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Abstract. The first boundary value problem of the theory of elasticity for an elastic half-space at the

movement on its surface of subsonic trans loads is considered. The speed of motion is less or more

than the speed of distribution of elastic Rayleigh waves. On the basis of the generalized Fourier’s

transformation the fundamental solution of the task is constructed which describes the dynamics of the

massif at the movement of the concentrated force on and along its surface. Based on this, the analytical

solution is constructed for arbitrary transport loads distributed over the surface, moving with the pre-

Rayleigh and super-Rayleigh velocities. It is shown that when the Rayleigh wave velocity is exceeded,

the transport loads generate surface Rayleigh waves. The task is a model for research of the stress-strain

state of the massif in the vicinity of road constructions under the action of trans loads moving with high

velocities.

Keywords. Isotropic elastic half-space, transport load, first boundary value problem, subsonic speed.

1 Introduction

Trans loads are very widespread in practice. As those we understand the moving loads
which form does not change over time, but their position are changing in the environment.
Dynamic deformation processes, which arise in the ground under their influence, expand
with different speeds, which depend on elastic properties of the medium. In isotropic elastic
medium there are two sound speeds of propagation of dilatation and shift waves. The relation
of speed of trans load to the sound velocities significantly influences to the stresses and
deformations in the elastic medium. We consider here the subsonic case, when speeds of
loads are less then speed of shift waves. This case is a characteristic for trans problems as the
speed of the movement of the most modern vehicles is many less then the speeds of elastic

2010 Mathematics Subject Classification: 74B05.
Funding: This work was supported by grant AP05132272 of the Ministry of Education and Science of the

Republic of Kazakhstan.
c© 2019 Kazakh Mathematical Journal. All right reserved.
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waves propagation. From trans loads we especially distinguish stationary ones which move
in the fixed direction with a constant speed (transport loads). This class of loads allows to
investigate diffraction processes in isotropic elastic medium in the analytical form.

In papers [1]–[3] the fundamental and generalized solutions of the Lame’s equations are
constructed and investigated which describe the movement of elastic medium at the action
of concentrated on an axis and distributed loading in all range of speeds (subsonic, sound,
transonic and supersonic ones). On this basis in [4]–[7] the method of boundary integral
equations has been developed for solving the transport BVP in elastic medium with cylindrical
boundaries. This class of problems is very important for applications in the field of dynamics
of underground constructions, trans tunnels and excavations of deep laying.

However there is a class of model trans tasks (for example, road problems) when loadings
move on the surface of a half-space. It is known that there is also sound speed in an elastic
half-space with which superficial Rayleigh waves are propagating. The Rayleigh’s speed is
lower, but is very close to the speed of shift waves [10], [11]. Rayleigh’s waves don’t create
tensions on half-space border, but significantly influence on the tensions and deformations of
the massif near a free surface.

For the first time such task was considered and solved for a subsonic pre-Rayleigh case by
flat deformation (2D-space) in [9]. Here the analytical solution of this task in 3D-statement
is constructed also in a subsonic case, when the speed of subsonic trans load is less or more
than the Rayleigh’s speed.

2 The statement of transport BVP for elastic half-space

Elastic isotropic medium, with Lame’s parameters λ, µ and the density ρ occupies half-
space x1 > 0, n(x) = (−1, 0, 0) is a unit vector of the external normal to its boundary
D =

{
x ∈ R3 : x1 = 0

}
. Constants c1 and c2 are the velocities of elastic waves propagation

[11] (sonic speeds):

c1 =

√
λ+ 2µ

ρ
, c2 =

√
µ

ρ
, c2 < c1.

Boundary transport load P (x, t) are moving with a constant subsonic speed c < c2 < c1)
along the axis X3: P (x, t) = µpj(x2, x3 +ct)ej . Components of stress tensor σij are connected
with medium displacements u(x, t) by Hook’s law [11]:

σij = λdivu δij + µ(ui,j +uj ,i ).

For the dynamics problems it is better to write this law in the unitless form:
Hook’s law:

σij
µ

=

(
c2

1

c2
2

− 2

)
div u δij + (ui,j +uj ,i ). (1)

Here and everywhere further on the identical indexes the tensor convolution have been made.
Partial derivatives on the corresponding coordinate are designated by the index after comma:

Kazakh Mathematical Journal, 19:3 (2019) 6–19



8 L.A. Alexeyeva

ui,j =
∂ui
∂xj

; δij = δji is Kronecker symbol. The stationary movement has been considered

that allows to pass into mobile coordinates system connected with transport load. Further
we use designations: x = (x1, x2), z = x3 + ct.

It is supposed that components of the load allow the Fourier’s transformation, i.e. they
are representable in the form of Fourier’s integrals:

Pj(x2, z) = σj1(0, x2, z) = µ
(2π)2

∫
R2

p̄n(η, ς) exp(−i(x2η + ζ, z))dηdς,

p̄n(η, ς) =
∫
R2

pn(x2, z) exp(i(x2η + zς))dx2dz.
(2)

The Lame’s equations for displacements of elastic half-space in mobile coordinates system
have the form [1]: ((

M−2
1 −M−2

2

) ∂2

∂xi∂xj
+
(
M−2

2 ∆− (∂z)
2
)
δji

)
uj = 0. (3)

We denote this operator by Lij(∂1, ∂2, ∂z). Here two Mach’s numbers are introduced:

M1 = c/c1, M2 = c/c2,

which characterize the velocity of transport load in relation to the sound speeds of elastic
waves. Here and everywhere there is tensor convolution over repealed indexes.

Eqs. (3) were studied in [2], [3]. There are three cases: subsonic (c < c2), transonic
(c2 < c < c1), supersonic (c > c1) and two sonic cases (c = c2, c = c1). In the first case (M1 <
1, M2 < 1) the system (3) is elliptic, in the second one (M1 < 1, M2 > 1) it has the
mixed elliptic-hyperbolic type. In supersonic case (M1 > 1, M2 > 1) this system is strong
hyperbolic. By sonic speeds it is mixed parabolic-elliptic if M1 < 1, M2 = 1, and it is
hyperbolic-parabolic if M1 = 1, M2 > 1.

By sonic and supersonic velocities the shock waves can appear in elastic medium. There
are the next conditions on the jumps on their fronts F :

[uj ]F = 0 ⇒ hz [ui,j ]F = hj [ui,z ]F ;

hj [σij ]F = ρc2hz [ui,z ]F , i, j = 1, 2, 3.
(4)

Here h(x1, x2, z) = (h1, h2, h3 , hz) is a wave vector, ‖h‖ = 1. It is perpendicular to the
front F in the direction of wave propagation.

The continuity of elastic medium gives the first condition. The second condition is conti-
nuity of tangent derivatives at the front of a wave; it is consequence from the first one. The
third formula is the law of momentum conservation on waves fronts.

Kazakh Mathematical Journal, 19:3 (2019) 6–19



Green’s tensor of subsonic transport BV ... 9

Here we consider the subsonic case. It is required to find the solution of the BVP which
must satisfy the attenuation condition on infinity:

u→ 0 by x1 → +∞ or z → ±∞. (5)

Also we will enter some additional radiation conditions later by construction of the BVP
solution.

3 Green’s tensor of transport BVP

To solve the problem, we use the methods of distribution theory [12]. At first we construct
the Green’s tensor Πk

j of the boundary value problem in a moving coordinate system. For
its determination we have the following boundary value problem. Find the tensor solution of
homogeneous motion equations:((

M−2
1 −M−2

2

) ∂2

∂xi∂xj
+

(
M−2

2 ∆− ∂2

∂z2

)
δji

)
Πk
j = 0, i, j, k = 1, 2, 3, (6)

in the region x1 > 0, which must satisfy the attenuation condition at infinity:

Πk
j (x, z)→ 0 for ‖(x, z)‖ → ∞. (7)

Corresponding stress tensor Σm
jk, which are calculated by using Hook’s law (2), has the form:

Σm
jk = αΠm

l ,l δjk + (Πm
j ,k +Πm

k ,j ) = Sljk(∂1, ∂2, ∂z)Π
m
l (x1, x2, z),

Sljk = αδjk∂l + (δjl∂k + δlk∂j ).
(8)

Theorem. The solution of the boundary value problem can be represented in the following
integral form

uj(x1, x2, z) =

∞∫
Rq

Πn
j (x1, x2 − y2, z − y3)pn(y2, y3) dy2dy3, j = 1, 2, 3, (9)

where tensor Πn
j must satisfy to following singular conditions on the free surface for x1 = 0:

Σm
i1 = αΠm

k ,k δi1 + (Πm
i ,1 +Πm

1 ,i ) = δmi δ(x2)δ(z), i,m, k = 1, 2, 3. (10)

where δ(xj) is generalized Dirac function, α = λ
µ =

(
c21
c22
− 2
)

=
(
M2

2

M2
1
− 2
)
.

Proof. Indeed, by virtue of (1), (10) and the convolution properties we have on the boundary
of the half-space:

∞∫
Rq

Σm
j1(0, x2 − y2, z − y3)pm(y2, y3) dy2dy3 = δmj δ(x2)δ(z) ∗ pm(x2, z) = pj(x2, z).

Kazakh Mathematical Journal, 19:3 (2019) 6–19



10 L.A. Alexeyeva

Here, on the right, there is a functional convolution along the half-space boundary and a
tensor convolution by the index m. The displacements (9) satisfy the Lame homogeneous
transport equations (3) in the half-space:

Lji (∂1, ∂2, ∂z)uj =

∞∫
Rq

pn(y2, y3)Lji (∂1, ∂2, ∂z)Π
n
j (x1, x2 − y2, z − y3) dy2dy3 = 0

in view of (6) and of the invariance of these equations with respect to the shift at the boundary
of the half-space.

This tensor Π(x, z) gives possibility to use formula (9) for determination of displacements
in a half-space for any load on its surface. Stresses at any point of the elastic half-space on
an area with a normal n are determined by the formula

S(x1, x2, z, n) = σjk(x1, x2, z)njek

= µ eknj
∞∫
Rq

Σl
kj(x1, x2 − y2, z − y3)pl(y2, y3) dy2dy3.

(11)

Thus, the definition of the fundamental displacement tensor determines the solution of the
problem.

We construct the tensor Π(x, z) using scalar and vector elastic Lame’s potentials.

4 Statement of the transport BVP for Lame’s potentials

The displacements of the elastic medium can be represented in terms of scalar and vector
Lame’s potentials [1], [11]:

u = gradϕ+ rotψ. (12)

Since three components of the displacements are determined through four potential com-
ponents, vector potential is usually associated with Gaussian or Lorentz gauge. Here it is
convenient to use representation:

ψ = ψ1e3 + rot (ψ2e3) ,

which uniquely links three components of displacements with three potentials. If the dis-
placements satisfy the homogeneous Lame equations, then potentials satisfy d’Alembert’s
wave equation with the corresponding velocity:

c2
1∆ϕ− ∂2ϕ

∂t2
= 0,

c2
2∆ψk − ∂2ψk

∂t2
= 0, k = 1, 2,

(13)

Kazakh Mathematical Journal, 19:3 (2019) 6–19



Green’s tensor of subsonic transport BV ... 11

where ∆ is a Laplace operator. In the moving coordinate system these equations are trans-
formed to the form:

∆ϕ−M2
1
∂2ϕ
∂z2

= 0,

∆ψk −M2
2
∂2ψk
∂z2

= 0, k = 1, 2.

(14)

To construct a tensor Πi
j , we use similar potentials. Namely, we represent it in the form:

Πm
k (x1, x2, z) = Dkn(∂1, ∂2, ∂z)Φ

m
n

= ∂kΦ
m
1 + eki3∂iΦ

m
2 + ekjleli3∂j∂iΦ

m
3 ,

Dk1(∂1, ∂2, ∂z) = ∂k,

Dk2(∂1, ∂2, ∂z) = eki3∂i,

Dk3(∂1, ∂2, ∂z) = ekjleli3∂i∂j .

(15)

Here i, j, k, l,m = 1, 2, 3, eijk is a Levi-Civita pseudotensor. The first potential describes
the gradient component of the displacements field, and the other two potentials describe the
rotor (solenoidal) components. The potentials satisfy the transport wave equations:

∆Φm
j −M2

j

∂2Φm
j

∂z2
= 0, j = 1, 2, 3. (16)

We call them fundamental potentials. To calculate them we use boundary conditions: by
x1 = 0

αΠm
k ,k δi1 + (Πm

i ,1 +Πm
1 ,i ) = δmi δ(x2)δ(z),

where

Πm
k ,k = ∆Φm

1 + eki3∂k∂iΦ
m
2 + ekjleli3∂k∂i∂jΦ

m
3 ,

Πm
i ,1 = ∂i∂1Φm

1 + eik3∂k∂1Φm
2 + eijlelk3∂k∂j∂1Φm

3 ,

Πm
1 ,i = ∂i∂1Φm

1 + e1k3∂k∂iΦ
m
2 + e1jlelk3∂k∂j∂iΦ

m
3 .

We can write it in the form:

Bin(∂1, ∂2, ∂z)Φ
m
n = δmi δ(x2)δ(z), n,m = 1, 2, 3, (17)

Kazakh Mathematical Journal, 19:3 (2019) 6–19



12 L.A. Alexeyeva

where

BinΦm
n = [2∂i∂1Φm

1 + ∂k {(eik3∂1 + e1k3∂i) Φm
2 + ∂j (eijlelk3∂1 + e1jlelk3∂i) Φm

3 }]

+α [∆Φm
1 + ekj3∂k∂jΦ

m
2 + ekjlels3∂k∂s∂jΦ

m
3 ] δi1 ⇒

Bin(∂1, ∂2, ∂z)Φ
m
n (αδi1∆ + 2∂1∂i) Φm

1 + ∂k (αδi1ekj3∂j + eik3∂1 + e1k3∂i) Φm
2

+∂k∂j {αδi1ekjlels3∂s + (eijlelk3∂1 + e1jlelk3∂i)}Φm
3

=
(
αM2

1 δi1∂z∂z + 2∂1∂i
)

Φm
1 + ∂k (αδi1ekj3∂j + eik3∂1 + e1k3∂i) Φm

2

+∂k∂j {αδi1ekjlels3∂s + (eijlelk3∂1 + e1jlelk3∂i)}Φm
3 .

This implies

Bi1(∂1, ∂2, ∂z) =
(
αM2

1 δi1∂z∂z + 2∂1∂i
)
,

Bi2(∂1, ∂2, ∂z) = ∂k (αδi1ekj3∂j + eik3∂1 + e1k3∂i),

Bi3(∂1, ∂2, ∂z) = ∂k∂j {αδi1ekjlels3∂s + (eijlelk3∂1 + e1jlelk3∂i)}.

Using the properties of the permutation of the indices of the Levi-Civita tensor and the
formula for its convolution:

elijelkm = δikδjm − δimδkj ,

these operators can be greatly simplified:

B11(∂1, ∂2, ∂z) =
(
αM2

1∂
2
z + 2∂2

1

)
,

B21(∂1, ∂2, ∂z) = 2∂1∂2, B31(∂1, ∂2, ∂z) = 2∂1∂3,

B12(∂1, ∂2, ∂z) = ∂k (αekj3∂j + e1k3∂1 + e1k3∂1) = (αekj3∂k∂j + 2∂1∂2)

= α (e123∂1∂2 + e213∂2∂1) + 2∂1∂2 = 2∂1∂2,

B22(∂1, ∂2, ∂z) = ∂k (αδ21ekj3∂j + e2k3∂1 + e1k3∂2)

= (e213∂1∂1 + e123∂2∂2) = ∂2∂2 − ∂1∂1,

B32(∂1, ∂2, ∂z) = ∂k (e3k3∂1 + e1k3∂3) = ∂2∂3,
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B13(∂1, ∂2, ∂z) = ∂k∂j {αekjlelm3∂m + (e1jlelk3∂1 + e1jlelk3∂1)}

= α (δkmδj3 − δkjδm3) ∂k∂j∂m + (δ1kδj3 − δ13δjk) ∂1∂k∂j

+ (δ1kδj3 − δ13δjk) ∂1∂k∂j = α (∂3∂m∂m − ∂3∂j∂j) + 2∂1∂1∂3 = 2∂1∂1∂3,

B23(∂1, ∂2, ∂z) = e2jlelk3∂1∂k∂j + e1jlelk3∂2∂k∂j

= (δ2kδj3 − δ23δjk) ∂1∂k∂j + (δ1kδj3 − δ13δjk) ∂2∂k∂j = 2∂1∂2∂3,

B33(∂1, ∂2, ∂z) = e2jlelk3∂1∂k∂j + e1jlelk3∂2∂k∂j

= (δ2kδj3 − δ23δkj) ∂1∂k∂j + (δ1kδj3 − δ13δjk) ∂2∂k∂j = 2∂1∂2∂3.

As a result, we get:

B11 =
(
αM2

1∂z∂z + 2∂2
1

)
, B12 = 2∂1∂2, B13 = 2∂2

1∂3,

B21(∂1, ∂2, ∂z) = 2∂1∂2, B22(∂1, ∂2, ∂z) = ∂2∂2 − ∂1∂1,

B23(∂1, ∂2, ∂z) = 2∂1∂2∂3, B31(∂1, ∂2, ∂z) = 2∂1∂3,

B32(∂1, ∂2, ∂z) = 2∂3∂2, B33(∂1, ∂2, ∂z) = 2∂1∂2∂3.

(18)

Thus the problem of constructing the transformants of the unknown tensors reduces to
determining the Lame potentials which satisfy equations (14), the boundary conditions on
the free surface and the damping conditions at infinity:

Φk
j → 0 by ‖(x, z)‖ → ∞, (19)

and certain radiation conditions which we will write later.

