num-
bers, respectively. Also, the norm |[lully = supieg [|u(t)|, where [ul| = max jy|ui;l,
u(t) = (Uit 3 Ulny v o s Umd -+ - Umn ), L5 € Ry = 1,2,...,m,j = 1,2,...,n, will be used.
The following definition is an initial one in our research.

Definition [3]. A uniformly continuous and bounded function u : R — R™*" 4s unpredictable
if there exist positive numbers €y, d and sequences t,, s, both of which diverge to infinity such
that u(t+t,) — u(t) as p — oo uniformly on compact subsets of R and ||u(t+t,) —u(t)|| > €o
for each t € [s, — 9, s, + 0] and p € N.

2 Main result

Let us denote by B the set of functions u(t) = (wi1,...,Uin, - s Uml - Umn), t, Uij €
R,i=1,2,...m,7 =1,2,...,n, where m,n € N, such that:

unctions u(t) are uniformly continuous and there exists a positive number H such tha
A1) functi t iforml ti d th ist iti ber H such that
|lul[i < H for all u(t) € B;

(A2) there exists a sequence t,, t, — 0o as p — oo such that for each u(t) € B the sequence
u(t + tp) uniformly converges to u(t) on each closed and bounded interval of the real
axis.

The following conditions will be needed throughout the paper:

(B1) the function v(t) = (vit,.. -, Vin, - s Uml-- s Umn), L0 € Ry = 1,2,...,m,j =
1,2,...,n, in the system (1) belongs to B and is unpredictable such that there ex-
ist positive numbers d,¢9 > 0 and a sequence s, — 00 as p — oo which satisfy
|lo(t+tp) —v(t)|| > € for all t € [s, — 0,5, + 0], and p € N;
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(B2) for the rates we assume that v = 1(1111)1 a;; >0 and ¥ = r(na§< a;j;
,J 2y

(B3) there exist positive numbers m;; such that sup |v;(t)] < myj;
teR

B4) there exists a positive number m such that sup |f(s)| < my;
f f
|s|<H

(B5) there exists a positive number L such that |f(s1) — f(s2)| < L|s1 — so| for all sy, s9,
|s1] < H, |s2| < H;

(B6) (LH + my)max Z C’fp<’y foralli=1,...,m,j=1,...,n.
(i) oo
CkpeN"‘(’L:j)

Likewise to the result in [7], one can verify that the following assertion is valid.

Lemma 1. Assume that conditions (B2) to (B4) are valid. A bounded on R function y(t) =
{yij(t)} is a solution of SICNNs (1) if and only if the following integral equation is satisfied

yii(t) = — / e[S OB Flna(9)wis(s) — vig(s)]ds. (2)

% Cri€Ny(4,5)

Define on B the operator II such that ITu(t) = {IL;;u(t)},i=1,...,m,j =1,...,n, where

HijU(t)E—/ e_“”(t_s)[ > ijpf(Ukp(S))uz‘j(S)—vij(S)}dS- (3)

- CkaNr(’iJ)
Lemma 2. If u(t) € B, then the operator 11 is invariant in B.

Proof. For the function u(t) € B, it is not difficult to show that ITu(t) satisfies the condition
(A1).

Now, let us fix a positive number € and a finite interval [a,b] C R. Consider numbers
¢ < a and &£ > 0, which satisfy the following inequalities,

2
*(max Z ijl(me + LH?) + mij)e—’y(a—c) <

7R @) Cri€Nr(3,5)

(4)

N

and

§(max > ijl(mf+LH)+1) <
YN\ G -
k1€ Nr(1,5)

N ™
—
(@)
S~—
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We will show that |[ITu(t + t,) — Hu(t)|| < € on [a,b] for sufficiently large p. Let p be a
large enough number such that ||u(t +t,) — u(t)|| < € and ||v(t +tp) — v(t)]| < &, on [e,b].
Then for all t € [a,b] it is true that

t
[T (¢ + ) — Tijug(t)] < / e =) ( >, oy
e Cr1€Nr(4,5)

S (uga(s))uij(s)

— [ (uri(s + tn))ui(s + tn)| + ‘(Uij(s Tin) - Uij(S)Dds

< / (Yl

Cri€Nr(4,5)

[f (uki(8))[wij () — uiz(s + tn)]

1 (ara()) = F a5 + )y (5 + )] + | (035 4 ta) = vig(5)] ) ds

t
+/ e*v(t*s)( Yo

Cri€Nr(4,5)

f(ur(8))[wij(s) — uij(s + tn)]

1 Cara(5)) = Flura(s + ta)) i (5 + )| + | s (s + ) = v5(s)| ) ds

Max : N
< ( () 2oCrueN: (i) i (my2H + L2HH) +2m,; )1
2

kl

N (f MAX(i,j) X.CeN, (i) Cij (my+ LH) + 1)
7 )
for all i = 1,2,...,m,j = 1,2,...,n. Now inequalities (4) and (5) imply that ||u(t + t,) —
ITu(t)|| < € for t € [a,b]. Since € is arbitrary small number, the condition (A2) is valid. The
lemma is proved. O

Lemma 3. The operator Il is contractive in B.

Proof. For two functions o, % € B, and fixed i = 1,2,...,m,j7 = 1,2, ...,n, we have that

Myoi) - Tovs0] < [ 70 S0 O (Floulo)es(s) - (o) i) ds

- Cri€Ny(4,5)
t
[ Sl o))~ Flne) (o) ds
e CrEN,(i,5)
LH+m
< (f)rgmgi S CHlle -l
v I CklENr(i,j)
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LH
That is why [Ty — g, < "L max  S" CH o — ||, . Then condition (I36)
¥ ter -
Cri€Nr(i,5)
implies that the operator II is contractive in the set B. The lemma is proved. 0

Theorem 1. Suppose that conditions (B1)-(B6) are valid, then the system (1) possesses an
unique asymptotically stable unpredictable solution w(t) € B.

Proof. Let us show that the space B is complete. Consider a Cauchy sequence ¢y (t) in B,
which converges to a limit function ¢(¢) on R. It suffices to show that ¢(t) satisfies condition
(K3), since other two conditions can be easily checked. Fix a closed and bounded interval
I ¢ R. We have that

[0t +1p) = o < ¢t + tp) = Gr(t +tp)|| + l|Oow(t + 1) — ok + lox(t) — S(D)[|. (6)

Now, one can take sufficiently large p and k such that each term on the right-hand side
of (6) is smaller than § for an arbitrary positive € and ¢ € I. The inequality implies that
lo(t +t,) — @(t)|| < € on I. That is the sequence ¢(t + t,) uniformly converges to ¢(t) on I.
The completeness of B is proved. Now, by the contractive mapping theorem, due to Lemmas
2 and 3, there exists a unique solution w(t) € B of equation (1).

One can find a positive number x and natural numbers [,k and j = 1,...,p, such that:

Kk <0, (7)

112 kp 3

(4 = o > —
WG Grpet X CfmprLH)) > 5 (8)

CkPEN"'('LvJ)
11

|wij(t—|—8)—wij(t)| < Eomln(%,zl), tER,|S| < K, (9)

foralli=1,2,....m,j=1,2,....,n
Denote A = |w;;(t, + sp) — wij(sp)| and consider two cases: (i) A < ep/l; (ii) A > ep/l
such that the remaining proof falls naturally into two parts.

(i) From (9) it follows that

€ € €0 1 2
Jwigt+ sp) —wis(sp)| < T+ 2+ L =eo7+7): (10)

if t € [sp, sp + k. It is true that

wij(t +tp) — wij(t) = wlty + sp) — w(sp) — / aij(w(s +1tp) —w(s))ds

P

/ Ckp(f(wkp(8+tp))wij(8+tp)—f(wkp(s))wz‘j(s))ds—/ (vij(s+tp)—vij(s))ds.  (11)

P Crp€ENr(i,5) P
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We obtain from (7)-(8) and (10)—(11) that

t
|wij (t +tp) — wis ()| > / i (8 +tp) — vij(s)|ds — |wij(ty + sp) — wij(sp)l

P

t t
—/ aijlwij(5+tp)—wz'j(S)!dS—/ CP| f (wip(s+p) wij (s+p) — F(wip(s))wis ()|ds
Sp 5P Clp €N (4,5)
K €0 1 2, ,_ k
2605—7_60’1(74‘%)(74‘ Z N Cigp(mf+LH))
Crp€EN(i,5)
_ 1 1 2, kp 3€o
—60"5(5*(7+%)(7+ Z Cij (mf+LH))> ST

CkpeNT‘(iJ)
for t € [s, + §, sp + K].

ii) For the case A > ¢y/l, it can be easily found that (9) implies

lw(ty + 1) —w(®)]| = llw(ty + sp) —wlsp)l| = w(sp) — W@ = [lwlty + 1) —w(ty + sp)ll

ift € [s) —K,sp+ k] and p e N.
Thus, one can conclude that w(t) is the unpredictable solution with 5, = s, + 3£ § = £.

Finally, we will discuss the stability of the unpredictable solution w(t). It is true that

t
Wij(t) _ e—aij(t—to)wij(to) _ / e—aij(t—S) [ Z ijlf(wkl(s))wij(s) o vij(s):| ds,

to

Cri €Ny (4,9)
1=1,....m,3=1,...,n.
Let z(t) = (211,-+421ns-+-32ml ---,2mn) be another solution of the system. One can
write
t
2i(t) = e~ 9710 25 (tg) — / efaij(tis)[ Y CHf(zu(s)zis(s) — vy |ds.
fo CRiEN(i,j)

Making use of the relation

2i5(t) — wij () = e 0710 (245 (t) — wij (to))

‘/ eI ST O u()zis) — DD CH f(wn(s)wis(s)] ds,

to CriEN,(i.) Cri€N,(i.)
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we obtain that

|23 () — wiy ()] <e7¢710)

2ij(s) — wij(s)|ds

t
zij(to) — wij(t(])‘ +my Z C’i’“jl/ o (t=5)

Cri€Nr(4,5) o

t
+LH [ 07 N cH
to Cri€N,(i,)

2gi(s) — wkl(S)‘d&

foralli=1,...,m,j = 1,...,n. Multiply both sides of the last inequality by e*:

t
e |2(t) — w(t)|| < |l2(to) — w(to)l| + (LH + my)max > 01137 e ||z(s) — w(s)| ds.
(:9) Cri€Nr(4,5) o

Now, applying Gronwall-Bellman Lemma, one can attain that

LH+my) max; ; i.Cfl—>t—t
||z(t)—w(t)|]§||z(t0)—w(tg)\e<( M) max(g) 3 ey eny (i) Cij 7 ) ( 0).

The last inequality and condition (B6) confirm that the unpredictable solution w(t) is
uniformly asymptotically stable. The theorem is proved. O

3 Example

Consider the logistic discrete equation
i1 = pAi(1 = N), (12)

with = 3.92 [3] . The sequence belongs to the unit interval [0, 1]. In paper [4] it was proved
that equation (12) has an unpredictable solution v;,7 € Z.
Let us construct the solution O(¢) of the equation

dv
o = () +Q(), (13)

where €(t) is a piecewise constant function defined on the real axis through the equation
Q(t) =1; for t € [i,i+ 1), i € Z. One can check that

o(t) = / t e 390 (s)ds. (14)

—0o0

teR

It is worth noting that ©(¢) is bounded on the whole real axis such that sup |©(¢)| < 1/3,
and is globally exponentially stable. Moreover, the function ©(¢) is unpredictable [4].
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Example. Let us introduce the following SICNNs:

dx;;
dt] = —QiTq5 — Z G pf(xkp( ))xij + vij(t), (15)
C’kaNl(ZJ)

where 7,5 = 1,2, 3,

ail] aiz ais 4 6 2 011 012 013 0.02 0.05 0
a1 agy as3 1 75 y 021 022 023 = 0.04 0.07 0.03 s
a3zl asy ass 4 8 3 031 032 033 0.06 0 0.09

and f(s) = tarctan(s), v = 2703(t) + 2, via(t) = 30(t), vi3(t) = —50O(t) + 3, va1(t) =
120(t) + 1, vaa(t) = 210 ( ), vog(t) = 190(t) — 1, vai(t) = —8O(t) + 5, vs2(t) = 60O(t),
v33(t) = —19@3( t), O(t) is the unpredictable solution of the system (13). Moreover, by
means of Lemma 1.4 and Lemma 1.5 in [8] function v(t) = {v;;(¢)}, 1 =1,2,3, j = 1,2,3, is
unpredictable.

Figure 1 represents the solution ¢(t) of (15) with initial values ¢11(0) = 0.5211, ¢12(0) =
0.1359, ¢13(0) = 0.9876, ¢1(0) = 3.333, d2a(0) = 0.0444, ¢o3(0) = 0.5725, ¢31(0) = 0.8541,
?32(0) = 0.2278, ¢33(0) = —0.0982. The integral curve approximates the unpredictable solu-
tion of the system (15).

Figure 1 — The coordinates of the solution ¢(t) of SICNNs (15)
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Trey6eprenosa M., Cemnosa P., YKamanmur A. HEMPOH/IBIK YKEJIIJIEP/IIH, BO-
JIZKATI BIJIVI'E BOJIMAWUTBIH TEPBEJIICTEPI

Makasiajia nyHTTay bl Texkerimi 6ap ysibl Heliporbik kesiiep (IITYHZK) ymin Tep-
OesticTep/iin, XKaHa TYpPi, IEPUOATHI, MEPUOATHI JEPJHK, PEKYyPPEHTTIK TepbesicTepdain mebin
2KAJIFACTBIPATHIH OoJKaI Oistyre 60JIMARTLIH MIEMTiMAep KapacThIPpbLIaabl. JuHaMuKkach! maii-
JIaJIbl cCUIIaTTaMaJsapra ne 6OJIbII OTHIP YKOHE KOTHUTUBTI €CelTeP/Il, XKACAH bl UHTEJJIEKT [I€H
KYJITEMIp TeXHUKACHIH TaJJlayFa bIHFAIIBI 00JIybl MYMKiH. TepbesicTep XaoCeH ThIFbI3 Haii-
JIAHBICTBI OOJIFAHIBIKTAH, HOTUZKEJIEp HeHPOFBLIBIMIAFBI KYP/Ie/l JTUHAMUKAHBI 3€PTTEy YIIiH
nafiganbl 6osanbl. HITYH2K ymoiin 6osmkan 6imyre 60MaiThiH mrentiMHIE 6ap 060Jybl MeH
OPHBIKTBIJIBIFBI JIOJIEJIJIEHTeH. AJIBIHFAH HOTWKEJIEP/iH OPbIHIAJATHIHBIH KOPCETETIH MBICAJ
KeJITipiJreH.

Kirrrix cezaep. Bosnkan 6isryre 6oaMaiiThiH TepbesiicTep, IMIyHTTAY Bl TeXKerili 6ap ysiibl
HEUPOHIBIK, JKeJIiJIep, aCUMIITOTUKAJIBIK, OPHBIKTHIIBIK.
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Tney6eprenosa M., Cemnosa P., 2Kamanmua A. HEIIPEICKA3YEMbBIE KOJIEBAHN A
HENPOHHBIX CETEN

B crarpe paccMarpuBaeTcss HOBBIM THI KOJieOaHMM [I7IsT KJIETOUHBIX HEHPOHHBIX ceTeil ¢
nryarupyomum Topmozkennem (KHCIIIT), venpeickasyembie perieHsi, KOTOpbIe MPOJIOJIXKa-
IOT JIMHUIO TEPUOAMIECKUX, MOUTH MEPUOIUIECKUX, PEKYPPEHTHBIX Kojebanuii. Jlunamuka
00J13/Ta€T TTOJIE3HBIMY XaPAKTEPUCTUKAMHI U MOXKET OBITH YI0OHOM! JIJisi aHAIN3a KOTHUTHBHDBIX
3aJa4, NUCKyCCTBEHHOI'O MHTE/JIEKTA U PA3BUTHUS POOOTOTeXHUKH. [ I0CKOIbKY KOoIebaHust TeCHO
CBSI3aHBI C Xa0COM, Pe3yAbTaThI MOJIE3HBI I UCCIeJOBAHNS CJIOKHOM NUHAMUKN B HEpOHA-
yke. JlokazaHbl CyIIeCTBOBAHUE U YCTOWIMBOCTH Hempeackaszyemoro pemtenus aiast KHCIIT.
[IpuBesnen npumep Jjist TOro, 9TOOBI MOKA3ATh BBHIIIOJHUMOCTD [MOJIYYEHHBIX PE3YJILTATOB.

Kiroueskre ciioBa. Here,ZLCKaByeMbIe KOJI663,HI/IH, KJIeTOYHBbIC HeﬁpOHHbIe ceTn C INIyHTHUu-
pyronmyM TOPMO2KEHUEM, aCUMIITOTUYIECKaAd yCTOfI‘{I/IBOCTb.
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Abstract. Central limit theorems deal with convergence in distribution of sums of random variables. The
usual approach is to normalize the sums to have variance equal to 1. As a result, the limit distribution
has variance one. In most papers, existence of the limit of the normalizing factor is postulated and the
limit itself is not studied. Here we review some results which focus on the study of the normalizing

factor. Applications are indicated.

Keywords. Central limit theorems, convergence in distribution, limit distribution, variance.

1 Introduction

In this paper we review some results concerning central limit theorems (CLTs). The
references are by no means comprehensive; in all cases the reader is advised to see the
bibliography in the papers we cite. As a point of departure, we use the Lindeberg CLT.

Consider a triangular array {X,¢, t = 1,...,n, n € N} of random variables defined on the
same probability space (2, F, P), having zero mean EX,; = 0 and variances 02, = EX2,.

n
Then the sums S, = °7; X,,; under independence have variances s = ES2 = g o2,
t=1

Lindeberg theorem [1]. Let the array {X,:} be independent and satisfy

n
Zgazzt =1 (1)
t=1
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If
lim X2,dP =0, forall >0, (2)

n—)oot -
"I Xne[>e}

then Sy, converges in distribution to a standard normal variable (with mean 0 and variance
o2 =1).

The main advantage of the Lindeberg theorem, in comparison with previous results, is that
it allows for heterogeneity (variances o2, may be different). Since the publication of this result
in 1922 many different developments took place. 1) The independence condition has been
relaxed and replaced by various notions of dependence (mixing and linear processes, among
others). 2) For (2), weaker versions have been suggested, including the conditional version.
3) Certain applications required the study of expressions that depend on X,;; in a nonlinear
fashion, quadratic forms Zztzl Gnst XntXns being the most important case. There are also
results on functionals of stochastic processes where the analytical form of the functional is
not specified. 4) Finally, for many CLTs their continuous-time analogues have been obtained,
which are called functional CLTs or invariance principles. These have been left out completely
in our review.

From the applied point of view, the normalization condition (1) is one of the main ob-
stacles. One can argue that if it is not satisfied, then one can consider S, /s, instead of S,.
Convergence in distribution of S, /s, can be achieved in this way but the question about the
convergence of S, and asymptotic behavior of s, remains. It is particularly important to
make sure that s, does not tend to zero or infinity. In the next section we indicate some
researches where the behavior of s,, is controlled and the limit 02 = lim;,_,o0 Z?:l J,%t is found
explicitly.

2 Analyzing variance

For the purpose of analyzing s,, it is convenient to normalize X,; by their standard
deviations: X,,; = onten:- Then S,, becomes

Sp = Z OntCnit, (3)
t=1

where the sigmas are deterministic and e,; are stochastic. In the Lindeberg-Lévy theorem
(see [2]) ons are of order n~'/2 (which we call classical). The following papers are focussed
on relaxing the independence condition and maintain the classical order: [3]-][23]. Davidson
[24], [25] does not analyze directly s, but allows variances going to zero or infinity.

In [26] the normalizing factor is classical but the expression for o2 is not trivial (see
Corollary 1). Let X; be a linear process

X; = ch,rgr, & are i.i.d. with mean zero and variance 1, ch < 00. (4)
T T
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The cumulant cum(Xj,, ..., Xj,) is given by cum(Xj,,..., X;,) = di > ¢j,—i...Cj,—i, Where dj,

denotes the k-th cumulant of &;. Letting ¢(x) denote the Fourier transform of the sequence ¢;,

one finds the k-th cumulant spectral function as f*)(zy, ..., xp_1) = dpc(z1)...c(xp_1)e(—z1 —
n

... —xp_1). Consider the CLT for Y,, = Z : Xj(n) :, where : X](") : denotes the Wick power
j=1

of X; (it is a polynomial of degree n). Corollary 1 states that n~Y2Y,, converges in law to

the normal distribution with mean 0 and variance

T
od= ) /Hf(”t)(yM*)dyl--.dyN.
t=1

GEBGy

See the definitions of T', &3, n; and M™* in the paper.
Giraitis L. and Taqqu M.S. [27] consider quadratic forms of bivariate Appell polynomials
and give ¢ in terms of these polynomials. Consider quadratic forms

N
Qv =Y bt — 5)Prn(Xe, Xs),

s,t=1

where Py, ,,(X¢, X;) is a bivariate Appell polynomial of X;, X. Giraitis L. and Taqqu M.S. [27]
prove the next theorem:

Theorem. Suppose

> b(D)b(k)Cov (Ponn (Xt Xe11), Prnn(Xo, Xi))| < 0.
LkteZ

If b(0) = 0, suppose in addition that Z |EX: Xo|™" < co. Then N=Y2Qx converges in

t
distribution to a normal variable with mean zero and variance

o2 = Y b()b(k)Cov (Prn(Xs, Xi41), Prnn(Xo, X)) -
LkteZz

Ho H.C. and Sun T.C. [28] in a nonlinear situation (non-instantaneous filter) give o>

in terms of the spectral distribution function of a normal stationary process. For a normal
stationary process such that EX; = 0 the autocovariances r = FX,, X1+ are represented

™
as ry = / e"dG (x), where G(z) is the spectral distribution function. The process itself is

—T
™

represented as X; = / e Zg(dx), where Zg is a random Gaussian measure corresponding
—T

to G(x). Consider a non-instantaneous filter (a functional) H such that EH (X, ..., X¢,) =0
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and EH(Xy,, ..., Xt,)? < oo. Put Yy = 121{ Xiityy - Xt11,). Ho and Sun find con-

ditions for CLT to hold, the normalizing factor Ay being of classical order. Under some
conditions they prove that the limits

—1N-1
Yy [ explitm s+ o+ )y PG ). Gy
m=0 n=0

o0
exist for each j > k and o? = ZU? < oo is the variance of the limit normal distribution.
j=k
The functions «a; arise from Wiener-Ito expansions of H (X4, ..., Xt,).
In [29] s2 is related to the spectral density of the innovations of the linear process at zero.

For the process in (4) put S, = ZXk, bnj = ¢cj—1 + ... + ¢j_n, 62 Z b . Under some
k=1 JjEZ
conditions

lim Var(S,)/b? = 2w f(0)

n—oo

and the sequence S, /b, converges in distribution to ,/nz where z is standard normal and 7
is defined in terms of innovations & and independent of z.

To model the behavior of the sigmas in (3), Mynbaev K.T. [30] introduced the L,-
approximability notion. The idea is to represent converging sequences of deterministic vectors
with functions of a continuous argument. It is realized as follows. Let 1 < p < oo. The in-
terpolation operator A, : R™ — L,(0,1) is defined by

(Appw) (x) = nr Zwt 1 y(z), weR" (5)

L
If w, € R" for each n and there exists a function W € L,(0, 1) such that
| Appwy — W||Lp(0’1) — 0, n— oo,

then we say that {wy,} is L,-approximable and also that it is L,-close to W. Suppose, for
simplicity, that the e, in (3) are i.i.d. with mean zero and variance 1. If the sequence
On = (On1y -, Onn) is Lo-close to a function F € Ly(0,1), then (3) converges in law to a

normal variable with variance
1

V= /FQ(x)d:z. (6)
0

This result extends to the case when e,; are linear processes with short memory. It would be
interesting to obtain something similar in case of processes with long memory.
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P.C.B. Phillips and many of his followers use properties of Brownian motion to establish
convergence results for regression estimators. Mynbaev K.T. [31] showed that some problems
solved using Brownian motion are easier handled applying L,-approximability.

To state the result from [32] on quadratic forms @, (k,) = Z knst XsX; we need more
notation.

Let A be a compact linear operator in a Hilbert space with a scalar product (-,-). The
operator H = (A*A)% is called the modulus of A, here A* is the adjoint operator of A.
The eigenvalues of H, denoted s;, i = 1,2, ..., and counted with their multiplicity, are called
s-numbers of A. U denotes a partially isometric operator that isometrically maps the range
R (A*) onto the range R(A). Then we have the polar representation A = UH. Denote by
r(A) the dimension of the range R(A) (r(A4) < c0).

Let {¢;} be an orthonormal system of eigenvectors of H which is complete in R(H).
Then, we have the representation

r(4)
Az = Z si(z, ¢i)U s
i=1
or, denoting ¢; = U¢;,
r(4)

Ax = Z Si(x’qbi)wia

i=1
where {¢;} and {v;} are orthonormal systems, H¢; = s;¢;, lim s; = 0. In particular, when
1— 00

A is selfadjoint, ¢; are eigenvectors of A and s; = |\;|, where \; are eigenvalues of A.
Let K € Ly ((0,1)?). For each natural n, we define an (n x n)-matrix

i
/ K(s,t)dsdt, 1<i, j<n.
1

i
n
17

(0nK);; = n/

n

We say that the sequence {k,} is Lo-close to K if

2

2

D (k= 6,K)% | = [lkn — 6K |2 — 0.
7:7j

Unlike the one-dimensional case, where Lo-approximability of {c,} is enough to have con-

vergence in distribution, in the two-dimensional case one has to impose a stronger condition

on the rate of approximation. One version of such a condition is

en — 52Kl = 0 (\}ﬁ) | 7)
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Define an integral operator by
1
(7)) = [ K (5.0 7@t € La0,1)
0

Theorem [32]. Let X; from (4) satisfy > |c;j| < oo and let (7) hold. If K is nuclear, then

2
Qn(kn) & (Z ci> S suu®, (8)

i>1

where {ugl)}, {uEQ)} are systems of independent (within a system) standard normals, s; are
s-numbers of IC and

cov(ugl),uf)) = (Y4, ¢;) forall i,j.

If K is symmetric, then ugl) = ugg) for all 1.

For more information about history of these results, see [33], [34] and [32]. Note the
difference between the limit in (8), which is not a normal variable, and the above results,
where the limit of quadratic forms is normal. This is due to the centering in the above results.
Centering requires knowledge of means and may be problematic in applications.

Wu W. and Shao X. [35] prove asymptotic normality of

n t—1
2 2
E anstXsXt/0on, where oy = E E Ay oty
1<s<t<n t=2 j=1

and X is a real stationary process with mean zero and finite covariances.

3 Some applications

Here we list a couple of applications that illustrate the following point. With expressions
of type (6) and (8) at hand one can study the limit distribution further. We call this analysis
at infinity.

[36] initiated the study of regressions with slowly varying regressors. The limit variance
matrix of the OLS estimator for such regressions is degenerate. The analysis at infinity comes
in very handy, see [37].

The main technical problem with a spatial model Y,, = pWY,, + X6 + &, is that in
its reduced form Y, = (I — pW,) (X8 + &,) there is an inverse matrix (I — pW,)~!
and one has to deduce the properties of the inverse from the assumptions on W,,. Many
researchers have been unable to do that and instead imposed high level conditions involving
the inverse. Mynbaev K.T. and Ullah A. [38] and Mynbaev K.T. [39] gave the first derivation
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of the asymptotic distribution of the OLS estimator for spatial models (without and with
exogenous regressors, resp.) that does not rely on high level conditions.

Most of K.T. Mynbaev’s contributions are collected in [40]. In particular, for the purely
spatial model in Chapter 5 it is shown that the said model violates the habitual notions in
several ways:

1. the OLS asymptotics is not normal,

2. the limit of the numerator vector is not normal,

3. the limit of the denominator matrix is not constant,

4. the normalizer is identically 1 (that is, no scaling is necessary) and

5. there is no consistency.
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Mpuapaes K.T., lapkenbaesa [.C. OPTAJIBIK [NIEKTIK TEOPEMAJIAPJIATHI JI1C-
MMEPCUAJTAPIBIH TAJIIAYHI

OpTasibIk MEeKTIK TeopeMasiap Ke3aeiCoK, maMaIap/IbiH KOCHIHIBLIAPBIH YIeCTipiM OOfbIH-
Ia KUHAKTAJIYbIMEeH OaitanbicThl. KomiMri KOJIIaHbLIATHIH TOCI KOCBIHBLIAD/IBI IUCIIEPCHU-
sIChI 1 BOJTATBIHIAM €TiIT KaJbIITaHIBIpYIaH Typaibl. OChIHBIH HOTHXKECIHIE, MEKTIK YJIeCTipiM
Gipre TeH 60JATHIH JUCIEPCUSIHBI neMieHe/i. Kerreren xKyMbIcTap/ia KaJbIlITaHAbIPY HaKTo-
PBIHBIH, IITeTiHiH 6ap OOJIybI HEri3 peTiHe aJbIHbII, MIEeKTIH 631 3epTTesMeren. bi3z myHma Ka-
JIBIITAHIBIPY KO3(MD@UIMEHTIH 3epTTeyre OarbITTaJfal Keibip HOTMXKeep/i KapacThipaMbI3.
OJtap/apIH, KOJIIAHBIC asIChl KOPCETIIreH.

Kinrrik ceznep. OprablK MIEKTIK TeopeMaJiap, YJIecTipiM OOHbIHINA KUHAKTAY, IIEKTIK
YJIECTipiM, JAUCIIEpCHs.
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Mem6aes K.T., Tapken6aesa I.C. AHAJIN3 IUCIIEPCUN B IEHTPAJILHBIX ITPE-
NEJLHBIX TEOPEMAX

[HenTpanbHubie TpeaebHbIE TEOPEMBbI CBA3aHbBI CO CXOIUMOCTBIO 110 PACHPEIACTICHUIO CYMM
caydaifabix BesumdnH. OOBIYHBIN IOIX0JI 3aKJIIOYAETCA B HOPMAJIU3AIMH CYMM Tak, 9TOOBI
UMETDH JUCIEPCUIO, paBHYIO efquHuile. B pesybrare 3Toro mpeaeabHoe pacipeaecHue nMeeT
JUCIEPCUIO, PaBHYIO eauHHUIEe. Bo MHOrEMX paboTax CYIIECTBOBAHHUE IIPEIe/ia HOPMAaJInu3yIo-
mero akTopa MOCTYJIUPYETCsl, & CAM IIpeJiesl He U3ydeH. 3J1eCh Mbl PACCMOTPUM HEKOTOPBIE
PEe3y/IbTAThI, KOTOPBIE COCPEIOTOYEHBI Ha N3y IeHNN K0P MDUIIMEHTa HOPMAJTA3AINN. Y Ka3aHbI
ux 00JIACTU MPUMEHEHUSI.

Krouesbre cioBa. llenTpasibable Ipee/bHbIE TEOPEMBI, CXOAUMOCTD II0 PACIIPEIE/ICHUIO,
peiesIbHOe pacupejiesieHne, JTUCTIEPCHS.
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Abstract. The complex form of the Hooke law for anisotropic body is given which made it possible the
simplest defining of eigenvectors and eigenvalues of a matrix of elastic modules of an anisotropic body
at a plane deformation. The structure of a matrix of elastic parameters and new invariants which play
a key role in communication of an intense strained state is defined. It is shown that always one of the
found new linear invariants is equal to zero. The relation expressing the mismatch of principal directions

of tensors of deformations and tension is received.

Keywords. Anisotropic body, elastic modules, unitary matrix, tensors of deformations and tension.

1 Introduction

In solving various applied and theoretical problems of continuum mechanics of anisotropic
elastic body for additional, more complete information on properties the elastic parameters
of the Hooke law for anisotropic elastic body is necessary. Therefore, a large number of
scientific research are devoted to clarification of regularities of elastic parameters and general
structure of the linear Hooke law for non-isotropic elastic mediums. The detailed review of
these researches is provided, for example, in [1].

The present work is devoted to the first stage as to the most prime: to research of
the general structure of the Hooke law for an anisotropic body and to clarification of those
regularities which are not previously investigated using plane deformation (flat stressed state).

The complex form of the Hooke law allows in natural matrix form to define eigenvectors
and eigenvalues of the matrix of elastic modules of the anisotropic body. The structure of the
matrix of elastic parameters and new linear invariants which play a key role in communication
of an intense strained state is defined. It is shown that always one of the found new linear
invariants is equal to zero. Own elastic modules and structure of the matrix of elastic modules

2010 Mathematics Subject Classification: 74H05,74K25.
© 2019 Kazakh Mathematical Journal. All right reserved.
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depending on the new found linear invariants are defined by eigenvectors. The ratio expressing
mismatch of principal directions of tensors of deformations and tension is received.

2 The main relations

In the system of Cartesian axes Ox1xox3 we will write down the Hooke law for anisotropic
linear elastic body [2], [3]:

€ij = QijaB * Tap, (1)
Oij = Ojiy €ij = €y Qijkl = Qjikl = Qijik = Qklij, & J, Kk, 0 =1,2,3,

where on Greek indices the toting is made, 0;;, e;; are symmetric stress tensors and linear
deformation, respectively, and a;jng are elastic modules of pliability. Replacing indices [2] by
the rule: (11) — (1); (22) — (2);(33) — (3); (12) — (4);(23) — (5); (13) — (6), we will write
down the Hooke law in the developed form:

€11 = a11011 + a12022 + a13033 + 2a14012 + 2015023 + 2016013,
€22 = 12011 + A22022 + 23033 + 2a24012 + 2a25023 + 2a26013,
€33 = a13011 + A23022 + 33033 + 2034012 + 2035023 + 2036013,
€12 = (14011 + 424022 + 34033 + 2044012 + 2045023 + 2046013,
€23 = (15011 + 25022 + 35033 + 2045012 + 2a55023 + 2a56013,

€13 = A16011 + 26022 + 036033 + 2046012 + 2056023 + 2a66013-

Let us take the axis as the bearing axis Ox3. Let us enter complex coordinates z =

x1 + ix9, i = —1 and complex components of stress tensors and deformations [2], [4]:

Ty =011+ 0y, Th = (011 — 092) + 2io12}, T3 = V2 (023 —i013), Ts = V2033,

1
7t

€1 =e11 + €y, €2 (e11 — e22) + 2iern}, €3 = V2 (ea3 —ie13), €5 = V2e33, (3)

1
= \/5{
= = — T . _ _
T = (T, T5, 11,13, T3,T5) ", €= (e2,82,¢1,€3,53, €35) -
Then the Hooke law will be registered as:

£=QT, T=Q7'¢ (4)
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then
b d c e g n B D C E G N
d b ¢ g €& n D B C G E N
e e e a5 g5 0 o oA g T I
g e j @ p m G E J Q P M
non ig m m k N N I M M K

Matrices Q = Q*, Q! = Q* ! are Hermit and positive definite, as elastic potential

1 1 _ _
P = 50aBCas = 7 {Th&s + Toey + They + Tés + Taes + Thes )

1. 1
e S
1t

has positive definite form. Coefficients of the matrix () are defined as follows:

I I |
=T = —T*QT = —&*Q'e
€ 1 Q 45Q 3

a =3 (a11 + 2a12 + a), b= 1 (a11 — 2a12 + ag + 4aas),

i = % (a13 + a23), p = (ass + aes), k = ass,

% {(a11 — ax) + 2i (a14 + a24)},

C =
d =% {(a11 — 2a12 + age — 4aus) + 4i (a14 — az4)},
(6)
e = 3 {(a15 — ags — 2a46) + i (a16 — aze + 2a45)},
9= % {(2a46 — azs + a15) + i (2a45 + aze — a1e6)},

Jj= % {(a15 + ags) + i (a6 +a)}, ¢ = {(ass — ass) — 2iass},

m = {CL35 — ia36}, n = % {(a13 — a23) + 2ia34}.