5 Determination of Fourier transforms of fundamental potentials

To construct the solution, we use the Fourier transform of the potentials with respect to
x2, z. In the space of Fourier transforms, they correspond to variables η, ζ. Their Fourier
transforms are defined by the relations:

Φ̄m =

∫
R2

Φm(x, z) exp(iηx2 + iζz)dzdx2,

Φm =
1

4π2

∫
R2

Φ̄m(x, η, ς) exp(−iηx2 − iζz)dςdη. (20)
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14 L.A. Alexeyeva

In the space of Fourier transforms the equations for the potentials (14) have the form:

d2
⇀
Φ
m

j

dx2
1

− η2Φ̄m
j − α2

jζ
2Φ̄m

j = 0, αj =
√

1−M2
j , j = 1, 2, 3. (21)

The expression under the radical is positive, because we consider the subsonic case. The
boundary conditions are transformed to the form:

Bik(∂1,−iη,−iς)Φ̄m
k (x1, η, ζ) = δmi by x1 = 0. (22)

Conditions for damping at infinity are: for ∀η, ζ

Φ̄m
k (x1, η, ζ)→ 0 by x1 →∞. (23)

By these conditions the solution of Eq. (22) has the form:

Φ̄k
j = φkj (η, ς) exp

(
−x1

√
η2 + α2

jζ
2
)
, Re

√
η2 + α2

jζ
2 ≥ 0. (24)

Functions φkj (η, ς) are determined from boundary conditions (22):

3∑
j=1

Bin(−
√
η2 + α2

jζ
2,−iη,−iζ)φmn = δmi , k = 1, 2, 3. (25)

Thus for each fixed m, we have the linear system of three equations for determination ϕmk
from which we find

ϕmj =
∆m
j (η, ζ)

∆(η, ζ)
. (26)

Here ∆m
j is corresponding to algebraic complement, and the denominator is equal to

∆(η, ζ) = det{Bkj(−
√
η2 + α2

jζ
2,−iη,−iζ)}.

This is Rayleigh’s determinant. In this case it has the form:

∆ = 4ν2
√
ν2 −M2

1 ζ
2

√
ν2 −M2

2 ζ
2 − (2ν2 −M2

2 ζ
2)2, ν2 = ζ2 + η2.

The properties of Rayleigh’s determinant are known. For transport problems, it was well
studied in [1]. In particular,

∆(η, ζ) = 0

by

η = η±R(ς) = ± |ζ|
√
M2
R − 1 ⇔ ς = ζ±R (η) = ± |η|√

M2
R − 1

, (27)
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where MR = c/cR, cR is the velocity of Rayleigh surface wave, which is subsonic (cR < c2).
It can be determined from the equation:

4
√

1−m2
1

√
1−m2

2 − (2−m2
2)2 = 0, mj = cR/cj . (28)

Formulas (24), (26) formally resolve the problem in the potentials. However, in order to
reconstruct the originals, it is necessary to investigate the properties of the transformants –
integrand functions, i.e., in (20), which essentially depend on the speed of a transport load.

6 Restoration of originals by pre-Rayleigh speeds

From (15) we get

Π̄m
k = Dkn(∂1,−iη,−iς)Φ̄m

n (x1, η, ς)

= ∆m
n (η,ζ)

∆(η,ζ) Dkn(∂1,−iη,−iς) exp
(
−x1

√
η2 + αnς2

)
⇒

Π̄m
k = ∆m

n (η,ζ)
∆(η,ζ) Dkn(−

√
η2 + αnς2,−iη,−iς) exp

(
−x1

√
η2 + αnς2

)
,

(29)

Π̄m
k (x1, η, ζ) = Dkn(−

√
η2 + α2

jζ
2,−iη,−iζ)φmn (x1, η, ζ) exp(−x1

√
η2 + α2

nζ
2). (30)

Using the inverse Fourier transform, we obtain

(2π)2Πm
k (x1, x2, z) =

∫
R2 Π̄m

k (x1, η, ζ) exp(−i(ηx2 + ζz))dςdη

=
∫
R2 Dkn(−

√
η2 + α2

jζ
2, iη, iζ)φmn (η, ζ) exp(−x1

√
η2 + α2

jζ
2 − iηx2 − iζz)dςdη

=
∫
R2

Dkn(−
√
η2+α2

jζ
2,iη,iζ)∆m

n (η,ζ)

∆(η,ζ) exp(−x1

√
η2 + α2

jζ
2 − iηx2 − iζz)dςdη.

(31)

Let us calculate the fundamental stresses and their transformants. For this, we use
formulas (11), from which we obtain

Σm
jk = λΠm

l ,l δjk + µ (Πm
j ,k +Πm

k ,j ) = Sljk(∂1, ∂2, ∂z)Π
m
l

= Sljk(∂1, ∂2, ∂z)Dln(∂1, ∂2, ∂z)Φ
m
n (x1, x2, z) = Tjkn(∂1, ∂2, ∂z)Φ

m
n (x1, x2, z),

Tjkn = Sljk(∂1, ∂2, ∂z)Dln(∂1, ∂2, ∂z).

(32)

Hence we get

Σ̄m
jk = Tjkn(−

√
η2 + αnς2,−iη,−iς)Φ̂m

n (x1, η, ς)

= Tjkn(−
√
η2 + αnς2,−iη,−iς)∆m

n (η,ζ)
∆(η,ζ) exp

(
−x1

√
η2 + αnς2

)
.
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16 L.A. Alexeyeva

The original of the stress tensor at any point (x, z ) is calculated by using formula

Σm
jk(x1, x2, z) = (2π)−2

∫
R2

Σ̄m
jk(x1, η, ζ) exp(−i(ηx2 + ζz))dςdη. (33)

For c < cR determinant ∆(η, ζ) 6= 0 for any real ζ, η. That is, at the pre-Rayleigh
velocities all the integrands are continuous and tend exponentially to zero when (η, ζ) tends
to infinity. Therefore, the integrals exist and satisfy the damping conditions at infinity.

When x1 = 0, (x2, z) 6= (0, 0), the integrands in (31) and (33) are also continuous and
integrable, since they are oscillating and have the order of damping not lower O

(
(η2 + ς2)−1

)
.

7 Determination of displacements and stresses at pre-Rayleigh speeds of trans-
port load

To calculate the displacements of the medium for arbitrary transport load, we find the
Fourier transform of the displacements. According to (9) and to the convolution properties
we get

ūj(x1, η, ζ) = Fx2,z[uj(x1, x2, z)] = Π̄n
j (x1, η, ς)p̄n(η, ς). (34)

Substituting it in (30), we have

ūk(x1, η, ζ) =
p̄m(η, ς)∆m

n (η, ζ)

∆(η, ζ)
Dkn(−

√
η2 + αnς2,−iη,−iς) exp

(
−x1

√
η2 + αnς2

)
.

Returning to the original, we obtain formulas for calculating the displacements at pre-
Rayleigh speeds:

uk(x1, x2, z) =
1

4π2

∫∫
R2

ūk(x1, η, ζ) exp(−i(x2η + zς))dηdς.

To determine stresses, we use formula (11), which for the Fourier transforms has the form:

σkj(x1, x2, z) =
1

4π2

∫
R2

Σ̄n
kj(x1, η, ζ)p̄n(η, ς) exp(−i(x2η + zς))dηdζ.

At pre-Rayleigh velocities in formulas (33) and (34), all the integrands are continuous and
tend exponentially to zero when x1 →∞. Therefore, the integrals exist and satisfy the damp-
ing conditions at infinity. The asymptotic behavior of displacements at infinity is determined
by the asymptotic of the transport load on the surface of the half-space.

8 Construction of Green’s tensor at super-Rayleigh speed

If the subsonic speed c is more than the Rayleigh speed cR: cR < c < c2, then for
constructing the solution we transform contour of integration in the ε−vicinity of the point

Kazakh Mathematical Journal, 19:3 (2019) 6–19



Green’s tensor of subsonic transport BV ... 17

ζR(η) at any fixed η by moving along the circle of radius ε in upper half-plane of complex ζ
(z > 0) and in under half-plane (z < 0) to get under sign of integral the waves, which tend
to zero by |z| → ∞. If ε→ 0, then, using the theorem on residue of complex analysis, we get
the Green’s tensor in the form:

4π2 Πm
k (x1, x2, z)

=
∞∫
−∞

{
V.P.

∞∫
−∞

∑3
j=1 d

m
kj(η, ζ) exp(−x1

√
η2 + α2

jζ
2 − iζz)dς

}
e−iηx2dη

−iπsgnz
∑
±

∞∫
−∞

∑3
j=1Rd

m
kj(η, ζ) exp

(
−x1 |η|

√
M2
R−M

2
j

M2
R−1

)
e−i(ηx2+zζ±R (η))dη,

(35)

where

dmkj(η, ζ) = Dkn(−
√
η2 + α2

jζ
2, iη, iζ)

∆m
n (η, ζ)

∆(η, ζ)
,

Rdmkj(η, ζ) = Dkn

− |η|
√
M2
R −M2

j

M2
R − 1

, iη, iζ±R

 ∆m
n (η, ζ±R )

∆ζ(η, ζ
±
R (η))

.

Here, to calculate the Value Principle integral we can use the formulae:

V.P.
∞∫
−∞

Dkn(−
√
η2 + α2

jζ
2, iη, iζ)∆m

n (η,ζ)
∆(η,ζ) exp(−x1

√
η2 + α2

jζ
2 − iζz)dς

=
∞∫
0

(Υm
kn(x1, z, η, ς) + Υ(x1, z, η,−ς)) exp(−x1

√
η2 + α2

jζ
2)dς,

Υm
kn(x1, z, η, ς) = Dkn(−

√
η2 + α2

jζ
2, iη, iζ)∆m

n (η,ζ) e−iζz

∆(η,ζ) .

The last integral does not have singularities in Rayleigh’s points and can be calculated
numerically. The second summand in formula (35) describes the surface Rayleigh waves,
which are generated by transport load when cR < c < c2. By c = cR the stationary solution
of this problem does not exist.

9 Conclusion

The solutions of boundary value problems presented here are very useful for applications
when assessing the impact of road trans on the environment. This allows to determine the
stress-strain state of the rock massif, depending on its elastic properties, the type of the
acting load and the speed of the vehicle. This is especially actual now with the development
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18 L.A. Alexeyeva

of high-speed road and rail trans, the speed of which can have a devastating impact on the
surrounding areas. The obtained solutions allow us to determine the range of possible speeds
of movement, taking into account the strength properties of the rock massif and the road
surface, which makes it possible to ensure the safety and reliability of operation of modern
vehicles.
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Алексеева Л.А. СЕРПIМДI ЖАРТЫЛАЙ КЕҢIСТIК ҮШIН ДЫБЫСҚА ДЕЙIНГI
КӨЛIКТIК ШЕТТIК ЕСЕПТIҢ ГРИН ТЕНЗОРЫ

Серпiмдiлiк теориясының дыбысқа дейiнгi көлiктiк жүктемелер бетiмен қозғалыс
кезiндегi бiрiншi шеттiк есебi серпiмдi жартылай кеңiстiк үшiн қарастырылады. Олардың
қозғалыс жылдамдығы Рэлэй серпiмдi беттiк толқындарының таралу жылдамдығынан
кiшi немесе үлкен болады деп болжанады. Есептiң фундаменталды шешiмi – Грин тен-
зоры Фурье жалпыланған түрлендiруi негiзiнде тұрғызылды, ол массивтiң динамикасын
шоғырланған күштiң оның бетiнiң бойымен қозғалысы кезiнде сипаттайды. Жартылай
кеңiстiк бетiмен таралған кез келген көлiктiк жүктемелер үшiн шеттiк есептiң аналити-
калық шешiмi Рэлей жылдамдығынан төмен және Рэлей жылдамдығынан жоғары жыл-
дамдықтар кезiнде тұрғызылды. Рэлей толқынының жылдамдығы шамадан тыс артқан
кезде, көлiктiк жүктемелер Рэлей баттiк толқындарын тудыратыны көрсетiлдi. Қарас-
тырылған есеп жол ғимараттарына өте жақын орналасқан жыныс массивiнiң жоғарғы
жылдамдықпен қозғалатын көлiктiк жүктемелер әсерiнен кернеулi-деформацияланған
күй жағдайын зерттеу үшiн модельдiк есеп болып табылады.

Кiлттiк сөздер. Изотропты серпiмдi жартылай кеңiстiк, көлiктiк жүктеме, бiрiншi
шеттiк есеп, дыбысқа дейiнгi жылдамдық.

Алексеева Л.А. ТЕНЗОР ГРИНА ДОЗВУКОВОЙ ТРАНСПОРТНОЙ КРАЕВОЙ
ЗАДАЧИ ДЛЯ УПРУГОГО ПОЛУПРОСТРАНСТВА

Рассматривается первая краевая задача теории упругости для упругого полупро-
странства при движении по его поверхности дозвуковых транспортных нагрузок. Пред-
полагается, что скорость их движения меньше или больше скорости распространения
упругих поверхностных волны Рэлея. На основе обобщенного преобразования Фурье по-
строено фундаментальное решение задачи – тензор Грина, который описывает динамику
массива при движении сосредоточенной силы вдоль его поверхности. Построено анали-
тическое решение краевой задачи для произвольных транспортных нагрузок, распре-
деленных по поверхности полупространства, при дорелеевских и сверхрелеевских ско-
ростях. Показано, что при превышении скорости волны Рэлея транспортные нагрузки
генерируют поверхностные волны Рэлея. Задача является модельной для исследования
напряженно-деформированного состояния породного массива в непосредственной бли-
зости от дорожных сооружений под действием транспортных нагрузок, движущихся с
высокими скоростями.

Ключевые слова. Изотропное упругое полупространство, транспортная нагрузка,
первая краевая задача, дозвуковая скорость.
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Abstract. The paper considers a new type of oscillations for shunting inhibitory cellular neural net-

works (SICNNs), unpredictable solutions, which continue the line of periodic, almost periodic, recurrent

oscillations. The dynamics admits useful numerical characteristics and can be convenient for analysis

of cognitive tasks, artificial intelligence and robotics development. Since the oscillations are robustly

related to chaos, the results are advantageous for research of sophisticated dynamics in neuroscience.

The existence and stability of an unpredictable solution for SICNN is proved. Numerical example is

given to show the feasibility of the obtained results. Results of the paper were announced in [1], [2].

Keywords. Unpredictable oscillations, Shunting inhibitory cellular neural networks, Asymptotical stabil-

ity.

1 Introduction and preliminaries

In paper [3] deterministic unpredictable functions were introduced as a new type of oscil-
lations. The existence of unpredictable solutions proves Poincaré chaos for a Hopfield type
neural networks [4] and the motions admit numerical characteristics, which can be useful for
the analysis of neural processes. The description of such functions relies on the dynamics of
unpredictable points, which were presented in the study [5]. The research of unpredictable so-
lutions unites the theoretical advantages and challenges which are proper for both oscillations
and chaos, and will open up many interesting prospects in neuroscience.

Shunting inhibitory cellular neural networks (SICNNs), which have been introduced by
Bouzerdoum and Pinter in [6], play exceptional role in psychophysics, robotics, adaptive
pattern recognition, vision and image processing. In the last several decades there have been
published many results concerning the dynamics of the neural networks.
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In its original formulation [6], the SICNN model is a two-dimensional grid of processing
cells. We will follow the description in the present reseach. Let Cij denote the cell at the
(i, j) position of the lattice. Denote by Nr(i, j) the r-neighbourhood of Cij , such that

Nr(i, j) = {Ckp : max(|k − i|, |p− j|) ≤ r, 1 ≤ k ≤ m, 1 ≤ l ≤ n},

where m and n are fixed natural numbers. In SICNNs, neighbouring cells exert mutual
inhibitory interactions of the shunting type. The dynamics of the cell Cij is described by the
following nonlinear ordinary differential equation

dxij
dt

= −aijxij −
∑

Ckp∈Nr(i,j)

Ckpij f(xkp(t))xij + vij(t), (1)

where xij is the activity of the cell Cij , vij(t) is the external input to the cell Cij , the constant

aij represents the passive decay rate of the cell activity, Ckpij ≥ 0 is the connection or coupling
strength of postsynaptic activity of the cell Ckp transmitted to the cell Cij and the activation
f(xkp) is a positive continuous function representing the output or firing rate of the cell Ckp,
vij(t) is the external input to the cell Cij .

Throughout the paper, R and N will stand for the sets of real and natural num-
bers, respectively. Also, the norm ‖u‖1 = supt∈R ‖u(t)‖, where ‖u‖ = max(i,j) |uij | ,
u(t) = (u11, . . . , u1n, . . . , um1 . . . , umn), t, uij ∈ R, i = 1, 2, ...,m, j = 1, 2, ..., n, will be used.
The following definition is an initial one in our research.

Definition [3]. A uniformly continuous and bounded function u : R→ Rm×n is unpredictable
if there exist positive numbers ε0, δ and sequences tp, sp both of which diverge to infinity such
that u(t+ tp)→ u(t) as p→∞ uniformly on compact subsets of R and ‖u(t+ tp)−u(t)‖ ≥ ε0
for each t ∈ [sp − δ, sp + δ] and p ∈ N.

2 Main result

Let us denote by B the set of functions u(t) = (u11, . . . , u1n, . . . , um1 . . . , umn), t, uij ∈
R, i = 1, 2, ...,m, j = 1, 2, ..., n, where m,n ∈ N, such that:

(A1) functions u(t) are uniformly continuous and there exists a positive number H such that
‖u‖1 < H for all u(t) ∈ B;

(A2) there exists a sequence tp, tp →∞ as p→∞ such that for each u(t) ∈ B the sequence
u(t + tp) uniformly converges to u(t) on each closed and bounded interval of the real
axis.

The following conditions will be needed throughout the paper:

(B1) the function v(t) = (v11, . . . , v1n, . . . , vm1 . . . , vmn), t, vij ∈ R, i = 1, 2, ...,m, j =
1, 2, ..., n, in the system (1) belongs to B and is unpredictable such that there ex-
ist positive numbers δ, ε0 > 0 and a sequence sp → ∞ as p → ∞ which satisfy
‖v(t+ tp)− v(t)‖ ≥ ε0 for all t ∈ [sp − δ, sp + δ], and p ∈ N;
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(B2) for the rates we assume that γ = min
(i,j)

aij > 0 and γ̄ = max
(i,j)

aij ;

(B3) there exist positive numbers mij such that sup
t∈R
|vij(t)| ≤ mij ;

(B4) there exists a positive number mf such that sup
|s|<H

|f(s)| ≤ mf ;

(B5) there exists a positive number L such that |f(s1)− f(s2)| ≤ L |s1 − s2| for all s1, s2,
|s1| < H, |s2| < H;

(B6) (LH +mf ) max
(i,j)

∑
Ckp∈Nr(i,j)

Ckpij < γ for all i = 1, . . . ,m, j = 1, . . . , n.