Similarly, elements of the inverse matrix Q! are defined. Apparently from (6), coefficients
a, b, g, p, k of the matrix are always real numbers.

Let us consider a monocline singoniya (the plane of the elastic symmetry) [2], [3]. Let us
put the axis Ozs orthogonally to the plane of the elastic symmetry. Then coordinate axes
Ox1,Oxo will be in the plane of an elastic symmetry, and elastic modules a15 = ao5 = ag; =
a45:a16:a26:a36:a4620,ore:g:j:mzo.

Definition. Deformation is called flat if all elastic modules, stress tensor and deformations
depend only on two coordinates x1, xo and €13 = €93 = €33 =0, orez =&3 =5 = 0. Let us
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consider the Hooke law (4)—(5) in the conditions of the plane deformation. It follows from
the fourth and fifth equations (4) that

0 = pTs + ¢T3,
) (7)
0= qT5 + pT5.

The @ matrix is positive particular, its main minor is of the second order which is determinant
of the set of equations (6) A = p? — |¢[*> > 0. It follows from (6) that T3 = T3 = 0 or
013 = 023 = 0. From the sixth equation (4) we have

1 _
T5:—%{ﬁT2+nTg+iT1}. (8)

Substituting (6) in the first three equations (4), we will receive:

£2 b_* d* Cx ,112
£ = E9 = Q*T = dy« by Gy T5 , (9)
€1 Cx Cy Oy T

b*:bf]np/k:; a*:afi%/k:; d*:dan/k:; ¢ = c—ign/k.

Further asterisks (*) over the elastic modules are lowered. Note that elastic modules (plia-
bility modules) at the plane deformation can also be written down as:

a =3 (B11+2B12+ Baz), b= (B11 — 2B12 + Paz + Baa),

c= % {(B11 — B22) + i (B1a + Baa)}
1 (10)
d= 7{(B11 — 2B12 + B2z — Baa) + 2i (B1a — Po4)},
a;30a; ..
BZ] = Q55 — 233;37 (Zvj = 17254)7
and elastic potential as
1 1 2 = 1 * 1 * —1
P = S0apB€af = (T161 + Theg + TQEQ) =-T7QT = —-c"Q ™ ¢,
2 4 4 4
(T* = (T2, T, Th)). (11)

The matrix @ remains Hermit and positive definite, therefore

a,b>0, b>|d|, ab>|c|>
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Let the frame Oz 2!, turn out by turning the frame Ozjx2 on a corner ¢ counterclockwise.
Then specified elastic parameters and complex components of vectors of tension and defor-
mations 7', £ are expressed in a new frame through aged as follows [2], [4]:

d=a, b=0 ¢ = cefm, d = deizmp, (12)

/ —24 / / —21 /
T2 — TQ@ 90, Tl — Tl, 82 = &ge @7 51 =£1.

If we introduce matrix of turn V,,, then a ratio of the second line (12) can be written as:
T' =V, T,& = V,&, V, = diag(e %%,¢*% 1), V,,- V" = E, (13)

where E is simple to matrixes, and turn matrix V, is scalar unitary matrix.

Considering ratios (13), we will receive:
= 2 =7 =7 =t = = = |2 72 2
‘T :(T*-T):(T*V,j‘-VJ):(T*.T):T, #)? = |a%. (14)

That is, modules of vectors f, € at turn do not change. Writing down the Hooke law in frames
Oz}, and Oxyxy and, considering (9), (13), we will receive:

Q' =V,QV,. (15)

Let us enter permutation matrix D:
010
D=1 00|, D-D=F. (16)
0 01

(9), (13), (16) follows from ratios:

— D, T=DT, Q = DQD. (17)

My

As the matrix () of elastic constants is Hermite and positive definite, it can be presented
in the form [5]:
Q=U")\U, (18)

where U (U*U = UU* = E) is a unitary matrix, and A = diag (A1, A2, \3) is a scalar matrix,
and all eigenvalues of matrix @, \; >0 (i =1,2,3).
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3 Structure of the matrix U*

Let us note that U in matrix decomposition (18) is defined ambiguously. The ratio (18)
can be written down, for example, in the form

Q=U\U =U"\U' =U*P*e "\ PU, U*U' = E,
U =e?PU, U* =U*P*e ™, P*P=PP*=F, (19)
ei& — diag(ei91 , 6192 62’93)’

where P is the unitary matrix, and e is the scalar matrix with any corners 61, 6s,6s. It
follows from Eq. (19) that

P)\ = )\P, A= diag()\l, )\2, )\3) (20)

Representing the unitary matrix U* = (1, 2, @3) in the form of columns, the ratio (18) can
be written down in the form

QU™ = U\ = (ty,tz, uz) A = (A111, Aotla, A31i3),
i.e. the column u; is the eigenvector of Q):
Qu; = Nz, (i=1,2,3). (21)

As U* is the unitary matrix, its columns are orthonormal, i.e. scalar product (i} - @;) = d;j,
where 6;; is the Kronecker symbol.
If the roots A1, Ao, A3 of characteristic equation

Q — AE| =0

are prime (all different and one rates frequency), then P in (20) is simple (P = E). If there
are multiple roots, then P (up to permutation matrix) consists of the blocks, standing on the
main diagonal, which sizes coincide with rate frequency of roots.

Let us prove the following lemma.

Lemma. Columns of matriz U* have the same structure as vectors €,T, i.e.

U*=DU" (22)
Let us write down the ratio (21) for the complex conjugate values

Qui; = M\ (23)
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From (16), (17), (23) we receive
Q (Du;) = X; (Du), (i=1,2,3). (24)

That is (D) as well as i; is the eigenvector, corresponding to eigenvalue \;. In the case of
simple roots we have Di,; = C;u;, where C; is complex constants.

Let us consider i-column of U* If Di; = @;, then i-column of U* is taken for the basic
column. If Diy, £ ii;, then we consider the vector #; = i; + Du;, which is the eigenvector of
Q, ie. QF; = NT.

If #; = 0, then & = i@; has the property: D} = &, and it can be taken for the basic
column. If Z; # 0, then believing T =1 |fi]71, we receive that Z; can be taken for the basic
column. Choosing thus #; are orthonormal. Thus columns of U* have the same structure as
vectors &, T (see (17)).

Now we will consider the case of multiple roots when A1 = Ao, and A3 is simple. Let
i1, U2 be an orthonormal basis, which linear span Ga(i1,13) is invariant concerning action
of operator Q. Then ¥} = i1 + Duy, &y = ils + Dug are eigenvectors of @, corresponding to
eigenvalue \. Vectors &1, @» have property: &1 = Dz, Ty = Dio.

If fl =Ty = 6 then we put: @} =iy, Uy = itz. Then @), 4@ are basic vectors in G2 and
Diy =7}, Dit) =7ul. Besides they are eigenvectors of @, corresponding to A\;. Then they
can be taken for the first two columns of A\; and therefore A\; has the structure (22).

If 71 # 0,72 # 0, then we put: 7} = 7 |i“'1|_1, Ty = Ty |:f:’2|_1. Then 77, %, are unit
vectors. Let us consider vectors 2y = (#) — @%)/V?2, Z» = (¥ +1%)/v2. They have the
properties: DZ] =%, D7y =23, (Zf-7) = 0. Here it is considered that (&} - Z5) = (T - 7).
Equality (2] - Z2) = 0 means that 2}, Z» are orthogonal (z1, 25 # 6) and linearly independent.
Passing to unit vectors 2, = 2 |21| ™, 2, = Z|%| ™" we will receive that U* has the structure
(22).

Now we will consider the case z; = 0, 2, # 0, i.e. # = &%, or (61 — Coiiz) + D (u; — Coug) =
0, Co = |Z1||@2|™". Then the vector § = i(if; — Coilz) is not zero (since @1,y are linearly
independent), and 3 = Dy. Let us consider vectors 2 = (i — :E”Q)/\/Z Z=(y+ 5’2)/\@ for
which (2. - 25) = 0. If |2} - |Z4| # 0, then 2], 2, are linearly independent and again we obtain
that U* has the structure (16). If 2| = 0, then § = &, or i |Zo| @1 — (Lti|dy|)ay = Dus. But
then (5D - Duy) = 1 = 1+ |#|* 4 |#|?, and, therefore, #; = Z» = 0. That contradicts the
assumption. Similarly we show that the case zo = 0 leads to the contradiction # T = Ty = 0.
Thus, at &1 # 0, %2 # 0 the matrix U* has the structure (22).

Now we will consider the case when #; = 0, T #* 0. Then, choosing ) = iy, we show
similarly that U* has the structure (22). For the case & = 0, # # 0, we choose &) = iily.

The case Ay = Ay = A3 corresponds to the case of proportionality of stress and deforma-
tions tensors (as it is possible to take any unitary matrix as U* and, in particular, any matrix
with the structure (22)).

The lemma is proved.
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Let us write expanded form of U, U*, which we will use further:

Ul w1l My U] U2 Ugg
U= | 222 w2 mg |, U'=| a1 Uz uz |,
u31 uU31 Mms mi1 Mo M3 (25)

— .0 — 0 — 0

Apparently from (25) matrix U has 3 complex components and 3 real non-negative com-
ponents, so it is described by 9 real components. Besides, the first and second columns of
the matrix U are complex conjugated, and the third one is real. From (22) it follows:

U=UD, UU =U"U = D. (26)

As columns of U* have the same structure as vectors f, €, at coordinates axes rotation they
are transformed according to (13):

Ut =V, U" U =UV;, (27)

and then m;j, ma, ms are invariants which are nonnegative (note, U* is defined about accuracy
to the matrix e = diag(e'r, €92¢93), see (19)).

Let’s make one more important remark. We consider, for example, the matrix \ =
diag(\1, A3, \o)T = D'diag(\1, A2, A\3)T D’*, where the permutation D’ has the form:

1 00
D=(0o01]| D*D=D.-D*=E.
010

Then
Q=UXU=U*(D*ND"\U =U"NU', U*=U*D"™ U = D'U.

That is, the second and third columns of U™ are the perturbation of the second and third
columns of U* and the scalar matrix A\’ stands on the main diagonal in decomposition of Q.
Therefore, the eigenvalues of matrix A can be in any order, for example, as they decrease. At
the same time columns of U’* are the perturbation of columns of U*. Therefore, the structure
of U™ will be the same (up to columns perturbation of this matrix).

4 The invariants

As columns 1, U, U3 of U* are the orthonormal basis, it is possible to decompose vectors
T, € on this basis:
T = a1ty + aptis + agus,
(28)

€= Bty + Paiiz + B33,

KAZAKH MATHEMATICAL JOURNAL, 19:3 (2019) 40-54



48 N.I. Martynov, M.A. Ramazanova

where &,  are decomposition of coordinates 7', on the basis w1, U, u3: o = (4 - T), B; =

(@ - &).

Due to the Hooke law (9), ratio (21) and orthonormal ;, we have:
3 3 3 3
€= Zﬁiﬁi =QT = Qzaiﬁi = Z a;QU; = Z i\l
i=1 i=1 i=1 i=1

As 1; are linearly independent, then

Bi = Nai, f=Ad, B= (81,5 837", &= (a1,a2,a3)". (29)
~ Let us show that a =1 ,5 =B, i.e. vectors @ 6 are real. Really, Di; = :'ui_, then
t=U"B=DUB =De= U*ﬁ From here B B. Similarly we show that a="uo. At
rotation of coordinate axes i, T are transformed under the law @, = V iy T = Va T. Then
@, = Vyil;, T'" = V,T. Then o} = (*’* T = (@*V* - V,T) = (@* - T) = o, and @ is
invariant. It is similarly proved that ﬂ is the invariant. Then it is easy to show that elastic
potential P is also the invariant and it is a positive definite quadratic form:

1 /.= o ’ 9 1 ’ @‘2
P:Z<5 T) (T ) Zazﬂz— ;/\iai :4;&_. (30)

The ratio (28) can be written in a more compact form:

=/
%

== U*B, T =U*a, (31)
and invariants 7 = (m1, ma, m3)T are presented in the form:
m=UF =UF, F= (001) (32)
From (31), (29) it follows:

g1 = m1 1 + mef2 + m3fs = miAiar + madeog + madsas,

33
Ty = myag + maag +maag = maA] B+ mady e + mady ' Bs. )
If we introduce the vector L = {c,¢,a}”, then it is easy to receive:
L=U*Xm=U*AUF = QF. (34)
From (33), (34) it follows that the invariant a is equal to:
a = A\m? + dom3 + \zm3. (35)
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Let us note that the matrix column F’ = Vnﬁ =V F = F at turn does not change (the
vector F’ represents complex components of a spherical tensor), and the sum m%—I—m%—i—m% =1.

5 Eigenvalues and eigenvectors

The characteristic equation | — AE| = 0 for calculation of eigenvalues has the following
appearance:

GA) =X — JIN2 + Jo) — J3E =0, (36)

where J; (i = 1,2,3) is the sum of all main minors of order ¢ of  and A is scalar matrix of
eigenvalues. For a plane deformation

Ji=trQ =M+ X+ A3=2b+a,
J2 = MA2 + MAz + dodg = b(b+2a) — 2|c* — |d? (37)
J3 = Moz = (@ +dc?) +a (b2 - yd|2) —2b e

Let us multiply (36) at the left on U*, and at the right on U. Using (18), we obtain Hamilton-
Cayley theorem which claims, that the matrix @) satisfies to the characteristic equation:

Q® — 1Q? + J,Q — BE = 0. (38)

Let us consider matrix U* We present it in the form:

lui] et Juge| €2 |ugi| e’
U= [unr]e™ |ug|e™™? |ugi[e™™® | =V3 U
mq mao m3
(39)
e’ 0 0 |U11|€w1 |U22|6”%2 |z
= 0 e 0 || |ur]e™ |ug|e ™2 Jus| |,
0 0 1 mi ma m3

where corners 1 = (p1 — ¢3),%2 = (p2 — @3) are the invariants in virtue of (12), and

1—m? 1—m3 1-m§ . C
|uge| = lusi| = in virtue of columns normalization.
) 2 M M

All m;(i = 1,2,3) can not be zero at the same time. Therefore, for example, mg # 0 (in
virtue of the remark in Section 2). Separately we consider cases when m3 =1 and mg # 1.

lui1| =

e ie'®
7 gy =
N NG
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receive from (18)

ip i olP )
€ /\/§ Le /\/ﬁ 0 )\1 + )\2) ieQup(}\l — )\2)

U* = e*i‘P/\/ﬁ —ie*w/ﬁ 0 ,b:(27d:7
0 0 1 (40)

c=0, a=X3, Mi2=0b=E|d|.

Let us note that by d = 0 we receive an isotropic body, for which Ay = A9 = b, A\3 = a. The
following converse statement is true: if Ay = A2, then we have the isotropic body (d = ¢ = 0).
If A1 = A3 # A2, then from (40) it follows:

a:A1:A3:b+|dl, )\sz—|d|. (41)
If A2 = A3 # A1, then from (40) it follows:
a:/\QZ)\gzb—‘d’, /\1:b+‘d’. (42)

For A1 = A2 = A3, we have a hyper elastic body (a = b,d = ¢ = 0) with zero Poisson’s
coefficient [6]. In this case tensions are proportional to deformations. The matrix U* can be
chosen in any type and, in particular, in the type (40).

The second case (mg # 1). Using conditions of orthogonality of columns and rows of Uj,
it is easy to receive:

ot — _ (myms + ims) oite — _ (moms — imy) 43
V= m - V=m0 - o
(mims + ima) (mamg — imy) 1—m3
S RO-m) el-mp) V2
Us = _(mimg —img)  (mamg +imq) 1—-m3 |- (44)
V2(1 —m3) V2(1 = m3) 2
mi ma ms3

From the ratios (18), (39)—(44) it follows:
b= % {)\1(1 — m%) + (1 — m%) + A3(1 — m%)}, a= Alm% + )\Qm% + )\3m§,
e2i
d = 5y {1 = m3)? + Ai(mimg —m3)
+ )\g(m%mg — m%) + Zimlmgmg()\l — )\2)},

er¥

o= s {ms(\3 — a) — imima(A — Xo)}, @ = @3.
m3
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The ratios (45) show that elastic modules of @) are expressed over elastic modules A1, Aa, A3,
invariants mi,ms, m3 of U* and the corner ¢ = 3.

It is well known [2], [3] that at a plane deformation an elastic isotropic body behaves as
an orthotropic body. IL.e. the frame can be turned on a particular corner so that in a new
frame elastic parameters d, ¢ will be real, i.e. ¢ = |c|, d = dy = +|d|. But then, from (45) it
follows that mima(A; — Ag) = 0.

Let Ay # Ag. Then mims = 0, and taking into account the remark in Section 2, we can
assume that mo = 0. The ratios (44), (45) for this case have the form:

—mgew/\/i ei“’i/\@ mlei“’/\/i
U* = —mge_i‘p/\@ —ie_i‘p/\/i mle_i‘p/\@ ,
0

mq ms3
(46)
b=1{Am3 + X+ A3mi}, a = mi+ \gmi,
d=e% (b= N}, c=ImOg— ) =5
From the fourth ratio of (46) it follows
A2 = b —do, (do = £|d]). (47)
Then from (37), (47) we have:
A+ A3 =2n=a+b+dy,
Mz = a(b+ do) — 2|c|?
and then:
1 9 9
Nap=n+D, D=3\/(b+dy— a2+ 8] (48)

Here mims(A3 — A1) = v/2|c|, mimsz > 0. For the case of simple roots (A # A2 # A3),

in virtue of (47) from (46) we define:
—a) |D—(n—a)
g . 49
) s 2D (49)

If A1 = A3 # Ao, then from (46) it follows that ms = 1. This case has been considered
earlier.
Now we consider the case when A\; = Ay # A3. Then ratios (45) have the form:

b= % { (A1 +A3) — (A3 — M)m%}, a=M+ (A3 — Al)mg,
(50)

()‘3 - )‘1)(1 - m%)v c= M(AS _ )\1)'

o 621';,9
d= % NG
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From here we receive

lc| = m3y/1 —m3(A\g — Al)/\@, do=0,5-(\3 — A\1)(1 —m3). (51)
But then A3 > A1 (mg > 0), and therefore dy = |d|. From ratios (50), (51) we find

o (dl+a-b) |
Bl +a—b)  (2)dP + )

el = Id] (|d] +a = b), m

(52)
,__ 2|d
2 (3|d| +a—b)’

The first ratio of (52) gives connection between elastic modules due to the fact that A is a
double root, and invariants mi,mo are any numbers but they are connected by the fourth
ratio (52). Therefore we can put mg = 0 (without loss of generality). Thus mg = 0 for all
cases. Further for invariants mi,ms more convenient designations are used:

m? +m M=X=b—ld, A\s=a+2|d|

my = sinw, mg = cosw. (53)

For |d| = 0 from the first ratio (52) it follows that ¢ = 0, and then we have the isotropic
body. If ¢ = 0, then from the same ratio it follows that d = 0 (the case of an isotropic body),
or |d| =b—a. If |d| = b— a, then from the second ratio (52) it follows that m% = 0, but this
contradicts the assumption 0 < mg < 1.

Let us note that at a plane deformation the transversal isotropic body behaves as an
isotropic body [2], [3]. Therefore, all results given above for the isotropic body are true also
for the transversal isotropic body.

Thus, we proved the following theorem.

Theorem. At a plane deformation one of the invariants of U* is always equal to zero. For
ms = 1 eigenvectors and own elastic modules are defined by ratios (40)—-(41). For mg # 1 in
case of simple roots (A1 # Ao # A3) vectors, own elastic modules and invariants my, ms are
defined by ratios (46)—(52); for \i = Ao # A3 they are defined by ratios (52). Besides, for
ms #£ 1, A1 = Ao # A3, if one of elastic modules d or c is equal to zero, then an elastic body
18 1sotropic.

6 Mismatch of tensors of deformations and tensions

At first we consider the case of simple roots. From the ratios (31), (46), (53) it follows

b1 = —% {626_Z¢ + égew} + sinwey, a1 = —C‘\)/Si“’ {Tge_i“" + Tgei“’} + sinwTy,

P2 = _% {e2e™ — 5}, ag = _% {Toe™™ = Toe'?}, (54)

B3 = % {sge_w + 5‘26“"} +e1cosw, ag= S‘\%" {Tge_“" + Tge“"} + 17 cosw.
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As g9 = |eg| €%, Ty = |Ty| €?#2, where p, 1o are the angles between the axis Oz; and the
first principal directions of tensors of deformations and tensions [7], respectively, the ratio
(54) using (29) can be presented in the form:

V2cosw {|ea| cospy — i [To|cospa} —sinw {e1 — MT1} =0,

V2sinw {|ea| cos iy — A3 |Ta| cospa} + cosw {e1 — A3T1} =0,

(55)
\/5{ ’€2| Sin¢1 - )\2 ‘TQ‘ Sinl/lz} = 0,
Y1 =2p1 — @, th2 = 2pp — .
Here corners 11,19 are invariants in virtue of (12). The third ratio (55) gives
. Ty| .
sin(2u1 — ) = )\2‘|E;‘ sin(2ug — ¢). (56)

This means that mismatch of principal directions of tensors of deformations and tension
is defined both by the eigenvalue Ao and the modules of deviators of stress and deformations
tensors.

From (56) it follows that for the isotropic body (and the transversal isotropic body,
d = ¢ = 0) the principal directions of tensors of deformations and tensions coincide, i.e
H1 = p2.

For the case ¢ = 0,d # 0 we have w = 0, (mg = 1), and then

‘52’ COSl/Jl = )\1 |T2| coszpz, ’€2| sinwl = )\2 ‘TQ‘ sinng, g1 = )\3T1,
. (57)

t p—
g1 N

tgipa.

In the case of the existing plain-stress state (013 = 023 = 033 = 0) and an elastic symmetry
planes all reasoning are carried out similarly to the case of plane deformation. In the resulting
expressions it is necessary to replace the coefficients of @ to the coefficients of @1, \;, on

A Land ; on T; and otherwise.
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Mapreios H.U., Pamazanosa M.A. 2KA3BIK JTEOOPMAIINA KE3IHJIEI'T AHN30-
TPOIITHI JIEHE YIIIH I'VK 3AHBIHBIH K¥PbHIJIBIMbI

7Kaspik, medopmaliusa Ke3iHje aHU30TPOITHI JCHEHIH CEePINMII MOIYJIbIAEPI MaTPHUIACHI-
HBIH MEHINKTI BEKTOPJIAPBIH YKOHE MEHIMNKTI MOHJEPiH OaphIHIIA YKEHIJ aHbIKTAayFa MyMKiH-
JiK OepeTiH aHM30TPONTHI JeHe YIimiH ['yK 3aHbIHBIH, KemreHai Typi keatipiiren. Kepneyiti-
JedopMalusiIaHraH KargaiiMen OailJIaHbICTBI HEri3ri pesl aTKapaTbiH CEepIiMIi IapaMeTp-
JIep MaTPUIACHIHBIH KYPBLIBIMBI YKOHE KaHA ChI3BIKTHI MHBAPUAHTTAD AHLIKTAIILI. TaObLIran
JKaHa ChI3BIKTHI MHBAPUAHTTAPIBIH iliHae 6ipeyi opaiibiM Hos1 601aThIHb KepeeTimi. Kepre-
yJaep MeH fedopMaliusiiap TeH30PJIapbIHBIH OaCThl OaFBITTAPBIHBIH YilJieciMciz3miria Oiaaiperin
apaKaThIHAC AJIBIHIIGL.

Kinrrix ceszmep. AHM30TPONTHI JieHe, CepIiMILTIK MOYIbIEP], YHUTAPJIBIK, MATPUIIA, JTe-
dopmanusiIap MeH KepHEeYIePIiH, TEH30PIAPbI.

Mapreinos H.U., Pamazanosa M.A. CTPYKTVYPA SAKOHA I'VKA AHMU3OTPOITHO-
'O TEJIA TIPU IIJIOCKOW JE®OPMAIINN

[IpuBenena kommtekcHas dopma 3akoHa ['yKa I aHM30TPOITHOTO TeJja, TO3BOJINBIIA
HauboJ1ee IPOCTO OIPEIE/INTh COOCTBEHHBIE BEKTOPa U COOCTBEHHbBIE 3HAYEHIS MATPHUIILI YIIPY-
IUX MOJLyJIeil aHU30TPOITHOrO TeJla IIPH IJIOCKOit nedpopmarimu. OupesesieHa CTPYKTypa MaTpu-
bl YIPYTHUX IIapaMeTpPOB U HOBbIE JIMHEIHHbIE MHBAPUAHTHI, KOTOPbIE UI'PAIOT KJIIOYEBYIO POJIb
B CBSI3U HAIIPSXKEHHO-TePOPMUPOBAHHOTO coCTOsiHUsI. [lokazaHo, 9TO Bcerma OIUH W3 Haii-
JICHHBIX HOBBIX JITHEHHBIX NMHBAPUAHTOB paBeH HyJi0. [lo/rydaeHo cOOTHOIIEHNE, BRIPAXKAIOIIEe
PacCOrIacOBAaHHOCTD TJIABHBIX HAIIPABJICHUN TEH30POB JeopMAITUil U HAIPIZKEHUN.

Krouesnre cioBa. AHU3OTPOIITHOE TEJTIO, MOJTY/IN YIIPYTOCTH, YHUTAPHAS MATPHUIA, TEH30PHI
nedopManuii 1 HAIIPAZKEHMIA.
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1 Introduction and statement of the problem

It is well known that the system of eigenfunctions of an operator given by a formally self-
adjoint differential expression, with arbitrary self-adjoint boundary conditions providing a
discrete spectrum, forms an orthonormal basis. In many papers, the question on saving basis
properties under some (weak in a certain sense) perturbation of the initial operator has been
investigated. For the case of an arbitrary ordinary differential operator, when unperturbed
boundary conditions are strongly regular, the question of the stability of the basis property of
root vectors under their integral perturbation is positively solved in papers of A.A. Shkalikov.

In a series of our previous papers, we have considered the question of constructing a
characteristic determinant and of the stability of the basis property of root vectors under
the integral perturbation of one of the boundary conditions. Almost all possible types of
the boundary conditions that are regular but not strongly regular have been considered.
Moreover, it was required that the system of root functions of the unperturbed problem
possesses the basis property.

In this paper we consider a spectral problem for a multiple differentiation operator with an
integral perturbation of boundary conditions of one type which are regular, but not strongly
regular. The unperturbed problem has an asymptotically simple spectrum, and its system of
eigenfunctions does not form a basis in Ls. We construct the characteristic determinant of
the spectral problem with an integral perturbation of the boundary conditions. It is shown
that the set of kernels of the integral perturbation, under which the absence of the basis
properties of the system of root functions persists, is dense in L.

The question of persisting the basis properties under some (weak in definite sense) pertur-
bation of the original operator was investigated in many works. For example, the analogous
question for the case of a self-adjoint original operator was investigated in [1]-[3], and for a
non-selfadjoint operator in [4]-[6].

In the present paper we consider the spectral problem:

[(u) = —u" (z) =D u(z), 0<z<l, (1)
Up (u) =4/ (0) — /(1) — au(l) = 0, (2)
Us (u) = u(0)=0, (3)

which is close to investigations in [1], [4], [7]. Here av < 0 is an arbitrary negative number.
The case of a positive parameter « was considered in our paper [8].

Let £1 be an operator in Lo (0,1) given by expression (1) and by ”"perturbed” boundary
conditions:

]‘7
U (u) :/0 p(z)u(z)dx, Us(u)=0, wherep(x)€ La(0,1). (4)

By Ly we denote the unperturbed operator (case p () = 0).
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In our previous papers [6], [7], [9], [15], [16], [17], [18] we considered different variants
of the integral perturbation of boundary conditions. In these papers, under the assumption
that the unperturbed operator £y had the system of eigen- and associated functions (EAF)
forming the Riesz basis in L9 (0,1), we constructed the characteristic determinant of the
spectral problem for the operator £;. On the basis of the obtained formula we concluded on
stability or instability of the Riesz basis properties of EAF of the problem under the integral
perturbation of the boundary condition. In [9] the questions of stability of the basis properties
of root vectors of the spectral problem, where a= 0, and with the integral perturbation of
the second boundary condition, were investigated. Further development of these results was
published in [10]-[13]. A review of the results we obtained in this direction can be found in
our work [14].

As follows from [4], the system of root vectors of the spectral problem (1), (4) forms the
Riesz basis with brackets in L9 (0,1) for any choice of p(z) € L2 (0,1). However even for
p(x) =0 (i.e., in case of the perturbed problem) the system of root vectors of the problem does
not form the basis [19] in Ly (0,1). Therefore, the direct using the methods of our previous
papers is impossible. We use a special auxiliary system for constructing the characteristic
determinant.

2 Constructing a basis from eigenfunctions of the operator £j

The boundary conditions in (1)—(3) are regular but not strongly regular. The system of
root functions of the operator Ly is a complete system but does not form even an ordinary
basis in L2(0,1) [19]. However, as shown in [20], on the basis of these eigenfunctions one
can construct the basis allowing to apply the method of separating variables for solving
initial-boundary value problems with the boundary condition (2).

In this section we introduce results from [20] and make additional calculations which
are necessary for our further work. The spectral problem (1)—(3) is easily reduced to the
characteristic determinant of the problem

Ao()\):ﬁ(l—cosﬁ>—asin A =0. (5)
Therefore the problem has two series of eigenvalues
A = k)2 k=1,2,..., AP =@28)% k=0,1,2,... .
Here (), are roots of the equation
tglb =a/28, B>0. (6)
They are positive and satisfy the inequalities

Tk —7/2 < P <7wk, k=0,1,2,... .
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Two-sided estimates o] ) o] )
@ @
m(l 2k><6<2 k<1+27rk> 0
hold for the difference §, = wk — i for large enough k.
The eigenfunctions of (1)—(3) have the form

y\V () = sin (2rkz), k=1,2,..., y'P(x) =sin(2Bw), k=0,1,2,....

This system is almost normalized but does not form even an ordinary basis in Ly(0,1).
However, as shown in [20], the auxiliary system

yo (2) =y$ () (260) 7", yar (2) =yy") (2),

Yoo () = (y,?) )~y <x>) (207", k=1,2,... |

constructed from this system, already forms the Riesz basis in L2(0,1). The system
v (2) = 26005 (),

v ( )—v,i)( )+v,(€)( ), vgk,l(w):%kvf)(a:), k=1,2,...

is biorthogonal to the auxiliary system. This system is constructed from eigenfunctions of
the problem

v,(cl) (x) = C’,il) (cos (2rkx) — ﬁsin (2mkx) ), k=1,2,...,

™

U,(f) (x) = C’,(f) <cos (2Bkx) + ﬁsm (2Bkx) ) k=0,1,2,...
adjoint to (1)—(3). The constants Clij ) are chosen from the orthogonality relation (y,(f ), vl(f )) =
1,7 =1,2. Tt is evident that the system {vj (z)} forms the Riesz basis in L2(0, 1).
By direct calculation it is easy to make sure that

() _ Ak o) @ !
C,/' = o Cy +0 z (8)
It is easy to see that Hyk H Hvk H =14+ 2‘7rf Therefore limg_. oo Hy’(ﬂl)H Hv’(cl)H = oo. That is,

the necessary condltlon of the basis property does not hold. Due to this reason, the systems
{yk . Yy )} and {v , v,(f)} do not form the unconditional basis in Lo(0, 1).
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3 Characteristic determinant of the spectral problem (1), (4)

Representing a general solution to equation (1) by the formula
u(z,\) = O} cos V Az + Cysin VAz,

and satisfying it to the boundary conditions (4), we get that C; = 0 and
Co [\f)\ (1 — COS\/X) —asin VA — /Olp(x)sin\ﬁ\x dm] =0.
Therefore the characteristic determinant of (1), (4) has the form
A1 (N) :\/X<1—COS\/X> — Asin VA —/Olp(:l:)sinﬁx dx. 9)

It is easy to see that the characteristic determinant of the unperturbed problem (1)—(3)
is obtained here for p (z) = 0. As in (5), we denote it by

Ag(N) = ﬁ(l—cosﬁ) — asin VA

By virtue of Section 2, we represent the function p (z) in the form of Fourier series with
respect to the auxiliary system {vy (x)}:

p(x) = apvo (x) + Z arvay () + brvog—1 (x)]. (10)
k=1

Using (10), we find more convenient representation of the determinant A; (). For this,
firstly we calculate the integral belonging to (9).
By simple calculation we show that the following inequalities take place:

/1 vo (z)sin Vz dx = QﬁoC(Q)/ (cos (2B0x) + 2 sin (2B0x) ) sin V\z d
0 0 200

_ A%Cé?))? {\FA (1 — cos VA cos (28,) — 2%0@(250) cos VA )} (11)

— (260
26,C8? .
+ﬁ {smﬁ [acos (28,) — (28,) sin (28,) ]}.

From (5) we obtain that 25, (1 — cos (283;) ) = asin (25,). Therefore, in the first sum-
mand of (11) inside the round brackets we have:

(1 — cos VA cos (2,) — %sin (28,) cos VA > =1—cosVA.
0
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Using (6), we find that

2tg (Bo) _ 4o, 0s (28) = 1 —tg? (Bo) . (250) —o?
L+t8 (o) (26)° +a V4t (B)  (280)° +a?
Therefore, in the second summand of (11) inside the square brackets we will have:
(280)° ~a® 5y daby
(280)° +a2 T (280)° + 02

sin (28,) =

[acos (28y) — (28y) sin (26y) | = [a

Finally we obtain:

/1 vo (z)sin Vz da (12)
0

260C5” . 260C5”
= ﬁng)Q {ﬁ(l —cosﬁ) — asin VA } = ﬁQEO)QAO(/\).

Analogously, we calculate the integral
1
/ Vak—1 (x)sin VAz dz = 26;90,&2))\7
0

Further we have

/olv%( )sm\fq;dx_/ol( l(f)( )+Uk (z ))smfxdx

1 1
e R S NP R S
SR Rl R A e

And so, we finally obtain

Ao (N).

/O D (@ysin Vo da = Ag (\) A (M),

(2) 0 (2) (1) (2)
2 Z C C 2b..0,.C
()\) aoﬁoc [ak ( P b ) kOEU g (14)

~(260)° = — (28)° B (27k)? — (2B)?

The convergence of the obtained numerical series for A # (263;)% and A # (2wk)? is provided
by asymptotic behaviors (7) and (8). From these formulas it follows that the round brackets
inside the sign of sum can not be opened because it can lead to a divergence of the obtained
series.

In representation (14) the function A (A) has poles at A = (268)? and A = (27k)?. But
at the same points the function Ag (\) has zeros. So the function Ag (A) A(A) is an entire
analytic function of the variable .

Now we substitute all the calculations into (9). Let us formulate the obtained result in
the form of a theorem.
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Theorem 1. The characteristic determinant of problem (1), (4) with the perturbed boundary
conditions can be represented in the form

Ar(A) = A (A) (1= AW), (15)

where Ag () is a characteristic determinant of unperturbed problem (1)—(3), A(\) is given
by (14), in which ay and by, are the Fourier coefficients of biorthogonal expansion (10) of the
function p(x) with respect to the auxiliary system {vy (x)}.

Let us note that earlier the basis properties of the system of root functions of the unper-
turbed problem has been necessarily required for constructing the characteristic determinant
in all previous works. The principal difference of the present paper is that the characteristic
determinant (15) is constructed without such a requirement.

4 The case of a simple form of the characteristic determinant (15)

The case of a simple form of the characteristic determinant (15) takes place when p(z) is
represented in the form (10) with the finite second sum. That is, when there is a number N
such that ay = 0 and by = 0 for all £ > N. In this case, formula (15) takes the form

28,C5%)
A — (26p)?