Likewise to the result in [7], one can verify that the following assertion is valid.

Lemma 1. Assume that conditions (B2) to (B4) are valid. A bounded on R function y(t) =
{yij(t)} is a solution of SICNNs (1) if and only if the following integral equation is satisfied

yij(t) = −
∫ t

−∞
e−aij(t−s)

[ ∑
Ckl∈Nr(i,j)

Cklij f(ykl(s))yij(s)− vij(s)
]
ds. (2)

Define on B the operator Π such that Πu(t) = {Πiju(t)}, i = 1, . . . ,m, j = 1, . . . , n, where

Πiju(t) ≡ −
∫ t

−∞
e−aij(t−s)

[ ∑
Ckp∈Nr(i,j)

Ckpij f(ukp(s))uij(s)− vij(s)
]
ds. (3)

Lemma 2. If u(t) ∈ B, then the operator Π is invariant in B.

Proof. For the function u(t) ∈ B, it is not difficult to show that Πu(t) satisfies the condition
(A1).

Now, let us fix a positive number ε and a finite interval [a, b] ⊂ R. Consider numbers
c < a and ξ > 0, which satisfy the following inequalities,

2

γ

(
max
(i,j)

∑
Ckl∈Nr(i,j)

Cklij (mfH + LH2) +mij

)
e−γ(a−c) ≤ ε

2
(4)

and

ξ

γ

(
max
(i,j)

∑
Ckl∈Nr(i,j)

Cklij (mf + LH) + 1
)
≤ ε

2
. (5)
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We will show that ‖Πu(t + tp) − Πu(t)‖ < ε on [a, b] for sufficiently large p. Let p be a
large enough number such that ‖u(t + tp) − u(t)‖ < ξ and ‖v(t + tp) − v(t)‖ < ξ, on [c, b].
Then for all t ∈ [a, b] it is true that

|Πijuij(t+ tn)−Πijuij(t)| ≤
∫ t

−∞
e−γ(t−s)

( ∑
Ckl∈Nr(i,j)

Cklij

∣∣∣f(ukl(s))uij(s)

−f(ukl(s+ tn))uij(s+ tn)
∣∣∣+
∣∣∣(vij(s+ tn)− vij(s)

∣∣∣)ds
≤
∫ c

−∞
e−γ(t−s)

( ∑
Ckl∈Nr(i,j)

Cklij

∣∣∣[f(ukl(s))[uij(s)− uij(s+ tn)]

+[f(ukl(s))− f(ukl(s+ tn))]uij(s+ tn)]
∣∣∣+
∣∣∣(vij(s+ tn)− vij(s)

∣∣∣)ds
+

∫ t

c
e−γ(t−s)

( ∑
Ckl∈Nr(i,j)

Cklij

∣∣∣f(ukl(s))[uij(s)− uij(s+ tn)]

+[f(ukl(s))− f(ukl(s+ tn))]uij(s+ tn)
∣∣∣+
∣∣∣(vij(s+ tn)− vij(s)

∣∣∣)ds
≤
(max(i,j)

∑
Ckl∈Nr(i,j)

Cklij

γ
(mf2H + L2HH) + 2mij

)
e−γ(a−c)

+
(ξmax(i,j)

∑
Ckl∈Nr(i,j)

Cklij

γ
(mf + LH) + 1

)
,

for all i = 1, 2, ...,m, j = 1, 2, ..., n. Now inequalities (4) and (5) imply that ‖Πu(t + tn) −
Πu(t)‖ < ε for t ∈ [a, b]. Since ε is arbitrary small number, the condition (A2) is valid. The
lemma is proved. �

Lemma 3. The operator Π is contractive in B.

Proof. For two functions ϕ,ψ ∈ B, and fixed i = 1, 2, ...,m, j = 1, 2, ..., n, we have that

|Πijϕij(t)−Πijψij(t)| ≤
∫ t

−∞
e−γ(t−s)

∑
Ckl∈Nr(i,j)

Cklij

(
f(ϕkl(s))ϕij(s)− f(ukl(s))ψij(s)

)
ds

+

∫ t

−∞
e−γ(t−s)

∑
Ckl∈Nr(i,j)

Cklij

∣∣∣f(ϕkl(s))ψij(s)− f(ψkl(s))ψij(s)
∣∣∣ds

≤
(LH +mf )

γ
max
(i,j)

∑
Ckl∈Nr(i,j)

Cklij ‖ϕ− ψ‖1 .
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That is why ‖Πϕ − Πψ‖1 ≤
LH +mf

γ
max
t∈R

∑
Ckl∈Nr(i,j)

Cklij ‖ϕ− ψ‖1 . Then condition (B6)

implies that the operator Π is contractive in the set B. The lemma is proved. �

Theorem 1. Suppose that conditions (B1)–(B6) are valid, then the system (1) possesses an
unique asymptotically stable unpredictable solution ω(t) ∈ B.

Proof. Let us show that the space B is complete. Consider a Cauchy sequence φk(t) in B,
which converges to a limit function φ(t) on R. It suffices to show that φ(t) satisfies condition
(K3), since other two conditions can be easily checked. Fix a closed and bounded interval
I ⊂ R. We have that

‖φ(t+ tp)− φ(t)‖ ≤ ‖φ(t+ tp)− φk(t+ tp)‖+ ‖φk(t+ tp)− φk(t)‖+ ‖φk(t)− φ(t)‖. (6)

Now, one can take sufficiently large p and k such that each term on the right-hand side
of (6) is smaller than ε

3 for an arbitrary positive ε and t ∈ I. The inequality implies that
‖φ(t+ tp)− φ(t)‖ ≤ ε on I. That is the sequence φ(t+ tp) uniformly converges to φ(t) on I.
The completeness of B is proved. Now, by the contractive mapping theorem, due to Lemmas
2 and 3, there exists a unique solution ω(t) ∈ B of equation (1).

One can find a positive number κ and natural numbers l, k and j = 1, . . . , p, such that:

κ < δ, (7)

κ
(1

2
− (

1

l
+

2

k
)(γ̄ +

∑
Ckp∈Nr(i,j)

Ckpij (mf + LH))
)
≥ 3

2l
, (8)

|ωij(t+ s)− ωij(t)| < ε0 min(
1

k
,

1

4l
), t ∈ R, |s| < κ, (9)

for all i = 1, 2, ...,m, j = 1, 2, ..., n.
Denote ∆ = |ωij(tp + sp) − ωij(sp)| and consider two cases: (i) ∆ < ε0/l; (ii) ∆ ≥ ε0/l

such that the remaining proof falls naturally into two parts.

(i) From (9) it follows that

‖ωij(t+ sp)− ωij(sp)‖ <
ε0
l

+
ε0
k

+
ε0
k

= ε0

(1

l
+

2

k

)
, (10)

if t ∈ [sp, sp + κ]. It is true that

ωij(t+ tp)− ωij(t) = ω(tp + sp)− ω(sp)−
∫ t

sp

aij(ω(s+ tp)− ω(s))ds

−
∫ t

sp

∑
Ckp∈Nr(i,j)

Ckpij (f(ωkp(s+tp))ωij(s+tp)−f(ωkp(s))ωij(s))ds−
∫ t

sp

(vij(s+tp)−vij(s))ds. (11)
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We obtain from (7)–(8) and (10)–(11) that

|ωij(t+ tp)− ωij(t)| ≥
∫ t

sp

|vij(s+ tp)− vij(s)|ds− |ωij(tp + sp)− ωij(sp)|

−
∫ t

sp

aij |ωij(s+tp)−ωij(s)|ds−
∫ t

sp

∑
Ckp∈Nr(i,j)

Ckpij |f(ωkp(s+tp))ωij(s+tp)−f(ωkp(s))ωij(s)|ds

≥ ε0
κ

2
− ε0

l
− ε0κ(

1

l
+

2

k
)(γ̄ +

∑
Ckp∈Nr(i,j)

Ckpij (mf + LH))

= ε0κ
(1

2
− (

1

l
+

2

k
)(γ̄ +

∑
Ckp∈Nr(i,j)

Ckpij (mf + LH))
)
≥ 3ε0

2l
,

for t ∈ [sp + κ
2 , sp + κ].

ii) For the case ∆ ≥ ε0/l, it can be easily found that (9) implies

‖ω(tp + t)− ω(t)‖ ≥ ‖ω(tp + sp)− ω(sp)‖ − ‖ω(sp)− ω(t)‖ − ‖ω(tp + t)− ω(tp + sp)‖

≥ ε0
l
− ε0

4l
− ε0

4l
=
ε0
2l
,

if t ∈ [sp − κ, sp + κ] and p ∈ N.

Thus, one can conclude that ω(t) is the unpredictable solution with s̄n = sn + 3κ
4 , δ̄ = κ

4 .

Finally, we will discuss the stability of the unpredictable solution ω(t). It is true that

ωij(t) = e−aij(t−t0)ωij(t0)−
∫ t

t0

e−aij(t−s)
[ ∑
Ckl∈Nr(i,j)

Cklij f(ωkl(s))ωij(s)− vij(s)
]
ds,

i = 1, . . . ,m, j = 1, . . . , n.

Let z(t) = (z11, . . . , z1n, . . . , zm1 . . . , zmn) be another solution of the system. One can
write

zij(t) = e−aij(t−t0)zij(t0)−
∫ t

t0

e−aij(t−s)
[ ∑
Ckl∈Nr(i,j)

Cklij f(zkl(s))zij(s)− vij(s)
]
ds.

Making use of the relation

zij(t)− ωij(t) = e−aij(t−t0 (zij(t0)− ωij(t0))

−
∫ t

t0

e−aij(t−s)
[ ∑
Ckl∈Nr(i,j)

Cklij f(zkl(s))zij(s)−
∑

Ckl∈Nr(i,j)

Cklij f(ωkl(s))ωij(s)
]
ds,
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we obtain that

|zij(t)− ωij(t)|≤e−γ(t−t0)
∣∣∣zij(t0)− ωij(t0)∣∣∣+mf

∑
Ckl∈Nr(i,j)

Cklij

∫ t

t0

e−γ(t−s)
∣∣∣zij(s)− ωij(s)∣∣∣ds

+LH

∫ t

t0

e−γ(t−s)
∑

Ckl∈Nr(i,j)

Cklij

∣∣∣zkl(s)− ωkl(s)∣∣∣ds,
for all i = 1, . . . ,m, j = 1, . . . , n. Multiply both sides of the last inequality by eγt:

eγt ‖z(t)− ω(t)‖ ≤ ‖z(t0)− ω(t0)‖+ (LH +mf ) max
(i,j)

∑
Ckl∈Nr(i,j)

Cklij

∫ t

t0

eγs ‖z(s)− ω(s)‖ ds.

Now, applying Gronwall-Bellman Lemma, one can attain that

‖z(t)− ω(t)‖ ≤ ‖z(t0)− ω(t0)‖ e

(
(LH+mf )max(i,j)

∑
Ckl∈Nr(i,j)

Ckl
ij−γ

)
(t−t0)

.

The last inequality and condition (B6) confirm that the unpredictable solution ω(t) is
uniformly asymptotically stable. The theorem is proved. �

3 Example

Consider the logistic discrete equation

λi+1 = µλi(1− λi), (12)

with µ = 3.92 [3] . The sequence belongs to the unit interval [0, 1]. In paper [4] it was proved
that equation (12) has an unpredictable solution ψi, i ∈ Z.

Let us construct the solution Θ(t) of the equation

dv

dt
= −3v(t) + Ω(t), (13)

where Ω(t) is a piecewise constant function defined on the real axis through the equation
Ω(t) = ψi for t ∈ [i, i+ 1), i ∈ Z. One can check that

Θ(t) =

∫ t

−∞
e−3(t−s)Ω(s)ds. (14)

It is worth noting that Θ(t) is bounded on the whole real axis such that sup
t∈R
|Θ(t)| ≤ 1/3,

and is globally exponentially stable. Moreover, the function Θ(t) is unpredictable [4].
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Example. Let us introduce the following SICNNs:

dxij
dt

= −aijxij −
∑

Ckp∈N1(i,j)

Ckpij f(xkp(t))xij + vij(t), (15)

where i, j = 1, 2, 3, a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 4 6 2
1 7 5
4 8 3

,
 C11 C12 C13

C21 C22 C23

C31 C32 C33

 =

 0.02 0.05 0
0.04 0.07 0.03
0.06 0 0.09

,
and f(s) = 1

3arctan(s), v11(t) = 27Θ3(t) + 2, v12(t) = 3Θ(t), v13(t) = −5Θ(t) + 3, v21(t) =
12Θ(t) + 1, v22(t) = 21Θ3(t), v23(t) = 19Θ(t) − 1, v31(t) = −8Θ(t) + 5, v32(t) = 6Θ(t),
v33(t) = −19Θ3(t), Θ(t) is the unpredictable solution of the system (13). Moreover, by
means of Lemma 1.4 and Lemma 1.5 in [8] function v(t) = {vij(t)}, i = 1, 2, 3, j = 1, 2, 3, is
unpredictable.

Figure 1 represents the solution φ(t) of (15) with initial values φ11(0) = 0.5211, φ12(0) =
0.1359, φ13(0) = 0.9876, φ21(0) = 3.333, φ22(0) = 0.0444, φ23(0) = 0.5725, φ31(0) = 0.8541,
φ32(0) = 0.2278, φ33(0) = −0.0982. The integral curve approximates the unpredictable solu-
tion of the system (15).
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Figure 1 – The coordinates of the solution φ(t) of SICNNs (15)

References

[1] Akhmet M., Tleubergenova M., Zhamanshin A. Neural networks with Poincare chaos, XI In-
ternational Conference on Information Management and Engineering, London, UK, (2019), 21-24.

Kazakh Mathematical Journal, 19:3 (2019) 20–29



28 M. Tleubergenova, R. Seilova, A. Zhamanshin

[2] Akhmet M., Fen M.O., Tleubergenova M. and Zhamanshin A. Unpredictable solutions for a sys-
tem of differential equatuons, IV International Scientific and Practical Conference ”Computer science
and applied mathematics”, Almaty, Kazakhstan, (2019), 7-13.
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Тлеубергенова М., Сеилова Р., Жаманшин А. НЕЙРОНДЫҚ ЖЕЛIЛЕРДIҢ БО-
ЛЖАП БIЛУГЕ БОЛМАЙТЫН ТЕРБЕЛIСТЕРI

Мақалада шунттаушы тежегiшi бар ұялы нейрондық желiлер (ШТҰНЖ) үшiн тер-
белiстердiң жаңа түрi, периодты, периодты дерлiк, рекурренттiк тербелiстердiң шебiн
жалғастыратын болжап бiлуге болмайтын шешiмдер қарастырылады. Динамикасы пай-
далы сипаттамаларға ие болып отыр және когнитивтi есептердi, жасанды интеллект пен
құлтемiр техникасын талдауға ыңғайлы болуы мүмкiн. Тербелiстер хаоспен тығыз бай-
ланысты болғандықтан, нәтижелер нейроғылымдағы күрделi динамиканы зерттеу үшiн
пайдалы болады. ШТҰНЖ үшiн болжап бiлуге болмайтын шешiмнiң бар болуы мен
орнықтылығы дәлелденген. Алынған нәтижелердiң орындалатынын көрсететiн мысал
келтiрiлген.

Кiлттiк сөздер. Болжап бiлуге болмайтын тербелiстер, шунттаушы тежегiшi бар ұялы
нейрондық желiлер, асимптотикалық орнықтылық.
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Тлеубергенова М., Сеилова Р., Жаманшин А. НЕПРЕДСКАЗУЕМЫЕ КОЛЕБАНИЯ
НЕЙРОННЫХ СЕТЕЙ

В статье рассматривается новый тип колебаний для клеточных нейронных сетей с
шунтирующим торможением (КНСШТ), непредсказуемые решения, которые продолжа-
ют линию периодических, почти периодических, рекуррентных колебаний. Динамика
обладает полезными характеристиками и может быть удобной для анализа когнитивных
задач, искусственного интеллекта и развития робототехники. Поскольку колебания тесно
связаны с хаосом, результаты полезны для исследования сложной динамики в нейрона-
уке. Доказаны существование и устойчивость непредсказуемого решения для КНСШТ.
Приведен пример для того, чтобы показать выполнимость полученных результатов.

Ключевые слова. Непредсказуемые колебания, клеточные нейронные сети с шунти-
рующим торможением, асимптотическая устойчивость.
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Abstract. Central limit theorems deal with convergence in distribution of sums of random variables. The

usual approach is to normalize the sums to have variance equal to 1. As a result, the limit distribution

has variance one. In most papers, existence of the limit of the normalizing factor is postulated and the

limit itself is not studied. Here we review some results which focus on the study of the normalizing

factor. Applications are indicated.

Keywords. Central limit theorems, convergence in distribution, limit distribution, variance.

1 Introduction

In this paper we review some results concerning central limit theorems (CLTs). The
references are by no means comprehensive; in all cases the reader is advised to see the
bibliography in the papers we cite. As a point of departure, we use the Lindeberg CLT.

Consider a triangular array {Xnt, t = 1, ..., n, n ∈ N} of random variables defined on the
same probability space (Ω,F , P ) , having zero mean EXnt = 0 and variances σ2nt = EX2

nt.

Then the sums Sn =
∑n

t=1Xnt under independence have variances s2n = ES2
n =

n∑
t=1

σ2nt.

Lindeberg theorem [1]. Let the array {Xnt} be independent and satisfy

n∑
t=1

σ2nt = 1. (1)
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If

lim
n→∞

n∑
t=1

∫
{|Xnt|>ε}

X2
ntdP = 0, for all ε > 0, (2)

then Sn converges in distribution to a standard normal variable (with mean 0 and variance
σ2 = 1).