- (2)
- ) e
kZ:l [ak (Ck A= (26:)° G A — (27k)? * bk)\ — 28 ) (16)

On the basis of this particular case of formula (15), one can readily prove the following
theorem.

Al (A) = AO ()\) <1 — ap

Theorem 2. For any prescribed numbers, a complex number X and a natural one m, there
always exists a function p(x) such that X is an eigenvalue of problem (1), (4) of multiplicity

~

m.

From the analysis of formula (16) it is also easy to see that Al()\,(gl)) = Al()\f)) = 0 for
all k > N. Hence all the eigenvalues )\Ej), )\,(62), k > N of the unperturbed problem (1)—(3)
are eigenvalues of the perturbed problem (1), (4). Also it is not difficult to see that the
multiplicity of the eigenvalues )\lgl), )\,(f), k > N is also preserved.

Moreover from the biorthogonality condition of the system of eigenfunctions
{y,il)(az), y,(f)(q:)} and {v](gl)(x), v,(f) ()} of the adjoint problems it follows that in this case

1 .
/p(x)y,gj)(x)dxzo, j=12 k> N.
0
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So, eigenfunctions {y,gl)(x),yng) ()} of problem (1)-(3) for k > N satisfy the boundary
conditions (4) and hence, are eigenfunctions of problem (1), (4). Thus in this case the system
of eigenfunctions of problem (1), (4) and the system of eigenfunctions of problem (1)—(3) (not
forming a basis) coincide except for a finite number of first terms. Consequently, the system
of eigenfunctions of problem (1), (4) also is not a basis in Ls(0,1).

By the Riesz basis property in Ly(0,1) of the system {vg(z)}, the set of functions p(z),
represented by finite sums of (10) is dense in Ly(0,1). Hence the following statement is
proved.

Theorem 3. The set of all functions p € Lo(0,1), for which the system of eigenfunctions of
problem (1), (4) is not a basis in L2(0,1), is dense in Lo(0,1).
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Caapibekos M.A., Nmanbaes H.C. BASUCTIIIK KACUETIH MEJIEHBEI'EH BIP
ECEIITIH HIEKAPAJIBIK HIAPTHIHBIH MHTETPAJIIBIK AYBITKYHBI 2KONJII

Kes-kenren ezine-e3i TyifiHmec mekapaJsiblK IapTTapMeH »KoHe o3iHe-o31 TyiliHmec dop-
MaJibal audpepeHnnaablK aMaiMeH OepijreH, CIeKTpl JUCKPETTI OOJIATHIH ONEPATOPIBIH,
MEHINKTI (pyHKIUSIAPBIHBIH, KYHeCiHiH OpTOHOpMAaJIaHFaH 0a3uC KypalTBIHABIFGI OeJriii
xkoit. Kenreren kymbicTapia Gacramnksl Gepiiren onepaTopiblH Kangail ga 6ip oscis (6es-
rijii MarbiHaJIA) aybITKYbl Ke3iHJe OHbIH 0a3UCTLIIK KACHETTEPIHIH CAKTaIybl MOCEJeci 3epT-
TeJIPeH. AyBITKBIMaraH IIeKapaJsblK IIapTTapbl KYIIEATIITeH PeryJIsipJibl OOJIFaH XKarIaiJarsl
Kol muddepeHnuaIbIK, OepaTop YIMH OChI MAPTTAPIbIH UHTEIPAJILIK, aybITKYbl Ke3iH1e-
ri Ty6ipJiK PYHKIUSIAPABIH, 0a3UCTLIIK KACHeTTEPIHIH OPHBIKTHLIBIFBI TypaJibl Moceae A.A.
IIKaIMKOBTBIH, »KYMBICTapbIHIa OH, IIEINMIH TankaH. bi3ain OypbIH >Kapusijianran Oipkarap
JKYMBICTAPBIMBI3/Ia ITEKAPAJIBIK MAPTTAPIbIH apachblHaa Oipeyl MHTErpPAJIIbIK, aybITKbIFAH-
Jarbl XapaKTEePUCTUKAJIBIK, aHBIKTAYBIIITHl KYPy MeH TYOIp/ikK (yHKIUsIapIbH 0a3UCTIIIK
KACHeTTEPIHIH, OPHBIKTHIIBIFBIH AHBIKTAY CYPaKTAphl 3epTTeJINeH OOJIaThIH. Opi PerysispJibl,
Oipak KyIIeATiIMereH peryJiap bl MeKapaJsblK MapTTapIblH, MyMKIH O0JaTBIH TUIITEP] TyTes-
Jelt nepJik KapacThIpbLIAbl. Byt Makasiana 6ip Tunreri MHTErpaiIblK, aybITKYbI 0ap, Peryssap-
JIBI, 6ipaK KyIIeATIITeH peryIapbl eMec 60IaThIH IeKapaJsblK, apTTapMeH Oepijiren exi ecesri
JuddepeHImaIIay OnepaTop VIl CIeKTPAJIIBIK, eCell KapaCThIPBLIAIbl. AYBITKbIMATAH €CeI
ACHMIITOTAJIBIK TYPFBIJIAH KapalailbM CIIEKTPi MeJIeHIIl, aj OFaH Coiikec MEHIIKTI (DyHKIIN-
AJIAPBIHBIH, XKYiteci Ly KeHicTiringe 6asuc xkypmaiianl. [llekapaabik maprrap/ibiH 6ipeyine uH-
TErPaJIJIbIK, AYBITKY »KacaraH/arbl CIEKTPAJIJIBIK, €CENITIH XapaKTePUCTUKAIBIK, aHBIKTAY BITITHI
Kypburrad. Ty6ip/iik GyHKIUIIAPABIH, XKYyHeciHin 0a3uCTiIiK KACHEeTIHIH, »KOKTBIFbI CaKTa/Ia-
TBIH UHTETrPAJIIBIK, aybITKYJIAPIbIH 63€KTEPIHIH KUBIHBI Lo KEHICTITIH/Ie THIFbI3 00/ TaTHIH B b
KOPCETLIreH.

Kinrrik ceznep. 2Koit quddepeHnua bk oIepaTop, MEeTTIK MapTTap, IeKapaJibiK, map-
TTBIH UHTErPAJIJIBIK, aYBITKYbI, MEHIMKTI MOH/IEP, MEHIMKTI PyHKIUIIAp, 0a3uCTiIiK, XapakK-
TEPUCTUKAJIBIK, AHBIKTAY BIIII.
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Canpibexos M.A., man6aes H.C. OB MHTEI'PAJIbHOM BO3MYUIEHNU 'PAHNY-
HOT'O YCJIOBUS OJHON 3AJJAYN, HE OBJIAJAIOIIEN CBOMICTBOM BA3UCHO-
CTH

XOoPpoIIo U3BECTHO, YTO CHCTeMa COOCTBEHHBIX (DYHKIUI orepaTopa, 33 JaHHOT0 (hOPMAJIh-
HO CAMOCOIPSI2KEHHBIM Tu(hDEPEHIINAILHBIM BbIPAXKEHUEM, C MPOU3BOJLHBIMUA CAMOCOIIPSI-
JKEHHBIMU TPAHUYHBIMU YCJIOBUSIMU, JAIOMIMMEI JUCKPETHBIN CIIEKTD, 00pa3yeT OpTOHOPMU-
poBannblit 6a3uc. Bo MmHOTEX paboTax MCCJIeI0BaJICs BOIIPOC O COXPAHEHUN DA3MCHBIX CBOMCTB
P HEKOTOPOM CJIA00M (B OIPEJEEHHOM CMBICJIE) BO3MYIIEHUH UCXOTHOTO orneparopa. st
CJIydasi IPOU3BOILHONO OOBIKHOBEHHOTO JU(pr HePEHINAIBHOTO OIIEPATOPA, KOTIa HEBO3MYIIEH-
Hble TPAHUYHbIE YCJIOBHUS YCHJIEHHO PEryJIsAPHBI, BOIPOC 00 YCTONYMBOCTH CBOHCTBA OA3UCHO-
CTU KOPHEBBIX BEKTOPOB IIPU UX UHTErPAJTBHOM BO3MYIIEHUH TIOJIOXKUTETHLHO PEIIeH B paboTax
A A. llIkanukoBa. B cepum Hammx MpeabAyIinx paboT MBI PaCCMOTPENH BOIPOC O IMOCTPO-
€HUU XAPAKTEPUCTUIECKOTO ONPEIEeTUTESS U YCTORUINBOCTA CBONCTBA OA3UCHOCTH KOPHEBBIX
BEKTOPOB IIPU UHTEI'PAJIHLHOM BO3MYIICHUHU OJHOTO U3 T'PAHUYHBIX yCJIoBHil. Bbuin paccMor-
PEHBI TIOYTH BCE BO3MOXKHBIE TUIIBI IPAHUYHBIX YCJIOBHI, KOTOPBIE SIBJISIOTCS PEryJISAPHBIMH,
HO He YCUJIEHHO Dery/isipHbIMU. B JaHHOI paboTe paccMaTpUBaeTCsl CIIEKTpajbHas 3aJada
JIJIsE oTiepaTopa JBYKpPATHOTO AuddepeHiinpoBanus ¢ HHTErPAJILHBIM BO3MYIIEHNEM I'DAHUY-
HBIX YCJIOBUI OJIHOIO THUIIA, KOTOPLIE ABJIAIOTCA PEryJIAPHBIMUI, HO HE YCUJICHHO PEryIAPHBIMUA.
HeBoamyiennas 3a/1ada nMeeT aCUMITOTHYECKU IIPOCTOH CIEKTD, a ee CUCTEMa COOCTBEHHBIX
dyukiuit He obpazyer 6a3zuca B L. IlocTpoen xapaKTepuUCTUYECKUI ONpEIEIUTEb CIIEK-
TPaJIbHON 3a/[a41 C WUHTErPaJbHBIM BO3MYIIEHUEM OJIHOTO IPpAHUYHOrO ycsoBus. llokazamo,
YTO MHOXKECTBO SIJIEp MHTETPAJBbHOIO BO3MYIIEHUsI, [IPU KOTOPBIX COXPAHSETCS OTCYTCTBUE
0a3MCHBIX CBOMCTB CUCTEMbI KOPHEBBIX (DYHKIIUM, IJIOTHO B Lo.

Kurouespie ciioBa. 06bIKHOBEHHDIH quddepeHnnaabublil oiepaTop, Kpaesast 3aa4da, HHTe-
rpajibHOE BO3MYIIEHNE TPAHUTHOTO YCJIOBHSI, COOCTBEHHDbIE 3HAYCHUSI, COOCTBEHHDbIE (DYHKITNNU,
6a3UCHOCTD, XapaKTEPUCTUIECKUN OIIPE/IETUTEb.
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Abstract. A two-point initial boundary value problem for fourth order partial differential equations is
studied. We consider the existence of classical solutions to the initial two-point boundary value problem
for the fourth order partial differential equations and offer the methods for finding its approximate
solutions. Sufficient conditions for the existence and uniqueness of a classical solution to the two-point
initial boundary value problem for the fourth order partial differential equations are set. We first introduce
a new unknown function twice: we reduce the problem considered to the equivalent problem consisting
of a nonlocal problem for a system of second order hyperbolic equations with integral relations, and
then to the equivalent problem consisting of a two-point boundary value problem for a system of first
order differential equations. We offer the algorithm for finding the approximate solution to the problem

considered and prove its convergence.

Keywords. Fourth order partial differential equations, two-point initial boundary value problem, nonlocal
problem, system of second order hyperbolic equations, first order differential equations, solvability,

algorithm.

1 Introduction

In recent years the theory of nonlocal boundary value problems for hyperbolic equations
are drawn by great attention. This is of practical importance, as well as for their new
mathematical content, which often has no analogues in classical mathematical physics [1]-
[3]. One of the important classes of such problems are the initial two-point boundary value
problem for fourth order partial differential equations. Over the past decades, the theory
of the initial-boundary value problems for the fourth order partial differential equations of
hyperbolic type, has been intensively developed in works of many mathematicians [4]-[8]. To
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study the initial two-point boundary value problem for differential equations of hyperbolic
type it is very important for solving theoretical and practical problems [9]. From this point
of view, the paper is devoted to actual problem of mathematical physics. The methods and
results from [10]-[14] will be developed for the two-point initial boundary value problems for
the fourth order partial differential equations. Based on them, the conditions for solvability
of considered boundary value problems are obtained, and the ways for finding their solutions
are offered. Results of this paper are announced at the International Conference ” Actual
Problems of Analysis, Differential Equations and Algebra” (EMJ-2019), dedicated to the
10th anniversary of the Eurasian Mathematical Journal [15].

2 Statement of the problem

In the present paper, on the domain © = [0, 7] x [0, w] we consider the following two-point
initial boundary value problem for the system of fourth order partial differential equations:

o4 93 o3 H? 2
s = A1(1,2) 55 + As(t,@) o + As(t2) 5 + Aalta) o
FAS(1,2) 0 4 At ) S0+ Aelt 2)u+ 7 (5,) 1)
U(t,O) = sz)l(t)v te [O’T]a (2)
ML) o= alt), 1e(0,T), Q
2
82(;2’96)‘7@0 = ¢3(t)7 te [O,T], (4)
P(z)u(0,z) + S(x)u(T,x) = p(r), =€ 0,uw], (5)

where u(t,z) = col(ui(t, ), ..., un(t, x)) is unknown function, (n x n)-matrices A;(t,z), (i =
1,7), and n-vector—function f(¢,x) are continuous on 2; (n X n)-matrices P(x),S(x) and n-
vector—function ¢(x) are continuously three times differentiable on [0, w]; n-vector—functions
P1(t),12(t) and 3(t) are continuously differentiable on [0,T].

The compatibility conditions are valid:

P(0)1(0) + S(0)¢1(T) = ¢(0), P'(0)11(0) + P(0)12(0) + S'(0)1(T) + S(0)¢h2(T) = ¢'(0),
P"(0)11(0) + 2P (0)2(0) + P(0)¢3(0) + S”(0)1 (T) + 25 (0)¢h2(T) + S(0)¢3(T) = ¢"(0).

Let C(€2,R™) be the space of continuous on Q vector—functions wu(t,z) with the norm

llullo = max [[u(t,z)||, [[u(t, z)|| = max [u;(t, z)].
t,x)eQ i=1,n

A function u(t,xz) € C(Q,R™) having partial derivatives

ou(t, x) ou(t, x) 0?u(t, x)
ox ot Ox?

0?u(t, x)

e C(Q,R"),

€ C(Q,R"), e C(,R"),

KAZAKH MATHEMATICAL JOURNAL, 19:3 (2019) 66-78



68 Anar T. Assanova, Zhanibek S. Tokmurzin

Ou(t, ) PBu(t, ) O*u(t, )
ox3 Otdx? otox3
is called a classical solution to the problem (1)—(5) if it satisfies the system (1) for all (¢, z) € €2,
and the initial and the boundary conditions (2)—(5).
Using the properties of initial data and differentiating the two-point condition (5) three
times with respect to x, we obtain:

e C(Q,R"), e C(Q,R"), e C(Q,R"),

u xT 2u e 3u e
P (2)u(0, 2) + 3P"(2)2 g; ) 4 3P’(x)88(£23) 4 P(x)aa(xo?j) + 8" (2)u(T, z)
u xr 2U xr 3u i
+3s"(x)agw’) 4 35’(33)88(52’) S(x)aa(j;’) —B(), zel0w].  (6)

3 Reduction to the equivalent family of two-point boundary value problems
for a system of ordinary differential equations with integral relations

First, we introduce new unknown functions

0? 0
U(t,l‘) = g(;;x)’ vl(t>$) = ug;x)
and rewrite the problem (1)—(5) in the following from
ok 0 0
- ;T = Ay (t, x)a%; + As(t, x)ait’ + As(t, 2o + F(t,z,u,01) + f(t,2), (7)
/U(tv 0) = ¢3(t)7 te [OaTL (8)
3P/ (2)v(0,2) + P(x) 8”(809; %) 4 38 (@)o(T, ) + S(x) av(;; Y D uy), € 0,0, (9)
nftr) = va(®) + [ v(t.€)de (10)
0
z €
u(t.) = n(0) + ool + [ [ olt. ) derde, (1)
o Jo
where 5 9
F(t,x,u,v1) = As(t, x)% + As(t, z)v1 + Ag(t, x)a—? + A7 (t, x)u,

D(z,u,v1) = ¢(x) — [P"(x)u(0,z) + 3P"(x)v1(0,z) + S (x)u(T, x) + 35" (z)v1 (T, z)].
A solution to the problem (7)—(11) is a triple of functions {v(t,z),v1(t,x),u(t, )},

where the n-function v(t,z) € C(Q,R"™) has partial derivatives vgﬁ,a}) e C(Q,R"),
T
2
(%(atéw) e C(Q,R"), (9;)(2:) e C(Q,R™), the n-function vi(t,z) € C(Q,R™) with
T
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ovy(t, ) c ou(t, x)
t

C(Q,R™), the n-function u(t,z) € C(2,R"™) with € C(Q,R"), if it
satisfies the system of hyperbolic equations (7) for all (¢,z) € €, the boundary condition (8)
for all ¢ € [0,T7], the nonlocal condition (9) for all € [0,w] and the integral relations (10),
(11).

Here the functions vi(t,z) and wu(t,x) are connected with the function v(t,z) by the
integral conditions (10) and (11), respectively.

Conditions (2) and (3) are included in the integral relations (11) and (10).

The problems (1)-(5) and (7)-(11) are equivalent.
oy (t, ) Ju(t, x)

o o

Differentiating relations (10) and (11) by ¢ for partial derivatives

we obtain the following equalities:

x

9 ; 0 0 . . z ré 9
0

At fixed vy (t,x) and u(t,z) the problem (7)—(9) is a two-point boundary value problem
for the system of second order hyperbolic equations with respect to v(t,x) on Q. Integral

relations (10) and (11) allow us to determine the unknown functions vi(¢,z) and u(t, z).
ovy(t, ) and ou(t, x)
——~ an .