The main advantage of the Lindeberg theorem, in comparison with previous results, is that
it allows for heterogeneity (variances σ2nt may be different). Since the publication of this result
in 1922 many different developments took place. 1) The independence condition has been
relaxed and replaced by various notions of dependence (mixing and linear processes, among
others). 2) For (2), weaker versions have been suggested, including the conditional version.
3) Certain applications required the study of expressions that depend on Xnt in a nonlinear
fashion, quadratic forms

∑n
s,t=1 anstXntXns being the most important case. There are also

results on functionals of stochastic processes where the analytical form of the functional is
not specified. 4) Finally, for many CLTs their continuous-time analogues have been obtained,
which are called functional CLTs or invariance principles. These have been left out completely
in our review.

From the applied point of view, the normalization condition (1) is one of the main ob-
stacles. One can argue that if it is not satisfied, then one can consider Sn/sn instead of Sn.
Convergence in distribution of Sn/sn can be achieved in this way but the question about the
convergence of Sn and asymptotic behavior of sn remains. It is particularly important to
make sure that sn does not tend to zero or infinity. In the next section we indicate some
researches where the behavior of sn is controlled and the limit σ2 = limn→∞

∑n
t=1 σ

2
nt is found

explicitly.

2 Analyzing variance

For the purpose of analyzing sn, it is convenient to normalize Xnt by their standard
deviations: Xnt = σntent. Then Sn becomes

Sn =
n∑
t=1

σntent, (3)

where the sigmas are deterministic and ent are stochastic. In the Lindeberg-Lévy theorem
(see [2]) σnt are of order n−1/2 (which we call classical). The following papers are focussed
on relaxing the independence condition and maintain the classical order: [3]–[23]. Davidson
[24], [25] does not analyze directly sn but allows variances going to zero or infinity.

In [26] the normalizing factor is classical but the expression for σ2 is not trivial (see
Corollary 1). Let Xj be a linear process

Xj =
∑
r

cj−rξr, ξr are i.i.d. with mean zero and variance 1,
∑
r

c2r <∞. (4)

Kazakh Mathematical Journal, 19:3 (2019) 30–39



32 Kairat T. Mynbaev, Gulsim S. Darkenbayeva

The cumulant cum(Xj1 , ..., Xjk) is given by cum(Xj1 , ..., Xjk) = dk
∑
cj1−i...cjk−i, where dk

denotes the k-th cumulant of ξi. Letting c(x) denote the Fourier transform of the sequence cj ,
one finds the k-th cumulant spectral function as f (k)(x1, ..., xk−1) = dkc(x1)...c(xk−1)c(−x1−

... − xk−1). Consider the CLT for Yn =
n∑
j=1

: X
(n)
j :, where : X

(n)
j : denotes the Wick power

of Xj (it is a polynomial of degree n). Corollary 1 states that n−1/2Yn converges in law to
the normal distribution with mean 0 and variance

σ2 =
∑
G∈G2

∫ T∏
t=1

f (nt)(yM∗)dy1...dyN .

See the definitions of T, G2, nt and M∗ in the paper.
Giraitis L. and Taqqu M.S. [27] consider quadratic forms of bivariate Appell polynomials

and give σ2 in terms of these polynomials. Consider quadratic forms

QN =
N∑

s,t=1

b(t− s)Pm,n(Xt, Xs),

where Pm,n(Xt, Xs) is a bivariate Appell polynomial of Xt, Xs. Giraitis L. and Taqqu M.S. [27]
prove the next theorem:

Theorem. Suppose∑
l,k,t∈Z

|b(l)b(k)Cov (Pm,n(Xt, Xt+l), Pm,n(X0, Xk))| <∞.

If b(0) = 0, suppose in addition that
∑
t

|EXtX0|m+n < ∞. Then N−1/2QN converges in

distribution to a normal variable with mean zero and variance

σ2 =
∑

l,k,t∈Z
b(l)b(k)Cov (Pm,n(Xt, Xt+l), Pm,n(X0, Xk)) .

Ho H.C. and Sun T.C. [28] in a nonlinear situation (non-instantaneous filter) give σ2

in terms of the spectral distribution function of a normal stationary process. For a normal
stationary process such that EXt = 0 the autocovariances rt = EXnXn+t are represented

as rt =

∫ π

−π
eitxdG(x), where G(x) is the spectral distribution function. The process itself is

represented as Xt =

∫ π

−π
eitxZG(dx), where ZG is a random Gaussian measure corresponding

to G(x). Consider a non-instantaneous filter (a functional) H such that EH(Xt1 , ..., Xtd) = 0
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and EH(Xt1 , ..., Xtd)2 < ∞. Put YN = A−1N

N∑
t=1

H(Xt+t1 , ..., Xt+td). Ho and Sun find con-

ditions for CLT to hold, the normalizing factor AN being of classical order. Under some
conditions they prove that the limits

σ2j = lim
n→∞

N−1∑
m=0

N−1∑
n=0

∫
exp [i(m− n)(x1 + ...+ xj)] |αj(x1, ..., xj)|2 dG(x1)...dG(xj)

exist for each j ≥ k and σ2 =

∞∑
j=k

σ2j < ∞ is the variance of the limit normal distribution.

The functions αj arise from Wiener-Ito expansions of H(Xt1 , ..., Xtd).
In [29] s2n is related to the spectral density of the innovations of the linear process at zero.

For the process in (4) put Sn =

n∑
k=1

Xk, bn,j = cj−1 + ... + cj−n, b
2
n =

∑
j∈Z

b2n,j . Under some

conditions
lim
n→∞

V ar(Sn)/b2n = 2πf(0)

and the sequence Sn/bn converges in distribution to
√
ηz where z is standard normal and η

is defined in terms of innovations ξk and independent of z.
To model the behavior of the sigmas in (3), Mynbaev K.T. [30] introduced the Lp-

approximability notion. The idea is to represent converging sequences of deterministic vectors
with functions of a continuous argument. It is realized as follows. Let 1 ≤ p < ∞. The in-
terpolation operator ∆np : Rn → Lp(0, 1) is defined by

(∆npw) (x) = n
1
p

n∑
t=1

wt1[ t−1
n
, t
n)(x), w ∈ Rn. (5)

If wn ∈ Rn for each n and there exists a function W ∈ Lp(0, 1) such that

‖∆npwn −W‖Lp(0,1)
→ 0, n→∞,

then we say that {wn} is Lp-approximable and also that it is Lp-close to W . Suppose, for
simplicity, that the ent in (3) are i.i.d. with mean zero and variance 1. If the sequence
σn = (σn1, ..., σnn) is L2-close to a function F ∈ L2(0, 1), then (3) converges in law to a
normal variable with variance

V =

1∫
0

F 2(x)dx. (6)

This result extends to the case when ent are linear processes with short memory. It would be
interesting to obtain something similar in case of processes with long memory.
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P.C.B. Phillips and many of his followers use properties of Brownian motion to establish
convergence results for regression estimators. Mynbaev K.T. [31] showed that some problems
solved using Brownian motion are easier handled applying Lp-approximability.

To state the result from [32] on quadratic forms Qn(kn) =
∑

knstXsXt we need more
notation.

Let A be a compact linear operator in a Hilbert space with a scalar product (·, ·). The

operator H = (A∗A)
1
2 is called the modulus of A, here A∗ is the adjoint operator of A.

The eigenvalues of H, denoted si, i = 1, 2, ..., and counted with their multiplicity, are called
s-numbers of A. U denotes a partially isometric operator that isometrically maps the range
R (A∗) onto the range R(A). Then we have the polar representation A = UH. Denote by
r(A) the dimension of the range R(A) (r(A) ≤ ∞).

Let {φj} be an orthonormal system of eigenvectors of H which is complete in R(H).
Then, we have the representation

Ax =

r(A)∑
i=1

si(x, φi)Uφi

or, denoting ψi = Uφi,

Ax =

r(A)∑
i=1

si(x, φi)ψi,

where {φi} and {ψi} are orthonormal systems, Hφi = siφi, lim
i→∞

si = 0. In particular, when

A is selfadjoint, φi are eigenvectors of A and si = |λi|, where λi are eigenvalues of A.
Let K ∈ L2

(
(0, 1)2

)
. For each natural n, we define an (n× n)-matrix

(δnK)ij = n

i
n∫

i−1
n

j
n∫

j−1
n

K(s, t)dsdt, 1 ≤ i, j ≤ n.

We say that the sequence {kn} is L2-close to K if∑
i,j

(kn − δnK)2ij

 1
2

= ‖kn − δnK‖2 → 0.

Unlike the one-dimensional case, where L2-approximability of {σn} is enough to have con-
vergence in distribution, in the two-dimensional case one has to impose a stronger condition
on the rate of approximation. One version of such a condition is

‖kn − δnK‖2 = o

(
1√
n

)
. (7)
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Define an integral operator by

(Kf) (s) =

1∫
0

K (s, t) f(t)dt, f ∈ L2(0, 1).

Theorem [32]. Let Xj from (4) satisfy
∑

j |cj | <∞ and let (7) hold. If K is nuclear, then

Qn(kn)
d−→

(∑
i

ci

)2∑
i≥1

siu
(1)
i u

(2)
i , (8)

where {u(1)i }, {u
(2)
i } are systems of independent (within a system) standard normals, si are

s-numbers of K and

cov(u
(1)
i , u

(2)
j ) = (ψi, φj) for all i, j.

If K is symmetric, then u
(1)
i = u

(2)
i for all i.

For more information about history of these results, see [33], [34] and [32]. Note the
difference between the limit in (8), which is not a normal variable, and the above results,
where the limit of quadratic forms is normal. This is due to the centering in the above results.
Centering requires knowledge of means and may be problematic in applications.

Wu W. and Shao X. [35] prove asymptotic normality of

∑
1≤s<t≤n

anstXsXt/σn, where σ2n =

n∑
t=2

t−1∑
j=1

a2nst,

and Xs is a real stationary process with mean zero and finite covariances.

3 Some applications

Here we list a couple of applications that illustrate the following point. With expressions
of type (6) and (8) at hand one can study the limit distribution further. We call this analysis
at infinity.

[36] initiated the study of regressions with slowly varying regressors. The limit variance
matrix of the OLS estimator for such regressions is degenerate. The analysis at infinity comes
in very handy, see [37].

The main technical problem with a spatial model Yn = ρWYn + Xnβ + εn is that in
its reduced form Yn = (I − ρWn)−1(Xnβ + εn) there is an inverse matrix (I − ρWn)−1

and one has to deduce the properties of the inverse from the assumptions on Wn. Many
researchers have been unable to do that and instead imposed high level conditions involving
the inverse. Mynbaev K.T. and Ullah A. [38] and Mynbaev K.T. [39] gave the first derivation
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of the asymptotic distribution of the OLS estimator for spatial models (without and with
exogenous regressors, resp.) that does not rely on high level conditions.

Most of K.T. Mynbaev’s contributions are collected in [40]. In particular, for the purely
spatial model in Chapter 5 it is shown that the said model violates the habitual notions in
several ways:

1. the OLS asymptotics is not normal,

2. the limit of the numerator vector is not normal,

3. the limit of the denominator matrix is not constant,

4. the normalizer is identically 1 (that is, no scaling is necessary) and

5. there is no consistency.
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Мыңбаев Қ.Т., Даркенбаева Г.С. ОРТАЛЫҚ ШЕКТIК ТЕОРЕМАЛАРДАҒЫ ДИС-
ПЕРСИЯЛАРДЫҢ ТАЛДАУЫ

Орталық шектiк теоремалар кездейсоқ шамалардың қосындыларын үлестiрiм бойын-
ша жинақталуымен байланысты. Кәдiмгi қолданылатын тәсiл қосындыларды дисперси-
ясы 1 болатындай етiп қалыптандырудан тұрады. Осының нәтижесiнде, шектiк үлестiрiм
бiрге тең болатын дисперсияны иемденедi. Көптеген жұмыстарда қалыптандыру факто-
рының шегiнiң бар болуы негiз ретiнде алынып, шектiң өзi зерттелмеген. Бiз мұнда қа-
лыптандыру коэффициентiн зерттеуге бағытталған кейбiр нәтижелердi қарастырамыз.
Олардың қолданыс аясы көрсетiлген.

Кiлттiк сөздер. Орталық шектiк теоремалар, үлестiрiм бойынша жинақталу, шектiк
үлестiрiм, дисперсия.
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Мынбаев К.Т., Даркенбаева Г.С. АНАЛИЗ ДИСПЕРСИИ В ЦЕНТРАЛЬНЫХ ПРЕ-
ДЕЛЬНЫХ ТЕОРЕМАХ

Центральные предельные теоремы связаны со сходимостью по распределению сумм
случайных величин. Обычный подход заключается в нормализации сумм так, чтобы
иметь дисперсию, равную единице. В результате этого предельное распределение имеет
дисперсию, равную единице. Во многих работах существование предела нормализую-
щего фактора постулируется, а сам предел не изучен. Здесь мы рассмотрим некоторые
результаты, которые сосредоточены на изучении коэффициента нормализации. Указаны
их области применения.

Ключевые слова. Центральные предельные теоремы, сходимость по распределению,
предельное распределение, дисперсия.
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Abstract. The complex form of the Hooke law for anisotropic body is given which made it possible the

simplest defining of eigenvectors and eigenvalues of a matrix of elastic modules of an anisotropic body

at a plane deformation. The structure of a matrix of elastic parameters and new invariants which play

a key role in communication of an intense strained state is defined. It is shown that always one of the

found new linear invariants is equal to zero. The relation expressing the mismatch of principal directions

of tensors of deformations and tension is received.

Keywords. Anisotropic body, elastic modules, unitary matrix, tensors of deformations and tension.

1 Introduction

In solving various applied and theoretical problems of continuum mechanics of anisotropic
elastic body for additional, more complete information on properties the elastic parameters
of the Hooke law for anisotropic elastic body is necessary. Therefore, a large number of
scientific research are devoted to clarification of regularities of elastic parameters and general
structure of the linear Hooke law for non-isotropic elastic mediums. The detailed review of
these researches is provided, for example, in [1].

The present work is devoted to the first stage as to the most prime: to research of
the general structure of the Hooke law for an anisotropic body and to clarification of those
regularities which are not previously investigated using plane deformation (flat stressed state).

The complex form of the Hooke law allows in natural matrix form to define eigenvectors
and eigenvalues of the matrix of elastic modules of the anisotropic body. The structure of the
matrix of elastic parameters and new linear invariants which play a key role in communication
of an intense strained state is defined. It is shown that always one of the found new linear
invariants is equal to zero. Own elastic modules and structure of the matrix of elastic modules

2010 Mathematics Subject Classification: 74H05,74K25.
c© 2019 Kazakh Mathematical Journal. All right reserved.
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depending on the new found linear invariants are defined by eigenvectors. The ratio expressing
mismatch of principal directions of tensors of deformations and tension is received.

2 The main relations

In the system of Cartesian axes Ox1x2x3 we will write down the Hooke law for anisotropic
linear elastic body [2], [3]:

eij = aijαβ · σαβ, (1)

σij = σji, eij = eij , aijkl = ajikl = aijlk = aklij , i, j, k, l = 1, 2, 3,

where on Greek indices the toting is made, σij , eij are symmetric stress tensors and linear
deformation, respectively, and aijαβ are elastic modules of pliability. Replacing indices [2] by
the rule: (11)→ (1); (22)→ (2); (33)→ (3); (12)→ (4); (23)→ (5); (13)→ (6), we will write
down the Hooke law in the developed form:

e11 = a11σ11 + a12σ22 + a13σ33 + 2a14σ12 + 2a15σ23 + 2a16σ13,

e22 = a12σ11 + a22σ22 + a23σ33 + 2a24σ12 + 2a25σ23 + 2a26σ13,

e33 = a13σ11 + a23σ22 + a33σ33 + 2a34σ12 + 2a35σ23 + 2a36σ13,

e12 = a14σ11 + a24σ22 + a34σ33 + 2a44σ12 + 2a45σ23 + 2a46σ13,

e23 = a15σ11 + a25σ22 + a35σ33 + 2a45σ12 + 2a55σ23 + 2a56σ13,

e13 = a16σ11 + a26σ22 + a36σ33 + 2a46σ12 + 2a56σ23 + 2a66σ13.

(2)

Let us take the axis as the bearing axis Ox3. Let us enter complex coordinates z =
x1 + ix2, i

2 = −1 and complex components of stress tensors and deformations [2], [4]:

T1 = σ11 + σ22 , T2 =
1√
2
{(σ11 − σ22) + 2iσ12}, T3 =

√
2 (σ23 − iσ13), T5 =

√
2σ33,

ε1 = e11 + e22 , ε2 =
1√
2
{(e11 − e22) + 2ie12}, ε3 =

√
2 (e23 − ie13), ε5 =

√
2e33, (3)

~T =
(
T2, T̄2, T1, T3, T̄3, T5

)T
, ~ε = (ε2, ε̄2, ε1, ε3, ε̄3, ε5)

T .

Then the Hooke law will be registered as:

~ε = Q~T , ~T = Q−1~ε, (4)
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then

Q = Q∗ =



b d c e g n
d̄ b c̄ ḡ ē n̄
c̄ c a j j̄ i0
ē g j̄ p q m
ḡ e j q̄ p m̄
n̄ n i0 m̄ m k

, Q−1 = Q−1 =



B D C E G N
D̄ B C̄ Ḡ Ē N̄
C̄ C A J J̄ I
Ē G J̄ P Q M
Ḡ E J Q̄ P M̄
N̄ N I M̄ M K

. (5)

Matrices Q = Q∗, Q−1 = Q∗−1 are Hermit and positive definite, as elastic potential

P =
1

2
σαβeαβ =

1

4

{
T2ε̄2 + T̄2ε2 + T1ε1 + T3ε̄3 + T̄3ε3 + T5ε5

}
=

1

4
~T ∗ · ~ε =

1

4
~ε∗ ~T =

1

4
~T ∗Q~T =

1

4
~ε∗Q−1~ε

has positive definite form. Coefficients of the matrix Q are defined as follows:

a = 1
2 (a11 + 2a12 + a22), b = 1

4 (a11 − 2a12 + a22 + 4a44),

i0 = 1√
2

(a13 + a23), p = (a55 + a66), k = a33,

c =
√
2
4 {(a11 − a22) + 2i (a14 + a24)},

d = 1
4 {(a11 − 2a12 + a22 − 4a44) + 4i (a14 − a24)},

e = 1
2 {(a15 − a25 − 2a46) + i (a16 − a26 + 2a45)},

g = 1
2 {(2a46 − a25 + a15) + i (2a45 + a26 − a16)},

j = 1√
2
{(a15 + a25) + i (a16 + a26)}, q = {(a55 − a66)− 2ia56},

m = {a35 − ia36}, n = 1
2 {(a13 − a23) + 2ia34}.