Two-point and multi-point boundary value problems for a system of second order hy-
perbolic equations were studied in [10-14]. Sufficient conditions for the unique solvability
of these problems are established in terms of the initial data by the method of introducing
functional parameters [10].

From (12) we define the partial derivatives

ov

ov
Then, second, we introduce new unknown functions ol V(t,x),
x

We reduce the problem (7)—(11) to the following equivalent problem:

%‘tf = Ay (t,2)V + Ag(t, )W (t, x) + As(t, x)v(t, z) + F(t,z, u,v1) + f(t,z),  (13)
P(z)V(0,2) + S(z)V(T,x) = D1(z,u,v1,v), z € [0,w], (14)
) =0+ [ VeOde Wi =da+ [ Ve oy
nlt) = () + [ ot de, (16)

z ré
ut.a) = n(0) +vata+ [ [Tote.er)acuds (17)

where D1 (x,u,v1,v) = D(z,u,v1) + 3P (x)v(0,z) + 35" (z)v(T, x).
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In the problem (13)—(17), the condition (8) is taken into account in relations (14).

A solution to the problem (13)-(17) is the five functions {V(¢,z), W (t,z), v(t,z),
vi(t,x),u(t, )}, if they satisfy the system of differential equations (13) for all (¢,z) € Q,
the two-point condition (14) for all z € [0,w] and the integral relations (15)—(17) for all

(t,z) € Q.
Using the fundamental matrix of the differential equation
oV
— = At 1

we present a solution to the problem (13), (14).

Let X (t,z) be the fundamental matrix of the system (18), and X (0,z) = I, where I is
the identity matrix of the dimension n.

Consider the two-point boundary value problem

88‘25/ = A (t,x)V +g(t,z), (19)
P)V(0,z) + S(z)V(T,z) = ®(x), =€ [0,w], (20)

where g(t,z) € C(2,R"™), the n-vector function ®(x) is continuous on [0, w].
The solution to the system (18) can be written as

V(t,z) = X(t,z)V (0, ) —i—X(t,x)/O X7, 2)g(r, x)dr. (21)
Substituting it into the condition (20) for ¢ = T, we obtain
T
P(x)V(0,z) + S(x) X (T,z)V(0,z) + S(x) X (T, x) /0 X_I(T, x)g(t,x)dr = ®(x).
From here we have
T
[P(z) + S(x)X(T,2)]V(0,z) = ®(x) — S(x)X(T,x)/O XY, 2)g(r, x)dr.

To uniquely determine the function V' (0, x), we assume that det[P(z) + S(x)X (T, x)] # 0
for all z € [0,w]. We obtain

T
V(0,2) = [P(@) + (@)X (T,2)] " {@(2) - $(2)X (T, 2) / X Nra)g(r,a)dr}.  (22)
0
Then the solution to the problem (19), (20) has the following form

V(t,z) = X(t,2)[P(2) + S(2)X (T,2)] " { o(x)
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T t
—S(z)X (T, x) / XY, 2)g(r, a:)dT} + X (t,z) / XY, 2)g(r, x)dr. (23)
0 0
The following estimate holds for the function V (¢, x):

max(trerﬁ}:ﬁ] |V (t,x)|, max Havg;x)H

.
e ) < Kmax(ma lo(t.2)l, ()

where the constant K is calculated using the fundamental matrix X (¢, z), the inverse matrix
[P(x) 4+ S(x)X (T, z)]~t, matrices A1(t,z), P(x), S(z) and T.

Theorem 1. Let

1) X(t,x) be the fundamental matriz of differential equation %—‘{ = A (t,x)V;

2) (n x n)-matriz P(z) + S(x) X (T, x) is invertible for all x € [0,w].

Then the two-point boundary value problem (19), (20) has a unique solution V*(t,x)
represented by (23).

3 Algorithm and unique solvability of the problem (1)—(5)

For fixed W (t,z), v(t,z), vi(t,x) and u(t,z) the unknown function V' (¢, z) will be found
from two-point boundary value problem for the system of differential equations (13), (14).
The unknown functions W (¢, z) and v(t,z) will be determined from integral relations (15)
by V(t,z) and its partial derivative %. And, using v(t,x), we define the unknown
functions vy (¢, x) and wu(t,z) through integral relations (16), (17). Since V(t,x), W(t, x),
v(t, ), vi(t,x) and u(t, z) are unknown, to find a solution to the problem (13)—(17) we use an
iterative method. Therefore, the solution of the problem (13)—(17) is found as the limits of
the sequences {V®) (¢, )}, {W®E (t,2)}, {o® (¢, 2)}, {v1® (¢, 2)}, {u®(t,2)}, k = 0,1,2,...,
defined by the following algorithm:

0-step: 1) setting v (¢, z) = p3(t), WO (¢, ) = )3(t) in integral relations (15) and (16),
we obtain

o0\ (¢, z)

o (t,2) = U (t) + (i), g T = aa(t) + (),
x2 uO (¢, . . . 22
WO (t,2) = (1) + paz + 505, P ) 4oty 4 s D

for all (t,x) € §;

2) then, we suppose v(t, z) = v (t,z), W(t,z) = WO (t, z), vi(t, ) = vgo) (t,x), u(t,x) =
u®)(t,z) in the right-hand sides of the system (13) and condition (14). From the following
two-point boundary value problem

ov

5{:m@@v+@@@w®@@+Awmw@@@+F@%M%m@wj@m,@@
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P(x)V(0,z) + S(x)V(T,x) = D, (x,u(o),vg)),v(o)), x € [0,w], (25)

(0)
vt z) for all (¢,z) € Q.

ot
(0)
I-step: 1) From integral relations (15) for V(t,z) = V(O (¢, z) and W(t,z) _ov (¢ x)’

ot ot
we find the functions v (¢, 2) and W (¢, z):

we find the initial approximation V) (¢, z) and its derivative

* . z gy(0)
o (t,2) = a(t) + / VO (£, de, WO(tz) = s(t) + / W) g
0 0
for all (¢,z) € Q.
Setting v(t,z) = v (¢, z), W(t,z) = W (¢, z) in integral relations (16) and (17), we
obtain

8v1(1)(t, x) — 1&2@) +/z 8v(1)(t7£) d§
0

o Wt) = va(t)+ [ o0t e, .

x €
WDt 2) = 9y (t) + Vet + / / (1, €1) déyd,
0 0

ouV(t,z) . : T S ov(t, &)
5 = V1(t) + Pa(t)x +/0 /0 o d&ydg

for all (¢,z) € Q;

2) then, we suppose v(t, z) = v (t,z), W(t,z) = W (t, z), v1(t,x) = vgl)(t, x),u(t,x) =
u(t,z) in the right-hand sides of the system (13) and condition (14). From the following
two-point boundary value problem

aa‘; - Al(t7 CC)V + A2(t7 CU)W(I)(t,.’L') + Ag(t,f]?)'l)(l)(t,l’) + F(t7$7u(1)7 Ul(l)) + f(t,.'l?), (26)

P(x)V(0,2) + S(z)V(T,2) = Dy(z,uV, oV oM, 2 €[0,u], (27)

. N . ... ov(t )
we find the first approximation V() (¢, z) and its derivative o for all (¢,z) € Q.

And so on. oV (t
k-step: 1) From integral relations (15) for V(t,z) = V*=D(¢,z) and ét@) -
VeI )

ot

, we find the functions v®) (¢, z) and W) (¢, z):

* . z gy (k—1)
o®(t, ) = ds(t) + / VD, ¢)de, WH(L,z) = dy(t) + / W9 g

0 0
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for all (¢,z) € Q.
Setting v(t, ) = v®)(t,z), W(t,z) = W (¢,z) in integral relations (16) and (17), we
obtain

. (k) ,
0 (t,2) sz(tH/o v®)(t,€) de, W =¢2(t)+/0 8(t %) g,

W) (8, 2) = 1 () + ot x+// (1, 1) devde,

ou)(t, x) s : Cou(t,&1)
P =0+ a0+ [ [ g

for all (¢,z) €

2) then, we suppose v(t, z) = v®) (¢, ), W (t,z) = W (t, z), v, (t, ) = vgk)(t, z), u(t,z) =
u®)(t, ) in the right-hand sides of the system (13) and condition (14). From the following
two-point boundary value problem

T = A0V + sl )W O, 2) + At 2o (1,2) + F (12,00 ®) 4 £(0,2), (28)
P2)V(0,z) + S(z)V (T, z) = Dy (z,u® v{¥ v®), 2 € [0,u], (29)

. . k . . . V(k) <t7 x)
we find the k-th approximation V*)(¢,2) and its derivative for all (¢t,z) € Q.

ot
Here k =1,2,3, ... .

So, the method of introducing additional functions divides the process of finding unknown
functions into two parts: 1) from the two-point boundary value problems for the system of

differential equations (13), (14) we find the unknown function V (¢, z) <and its derivative

%?ac)); 2) From integral relations (15)—(17) we find the functions W (¢, x), v(t, z), vi(t, z)
and u(t,z) (and also their partial derivatives 81’18(?@ and %tf)).
The following statement gives conditions for the convergence of the proposed algorithm

and the unique solvability of problem (1)—(5) in terms of the initial data.

Theorem 2. Suppose that
i) (n x n)-matrices A;(t,z), i = 1,7, and n-vector—function f(t,z) are continuous on §);
it) (n x n)-matrices P(x),S(x) and n-vector—function ¢(x) are continuously three times
differentiable on [0,w];
i11) n-vector—functions 11(t), ¥2(t) and ¥3(t) are continuously differentiable on [0,T);
i) (n x n)-matriz P(x) + S(z)X (T, x) is invertible for all x € [0,w].
Then the two-point initial boundary value problem for the system of fourth order partial
differential equations (1)-(5) has a unique classical solution u*(t,x).
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Proof. By using the iterative method proposed above we find estimates of the sequences of
functions

1" (t, 2| < [[ba(8)]] + /O lo®) (¢, €)||de, (30)
o (k ) o (k) ,
12| < e + ]| s (31)
Ju® <t,m>u

x x f
< ()] + /O 108 (6, ) de < 1@l + 2l + / / 1o (1, &) llderde,  (32)

H 8u( 81}1

“ae

B < o+ |

< Il +aliaol+ [ H&’chﬂf‘fﬁud&ds (33)

From inequalities (30)—(33), we obtain

9

81)%]6) (t,x) ‘

(k)
a1

k
max [0 (&, 2)|l, |u® (1, ),

< (1 + ) max ([ Ol I O 9201, 120
smax(la) [ max(lo® (e 10O (34

oV (¢
ot

Y

For the functions V*) (¢, 2) and we have the following estimate

g V01, | 5 )

)

< Kmax(max [v®) (8, 2)]], max W ®) (¢, 2)|, max Hvl (t,z)||, max [|u®(t, z)|,

t€[0,T] te[0,T t€[0,7] te[0,T]
av§’“> (t,x) ouP) (t, )
[ | A | e [ A HCR TN L) )

where K = I%max(m@ [|4illo + 1,
=27

ax [[[PY(2)]] + 3P ()| + 3P @) + 15" (@)l + 3[1S™ (@[] + 3[]5" ()]} + 1)-
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Introduce the notation

oV kD (¢ ) B oV k) (¢, x) H)

a®)(z) = max(max IVED (£ 2) — V® (¢, 2)|, max H =

t€[0,T] te[0,T]

509(@) = max( max. [0+ (t,2) — o6, 2)], max [WOE(t,0) — WO e,
t€[0,T)] t€[0,T

(k) (k+1) (k) (k+1) (k)
) (@) = maX<tgg>T<,]Hv (t.0) — o1 (62, mae (1, — u W ),

)

, ax

avgkﬂ)(t, z) 81}% )(t,x)‘
te[0,7

ot ot
Then, similarly to (30)-(35), we obtain

‘ ’ ouktD(t z)  ouM(t, z) ‘ D .

0" (z) = max( max H o —

te[0,7)

masc{® (z), 6% (2)} < max(1,2) /0 "0 (e)e, (36)
o® (@) < K max (88 (@), (@), 0P (), (37)
B (z) < / "ol (g (38)

0

From (37), taking into account (38) and (36), we establish the main inequality

a®)(z) < K max(1, z, 2* xa(kfl) d 39
(z) < (1, z,2%) (§)dg (39)
0
for all x € [0,w] and k =1,2,3, ... .
From (39) it follows

(K - max(1,w,w?)" max o(¥(z). (40)

a®) (z) < o Jnax,

The functional sequence {a¥)(z)} converges uniformly to o*(x) as k — oo for all z € [0, w].
This means that the functional sequences {3®)(z)}, {7*)(z)} and {#*)(x)} also converge
uniformly to f*(z), v*(z) and as k — oo 6*(x), respectively for all z € [0,w]. So, from
here it follows that the functional sequences {V¥(t,z)}, {vF(t,2)}, {W¥(t,z)}, {vF(t, )}
and {uf(t, )} converge uniformly to V*(t,z), v*(t,x), W*(t,z), vi(t,z) and u*(t,x) as k —
0o, respectively for all (t,z) € . And also the functional sequences of partial derivatives
{av1 (t:2) } {6“ (t2)1 converge uniformly to the corresponding limits w, 81”*87(:’3:) as k — oo
for all (t,x) € Q The function u*(t,z) is a classical solution to the problem (1)—(5). The
uniqueness of the solution to the problem (1)—(5) is proved by the method of contradiction.
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Theorem 2 is proved.

The main condition for the unique solvability of the problem (1)—(5) is the unique solv-
ability of two-point boundary value problem for the system of differential equations (19),
(20). The criteria of well-posedness to boundary value problem for the system of differential
equations with common two-point and integral conditions are established in terms of the
initial data in [10].
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AcanoBa A.T., Tokmypsun 2K.C. TOPTIHILI PETTI JEPBEC TYbBIHAbBIJIBI J1D-
OEPEHIIMAJI/IBIK TEHIAEVJIEP YIIIH EKI HYKTEJII - BACTAIIKBI HIETTIK
ECEIT TYPAJIbI

Tepriumi perti jgepdbec TybIHIBLIBL uddepeHITUANIBIK TeHEY/IeD YIINH eKi HyKTei - 6a-
CTaIKBI IETTIK ecen 3epTresedi. Bi3 Teprinmt perti gepbec TybIHABLIBI AU DEPEHTTHAIBIK,
TeHJeyJIep VIIiH OacTalKbl-eKi HYKTel IeTTIK eCelTiH KJIaCCUKAJBIK, IerriMaepinig 6ap 60-
JIYBI 2KOHE OHBIH, YKYBIK HIEHIiMIepiH Tabyra apHajran 9uicrepi ycbiHambrs. TepTinmii perti
nepbec TYBIHIABLIB AudOEepPEeHITNAIIBIK TeHIEYIEp VIIIiH OacTanKbl-eKi HyKTeJIi MeTTIK ecell-
TiH KJIACCUKAJIBIK IIETiMiHiH 6ap 00JIybl MEH »KaJFbI3IbIFBIHBIH, >KeTKIJIIKT] MIapTTapbl Taraii-
piHTaraH. Bi3 eki MopTe Kana GyHKIUIIAD €Hri3eMi3 2KoHe KAPACTBIPBLILIIT OThIPFaH €CeIITi
aJIAbIMEH eKiHII peTTi runepboJiajiblK TeHIeyJep »Kyiecl VIIiH HHTerPaJIIbIK, KAThIHACTAPbI
bap Oeitytokas ecenTi, cocblH GipiHIm perTi AuddepeHITuaIIbIK, TeHAeYIep Kyiieci yImiH exi
HYKTEJII MMeTTIK eCenTi KAMTUTBIH apa-1ap ecernke KeaTipeMi3. 3epTTeJHII OThIPFAH €CEelTiH,
JKYBIK MIEIMIMIH Ta0y aJropuTMi TYPFBI3BLIAJIbI 2KOHE OHBIH KUHAKTBLIBIFDI I9/ICIICHE]T.

Kinrrix cezaep. Teprinmi perti mepbec TYBIHABLIL qudOepeHnnaiblK, TeHIeyIep, eKi
HYKTesdi - OacTanKbl IETTIK ecer, Oefllokaj ecell, eKiHI peTTi TuiepOosablK TeHIeYIep
Kyiteci, 6ipinmi perTi auddepeHnuaIbIK, TeHIeyIep, MeMIIMITIK, aJrOPHTM.
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Acanosa A.T., Toxkmypsunr 2K.C. O JIBYXTOUYEYHO-HAYAJIBHOII KPAEBOH 3A-
JIAYE 1)1 JUOPEPEHIIMAJJIBHBIX YPABHEHIN B YACTHBIX [TPON3BOIHBIX
YETBEPTOT'O ITOPAIKA

Uccnenyercsa nByxXToUevHO-HadaIbHAs KpaeBas 3a1a4a sl 1uddepeHIuaIbHbIX YpaBHe-
HU B 9aCTHBIX IPOU3BOIHBIX Y€TBEPTOTO MOPsiiKa. Mbl paccMaTpuBaeM CyIeCTBOBAHNE KJTac-
CHYECKHX PEIIeHU IBYyXTOUeIHO-HAYAIBLHON KpaeBoil 3amadn A1 auddepeHnua bHbIX YpaB-
HEeHHUII B 4aCTHBIX IIPOU3BO/IHBIX YE€TBEPTOI'O IIOPAJKA U IIpejljiaracM METO/Ibl HaXO02K/ICHUA ee
IPpUOJIMKEHHBIX PEIeHri. YCTaHOB/IEHBI JIOCTATOYHbIE YCJIOBHUSI CYIIIECTBOBAHUS 1 €IMHCTBEH-
HOCTHU KJIACCUYECKOI'O PeIeHUsl JBYXTOUYEeUHO-HAYAJbHON KpaeBoil 3ajaun s gauddepeH-
IUAJbHBIX YPABHEHUIN B YACTHDLIX IMPOU3BOHBIX YETBEPTOIO MOPsiaKa. MBI qBaKIbI BBOIUM
HOBbIE€ HEM3BECTHBIE (PYHKIINN: MbI CBOJIMM PACCMOTPEHHYIO IIPOOJIEMy CHadYa I8 K SKBUBAJICHT-
HOH 3aJ1a9e, COCTOSIIEH U3 HeJIOKAJbHOW 3a/1a9n JIjIsI CUCTEMbI TUIIePOOTNIECKUX YPABHEHMIA
BTOPOI'O IOPSAJIKA C MHTErPAJbHBIMU COOTHOIIEHUAMU, 3aTeM K JIByXTOUYEUYHOU KpaeBoil 3ajia-
qe Jjisi cucTeMbl IuddepeHInalbHbIX YpaBHEHU epBoro mopsaaka. llpemioxken aaropurm
HaXO0XKJIEeHUsT TPUOJINZKEHHOI'O PEIeHNsT NCCIelyeMO 3aa91 U JTOKA3aHa €I0 CXOIMMOCTbD.