(6)

Similarly, elements of the inverse matrix Q−1 are defined. Apparently from (6), coefficients
a, b, i0, p, k of the matrix are always real numbers.

Let us consider a monocline singoniya (the plane of the elastic symmetry) [2], [3]. Let us
put the axis Ox3 orthogonally to the plane of the elastic symmetry. Then coordinate axes
Ox1, Ox2 will be in the plane of an elastic symmetry, and elastic modules a15 = a25 = a35 =
a45 = a16 = a26 = a36 = a46 = 0, or e = g = j = m = 0.

Definition. Deformation is called flat if all elastic modules, stress tensor and deformations
depend only on two coordinates x1, x2 and ε13 = ε23 = ε33 = 0, or ε3 = ε̄3 = ε5 = 0. Let us
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consider the Hooke law (4)–(5) in the conditions of the plane deformation. It follows from
the fourth and fifth equations (4) that

0 = pT3 + qT̄3,

0 = qT̄3 + pT3.
(7)

The Q matrix is positive particular, its main minor is of the second order which is determinant
of the set of equations (6) ∆ = p2 − |q|2 > 0. It follows from (6) that T3 = T̄3 = 0 or
σ13 = σ23 = 0. From the sixth equation (4) we have

T5 = −1

k

{
n̄T2 + nT̄2 + iT1

}
. (8)

Substituting (6) in the first three equations (4), we will receive:

~ε =

 ε2
ε̄2
ε1

 = Q∗ ~T =

 b∗ d∗ c∗
d̄∗ b∗ c̄∗
c̄∗ c∗ a∗

 T2
T̄2
T1

, (9)

b∗ = b− |n|2
/
k; a∗ = a− i20

/
k; d∗ = d− n2

/
k; c∗ = c− i0n/k.

Further asterisks (*) over the elastic modules are lowered. Note that elastic modules (plia-
bility modules) at the plane deformation can also be written down as:

a = 1
2 (β11 + 2β12 + β22), b = 1

4 (β11 − 2β12 + β22 + β44),

c =
√
2
4 {(β11 − β22) + i (β14 + β24)},

d = 1
4 {(β11 − 2β12 + β22 − β44) + 2i (β14 − β24)},

βij = aij −
ai3aj3
a33

, (i, j = 1, 2, 4),

(10)

and elastic potential as

P =
1

2
σαβεαβ =

1

4

(
T1ε1 + T̄2ε2 + T2ε̄2

)
=

1

4
T ∗QT =

1

4
ε∗Q−1ε,(

T ∗ =
(
T̄2, T2, T1

))
. (11)

The matrix Q remains Hermit and positive definite, therefore

a, b > 0, b > |d| , ab > |c|2.
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Let the frame Ox′1x
′
2 turn out by turning the frame Ox1x2 on a corner ϕ counterclockwise.

Then specified elastic parameters and complex components of vectors of tension and defor-
mations ~T , ~ε are expressed in a new frame through aged as follows [2], [4]:

a′ = a, b′ = b, c′ = ce−2iϕ, d′ = de−4iϕ, (12)

T ′2 = T2e
−2iϕ, T ′1 = T1, ε

′
2 = ε2e

−2iϕ, ε′1 = ε1.

If we introduce matrix of turn Vn, then a ratio of the second line (12) can be written as:

~T ′ = Vn ~T , ~ε
′ = Vn~ε, Vn = diag(e−2iϕ, e2iϕ, 1), Vn · V ∗n = E, (13)

where E is simple to matrixes, and turn matrix Vn is scalar unitary matrix.
Considering ratios (13), we will receive:∣∣∣~T ′∣∣∣2 =

(
~T ′∗ · ~T ′

)
=
(
~T ∗V ∗n · Vn ~T

)
=
(
~T ∗ · ~T

)
=
∣∣∣~T ∣∣∣2, ∣∣~ε′∣∣2 = |~ε|2. (14)

That is, modules of vectors ~T , ~ε at turn do not change. Writing down the Hooke law in frames
Ox′1x

′
2 and Ox1x2 and, considering (9), (13), we will receive:

Q′ = VnQV
∗
n . (15)

Let us enter permutation matrix D:

D =

 0 1 0
1 0 0
0 0 1

, D ·D = E. (16)

(9), (13), (16) follows from ratios:

~̄ε = D~ε, ~̄T = D~T , Q̄ = DQD. (17)

As the matrix Q of elastic constants is Hermite and positive definite, it can be presented
in the form [5]:

Q = U∗λU, (18)

where U (U∗U = UU∗ = E) is a unitary matrix, and λ = diag (λ1, λ2, λ3) is a scalar matrix,
and all eigenvalues of matrix Q, λi > 0 (i = 1, 2, 3).
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3 Structure of the matrix U∗

Let us note that U in matrix decomposition (18) is defined ambiguously. The ratio (18)
can be written down, for example, in the form

Q = U∗λU = U ′∗λU ′ = U∗P ∗e−iθλeiθPU, U ′∗U ′ = E,

U ′ = eiθPU, U ′∗ = U∗P ∗e−iθ, P ∗P = PP ∗ = E,

eiθ = diag(eiθ1 , eiθ2eiθ3),

(19)

where P is the unitary matrix, and eiθ is the scalar matrix with any corners θ1, θ2, θ3. It
follows from Eq. (19) that

Pλ = λP, λ = diag(λ1, λ2, λ3). (20)

Representing the unitary matrix U∗ = (~u1, ~u2, ~u3) in the form of columns, the ratio (18) can
be written down in the form

QU∗ = U∗λ = (~u1, ~u2, ~u3)λ = (λ1~u1, λ2~u2, λ3~u3),

i.e. the column ~ui is the eigenvector of Q:

Q~ui = λi~ui, (i = 1, 2, 3). (21)

As U∗ is the unitary matrix, its columns are orthonormal, i.e. scalar product (~u∗i · ~uj) = δij ,
where δij is the Kronecker symbol.

If the roots λ1, λ2, λ3 of characteristic equation

|Q− λE| = 0

are prime (all different and one rates frequency), then P in (20) is simple (P = E). If there
are multiple roots, then P (up to permutation matrix) consists of the blocks, standing on the
main diagonal, which sizes coincide with rate frequency of roots.

Let us prove the following lemma.

Lemma. Columns of matrix U∗ have the same structure as vectors ~ε, ~T , i.e.

Ū∗ = DU∗. (22)

Let us write down the ratio (21) for the complex conjugate values

Q̄̄~ui = λī~ui. (23)
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From (16), (17), (23) we receive

Q
(
D̄~ui

)
= λi

(
D̄~u
)
, (i = 1, 2, 3). (24)

That is (D̄~ui) as well as ~ui is the eigenvector, corresponding to eigenvalue λi. In the case of
simple roots we have D̄~ui = Ci~ui, where Ci is complex constants.

Let us consider i-column of U∗. If D̄~ui = ~ui, then i-column of U∗ is taken for the basic
column. If D̄~ui 6= ~ui, then we consider the vector ~xi = ~ui +D~̄ui, which is the eigenvector of
Q, i.e. Q~xi = λi~x.

If ~xi = ~0, then ~x′i = i~ui has the property: D̄~x′i = ~x′i, and it can be taken for the basic
column. If ~xi 6= ~0, then believing ~x′i = ~xi · |~xi|−1, we receive that ~x′i can be taken for the basic
column. Choosing thus ~x′i are orthonormal. Thus columns of U∗ have the same structure as

vectors ~ε, ~T (see (17)).
Now we will consider the case of multiple roots when λ1 = λ2, and λ3 is simple. Let

~u1, ~u2 be an orthonormal basis, which linear span G2(~u1, ~u2) is invariant concerning action
of operator Q. Then ~x1 = ~u1 +D~̄u1, ~x2 = ~u2 +D~̄u2 are eigenvectors of Q, corresponding to
eigenvalue λ1. Vectors ~x1, ~x2 have property: ~x1 = D~̄x1, ~x2 = D~̄x2.

If ~x1 = ~x2 = ~0, then we put: ~u′1 = i~u1, ~u
′
2 = i~u2. Then ~u′1, ~u

′ are basic vectors in G2 and
D~u′1 =~̄u′1, D~u

′
2 =~̄u′2. Besides they are eigenvectors of Q, corresponding to λ1. Then they

can be taken for the first two columns of λ1 and therefore λ1 has the structure (22).
If ~x1 6= 0, ~x2 6= 0, then we put: ~x′1 = ~x1 |~x1|−1, ~x′2 = ~x2 |~x2|−1. Then ~x′1, ~x

′
2 are unit

vectors. Let us consider vectors ~z1 = (~x′1 − ~x′2)
/√

2, ~z2 = (~x′1 + ~x′2)
/√

2. They have the
properties: D~z1 =~̄z1, D~z2 =~̄z2, (~z∗1 ·~z2) = 0. Here it is considered that (~x′1∗ ·~x′2) = (~x′2∗ ·~x′1).
Equality (~z∗1 · ~z2) = 0 means that ~z1, ~z2 are orthogonal (~z1, ~z2 6= ~0) and linearly independent.
Passing to unit vectors ~z′1 = ~z1 |~z1|−1, ~z′2 = ~z2 |~z2|−1 we will receive that U∗ has the structure
(22).

Now we will consider the case ~z1 = 0, ~z2 6= 0, i.e. ~x′1 = ~x′2, or (~u1−C0~u2)+D(~̄u1−C0~̄u2) =
~0, C0 = |~x1| |~x2|−1. Then the vector ~y = i(~u1 − C0~u2) is not zero (since ~u1, ~u2 are linearly
independent), and ~y = D~̄y. Let us consider vectors ~z′1 = (~y − ~x′2)

/√
2, ~z′2 = (~y + ~x′2)

/√
2 for

which (~z′1∗ ·~z′2) = 0. If |~z′1| · |~z′2| 6= 0, then ~z′1, ~z
′
2 are linearly independent and again we obtain

that U∗ has the structure (16). If ~z′1 = ~0, then ~y = ~x′2 or i |~x2| ~u1− (1 + i |~x1|)~u2 = D~̄u2. But
then (~̄u∗2D ·D~̄u2) = 1 = 1 + |~x1|2 + |~x2|2, and, therefore, ~x1 = ~x2 = ~0. That contradicts the
assumption. Similarly we show that the case ~z2 = ~0 leads to the contradiction ~x1 = ~x2 = ~0.
Thus, at ~x1 6= 0, ~x2 6= 0 the matrix U∗ has the structure (22).

Now we will consider the case when ~x1 = ~0, ~x2 6= ~0. Then, choosing ~x′1 = i~u1, we show
similarly that U∗ has the structure (22). For the case ~x2 = ~0, ~x1 6= ~0, we choose ~x′2 = i~u2.

The case λ1 = λ2 = λ3 corresponds to the case of proportionality of stress and deforma-
tions tensors (as it is possible to take any unitary matrix as U∗ and, in particular, any matrix
with the structure (22)).

The lemma is proved.
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Let us write expanded form of U,U∗, which we will use further:

U =

 ū11 u11 m1

ū22 u22 m2

ū31 u31 m3

, U∗ =

 u11 u22 u31
ū11 ū22 ū31
m1 m2 m3

,
m1 = u013, m2 = u023, m3 = u033.

(25)

Apparently from (25) matrix U has 3 complex components and 3 real non-negative com-
ponents, so it is described by 9 real components. Besides, the first and second columns of
the matrix U are complex conjugated, and the third one is real. From (22) it follows:

Ū = UD, U∗Ū = Ū∗U = D. (26)

As columns of U∗ have the same structure as vectors ~T , ~ε, at coordinates axes rotation they
are transformed according to (13):

U ′∗ = VnU
∗, U ′ = UV ∗n , (27)

and then m1,m2,m3 are invariants which are nonnegative (note, U∗ is defined about accuracy
to the matrix eiθ = diag(eiθ1 , eiθ2eiθ3), see (19)).

Let’s make one more important remark. We consider, for example, the matrix λ′ =
diag(λ1, λ3, λ2)

T = D′diag(λ1, λ2, λ3)
TD′∗, where the permutation D′ has the form:

D′ =

 1 0 0
0 0 1
0 1 0

, D′∗ ·D′ = D′ ·D′∗ = E.

Then
Q = U∗λU = U∗(D′∗λ′D′)U = U ′∗λ′U ′, U ′∗ = U∗D′∗, U ′ = D′U.

That is, the second and third columns of U ′∗ are the perturbation of the second and third
columns of U∗, and the scalar matrix λ′ stands on the main diagonal in decomposition of Q.
Therefore, the eigenvalues of matrix λ can be in any order, for example, as they decrease. At
the same time columns of U ′∗ are the perturbation of columns of U∗. Therefore, the structure
of U ′∗ will be the same (up to columns perturbation of this matrix).

4 The invariants

As columns ~u1, ~u2, ~u3 of U∗ are the orthonormal basis, it is possible to decompose vectors
~T , ~ε on this basis:

~T = α1~u1 + α2~u2 + α3~u3,

~ε = β1~u1 + β2~u2 + β3~u3,

(28)
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where ~α, ~β are decomposition of coordinates ~T , ~ε on the basis ~u1, ~u2, ~u3 : αi = (~u∗i · ~T ), βi =
(~u∗i · ~ε).

Due to the Hooke law (9), ratio (21) and orthonormal ~ui, we have:

ε =
3∑
i=1

βi~ui = QT = Q
3∑
i=1

αi~ui =
3∑
i=1

αiQ~ui =
3∑
i=1

αiλi~ui.

As ~ui are linearly independent, then

βi = λiαi, ~β = λ~α, ~β = (β1, β2, β3)
T, ~α = (α1, α2, α3)

T. (29)

Let us show that ~α = ~̄α, ~β = ~̄β, i.e. vectors ~α, ~β are real. Really, D~ui = ~̄ui, then
~̄ε = Ū ∗̄~β = DU ∗̄~β = D~ε = DU∗~β. From here ~β =~̄β. Similarly we show that ~α =~̄α. At
rotation of coordinate axes ~ui, ~T are transformed under the law ~u′i = Vn~ui, ~T

′ = Vn ~T . Then

~u′i = Vn~ui, ~T
′ = Vn ~T . Then α′i = (~ui

′∗ · ~T ′) = (~ui
′∗V ∗n · Vn ~T ) = (~ui

∗ · ~T ) = αi, and ~α is

invariant. It is similarly proved that ~β is the invariant. Then it is easy to show that elastic
potential P is also the invariant and it is a positive definite quadratic form:

P =
1

4

(
~ε∗ ~T

)
=

1

4

(
~T ∗~ε
)

=
1

4

3∑
i=1

αiβi =
1

4

3∑
i=1

λiα
2
i =

1

4

3∑
i=1

β2i
λi
. (30)

The ratio (28) can be written in a more compact form:

~ε = U∗~β, ~T = U∗~α, (31)

and invariants ~m = (m1,m2,m3)
T are presented in the form:

~m = U ~F = Ū ~F , ~F = (0, 0, 1)T. (32)

From (31), (29) it follows:

ε1 = m1β1 +m2β2 +m3β3 = m1λ1α1 +m2λ2α2 +m3λ3α3,

T1 = m1α1 +m2α2 +m3α3 = m1λ
−1
1 β1 +m2λ

−1
2 β2 +m3λ

−1
3 β3.

(33)

If we introduce the vector ~L = {c, c̄, a}T , then it is easy to receive:

~L = U∗λ~m = U∗λU ~F = Q~F . (34)

From (33), (34) it follows that the invariant a is equal to:

a = λ1m
2
1 + λ2m

2
2 + λ3m

2
3. (35)
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Let us note that the matrix column ~F ′ = Vn ~F = V ∗n ~F = ~F at turn does not change (the
vector ~F represents complex components of a spherical tensor), and the summ2

1+m2
2+m2

3 = 1.

5 Eigenvalues and eigenvectors

The characteristic equation |Q− λE| = 0 for calculation of eigenvalues has the following
appearance:

G(λ) = λ3 − J1λ2 + J2λ − J3E = 0, (36)

where Ji (i = 1, 2, 3) is the sum of all main minors of order i of Q and λ is scalar matrix of
eigenvalues. For a plane deformation

J1 = trQ = λ1 + λ2 + λ3 = 2b+ a,

J2 = λ1λ2 + λ1λ3 + λ2λ3 = b (b+ 2a)− 2 |c|2 − |d|2,

J3 = λ1λ2λ3 =
(
dc̄2 + d̄c2

)
+ a

(
b2 − |d|2

)
− 2b |c|2.

(37)

Let us multiply (36) at the left on U∗, and at the right on U. Using (18), we obtain Hamilton-
Cayley theorem which claims, that the matrix Q satisfies to the characteristic equation:

Q3 − J1Q2 + J2Q − J3E = 0. (38)

Let us consider matrix U∗. We present it in the form:

U∗ =

 |u11| eiϕ1 |u22| eiϕ2 |u31| eiϕ3

|u11| e−iϕ1 |u22| e−iϕ2 |u31| e−iϕ3

m1 m2 m3

 = V3 · U∗3

=

 eiϕ3 0 0
0 e−iϕ3 0
0 0 1

 ·
 |u11| eiψ1 |u22| eiψ2 |u31|
|u11| e−iψ1 |u22| e−iψ2 |u31|

m1 m2 m3

,
(39)

where corners ψ1 = (ϕ1 − ϕ3), ψ2 = (ϕ2 − ϕ3) are the invariants in virtue of (12), and

|u11| =

√
1−m2

1

2
, |u22| =

√
1−m2

2

2
, |u31| =

√
1−m2

3

2
, in virtue of columns normalization.