Kimrouesnre ciioBa. luddepentinaibuble ypaBHEHUsT B YaCTHBIX ITPOU3BOIHLIX YETBEPTOIO
[IOP5AJIKA, JIBYXTOYEUHO-HAYAJIbHAS KPaeBas 3a/a4a, HeJIOKaJIbHas 3a/1a4a, CucTeMa rumnepbo-
JINYECKUX yPaBHEHMIT BTOPOTO MOpsijika, duddepeHnnaabable ypaBHEHUST EPBOTO MOPSIIKA,
Pa3pEmmMMOCTh, aJTOPUTM.
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domain for multidimensional hyperbolic equations with the wave operator. These problems are general-
izations of the mixed problem, the Dirichlet problem, and the Poincaré problem.

Keywords. Multidimensional PDEs, hyperbolic equations, non-local problem, Bessel functions.

1 Introduction

Mathematical modelling of oscillatory processes is a key area of study in mathematical
physics. Numerous important physical phenomena in space are modelled as multidimensional
hyperbolic equations. For example, the vibration of an elastic string is often modelled as
a hyperbolic equation (see [1]). In models of oscillations of elastic membranes in space,
considering the deflection of the membrane as a function u(x,t), x = (21, ..., Ty ), m > 2, and
then applying the Hamilton principle, one obtains a multi-dimensional hyperbolic equation
(see [2]). Also, in the mathematical modelling of electromagnetic and wave fields in space
([3]), the key feature is the properties of the medium. If the medium is non-conducting, the
analysis leads to a multidimensional hyperbolic equation.

Despite the importance of multidimensional hyperbolic equations for applied work, their
mathematical analysis is still a rather under-studied topic, mostly because of the analytical
complexity of the multidimensional case. So far, good progress has been made in the analysis
of local boundary-value problems for multidimensional hyperbolic equations in a cylindrical
domain (see [4]-[8]).
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To the best of our knowledge, the non-local problems for these equations have not yet been
subjected to analysis, with the exception of [9], which focuses on the simple wave equation.

This paper shows the existence of solutions of non-local boundary-value problems in a
cylindrical domain for the more general multidimensional hyperbolic equations with the wave
operator. These problems are generalizations of the mixed problem and of the Dirichlet and
Poincaré problems.

2 Setup of the problem and main results

Let D, be a cylindrical domain of the Euclidean space E,,+1 of points (x1,...,Zm,1),
bounded by the cylinder I' = {(z,¢) : |x| = 1}, the planes t = o > 0 and t = 0, where |z| is
the length of the vector z = (x1, ..., x;,). Let us denote, respectively, with I'y, Sy, and Sy the
parts of these surfaces that form the boundary 0D of the domain D.

We study, in the domain D,, the following multidimensional hyperbolic equation

m
Lu=Ayu—uy + Z ai(x, t)ug, + b(x, t)ur + c(x, t)u = 0, (1)
i=1
where A, is the Laplace operator on the variables x1, ..., Tm;ym, m > 2.
Hereafter, it is useful to switch from the Cartesian coordinates 1, ..., Z;,,t to the spherical
ones 1, 01,....0,_1, t,r>0, 0<60; <27, 0<6;, <m, 1=2,3,....m—1.
Let us analyze the following non-local boundary-value problems.
Problem 1. Find a solution of (1) in the domain D,, belonging to the class C(Dy)NC(DyU
So U Sy) N C?(Dy,), and satisfying the boundary-value conditions

51“(717 97 O) = ’le(T, 07 a) + ()01(717 9)7
(2)

=1(t,0).

@

Boug(r,0,0) = youe(r, 0, ) + @a(r,0),

Problem 2. Find a solution of equation (1) in the domain D, belonging to the class
C(Da) N CYHDy U Sy) NC%(Dy,), and satisfying the boundary-value conditions

U(?", 0, O) = ¥1 (7", 0)7 ,81Ut(7", 0, 0) = 71u(r7 0, Oé) + SOQ(Ta 9)7 U r = ¢(t? 9)7 (3)

where B, v; = const, ﬁ? + 'yjz #£0, j=1,2.

These problems are generalizations of the mixed problem, and of the Dirichlet and
Poincaré problems, that have been analyzed in [4]-[8]. Let us also note that the well-posedness
of the above problems for the simple multidimensional wave equation has been shown in [9].

Let {Y,ﬁm(ﬁ)} be a system of linearly independent spherical functions of order n, 1 < k <
kn, (m—2)nlk, = (n+m —3)1(2n+m —2), 0 = (61,...,0p,_1), and let Wi(Sp), 1 =0,1, ...,
be the Sobolev spaces.
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The following lemmas, that we will use later, were shown in [10].
Lemma 1. Let f(r,0) € WL(So). Ifl > m — 1, then the series

oo kn
Fr0) =33 fi()Y,in(0), (4)

n=0 k=1
as well as the series obtained through its differentiation of order p < I — m + 1, converge
absolutely and uniformly.

Lemma 2. For f(r,0) € Wi(Sy), it is necessary and sufficient that the coefficients of the
series (3) satisfy the inequalities

oo kn

|fa(r)] < e, ZZn2l|lef(r)\2 < ¢, c¢1,co = const.

n=0 k=1

Let us denote as @, (r,t), a¥ (1), bk (r, 1), & (r, t),p5, @% (1), @& (), ¥E(t), the coefficients
of the series (4), respectively, of the functions a;(r,0,t)p(0),a; % p, b(r, 0,t)p, c(r, 0,t)p, p(0),i =
1,.,m,p1(r,0),pa(r,0),1(t, ), whereas p(f) € C*°(H), and H is a unit sphere in E,,.

Let a;(r,0,t), b(r,0,t), c(r,0,t) € Wh(Ds) C C(Dy), i =1,....m, I >m+1, ¢1(r,0),
902(7"’ 9) € Wén(sﬂ)v ¢(t7‘9) € W2p(roz)v [ > 37m

Then, the following theorems hold.

Theorem 1. If the following condition holds

(Brv2 + B2v1) €os prsnex # B1B2 + 7172, s =1,2,..., (5)

then Problem 1 has a solution.
Theorem 2. If the following relationship holds

Y1 sin ps e # psnfB1, s =1,2, ..., (6)

then Problem 2 has a solution. Here sy are positive nulls of the Bessel functions of the first

kind Jn+ (m—2) (2).

Proof of Theorem 1. In the spherical coordinates equation (1) has the form

m—1 ou i
Lu = upr + ” Uy — ﬁ — Uy + El ai(ra 0, t)uxi + b(T7 0, t)ut + C(Ty 0, t)u =0, (7)
’”Z‘l 1 9 )
— s om—j—1 _ L : 0. 2
5 = — Waiej <SZ7”L J 9J80]> 5 gl — 1, g] — (Sznel...sznej_l) 5 ] > 1

J=1
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It is known [10] that the spectrum of the operator ¢ consists of eigenvalues \,, = n(n +
—2),n=0,1,..., to each of which correspond k,, orthonormalized eigenfunctions Yéfm(H).
We will look for the solution of Problem 1 in the form of the series

oo kn

u(r, 6,t) ZZu rtYk ), (8)

n=0 k=1

where @ (r, 1) are the functions to be determined.

Substituting (8) into (7), multiplying the obtained expression by p(f) # 0, and then
integrating over the unit sphere H, we obtain for Ufl:

-1
1-1 1-1 oL
PoUorr — Polor T ( o+ E azO) ay, + byuy, + b
=1

n=1 k=1

oo kn
k—k
Z Z {pn Uppyr = Prlng + (pn + Z am) Upy + bn nt

+

- \n p” Z 1 — na; )] ﬂﬁ}:O. 9)

_ _ (m—1) {_
p(l)u(l)rr - péu(l)tt + Tp(l)u(l)r = 07 (10)

m
k-k bk L (m=1) 4, A1y ok = 1 11 71-1 | ~1-1 _
P1U1rr—P1U1tt+7r P — 2P 1= Zai0U0r+bou0t+Couo yn=1,
i1

Tk
k= 17 kb (11)
k ik ke =k (m—=1) k r _An gk 15 & ko ok
Prlprr — Pplnge + " Pplpy — 3 PnUn = _ki Z Ajp—1Up—1r
r T n -
k=1 \i=1
k —k
+bn lun 1t n 1 +Z Ajp—2 — 1) Ajp— 1)] un—1}7 k= 1a kna n=23... (12)

Summing equation (11) from 1 to k1, and equation (12) from 1 to k,, and finally summing
the obtained expressions to (10), we obtain equation (9).

Clearly, if {af;} .k =1,k,, n=2,3, ..., is the solution of the system (10)—(12), then it is
also the solution of equation (9).
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It is easy to see that each equation of the system (10)—(12) can be represented in the form

(m—1) k Ak ok

— k
r Upy — ﬁun — Upg = fn (T,t), (13)

U’nrr +

where f¥(r,t) are determined from the previous equations of this system, whereby f3 (r,t) = 0.

Next, from the boundary-value condition (2), taking into account (8) and Lemma 1, we
get

Bla’l’i (T’ 0) :’ylﬂﬁ(T, a)""‘/_)llcn (T)7 52717]:1&(73 O) :72"17’275(747 Ck)—i-(/_?gn (T)7 aﬁﬂ? t) :@/}fz (t)7

(14)
k=1k,, n=0,1,....
In (13)-(14), substituting oF (r,t) = @k (r,t) — 1k (t), we obtain
~ (m—1) A ~ =
Uﬁ,rr + r Ufm‘ - Tgvz - Uﬁtt = frlf(’r? t)v (15)
ﬁﬂ?f{(’r, 0) = ’711_}1’2,(7‘7 a) + @Ifn(r)7 /821—)1]31&("“’ 0) = 721_)%(7'7 a) + @gn(r)’ @fb(l’ t) =0,
(16)

k=1k, n=01,.

; An :
Ja(r,t) = fa(rt) + Y + ~3un(t), @1a(r) = @1a(r) + M¥5(e) — Biein (0),

P50 (1) = @5, (r) + Y2tbre(@) — Boyiny (0).

Then, substituting oF(r,t) = s vk (r,t), we can reduce the problem (15), (16) to the
following problem

2 -
Lvﬁ = Uirr - UZtt + Tgvz = fr’f(rv t)’ (17)

Brog(r,0) = Mo (r, @) + @1, (1), Baupy(r, 0) = y2uy(r, @) + &5, (r),

(18)
vk(1,t) =0, k=1,k,, n=0,1,...,
- m—1)(3—m) — 4\, ~ (m=1) _k - (m—1) )
5y = MENEZI =0 g = ), ) = k(). =12
Let us analyze the solution of the problem (17), (18) in the form
vk(r,t) =Y Ry(r)Ti(t), (19)
s=1
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whereby

R t) =Y ap () Rs(r), @a(r) =D b Rs(r), $h,(r) = ef Ry(r).
s=1 s=1

s=1

Substituting (19) into (17), (18), and taking into account (20), we obtain
An
Ror+ (22 4+p) Ro=0, 0<r <1,
r

Rs(1) =0, |Rs(0)] < o0,
Tsee + pTs(t) = _aﬁs(t)a 0<t<a,

BITS<0) = 71T5(CM) =+ bfzy /BQTst(O) = 72Tst(a) + e]ris-
The bounded solution of the problem (21), (22) is ([11])
Ry(r) = Vrdy(pspr),
(m=2)

_ 2
2 9 M - Ms,n'
The general solution of equation (23) can be represented in the form ([10])

where v =n +

. COS fhsnt £ k .
Tsn(t) = c15 €08 fuspt + o5 SIN fi5 nt + T [ ag (&) sin pus n€dE
sm

t

g ak (&) cos pus n&dg,

Sin fig pl
Hs,n

(26)

where c14, cos are arbitrary constants. Satisfying the condition (24), we obtain the system of

algebraic equations
(/81 — Y1 COS Ms,na)cls — Y1C2s sin HsnC

- [cos pus nav f aqlgs (&) sin pus p€d€ — sin s pox f aﬁs (€) cos s n&d€] + bﬁsv
0 0

S,

Y2C1s SiN fig na + (B2 — Y2 COS g nCY)C2s

[61735 — 72(sin Hsn f afzs (§) sin psn€dE + €os s pax f aﬁs (§) cos MS,nfdg)]
0 0

I

Hsn

(27)
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which has the unique solution if the condition (5) is satisfied.
Substituting (25) into (20), we obtain

P ) = 3 b0 D uanr). 380 = 3 Wit

s=1
(28)
—1ok o _k
r 2@y (r) = > et Ju(fsnr), 0 <r <1
s=1
The series (28) is a decomposition into the Fourier-Bessel series ( [12]), if
afLS(t) = 2[Ju41( ,usn —2 f \[fk (& t)J (Ns n€)dE,
k ; k
bns = 2[JV+1(/’LS,H)]_2 f \/g(pln(g)Jy(M87n£)d€7 (29)
0
67’25 = 2[Jy+1(ts,n)] f\[‘PQn Ty (ps,n§)dE,
where fi5,, s = 1,2, ..., are positive nulls of the Bessel functions J, (z) ranked in the growing
order.
From (25), (26) we obtain the solution of the problem (17), (18) in the form
Z fTs n + (m 2) (,us nr) (30)
where af (1), bk, ek are determined from (29), whereas ¢y, cas are determined from (27).

Hence, first having solved the problem (10), (14) (n = 0), then the problem (11), (14)(n =
1), ete., we find sequentially all v¥(r,t) from (30), k = 1,k,, n=0,1,....
Therefore, in the domain D, it holds that

/p(H)LudH = 0. (31)
H
Now, let f(r,0,t) = R(r)p(0)T(t), where as R(r) € Vy, Vp is dense in L2((0,1)), p(9) €
C*(H) is dense in Lo(H), and T'(t) € V1, Vi is dense in Ly((0, ). Then f(r,0,t) =
Vo ® H® Vy is dense in La(D,) (see [13]).
From this and from (31), it follows that

/ f(r,0,t)LudD, = 0
Da
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and
Lu=0, ¥(r,60,t) € D,

Hence, the solution of Problem 1 has the form

oo kn

u(r,0,6) = >3 [0k + 1 F o t)] VE,L(0), (32)

n=0 k=1

where vF (r, t) is found from (30).
Taking into account the formula 2.J)(z) = J,—1(z) — Ju+1(2) (see [12]), the estimates
(see [14], [10])

Ju(z) = 1/%COS (z— SV — %) +0 <Z31/2), v >0,

[kn| < cn™ 2,

%Yqﬁm(e)‘ <enz W =T m—1, ¢q=0,1,..,

the lemmas above, the restrictions on the coefficients of the equation (1) and on the given
functions ¢1(r,0), @a(r,0), ¥(t, 9) we can show, as in [6]- [8], that the obtained solution (32)
belongs to the class C(Dy) N CH(Dy U Sy U Sy) N C%(Dy).

Therefore, we have established the solvability of Problem 1.

This completes the proof of Theorem 1.

Proof of Theorem 2 We will look for the solution of the problem (1), (3) in the form (8),
where the functions %" (r, t) are determined below. Then, analogously to the previous section,
the functions ¥ (r,t) satisfy the system of equations (10) (12).

Next, from the boundary-value condition (3), taking into account (8), we obtain

ﬁfz(ﬁ 0) - @lfn@), 61@7]%(747 0) = 71ﬂ51(717 a) + @gn(r)7 17’7]2(17 t) = wﬁ(t)v
(33)

k=1k,, n=0,1,....
As it was established earlier, each equation of the system (10)—(12) can be represented in
the form (13).
Then, substituting o (r,t) = @¥ (r,t) — ¥ (t), and then letting 0% (r,t) = P vE(r,t) we
reduce the problem (13), (33) to the problems
Lv'rli = fﬁ(’ra t)’ (17)

UfL(r, 0):¢’fn(r), Blvfw(h O):’ylvﬁ(r, oz)—f—gbgn(r), Uﬁ(l,t):0, k=1,k,, n=0,1,..., (34)
(m—1

where @F,(r) = 17 (@F,(r) — $£(0)), @5,(r) = r T (@5,(r) + 11k () — Biky (0)).
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If we look for the solution of the problem (17), (34) in the form (19), then we obtain the
problem (21), (22) and to the problem for (23) with the data

T5(0) = bfw B1Tst(0) = 1Ts(ar) + 67]25- (35)

Satisfying the general solution (26) of equation (23) with the boundary-value condition
(35), we obtain

k

Cls = bns)

(,U's,nﬁl -N sh Ns,na)CZS (36)

Z’Ylbﬁs-i- n

\ s,m

(03 (0%
(cos s nox { aﬁs (€) sin us n&d€—sin pis nov bf aﬁs (€) cos pusn&dE) +eﬁ5?

from which the coefficients ¢, co5 are uniquely determined, if the condition (6) is satisfied.

Therefore, from (25), (26) we get the solution of the problem (17), (34) in the form (30),
where af (1), bE_, ek are found from (29), whereas ¢y, cas are found from (36).

The rest of the proof of Theorem 2 is completed just like in the case of Theorem 1.