All mi(i = 1, 2, 3) can not be zero at the same time. Therefore, for example, m3 6= 0 (in
virtue of the remark in Section 2). Separately we consider cases when m3 = 1 and m3 6= 1.

The first case (m3 = 1). Then m1 = m2 = 0, u11 =
eiϕ√

2
, u22 =

ieiϕ√
2
, |u13| = 0, and we
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receive from (18)

U∗ =

 eiϕ
/√

2 ieiϕ
/√

2 0

e−iϕ
/√

2 −ie−iϕ
/√

2 0
0 0 1

, b =
(λ1 + λ2)

2
, d =

ie2iϕ(λ1 − λ2)
2

,

c = 0, a = λ3, λ1,2 = b± |d|.

(40)

Let us note that by d = 0 we receive an isotropic body, for which λ1 = λ2 = b, λ3 = a. The
following converse statement is true: if λ1 = λ2, then we have the isotropic body (d = c = 0).

If λ1 = λ3 6= λ2, then from (40) it follows:

a = λ1 = λ3 = b+ |d|, λ2 = b− |d|. (41)

If λ2 = λ3 6= λ1, then from (40) it follows:

a = λ2 = λ3 = b− |d|, λ1 = b+ |d|. (42)

For λ1 = λ2 = λ3, we have a hyper elastic body (a = b, d = c = 0) with zero Poisson’s
coefficient [6]. In this case tensions are proportional to deformations. The matrix U∗ can be
chosen in any type and, in particular, in the type (40).

The second case (m3 6= 1). Using conditions of orthogonality of columns and rows of U∗3 ,
it is easy to receive:

eiψ1 = − (m1m3 + im2)√
(1−m2

1)(1−m2
3)
, eiψ2 = − (m2m3 − im1)√

(1−m2
2)(1−m2

3)
, (43)

U∗3 =


−(m1m3 + im2)√

2(1−m2
3)

−(m2m3 − im1)√
2(1−m2

3)

√
1−m2

3

2

−(m1m3 − im2)√
2(1−m2

3)
−(m2m3 + im1)√

2(1−m2
3)

√
1−m2

3

2

m1 m2 m3

. (44)

From the ratios (18), (39)–(44) it follows:

b = 1
2

{
λ1(1−m2

1) + λ2(1−m2
2) + λ3(1−m2

3)
}
, a = λ1m

2
1 + λ2m

2
2 + λ3m

2
3,

d = e2iϕ

2(1−m2
3)

{
λ3(1−m2

3)
2 + λ1(m

2
1m

2
3 −m2

2)

+ λ2(m
2
2m

2
3 −m2

1) + 2im1m2m3(λ1 − λ2)
}
,

c = eiϕ√
2(1−m2

3)
{m3(λ3 − a)− im1m2(λ1 − λ2)}, ϕ = ϕ3.

(45)
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The ratios (45) show that elastic modules of Q are expressed over elastic modules λ1, λ2, λ3,
invariants m1,m2,m3 of U∗ and the corner ϕ = ϕ3.

It is well known [2], [3] that at a plane deformation an elastic isotropic body behaves as
an orthotropic body. I.e. the frame can be turned on a particular corner so that in a new
frame elastic parameters d, c will be real, i.e. c = |c|, d = d0 = ± |d|. But then, from (45) it
follows that m1m2(λ1 − λ2) = 0.

Let λ1 6= λ2. Then m1m2 = 0, and taking into account the remark in Section 2, we can
assume that m2 = 0. The ratios (44), (45) for this case have the form:

U∗ =

 −m3e
iϕ
/√

2 eiϕi
/√

2 m1e
iϕ
/√

2

−m3e
−iϕ/√2 −ie−iϕ

/√
2 m1e

−iϕ/√2
m1 0 m3

,
b = 1

2

{
λ1m

2
3 + λ2 + λ3m

2
1

}
, a = λ1m

2
1 + λ3m

2
3,

d = e2iϕ3 {b− λ2} , c = eiϕ3m1m3√
2

(λ3 − λ1), ϕ = ϕ3.

(46)

From the fourth ratio of (46) it follows

λ2 = b− d0, (d0 = ± |d|). (47)

Then from (37), (47) we have:

λ1 + λ3 = 2η = a+ b+ d0,

λ1λ3 = a(b+ d0)− 2 |c|2

and then:

λ3,1 = η ±D, D =
1

2

√
(b+ d0 − a)2 + 8 |c|2. (48)

Here m1m3(λ3 − λ1) =
√

2 |c|, m1m3 ≥ 0. For the case of simple roots (λ1 6= λ2 6= λ3),
in virtue of (47) from (46) we define:

m1 =

√
D + (η − a)

2D
, m3 =

√
D − (η − a)

2D
. (49)

If λ1 = λ3 6= λ2, then from (46) it follows that m3 = 1. This case has been considered
earlier.

Now we consider the case when λ1 = λ2 6= λ3. Then ratios (45) have the form:

b = 1
2

{
(λ1 + λ3)− (λ3 − λ1)m2

3

}
, a = λ1 + (λ3 − λ1)m2

3,

d = e2iϕ

2 (λ3 − λ1)(1−m2
3), c =

eiϕm3

√
(1−m2

3)√
2

(λ3 − λ1).
(50)
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From here we receive

|c| = m3

√
1−m2

3(λ3 − λ1)
/√

2, d0 = 0, 5 · (λ3 − λ1)(1−m2
3). (51)

But then λ3 > λ1 (m3 > 0), and therefore d0 = |d|. From ratios (50), (51) we find

|c|2 = |d| (|d|+ a− b), m2
3 =

(|d|+ a− b)
(3 |d|+ a− b)

=
|c|2

(2 |d|2 + |c|2)
,

m2
1 +m2

2 =
2 |d|

(3 |d|+ a− b)
, λ1 = λ2 = b− |d| , λ3 = a+ 2 |d|.

(52)

The first ratio of (52) gives connection between elastic modules due to the fact that λ1 is a
double root, and invariants m1,m2 are any numbers but they are connected by the fourth
ratio (52). Therefore we can put m2 = 0 (without loss of generality). Thus m2 = 0 for all
cases. Further for invariants m1,m3 more convenient designations are used:

m1 = sinω, m3 = cosω. (53)

For |d| = 0 from the first ratio (52) it follows that c = 0, and then we have the isotropic
body. If c = 0, then from the same ratio it follows that d = 0 (the case of an isotropic body),
or |d| = b− a. If |d| = b− a, then from the second ratio (52) it follows that m2

3 = 0, but this
contradicts the assumption 0 < m3 < 1.

Let us note that at a plane deformation the transversal isotropic body behaves as an
isotropic body [2], [3]. Therefore, all results given above for the isotropic body are true also
for the transversal isotropic body.

Thus, we proved the following theorem.

Theorem. At a plane deformation one of the invariants of U∗ is always equal to zero. For
m3 = 1 eigenvectors and own elastic modules are defined by ratios (40)–(41). For m3 6= 1 in
case of simple roots (λ1 6= λ2 6= λ3) vectors, own elastic modules and invariants m1,m3 are
defined by ratios (46)–(52); for λ1 = λ2 6= λ3 they are defined by ratios (52). Besides, for
m3 6= 1, λ1 = λ2 6= λ3, if one of elastic modules d or c is equal to zero, then an elastic body
is isotropic.

6 Mismatch of tensors of deformations and tensions

At first we consider the case of simple roots. From the ratios (31), (46), (53) it follows

β1 = − cosω√
2

{
ε2e
−iϕ + ε̄2e

iϕ
}

+ sinωε1, α1 = − cosω√
2

{
T2e
−iϕ + T̄2e

iϕ
}

+ sinωT1,

β2 = − i√
2

{
ε2e
−iϕ − ε̄2eiϕ

}
, α2 = − i√

2

{
T2e
−iϕ − T̄2eiϕ

}
,

β3 = sinω√
2

{
ε2e
−iϕ + ε̄2e

iϕ
}

+ ε1 cosω, α3 = sinω√
2

{
T2e
−iϕ + T̄2e

iϕ
}

+ T1 cosω.

(54)
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As ε2 = |ε2| e2iµ1 , T2 = |T2| e2iµ2 , where µ1, µ2 are the angles between the axis Ox1 and the
first principal directions of tensors of deformations and tensions [7], respectively, the ratio
(54) using (29) can be presented in the form:

√
2 cosω {|ε2| cosψ1 − λ1 |T2| cosψ2} − sinω {ε1 − λ1T1} = 0,

√
2 sinω {|ε2| cosψ1 − λ3 |T2| cosψ2} + cosω {ε1 − λ3T1} = 0,

√
2 {|ε2| sinψ1 − λ2 |T2| sinψ2} = 0,

ψ1 = 2µ1 − ϕ, ψ2 = 2µ2 − ϕ.

(55)

Here corners ψ1, ψ2 are invariants in virtue of (12). The third ratio (55) gives

sin(2µ1 − ϕ) = λ2
|T2|
|ε2|

sin(2µ2 − ϕ). (56)

This means that mismatch of principal directions of tensors of deformations and tension
is defined both by the eigenvalue λ2 and the modules of deviators of stress and deformations
tensors.

From (56) it follows that for the isotropic body (and the transversal isotropic body,
d = c = 0) the principal directions of tensors of deformations and tensions coincide, i.e
µ1 = µ2.

For the case c = 0, d 6= 0 we have ω = 0, (m3 = 1), and then

|ε2| cosψ1 = λ1 |T2| cosψ2, |ε2| sinψ1 = λ2 |T2| sinψ2, ε1 = λ3T1,

tgψ1 =
λ2
λ1
tgψ2.

(57)

In the case of the existing plain-stress state (σ13 = σ23 = σ33 = 0) and an elastic symmetry
planes all reasoning are carried out similarly to the case of plane deformation. In the resulting
expressions it is necessary to replace the coefficients of Q to the coefficients of Q−1, λi, on
λ−1i and εi on Ti and otherwise.
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Мартынов Н.И., Рамазанова М.А. ЖАЗЫҚ ДЕФОРМАЦИЯ КЕЗIНДЕГI АНИЗО-
ТРОПТЫ ДЕНЕ ҮШIН ГУК ЗАҢЫНЫҢ ҚҰРЫЛЫМЫ

Жазық деформация кезiнде анизотропты дененiң серпiмдi модульдерi матрицасы-
ның меншiктi векторларын және меншiктi мәндерiн барынша жеңiл анықтауға мүмкiн-
дiк беретiн анизотропты дене үшiн Гук заңының кешендi түрi келтiрiлген. Кернеулi-
деформацияланған жағдаймен байланысты негiзгi рөл атқаратын серпiмдi параметр-
лер матрицасының құрылымы және жаңа сызықты инварианттар анықталды. Табылған
жаңа сызықты инварианттардың iшiнде бiреуi әрдайым нөл болатыны көрсетiлдi. Керне-
улер мен деформациялар тензорларының басты бағыттарының үйлесiмсiздiгiн бiлдiретiн
арақатынас алынды.

Кiлттiк сөздер. Анизотропты дене, серпiмдiлiк модульдерi, унитарлық матрица, де-
формациялар мен кернеулердiң тензорлары.

Мартынов Н.И., Рамазанова М.А. СТРУКТУРА ЗАКОНА ГУКА АНИЗОТРОПНО-
ГО ТЕЛА ПРИ ПЛОСКОЙ ДЕФОРМАЦИИ

Приведена комплексная форма закона Гука для анизотропного тела, позволившая
наиболее просто определить собственные вектора и собственные значения матрицы упру-
гих модулей анизотропного тела при плоской деформации. Определена структура матри-
цы упругих параметров и новые линейные инварианты, которые играют ключевую роль
в связи напряженно-деформированного состояния. Показано, что всегда один из най-
денных новых линейных инвариантов равен нулю. Получено соотношение, выражающее
рассогласованность главных направлений тензоров деформаций и напряжений.

Ключевые слова. Анизотропное тело, модули упругости, унитарная матрица, тензоры
деформаций и напряжений.
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1 Introduction and statement of the problem

It is well known that the system of eigenfunctions of an operator given by a formally self-
adjoint differential expression, with arbitrary self-adjoint boundary conditions providing a
discrete spectrum, forms an orthonormal basis. In many papers, the question on saving basis
properties under some (weak in a certain sense) perturbation of the initial operator has been
investigated. For the case of an arbitrary ordinary differential operator, when unperturbed
boundary conditions are strongly regular, the question of the stability of the basis property of
root vectors under their integral perturbation is positively solved in papers of A.A. Shkalikov.

In a series of our previous papers, we have considered the question of constructing a
characteristic determinant and of the stability of the basis property of root vectors under
the integral perturbation of one of the boundary conditions. Almost all possible types of
the boundary conditions that are regular but not strongly regular have been considered.
Moreover, it was required that the system of root functions of the unperturbed problem
possesses the basis property.

In this paper we consider a spectral problem for a multiple differentiation operator with an
integral perturbation of boundary conditions of one type which are regular, but not strongly
regular. The unperturbed problem has an asymptotically simple spectrum, and its system of
eigenfunctions does not form a basis in L2. We construct the characteristic determinant of
the spectral problem with an integral perturbation of the boundary conditions. It is shown
that the set of kernels of the integral perturbation, under which the absence of the basis
properties of the system of root functions persists, is dense in L2.

The question of persisting the basis properties under some (weak in definite sense) pertur-
bation of the original operator was investigated in many works. For example, the analogous
question for the case of a self-adjoint original operator was investigated in [1]–[3], and for a
non-selfadjoint operator in [4]–[6].

In the present paper we consider the spectral problem:

l (u) ≡ −u′′ (x) =λu (x) , 0 <x< 1, (1)

U1 (u) ≡ u′(0)− u′(1)− αu(1) = 0, (2)

U2 (u) ≡ u (0) = 0, (3)

which is close to investigations in [1], [4], [7]. Here α < 0 is an arbitrary negative number.
The case of a positive parameter α was considered in our paper [8].

Let L1 be an operator in L2 (0, 1) given by expression (1) and by ”perturbed” boundary
conditions:

U1 (u) =

∫ 1

0
p (x)u (x) dx, U2 (u) = 0, where p (x) ∈ L2 (0, 1) . (4)

By L0 we denote the unperturbed operator (case p (x) = 0).
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In our previous papers [6], [7], [9], [15], [16], [17], [18] we considered different variants
of the integral perturbation of boundary conditions. In these papers, under the assumption
that the unperturbed operator L0 had the system of eigen- and associated functions (EAF)
forming the Riesz basis in L2 (0, 1), we constructed the characteristic determinant of the
spectral problem for the operator L1. On the basis of the obtained formula we concluded on
stability or instability of the Riesz basis properties of EAF of the problem under the integral
perturbation of the boundary condition. In [9] the questions of stability of the basis properties
of root vectors of the spectral problem, where α= 0, and with the integral perturbation of
the second boundary condition, were investigated. Further development of these results was
published in [10]–[13]. A review of the results we obtained in this direction can be found in
our work [14].

As follows from [4], the system of root vectors of the spectral problem (1), (4) forms the
Riesz basis with brackets in L2 (0, 1) for any choice of p (x) ∈ L2 (0, 1). However even for
p (x) = 0 (i.e., in case of the perturbed problem) the system of root vectors of the problem does
not form the basis [19] in L2 (0, 1). Therefore, the direct using the methods of our previous
papers is impossible. We use a special auxiliary system for constructing the characteristic
determinant.

2 Constructing a basis from eigenfunctions of the operator L0
The boundary conditions in (1)–(3) are regular but not strongly regular. The system of

root functions of the operator L0 is a complete system but does not form even an ordinary
basis in L2(0, 1) [19]. However, as shown in [20], on the basis of these eigenfunctions one
can construct the basis allowing to apply the method of separating variables for solving
initial-boundary value problems with the boundary condition (2).

In this section we introduce results from [20] and make additional calculations which
are necessary for our further work. The spectral problem (1)–(3) is easily reduced to the
characteristic determinant of the problem

∆0 (λ) =
√
λ
(

1− cos
√
λ
)
− αsin

√
λ = 0. (5)

Therefore the problem has two series of eigenvalues

λ
(1)
k = (2πk)2, k = 1, 2, . . . , λ

(2)
k = (2βk)

2, k = 0, 1, 2, . . . .

Here βk are roots of the equation

tgβ = α/2β, β > 0 . (6)

They are positive and satisfy the inequalities

πk − π/2 < βk < πk, k = 0, 1, 2, . . . .
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Two-sided estimates
|α|
2πk

(
1− 1

2πk

)
< δk <

|α|
2πk

(
1 +

1

2πk

)
(7)

hold for the difference δk = πk − βk for large enough k.
The eigenfunctions of (1)–(3) have the form

y
(1)
k (x) = sin (2πkx) , k = 1, 2, . . . , y

(2)
k (x) = sin (2βkx) , k = 0, 1, 2, . . . .

This system is almost normalized but does not form even an ordinary basis in L2(0, 1).
However, as shown in [20], the auxiliary system

y0 (x) =y
(2)
0 (x) (2β0)

−1, y2k (x) =y
(1)
k (x),

y2k−1 (x) =

(
y
(2)
k (x)−y

(1)

k
(x)

)
(2δk)

−1, k=1, 2, . . . ,

constructed from this system, already forms the Riesz basis in L2(0, 1). The system

v0 (x) = 2β0v
(2)
0 (x),

v2k (x) = v
(2)
k (x) + v

(1)
k (x) , v2k−1 (x) = 2δkv

(2)
k (x) , k = 1, 2, . . .

is biorthogonal to the auxiliary system. This system is constructed from eigenfunctions of
the problem

v
(1)
k (x) = C

(1)
k

(
cos (2πkx) − α

2πk
sin (2πkx)

)
, k = 1, 2, . . . ,

v
(2)
k (x) = C

(2)
k

(
cos (2βkx) +

α

2βk
sin (2βkx)

)
, k = 0, 1, 2, . . .

adjoint to (1)–(3). The constants C
(j)
k are chosen from the orthogonality relation (y

(j)
k , v

(j)
k ) =

1, j = 1, 2. It is evident that the system {vk (x)} forms the Riesz basis in L2(0, 1).
By direct calculation it is easy to make sure that

C
(1)
k = −4πk

α
, C

(2)
k =

4πk

α
+O

(
1

k

)
. (8)

It is easy to see that
∥∥∥y(1)k

∥∥∥∥∥∥v(1)k

∥∥∥ = 1 + 2πk
|α| . Therefore limk→∞

∥∥∥y(1)k

∥∥∥∥∥∥v(1)k

∥∥∥ =∞. That is,

the necessary condition of the basis property does not hold. Due to this reason, the systems

{y(1)k , y
(2)
k } and {v(1)k , v

(2)
k } do not form the unconditional basis in L2(0, 1).
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3 Characteristic determinant of the spectral problem (1), (4)

Representing a general solution to equation (1) by the formula

u (x, λ) = C1 cos
√
λx+ C2 sin

√
λx,

and satisfying it to the boundary conditions (4), we get that C1 = 0 and

C2

[√
λ
(

1− cos
√
λ
)
− αsin

√
λ −

∫ 1

0
p (x)sin

√
λx dx

]
= 0.

Therefore the characteristic determinant of (1), (4) has the form

∆1 (λ) =
√
λ
(

1− cos
√
λ
)
− λsin

√
λ −

∫ 1

0
p (x)sin

√
λx dx. (9)

It is easy to see that the characteristic determinant of the unperturbed problem (1)–(3)
is obtained here for p (x) = 0. As in (5), we denote it by

∆0 (λ) =
√
λ
(

1− cos
√
λ
)
− αsin

√
λ.

By virtue of Section 2, we represent the function p (x) in the form of Fourier series with
respect to the auxiliary system {vk (x)}:

p (x) = a0v0 (x) +

∞∑
k=1

[akv2k (x) + bkv2k−1 (x)]. (10)

Using (10), we find more convenient representation of the determinant ∆1 (λ) . For this,
firstly we calculate the integral belonging to (9).

By simple calculation we show that the following inequalities take place:∫ 1

0
v0 (x)sin

√
λx dx = 2β0C

(2)
0

∫ 1

0

(
cos (2β0x) +

α

2β0
sin (2β0x)

)
sin
√
λx dx

=
2β0C

(2)
0

λ− (2β0)
2

{√
λ

(
1− cos

√
λ cos (2β0) −

α

2β0
sin (2β0) cos

√
λ

)}
(11)

+
2β0C

(2)
0

λ− (2β0)
2

{
sin
√
λ [αcos (2β0) − (2β0) sin (2β0) ]

}
.

From (5) we obtain that 2β0 (1− cos (2β0) ) = αsin (2β0). Therefore, in the first sum-
mand of (11) inside the round brackets we have:(

1− cos
√
λ cos (2β0) −

α

2β0
sin (2β0) cos

√
λ

)
= 1− cos

√
λ.

Kazakh Mathematical Journal, 19:3 (2019) 55–65



60 Makhmud A. Sadybekov, Nurlan S. Imanbaev

Using (6), we find that

sin (2β0) =
2tg (β0)

1 + tg2 (β0)
=

4αβ0

(2β0)
2 + α2

, cos (2β0) =
1− tg2 (β0)

1 + tg2 (β0)
=

(2β0)
2 − α2

(2β0)
2 + α2

.

Therefore, in the second summand of (11) inside the square brackets we will have:

[αcos (2β0)− (2β0) sin (2β0) ] =

[
α

(2β0)
2 − α2

(2β0)
2 + α2

− (2β0)
4αβ0

(2β0)
2 + α2

]
= −α.

Finally we obtain: ∫ 1

0
v0 (x)sin

√
λx dx (12)

=
2β0C

(2)
0

λ− (2β0)
2

{√
λ
(

1− cos
√
λ
)
− αsin

√
λ
}

=
2β0C

(2)
0

λ− (2β0)
2∆0 (λ) .

Analogously, we calculate the integral∫ 1

0
v2k−1 (x)sin

√
λx dx == 2δkC

(2)
k

1

λ− (2βk)
2∆0 (λ) . (13)

Further we have∫ 1

0
v2k (x)sin

√
λx dx =

∫ 1

0

(
v
(2)
k (x) + v

(1)
k (x)

)
sin
√
λx dx

= C
(2)
k

1

λ− (2βk)
2∆0 (λ) + C

(1)
k

1

λ− (2πk)2
∆0 (λ) .

And so, we finally obtain∫ 1

0
p (x)sin

√
λx dx = ∆0 (λ)A (λ),

A (λ) =
2a0β0C

(2)
0

λ− (2β0)
2 +

∞∑
k=1

[
ak

(
C

(2)
k

λ− (2βk)
2 +

C
(1)
k

λ− (2πk)2

)
+

2bkδkC
(2)
k

λ− (2βk)
2

]
. (14)

The convergence of the obtained numerical series for λ 6= (2βk)
2 and λ 6= (2πk)2 is provided

by asymptotic behaviors (7) and (8). From these formulas it follows that the round brackets
inside the sign of sum can not be opened because it can lead to a divergence of the obtained
series.

In representation (14) the function A (λ) has poles at λ = (2βk)
2 and λ = (2πk)2. But

at the same points the function ∆0 (λ) has zeros. So the function ∆0 (λ)A (λ) is an entire
analytic function of the variable λ.

Now we substitute all the calculations into (9). Let us formulate the obtained result in
the form of a theorem.
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Theorem 1. The characteristic determinant of problem (1), (4) with the perturbed boundary
conditions can be represented in the form

∆1 (λ) = ∆0 (λ) (1−A (λ)), (15)

where ∆0 (λ) is a characteristic determinant of unperturbed problem (1)–(3), A (λ) is given
by (14), in which ak and bk are the Fourier coefficients of biorthogonal expansion (10) of the
function p(x) with respect to the auxiliary system {vk (x)}.

Let us note that earlier the basis properties of the system of root functions of the unper-
turbed problem has been necessarily required for constructing the characteristic determinant
in all previous works. The principal difference of the present paper is that the characteristic
determinant (15) is constructed without such a requirement.

4 The case of a simple form of the characteristic determinant (15)

The case of a simple form of the characteristic determinant (15) takes place when p(x) is
represented in the form (10) with the finite second sum. That is, when there is a number N
such that ak = 0 and bk = 0 for all k > N . In this case, formula (15) takes the form

∆1 (λ) = ∆0 (λ)

(
1− a0

2β0C
(2)
0

λ− (2β0)
2

−
N∑
k=1

[
ak

(
C

(2)
k

1

λ− (2βk)
2 + C

(1)
k

1

λ− (2πk)2

)
+ bk

2βkC
(2)
k

λ− (2βk)
2

])
. (16)

On the basis of this particular case of formula (15), one can readily prove the following
theorem.

Theorem 2. For any prescribed numbers, a complex number λ̂ and a natural one m̂, there
always exists a function p(x) such that λ̂ is an eigenvalue of problem (1), (4) of multiplicity
m̂.

From the analysis of formula (16) it is also easy to see that ∆1(λ
(1)
k ) = ∆1(λ

(2)
k ) = 0 for

all k > N . Hence all the eigenvalues λ
(1)
k , λ

(2)
k , k > N of the unperturbed problem (1)–(3)

are eigenvalues of the perturbed problem (1), (4). Also it is not difficult to see that the

multiplicity of the eigenvalues λ
(1)
k , λ

(2)
k , k > N is also preserved.

Moreover from the biorthogonality condition of the system of eigenfunctions

{y(1)k (x), y
(2)
k (x)} and {v(1)k (x), v

(2)
k (x)} of the adjoint problems it follows that in this case∫ 1

0
p(x)y

(j)
k (x) dx = 0, j = 1, 2, k > N.
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So, eigenfunctions {y(1)k (x), y
(2)
k (x)} of problem (1)–(3) for k > N satisfy the boundary

conditions (4) and hence, are eigenfunctions of problem (1), (4). Thus in this case the system
of eigenfunctions of problem (1), (4) and the system of eigenfunctions of problem (1)–(3) (not
forming a basis) coincide except for a finite number of first terms. Consequently, the system
of eigenfunctions of problem (1), (4) also is not a basis in L2(0, 1).

By the Riesz basis property in L2(0, 1) of the system {vk(x)}, the set of functions p(x),
represented by finite sums of (10) is dense in L2(0, 1). Hence the following statement is
proved.

Theorem 3. The set of all functions p ∈ L2(0, 1), for which the system of eigenfunctions of
problem (1), (4) is not a basis in L2(0, 1), is dense in L2(0, 1).
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Садыбеков М.А., Иманбаев Н.С. БАЗИСТIЛIК ҚАСИЕТIН ИЕЛЕНБЕГЕН БIР
ЕСЕПТIҢ ШЕКАРАЛЫҚ ШАРТЫНЫҢ ИНТЕГРАЛДЫҚ АУЫТҚУЫ ЖӘЙЛI

Кез-келген өзiне-өзi түйiндес шекаралық шарттармен және өзiне-өзi түйiндес фор-
мальдi дифференциалдық амалмен берiлген, спектрi дискреттi болатын оператордың
меншiктi функцияларының жүйесiнiң ортонормаланған базис құрайтындығы белгiлi
жәй. Көптеген жұмыстарда бастапқы берiлген оператордың қандай да бiр әлсiз (бел-
гiлi мағынада) ауытқуы кезiнде оның базистiлiк қасиеттерiнiң сақталуы мәселесi зерт-
телген. Ауытқымаған шекаралық шарттары күшейтiлген регулярлы болған жағдайдағы
жәй дифференциалдық оператор үшiн осы шарттардың интегралдық ауытқуы кезiнде-
гi түбiрлiк функциялардың базистiлiк қасиеттерiнiң орнықтылығы туралы мәселе А.А.
Шкаликовтың жұмыстарында оң шешiмiн тапқан. Бiздiң бұрын жарияланған бiрқатар
жұмыстарымызда шекаралық шарттардың арасында бiреуi интегралдық ауытқыған-
дағы характеристикалық анықтауышты құру мен түбiрлiк функциялардың базистiлiк
қасиеттерiнiң орнықтылығын анықтау сұрақтары зерттелген болатын. Әрi регулярлы,
бiрақ күшейтiлмеген регулярлы шекаралық шарттардың мүмкiн болатын типтерi түгел-
дей дерлiк қарастырылды. Бұл мақалада бiр типтегi интегралдық ауытқуы бар, регуляр-
лы, бiрақ күшейтiлген регулярлы емес болатын шекаралық шарттармен берiлген екi еселi
дифференциалдау оператор үшiн спектралдық есеп қарастырылады. Ауытқымаған есеп
асимптоталық тұрғыдан қарапайым спектрдi иеленiп, ал оған сәйкес меншiктi функци-
яларының жүйесi L2 кеңiстiгiнде базис құрмайды. Шекаралық шарттардың бiреуiне ин-
тегралдық ауытқу жасағандағы спектралдық есептiң характеристикалық анықтауышы
құрылған. Түбiрлiк функциялардың жүйесiнiң базистiлiк қасиетiнiң жоқтығы сақтала-
тын интегралдық ауытқулардың өзектерiнiң жиыны L2 кеңiстiгiнде тығыз болатындығы
көрсетiлген.

Кiлттiк сөздер. Жәй дифференциалдық оператор, шеттiк шарттар, шекаралық шар-
ттың интегралдық ауытқуы, меншiктi мәндер, меншiктi функциялар, базистiлiк, харак-
теристикалық анықтауыш.
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Садыбеков М.А., Иманбаев Н.С. ОБ ИНТЕГРАЛЬНОМ ВОЗМУЩЕНИИ ГРАНИЧ-
НОГО УСЛОВИЯ ОДНОЙ ЗАДАЧИ, НЕ ОБЛАДАЮЩЕЙ СВОЙСТВОМ БАЗИСНО-
СТИ

Хорошо известно, что система собственных функций оператора, заданного формаль-
но самосопряженным дифференциальным выражением, с произвольными самосопря-
женными граничными условиями, дающими дискретный спектр, образует ортонорми-
рованный базис. Во многих работах исследовался вопрос о сохранении базисных свойств
при некотором слабом (в определенном смысле) возмущении исходного оператора. Для
случая произвольного обыкновенного дифференциального оператора, когда невозмущен-
ные граничные условия усиленно регулярны, вопрос об устойчивости свойства базисно-
сти корневых векторов при их интегральном возмущении положительно решен в работах
А.А. Шкаликова. В серии наших предыдущих работ мы рассмотрели вопрос о постро-
ении характеристического определителя и устойчивости свойства базисности корневых
векторов при интегральном возмущении одного из граничных условий. Были рассмот-
рены почти все возможные типы граничных условий, которые являются регулярными,
но не усиленно регулярными. В данной работе рассматривается спектральная задача
для оператора двукратного дифференцирования с интегральным возмущением гранич-
ных условий одного типа, которые являются регулярными, но не усиленно регулярными.
Невозмущенная задача имеет асимптотически простой спектр, а ее система собственных
функций не образует базиса в L2. Построен характеристический определитель спек-
тральной задачи с интегральным возмущением одного граничного условия. Показано,
что множество ядер интегрального возмущения, при которых сохраняется отсутствие
базисных свойств системы корневых функций, плотно в L2.

Ключевые слова. обыкновенный дифференциальный оператор, краевая задача, инте-
гральное возмущение граничного условия, собственные значения, собственные функции,
базисность, характеристический определитель.
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Abstract. A two-point initial boundary value problem for fourth order partial differential equations is

studied. We consider the existence of classical solutions to the initial two-point boundary value problem

for the fourth order partial differential equations and offer the methods for finding its approximate

solutions. Sufficient conditions for the existence and uniqueness of a classical solution to the two-point

initial boundary value problem for the fourth order partial differential equations are set. We first introduce

a new unknown function twice: we reduce the problem considered to the equivalent problem consisting

of a nonlocal problem for a system of second order hyperbolic equations with integral relations, and

then to the equivalent problem consisting of a two-point boundary value problem for a system of first

order differential equations. We offer the algorithm for finding the approximate solution to the problem

considered and prove its convergence.
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1 Introduction

In recent years the theory of nonlocal boundary value problems for hyperbolic equations
are drawn by great attention. This is of practical importance, as well as for their new
mathematical content, which often has no analogues in classical mathematical physics [1]–
[3]. One of the important classes of such problems are the initial two-point boundary value
problem for fourth order partial differential equations. Over the past decades, the theory
of the initial-boundary value problems for the fourth order partial differential equations of
hyperbolic type, has been intensively developed in works of many mathematicians [4]–[8]. To
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study the initial two-point boundary value problem for differential equations of hyperbolic
type it is very important for solving theoretical and practical problems [9]. From this point
of view, the paper is devoted to actual problem of mathematical physics. The methods and
results from [10]–[14] will be developed for the two-point initial boundary value problems for
the fourth order partial differential equations. Based on them, the conditions for solvability
of considered boundary value problems are obtained, and the ways for finding their solutions
are offered. Results of this paper are announced at the International Conference ”Actual
Problems of Analysis, Differential Equations and Algebra” (EMJ-2019), dedicated to the
10th anniversary of the Eurasian Mathematical Journal [15].

2 Statement of the problem

In the present paper, on the domain Ω = [0, T ]× [0, ω] we consider the following two-point
initial boundary value problem for the system of fourth order partial differential equations:

∂4u

∂t∂x3
= A1(t, x)

∂3u

∂x3
+A2(t, x)

∂3u

∂t∂x2
+A3(t, x)

∂2u

∂x2
+A4(t, x)

∂2u

∂t∂x

+A5(t, x)
∂u

∂x
+A6(t, x)

∂u

∂t
+A7(t, x)u+ f(t, x), (1)

u(t, 0) = ψ1(t), t ∈ [0, T ], (2)

∂u(t, x)

∂x
|x=0 = ψ2(t), t ∈ [0, T ], (3)

∂2u(t, x)

∂x2
|x=0 = ψ3(t), t ∈ [0, T ], (4)

P (x)u(0, x) + S(x)u(T, x) = ϕ(x), x ∈ [0, ω], (5)

where u(t, x) = col(u1(t, x), ..., un(t, x)) is unknown function, (n× n)-matrices Ai(t, x), (i =
1, 7), and n-vector–function f(t, x) are continuous on Ω; (n× n)-matrices P (x), S(x) and n-
vector–function ϕ(x) are continuously three times differentiable on [0, ω]; n-vector–functions
ψ1(t), ψ2(t) and ψ3(t) are continuously differentiable on [0,T].

The compatibility conditions are valid:

P (0)ψ1(0) + S(0)ψ1(T ) = ϕ(0), P ′(0)ψ1(0) + P (0)ψ2(0) + S′(0)ψ1(T ) + S(0)ψ2(T ) = ϕ′(0),

P ′′(0)ψ1(0) + 2P ′(0)ψ2(0) + P (0)ψ3(0) + S′′(0)ψ1(T ) + 2S′(0)ψ2(T ) + S(0)ψ3(T ) = ϕ′′(0).

Let C(Ω,Rn) be the space of continuous on Ω vector–functions u(t, x) with the norm
||u||0 = max

(t,x)∈Ω
||u(t, x)||, ||u(t, x)|| = max

i=1,n
|ui(t, x)|.

A function u(t, x) ∈ C(Ω,Rn) having partial derivatives

∂u(t, x)

∂x
∈ C(Ω,Rn),

∂u(t, x)

∂t
∈ C(Ω,Rn),

∂2u(t, x)

∂x2
∈ C(Ω,Rn),

∂2u(t, x)

∂t∂x
∈ C(Ω,Rn),
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∂3u(t, x)

∂x3
∈ C(Ω,Rn),

∂3u(t, x)

∂t∂x2
∈ C(Ω,Rn),

∂4u(t, x)

∂t∂x3
∈ C(Ω,Rn),

is called a classical solution to the problem (1)–(5) if it satisfies the system (1) for all (t, x) ∈ Ω,
and the initial and the boundary conditions (2)–(5).