Thus, the solvability of Problem 2 is shown.
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Anpnames C.A. KOIT OJILIEM/II TMITEPBOJIAJIBIK TEHAEYJ/IEPIIH BIP KJIACHI
YIIIH JJOKAJIbI EMEC ITETTIK ECEIITEP

KemnicrikTeri KkenrereH MaHBI3AbI (DUBUKAIBIK KYOBLIBICTAD KOII OJIIEMIl THIepOOIATbIK
TeH ey IepMer Moesaeresi. Ocbl Makaala MUIHHIPIIK aiMaKTarbl TOJKBIH/IBIK, OIEPaTOP-
JIBL KOII OJIIIeM/Ii TUIIepOoIaIbIK TeH IeYIep YIIH JJOKAJIIbl €MeC IMIEeTTIK eCenTePIiH MemiiM-
Jigtiri npJtenaeneni. bysr ecentep apagac ecentin, Jupuxiie xkone llyankape ecenTepinin xKaJi-
ITBLIAYBI OOJIBIIT TaOBLIATHI.

Kirrrix ceszaep. Ken esmemi gepbec TYBIHIBLIBI TEHIEYIEDP, THIEPOOIAIbIK, TEHIEYIeD,
JIOKQJIJIBI eMec ecell, beccelib (pyHKIUSIIAPDI.

Annames C.A. HEJIOKAJIBHBIE KPAEBBIE 3AJTAYU JIJIA OJHOI'O KJIACCA
MHOTOMEPHBIX I'MITEPBOJIMYECKIX YPABHEHUN

MHorouucieHHbIe BayKHbIe (DU3UUYECKUE SIBJICHUST B IIPOCTPAHCTBE MOJICJIUPYIOTCST MHOTO-
MEPpHbBIMI FI/IHep6OJII/Iq€CKI/IMI/I YpaBHEHUAMU. B ﬂaHHOfI CTaTbe JJOKa3bIBAa€TCA Pa3peIInMOCTDb
HEJIOKAJTBHBIX KPAEBBIX 33J1a49 B IUJIMHIPUICCKON 06J/IaCTH JJIsTi MHOTOMEPHBIX THUIIEpOOJIHte-
CKUX ypaBHEHWII C BOJIHOBBIM OIEPATOPOM. DTU 334U SIBJITIOTCS O0DOOIEHUEM CMEITaHHOM
3ajiadu, 3aaan Iupuxie n 3agadn [lyankape.

Kurrouespre ciioBa. MHOroMepHble YpaBHEHUsI B YaCTHBIX IIPOU3BOIHBIX, TUIIEPOOINIECKIE
ypaBHEHWsI, HeJIOKaIbHasI 3a/1a49a, pyHKIun Beccess.

KAZAKH MATHEMATICAL JOURNAL, 19:3 (2019) 79-88



Kazakh Mathematical Journal ISSN 2413-6468

19:3 (2019) 89-100

Blow-up of solutions for nonlinear pseudo-parabolic
Rockland equation on graded Lie groups

Aidyn Kassymov

Al-Farabi Kazakh National University, Almaty, Kazakhstan
Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Belgium

Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
e-mail: kassymov@math.kz

Communicated by: Durvudkhan Suragan

Received: 17.09.2019 + Final Version: 21.10.2019 * Accepted/Published Online: 28.10.2019

Abstract. In this paper we study blow-up of solutions for the nonlinear pseudo-parabolic equation for
Rockland operators on graded Lie groups. Also, we show Fujita type exponent for the pseudo-parabolic

Rockland equation.

Keywords. Rockland operator, nonlinear pseudo-parabolic equation, graded Lie group, blow-up, Fujita
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1 Introduction

In the paper we study blowing-up results of the nonlinear pseudo-parabolic equation

(1)

ug + aRuy + Ru = |[u|P + f(x,t), (x,t) € G x Ry :=Q,
u(z,0) =up(z) >0, ze€G,

where R is a Rockland operator on a graded Lie group (see Section 1.1), and a > 0.
We start by recalling previous results. When a = 0 equation (1) restricts to the heat

equation case, which was firstly considered by Fujita [1]. Namely, it is showed that if 0 <

p < % then the Cauchy problem

g — Agu = |u|'tP, (z,t) € RN x (0,00), @)

u(z,0) = ug(z) >0, z € RV,
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has blow-up a finite time. In papers [2]-[4], authors showed the blowing-up of solutions to

the following initial value problem for the fractional Laplacian (—A)* :

ug + (=A)%u = a(z, t)|u*TP, (z,t) € RN x (0,00), 3)
u(z,0) = ug(z) >0, = € RV,

So, in [5], [6] it is considered non-existence results for parabolic equations on the Heisen-
berg groups with Kohn-Laplacian. For more information, we refer to [7]-[9] and references
therein.

In this paper, we are focused on the nonzero coefficient case (¢ > 0) in equation (1),
that is a pseudo-parabolic Rockland equation. As for motivation part, we note that the
pseudo-parabolic equations appear in describing the nonlinear dispersive long wave unidirec-
tional propagation [10], creep buckling [11], and the population aggregation [12]. For more
information, we refer to the book [13].

The critical Fujita exponent determined as p* =1+ % for the pseudo-parabolic equation
in the Euclidean case was firstly established in the papers [14], [15]. In [16] authors studied the
nonexistence of global solutions to the nonlinear pseudo-parabolic equation on the Heisenberg
group

wn + (=Ag) ™y + (—Ag) "™ = [ul?, (,) € H x (0,00), (4)

with the Cauchy data
U(ﬁa 0) = Uo(ﬁ)ﬂ] € H, (5)

where m > 1,p > 1, Ay is the Kohn-Laplace operator on (2 x 2)-dimensional Heisenberg
group H. For more details, the reader is referred to [16] and references therein, [17]-[21].

1.1. Graded Lie groups. Now we give a very brief introduction to graded Lie groups [22].
Recall that G is a graded Lie group if its Lie algebra g admits a gradation as

o
g= @ a1,
I=1
where g; are vector subspaces of g for all [ = 1,2, ..., but finitely many equal to {0}, and
satisfying the following inclusion
o1, 00] C gy, VLU €N,

The group is called stratified if g; generates the whole of g through these commutators.
Let us fix a basis {X1,..., X,,} of g adapted to the gradation. By the exponential mapping
expg : § — G we get points in G:

x =expg(z1 X1+ ... + z, Xp).
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A family of linear mappings

L (In(r) Ay*

D, =Exp(Alnr) =

NE

i

0

is a family of dilations of g. Here A is a diagonalisable linear operator on the Lie algebra g
with positive eigenvalues. Every D, is a morphism of g, i.e., D, is a linear mapping from the
Lie algebra g to itself with the property

VX,Y €g,r>0,[D,X,D,Y] = D,[X,Y],

here [X,Y] := XY — Y X is the Lie bracket. One can extend these dilations through the
exponential mapping to the group G by

D, (z) =rx = (rx1,....1""xy), v = (21,....,25) € G,r > 0,
where v, ..., 1, are weights of the dilations. The sum of these weights of the form
Q=TrA=v1+...+1v,

is called the homogeneous dimension of the graded Lie group G. Also recall that the standard
Lebesgue measure dr on R"™ is the Haar measure for the graded Lie group G. Also, in this
note we denote a homogeneous quasi-norm on G by ¢(z), which is a continuous non-negative
function

G 3z q(z) €]0,00), (6)

with the properties 1) ¢(z) = ¢(z~!) Vo € G, 2) ¢(A\x) = A\g(z) for all x € G and A > 0, and
3) g(x) =0« x=0.
Moreover, the following property will be used in our proofs.

Property 1. Let G be a graded Lie group with homogeneous dimension @, r > 0 and dx be
a Haar measure. Then, we have
drz = r9dz.

For more detailed information, see, e.g. the book of Fischer and Ruzhansky [22].

The main object of this paper is equation (1). In this paper we are interested in pseudo-
parabolic type equations. Without loss of generality, we study the case when a = 1.

2 Main results

In this section, we concern nonexistence of global weak solutions to the following nonlinear
pseudo—parabolic equation

ug(x,t) + Rug(x,t) + Ru(x, t) = |u(x,t)|P + f(x,t), (x,t) € G x (0,00):=Q, (7)
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under the initial condition
u(z,0) = up(z), =ze€GqG, (8)

where R is a Rockland operator of k-th order on the graded Lie group G, that is,

0] 0]

n

v 2%

R = E (—1)VjCij 7
Jj=1

We denote by Qf’;% (©) the space of test functions ¢ with a compact support supp ¢ C
Q such that ¢, 0yp, Ry and 0;Rep are continuous functions on € with compact supports
supp Orp, supp Rep, supp O¢Rep C .

Definition 1. We say that u is a global weak solution to the problem (7)—(8) on £ with the
initial data u(-,0) = uo(+) € L} (G), if u € LY () and satisfies

loc loc

/\u|p<pd:ﬂdt+/uo(x)w(x,O)dx—l—/fgodxdt
Q

Q G

= —/unptdxdt+/u(7€<p)tdmdt— /uRgodacdt—F/uMa:)ch(m,O)dx 9)
Q Q Q G

for any regular test function ¢ with ¢(-,t) =0 for large enough t.

For R > 0, we define
Ir={(z,t) €Q:0<t <R 0<q(x) <R}

Theorem 1. Assume that R is a Rockland operator of k-th order. Let uy € LY(G) and
f~ € LY(Q), where f~ = max{—f,0}. Suppose that

/uodm—i— lim inf/fd:ndt > 0. (10)
R—o0
G T'p

Ifl<p<p =1+ 6, then the problem (7)—(8) does not admit any global weak solution.

Proof. Suppose that v is a global weak solution to the problem (7)—(8). Then for any regular
test function ¢, we have

/\u|p<pdﬂzdt+/uo(az)ap(az,O)d:ﬂ—i—/fgodxdt
Q Q

G
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< [ Jullgildade + [ ul|(Reyldodt ~ [ ul[Repldade
¢ Q Q
+ [ @) Rew, 0)d, (1)
G
Using the e-Young inequality
A | 1
ab<ead’ +C(E)’, —+—- =1, a,b>0,
p D
with parameters p and p/(p — 1), we obtain
/|u|\g0t]dxdt < 5/ |u|Podzdt + cg/g0P11|<pt\Pp1dxdt, (12)
Q Q Q
for some positive constant c.
Similarly, we have
/ [ul|(Rep)¢|dzdt < 5/ |ulPdxdt + cg/cppll\(Rgo)t\Ppldatdt (13)
Q Q Q
and
-1
/ ||| Rep|dxdt < 5/ |ulPodtdv + cg/gop—l|7€<,0|10&dtdv. (14)
Q Q Q
Using (11)—(14), for £ > 0 small enough, we get
/ |u|Ppdxdt + /uo(x)go(:c, 0)dx + /fcpdmdt
Q Q Q
<C(4l0) + Bl) + Coli) + [ luo(@)[ R, 0}z (15)
G
where
I
Ae) = [ oo daat (16)
Q
= »_
B(e) = [ o7 |(Re )| dod, (1)
Q
Cole) = [ o7 IRl P dt. (18)
Q
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Let ®1,®5 : Ry — [0, 1] be smooth nonincreasing functions such that

1,if0<p<1,
®;(p) :{

0, if p > 2,

fori=1,2.
Now, for R > 0, let us consider the test function

¢r(w,t) = 01 <qg)> Dy <Rta> ,

for some a > 0 to be defined later.
We observe that supp ¢p is a subset of

Qr ={(z,t) €Q:0<t < 2R, 0<q(z) < 2R},
while supp OypR, supp Rer and supp O;Ryr are subsets of
Or ={(z,t) € Q: R* <t <2R*, R <q(z) < 2R},

also, we put
I'p={(z,t)€Q:0<t<R* 0<gq(z) <R}

It follows that there is a positive constant C' > 0, independent of R, such that for all
(x,t) € Qp, we have

IRapr(t, )| < CR™*x(t, ), (20)

where x(t,z) is a nonnegative function with a compact support in Qp, and

0 Rpr(t, )| < CRTF¢(t, x), (21)

where £(¢, x) is a nonnegative function with a compact support in Qp.
Using (20) and (21), we get

Aplp) < CR7T, (22)
—(k+a)p
By(pr) <CR » 1, (23)
—kp
Cp(pr) < CRP-1. (24)
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Let us consider now the change of variables

{t=R %, &=R ‘s

Put ¥p ={z € G: R < ¢q(x) < 2R}.
and

Using Property 1, (22), (23) (24), from (15) we obtain

/u|p<deazdt+/uo(x)ch(x,O)dxdt—i—/fngda:dt
Q Q

Q
< C(RM+R¥ 4+ R + / [uo(0)|[Rer(0, v)ldv), (25)
Sr

where

M=Q+a— %
and

A=Q+a-— (kp—f—_oi)p

and

AM=Q+a-— %

On the other hand, we have

P}im inf(/ |u|pngdfcdt~l—/uo(:v)goR(:L‘,O)d:r—l—/fgoRd:rdt>
—00
Q G Q

> lim inf/\u]pchdacdt—i— lim inf/uo(x)goR(x,O)dx—i— lim inf/fgoRdxdt.
R—oc0 R—co R—o0
Q Q Q

Using the monotone convergence theorem, we get
lim inf/ |u|Pprdrdt = / |u|Pdxdt.
R—o0
Q Q
Since ug € L'(2), by the dominated convergence theorem, we have

lim inf / uo(z)pr(x, 0)dz = / uo(z)da.

R—o0
G G
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Writing f = f* — f~, where f* = max{f,0}, we have

/f(de:cdt:/fdxdt+/f+cp3dxdt—/f_goRdxdt
Q I'r Ofr Or

Z/fd:cdt—/fgoRda;dt.
ORr

g

Since f~ € LY(Q), by the dominated convergence theorem we have

lim /fgoRdxdt:O.
R—oo
Or

Then
lim inf/f(de:L”dt > lim inf/fd:ndt.
R—o0 R—o0
Q Tg
Now, we have

Rlim inf(/\u]pchdxdt—i-/uo(x)4p3(x,0)dx+/f(dexdt)
— 00
Q Q Q

> /|u]pdxdt+€,
Q
where (10) has the form,

(= /uo(x)dx + lim inf/fdxdt > 0.
R—oo
Q I'r
By the definition of the limit inferior, for every € > 0, there exists Ry > 0 such that

/|u|pgoRdxdt+/uo(x)goR(x,O)dx+/fchdxdt
Q

Q Q

> Rlim inf(/|u]p<de:Udt—|—/uo(av)ng(m,O)dx+/fg0Rdxdt) —€
— 00
Q Q Q
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> / |ulPdxdt + € — €,
Q

for every R > Ry. Taking € = ¢/2, we obtain

/]u|pngda:dt+/uo(x)ch(a:,())d:U—i—/ngRd:ndt
Q Q Q

> / |u|Pdzdt + g,
Q

for every R > Ry. Then from (25), we have

(
/ jupdrd + 5 < O(RM + B + R / w0 @) [ Rl 0)|dz). (26)
Q YR

for R large enough.
Now, we put a = k and require that A = max{A;, A2, A3} < 0, which is equivalent to
l<p<1+ 5 We distinguish two cases.

e Case 1. If1<p<1+%.

In this case, letting R — oo in (26) and using the dominated convergence theorem, we
obtain

l
/ |ulPdxdt + 5 <0,
Q

which is a contradiction with ¢ > 0.
e Case 2. pr:1+%.

In this case, from (26), we obtain

/\u|pdxdt <C < 0. (27)
Q

Using the Holder inequality with parameters p and p/(p — 1) from (11) we obtain
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1

g ES
/|u]pd:zdt + 3 < C(/ ]u\pgoRdxdt> "
Q Or
Letting R — oo in the above inequality and using (27), we obtain

14
/\u|pdmdt + 5= 0.
Q

This contradiction completes the proof of the theorem.
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Kacemvos A. IICEB/IO-ITAPABOJIAJIBIK POKJIAH/T TEH/IEYI YIIITH CHI3BIKTHI
EMEC TEH/IEYJIEP/IIH JI1 MEYKEJIEHTEH TOITAPBHIHIATHI IITEIIIM/IEPTHIH
BY3bLIBIMIBLIBITBI

Byn xymbicra 6i3 Poksan omeparopJiapbl YIMH ChI3BIKTBI €MEC IICEBIO-TIapadOJIaIbIK,
TeHJIey/IiH JI1 MexKeJleHreH TONTAPBIHIAFh! IIeTiMIepiHiH OY3bLIBIMIBIFBIH 3epTTeiiMi3. Oran
Koca, 0i3 mceBmo-napabosannik, Pokmang Tengeyi yurin Pyns3ura TEKTEC SKCIIOHEHTAHBI KOP-
ceTeMis.

Kinrrik cesnep. Poknan orepaTopbl, ChI3LIKTBI €MEC ICEB/I0-11apabosIaJIbiK TeHIey, JIu
MeKeJIeHT'eH TOOBI, MIeNIiMHIH Oy3bLIbIMIbIEBL, PyI3uTa SKCIIOHEHTACHI.

Kacoimos A. PASPYIINMOCTD PEIIIEHNI HEJIMHEVHBIX YPABHEHUI J1J11
[ICEBJIO-ITAPABOJINYECKOTI'O YPABHEHUY POKJIAHIA HA T'PAJIYIIPOBAH-
HBIX T'PVIIITAX JIN

B macrosmeit pabore MBI HM3ydaeM pas3pyIlIIMOCTb pEIIeHUN HEJIMHEHHOTO IICEeBI0-
mapaboIuIecKoro ypaBHeHus JJjisi orepaTopoB Pokjramaa Ha rpa yupoOBAHHBIX I'pymmnax Jlu.
Tak>ke MbI TOKa3bIBaeM SKCIOHEHTY Tuita Oya3uTsl I ICEBIOITapab0TMIECKOr0 yPaBHEHHS
Poxknamnma.

Kurrouesbre ciioBa. Oneparop Pokiania, HeTuHeTHOE 11CEBIO-TapaboInIecKoe ypaBHeHne,
rpajyupoBaHHasd rpyia JIu, pa3pymmmMocTs pemrenns, sxcinonenTa Oya3ura.
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