Using the properties of initial data and differentiating the two-point condition (5) three
times with respect to x, we obtain:

P ′′′(x)u(0, x) + 3P ′′(x)
∂u(0, x)

∂x
+ 3P ′(x)

∂2u(0, x)

∂x2
+ P (x)

∂3u(0, x)

∂x3
+ S′′′(x)u(T, x)

+3S′′(x)
∂u(T, x)

∂x
+ 3S′(x)

∂2u(T, x)

∂x2
+ S(x)

∂3u(T, x)

∂x3
=

...
ϕ(x), x ∈ [0, ω]. (6)

3 Reduction to the equivalent family of two-point boundary value problems
for a system of ordinary differential equations with integral relations

First, we introduce new unknown functions

v(t, x) =
∂2u(t, x)

∂x2
, v1(t, x) =

∂u(t, x)

∂x

and rewrite the problem (1)–(5) in the following from

∂2v

∂t∂x
= A1(t, x)

∂v

∂x
+A2(t, x)

∂v

∂t
+A3(t, x)v + F (t, x, u, v1) + f(t, x), (7)

v(t, 0) = ψ3(t), t ∈ [0, T ], (8)

3P ′(x)v(0, x) + P (x)
∂v(0, x)

∂x
+ 3S′(x)v(T, x) + S(x)

∂v(T, x)

∂x
= D(x, u, v1), x ∈ [0, ω], (9)

v1(t, x) = ψ2(t) +

∫ x

0
v(t, ξ) dξ, (10)

u(t, x) = ψ1(t) + ψ2(t)x+

∫ x

0

∫ ξ

0
v(t, ξ1) dξ1dξ, (11)

where

F (t, x, u, v1) = A4(t, x)
∂v1

∂t
+A5(t, x)v1 +A6(t, x)

∂u

∂t
+A7(t, x)u,

D(x, u, v1) =
...
ϕ(x)− [P ′′′(x)u(0, x) + 3P ′′(x)v1(0, x) + S′′′(x)u(T, x) + 3S′′(x)v1(T, x)].

A solution to the problem (7)–(11) is a triple of functions {v(t, x), v1(t, x), u(t, x)},

where the n-function v(t, x) ∈ C(Ω,Rn) has partial derivatives
∂v(t, x)

∂x
∈ C(Ω,Rn),

∂v(t, x)

∂t
∈ C(Ω,Rn),

∂2v(t, x)

∂x∂t
∈ C(Ω,Rn), the n-function v1(t, x) ∈ C(Ω,Rn) with
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∂v1(t, x)

∂t
∈ C(Ω,Rn), the n-function u(t, x) ∈ C(Ω,Rn) with

∂u(t, x)

∂t
∈ C(Ω,Rn), if it

satisfies the system of hyperbolic equations (7) for all (t, x) ∈ Ω, the boundary condition (8)
for all t ∈ [0, T ], the nonlocal condition (9) for all x ∈ [0, ω] and the integral relations (10),
(11).

Here the functions v1(t, x) and u(t, x) are connected with the function v(t, x) by the
integral conditions (10) and (11), respectively.

Conditions (2) and (3) are included in the integral relations (11) and (10).
The problems (1)–(5) and (7)–(11) are equivalent.

Differentiating relations (10) and (11) by t for partial derivatives
∂v1(t, x)

∂t
and

∂u(t, x)

∂t
we obtain the following equalities:

∂v1(t, x)

∂t
= ψ̇2(t) +

x∫
0

∂v(t, ξ)

∂t
dξ,

∂u(t, x)

∂t
= ψ̇1(t) + ψ̇2(t)x+

∫ x

0

∫ ξ

0

∂v(t, ξ1)

∂t
dξ1dξ. (12)

At fixed v1(t, x) and u(t, x) the problem (7)–(9) is a two-point boundary value problem
for the system of second order hyperbolic equations with respect to v(t, x) on Ω. Integral
relations (10) and (11) allow us to determine the unknown functions v1(t, x) and u(t, x).

From (12) we define the partial derivatives
∂v1(t, x)

∂t
and

∂u(t, x)

∂t
.

Two-point and multi-point boundary value problems for a system of second order hy-
perbolic equations were studied in [10-14]. Sufficient conditions for the unique solvability
of these problems are established in terms of the initial data by the method of introducing
functional parameters [10].

Then, second, we introduce new unknown functions
∂v

∂x
= V (t, x),

∂v

∂t
= W (t, x).

We reduce the problem (7)–(11) to the following equivalent problem:

∂V

∂t
= A1(t, x)V +A2(t, x)W (t, x) +A3(t, x)v(t, x) + F (t, x, u, v1) + f(t, x), (13)

P (x)V (0, x) + S(x)V (T, x) = D1(x, u, v1, v), x ∈ [0, ω], (14)

v(t, x) = ψ3(t) +

∫ x

0
V (t, ξ) dξ, W (t, x) = ψ̇3(t) +

∫ x

0

∂V (t, ξ)

∂t
dξ, (15)

v1(t, x) = ψ2(t) +

∫ x

0
v(t, ξ) dξ, (16)

u(t, x) = ψ1(t) + ψ2(t)x+

∫ x

0

∫ ξ

0
v(t, ξ1) dξ1dξ, (17)

where D1(x, u, v1, v) = D(x, u, v1) + 3P ′(x)v(0, x) + 3S′(x)v(T, x).
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In the problem (13)–(17), the condition (8) is taken into account in relations (14).
A solution to the problem (13)–(17) is the five functions {V (t, x),W (t, x), v(t, x),

v1(t, x), u(t, x)}, if they satisfy the system of differential equations (13) for all (t, x) ∈ Ω,
the two-point condition (14) for all x ∈ [0, ω] and the integral relations (15)–(17) for all
(t, x) ∈ Ω.

Using the fundamental matrix of the differential equation

∂V

∂t
= A1(t, x)V, (18)

we present a solution to the problem (13), (14).
Let X(t, x) be the fundamental matrix of the system (18), and X(0, x) = I, where I is

the identity matrix of the dimension n.
Consider the two-point boundary value problem

∂V

∂t
= A1(t, x)V + g(t, x), (19)

P (x)V (0, x) + S(x)V (T, x) = Φ(x), x ∈ [0, ω], (20)

where g(t, x) ∈ C(Ω,Rn), the n-vector function Φ(x) is continuous on [0, ω].
The solution to the system (18) can be written as

V (t, x) = X(t, x)V (0, x) +X(t, x)

∫ t

0
X−1(τ, x)g(τ, x)dτ. (21)

Substituting it into the condition (20) for t = T , we obtain

P (x)V (0, x) + S(x)X(T, x)V (0, x) + S(x)X(T, x)

∫ T

0
X−1(τ, x)g(τ, x)dτ = Φ(x).

From here we have

[P (x) + S(x)X(T, x)]V (0, x) = Φ(x)− S(x)X(T, x)

∫ T

0
X−1(τ, x)g(τ, x)dτ.

To uniquely determine the function V (0, x), we assume that det[P (x) +S(x)X(T, x)] 6= 0
for all x ∈ [0, ω]. We obtain

V (0, x) = [P (x) + S(x)X(T, x)]−1
{

Φ(x)− S(x)X(T, x)

∫ T

0
X−1(τ, x)g(τ, x)dτ

}
. (22)

Then the solution to the problem (19), (20) has the following form

V (t, x) = X(t, x)[P (x) + S(x)X(T, x)]−1
{

Φ(x)
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−S(x)X(T, x)

∫ T

0
X−1(τ, x)g(τ, x)dτ

}
+X(t, x)

∫ t

0
X−1(τ, x)g(τ, x)dτ. (23)

The following estimate holds for the function V (t, x):

max
(

max
t∈[0,T ]

‖V (t, x)‖, max
t∈[0,T ]

∣∣∣∣∣∣∂V (t, x)

∂t

∣∣∣∣∣∣) ≤ K̃ max
(

max
t∈[0,T ]

‖g(t, x)‖, ‖Φ(x)‖
)
,

where the constant K̃ is calculated using the fundamental matrix X(t, x), the inverse matrix
[P (x) + S(x)X(T, x)]−1, matrices A1(t, x), P (x), S(x) and T .

Theorem 1. Let

1) X(t, x) be the fundamental matrix of differential equation ∂V
∂t = A1(t, x)V;

2) (n× n)-matrix P (x) + S(x)X(T, x) is invertible for all x ∈ [0, ω].

Then the two-point boundary value problem (19), (20) has a unique solution V ∗(t, x)
represented by (23).

3 Algorithm and unique solvability of the problem (1)–(5)

For fixed W (t, x), v(t, x), v1(t, x) and u(t, x) the unknown function V (t, x) will be found
from two-point boundary value problem for the system of differential equations (13), (14).
The unknown functions W (t, x) and v(t, x) will be determined from integral relations (15)

by V (t, x) and its partial derivative ∂V (t,x)
∂t . And, using v(t, x), we define the unknown

functions v1(t, x) and u(t, x) through integral relations (16), (17). Since V (t, x), W (t, x),
v(t, x), v1(t, x) and u(t, x) are unknown, to find a solution to the problem (13)–(17) we use an
iterative method. Therefore, the solution of the problem (13)–(17) is found as the limits of
the sequences {V (k)(t, x)}, {W (k)(t, x)}, {v(k)(t, x)}, {v1

(k)(t, x)}, {u(k)(t, x)}, k = 0, 1, 2, ...,
defined by the following algorithm:

0-step: 1) setting v(0)(t, x) = ψ3(t), W (0)(t, x) = ψ̇3(t) in integral relations (15) and (16),
we obtain

v
(0)
1 (t, x) = ψ2(t) + ψ3(t)x,

∂v
(0)
1 (t, x)

∂t
= ψ̇2(t) + ψ̇3(t)x,

u(0)(t, x) = ψ1(t) + ψ2(t)x+ ψ3(t)
x2

2
,
∂u(0)(t, x)

∂t
= ψ̇1(t) + ψ̇2(t)x+ ψ̇3(t)

x2

2

for all (t, x) ∈ Ω;

2) then, we suppose v(t, x) = v(0)(t, x), W (t, x) = W (0)(t, x), v1(t, x) = v
(0)
1 (t, x), u(t, x) =

u(0)(t, x) in the right-hand sides of the system (13) and condition (14). From the following
two-point boundary value problem

∂V

∂t
= A1(t, x)V +A2(t, x)W (0)(t, x) +A3(t, x)v(0)(t, x) + F (t, x, u(0), v1

(0)) + f(t, x), (24)
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P (x)V (0, x) + S(x)V (T, x) = D1

(
x, u(0), v

(0)
1 , v(0)

)
, x ∈ [0, ω], (25)

we find the initial approximation V (0)(t, x) and its derivative
∂V (0)(t, x)

∂t
for all (t, x) ∈ Ω.

1-step: 1) From integral relations (15) for V (t, x) = V (0)(t, x) and
∂V (t, x)

∂t
=
∂V (0)(t, x)

∂t
,

we find the functions v(1)(t, x) and W (1)(t, x):

v(1)(t, x) = ψ3(t) +

∫ x

0
V (0)(t, ξ) dξ, W (1)(t, x) = ψ̇3(t) +

∫ x

0

∂V (0)(t, ξ)

∂t
dξ

for all (t, x) ∈ Ω.

Setting v(t, x) = v(1)(t, x), W (t, x) = W (1)(t, x) in integral relations (16) and (17), we
obtain

v1
(1)(t, x) = ψ2(t) +

∫ x

0
v(1)(t, ξ) dξ,

∂v1
(1)(t, x)

∂t
= ψ̇2(t) +

∫ x

0

∂v(1)(t, ξ)

∂t
dξ,

u(1)(t, x) = ψ1(t) + ψ2(t)x+

∫ x

0

∫ ξ

0
v(1)(t, ξ1) dξ1dξ,

∂u(1)(t, x)

∂t
= ψ̇1(t) + ψ̇2(t)x+

∫ x

0

∫ ξ

0

∂v(1)(t, ξ1)

∂t
dξ1dξ

for all (t, x) ∈ Ω;

2) then, we suppose v(t, x) = v(1)(t, x), W (t, x) = W (1)(t, x), v1(t, x) = v
(1)
1 (t, x), u(t, x) =

u(1)(t, x) in the right-hand sides of the system (13) and condition (14). From the following
two-point boundary value problem

∂V

∂t
= A1(t, x)V +A2(t, x)W (1)(t, x) +A3(t, x)v(1)(t, x) + F (t, x, u(1), v1

(1)) + f(t, x), (26)

P (x)V (0, x) + S(x)V (T, x) = D1(x, u(1), v
(1)
1 , v(1)), x ∈ [0, ω], (27)

we find the first approximation V (1)(t, x) and its derivative
∂V (1)(t, x)

∂t
for all (t, x) ∈ Ω.

And so on.

k-step: 1) From integral relations (15) for V (t, x) = V (k−1)(t, x) and
∂V (t, x)

∂t
=

∂V (k−1)(t, x)

∂t
, we find the functions v(k)(t, x) and W (k)(t, x):

v(k)(t, x) = ψ3(t) +

∫ x

0
V (k−1)(t, ξ) dξ, W (k)(t, x) = ψ̇3(t) +

∫ x

0

∂V (k−1)(t, ξ)

∂t
dξ
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for all (t, x) ∈ Ω.
Setting v(t, x) = v(k)(t, x), W (t, x) = W (k)(t, x) in integral relations (16) and (17), we

obtain

v1
(k)(t, x) = ψ2(t) +

∫ x

0
v(k)(t, ξ) dξ,

∂v1
(k)(t, x)

∂t
= ψ̇2(t) +

∫ x

0

∂v(k)(t, ξ)

∂t
dξ,

u(k)(t, x) = ψ1(t) + ψ2(t)x+

∫ x

0

∫ ξ

0
v(k)(t, ξ1) dξ1dξ,

∂u(k)(t, x)

∂t
= ψ̇1(t) + ψ̇2(t)x+

∫ x

0

∫ ξ

0

∂v(k)(t, ξ1)

∂t
dξ1dξ

for all (t, x) ∈ Ω;

2) then, we suppose v(t, x) = v(k)(t, x), W (t, x) = W (k)(t, x), v1(t, x) = v
(k)
1 (t, x), u(t, x) =

u(k)(t, x) in the right-hand sides of the system (13) and condition (14). From the following
two-point boundary value problem

∂V

∂t
= A1(t, x)V +A2(t, x)W (k)(t, x) +A3(t, x)v(k)(t, x) + F (t, x, u(k), v1

(k)) + f(t, x), (28)

P (x)V (0, x) + S(x)V (T, x) = D1(x, u(k), v
(k)
1 , v(k)), x ∈ [0, ω], (29)

we find the k-th approximation V (k)(t, x) and its derivative
∂V (k)(t, x)

∂t
for all (t, x) ∈ Ω.

Here k = 1, 2, 3, ... .
So, the method of introducing additional functions divides the process of finding unknown

functions into two parts: 1) from the two-point boundary value problems for the system of

differential equations (13), (14) we find the unknown function V (t, x)
(

and its derivative

∂V (t,x)
∂t

)
; 2) From integral relations (15)–(17) we find the functions W (t, x), v(t, x), v1(t, x)

and u(t, x)
(
and also their partial derivatives ∂v1(t,x)

∂t and ∂u(t,x)
∂t

)
.

The following statement gives conditions for the convergence of the proposed algorithm
and the unique solvability of problem (1)–(5) in terms of the initial data.

Theorem 2. Suppose that
i) (n× n)-matrices Ai(t, x), i = 1, 7, and n-vector–function f(t, x) are continuous on Ω;
ii) (n × n)-matrices P (x), S(x) and n-vector–function ϕ(x) are continuously three times

differentiable on [0, ω];
iii) n-vector–functions ψ1(t), ψ2(t) and ψ3(t) are continuously differentiable on [0, T ];
iv) (n× n)-matrix P (x) + S(x)X(T, x) is invertible for all x ∈ [0, ω].
Then the two-point initial boundary value problem for the system of fourth order partial

differential equations (1)–(5) has a unique classical solution u∗(t, x).
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Proof. By using the iterative method proposed above we find estimates of the sequences of
functions

‖v(k)
1 (t, x)‖ ≤ ‖ψ2(t)‖+

∫ x

0
‖v(k)(t, ξ)‖dξ, (30)

∣∣∣∣∣∣∂v(k)
1 (t, x)

∂t

∣∣∣∣∣∣ ≤ ‖ψ̇2(t)‖+

∫ x

0

∣∣∣∣∣∣∂v(k)(t, ξ)

∂t

∣∣∣∣∣∣dξ, (31)

‖u(k)(t, x)‖

≤ ‖ψ1(t)‖+

∫ x

0
‖v(k)

1 (t, ξ)‖dξ ≤ ‖ψ1(t)‖+ x‖ψ2(t)‖+

∫ x

0

∫ ξ

0
‖v(k)(t, ξ1)‖dξ1dξ, (32)

∣∣∣∣∣∣∂u(k)(t, x)

∂t

∣∣∣∣∣∣ ≤ ‖ψ̇1(t)‖+

∫ x

0

∣∣∣∣∣∣∂v(k)
1 (t, ξ)

∂t

∣∣∣∣∣∣dξ
≤ ‖ψ̇1(t)‖+ x‖ψ̇2(t)‖+

∫ x

0

∫ ξ

0

∣∣∣∣∣∣∂v(k)(t, ξ1)

∂t

∣∣∣∣∣∣dξ1dξ. (33)

From inequalities (30)–(33), we obtain

max
(
‖v(k)

1 (t, x)‖, ‖u(k)(t, x)‖,
∣∣∣∣∣∣∂v(k)

1 (t, x)

∂t

∣∣∣∣∣∣, ∣∣∣∣∣∣∂u(k)(t, x)

∂t

∣∣∣∣∣∣)
≤ (1 + x) max

(
‖ψ1(t)‖, ‖ψ̇1(t)‖, ‖ψ2(t)‖, ‖ψ̇2(t)‖

)
+ max(1, x)

∫ x

0
max

(
‖v(k)(t, ξ)‖, ||W (k)(t, ξ)||

)
dξ. (34)

For the functions V (k)(t, x) and
∂V (k)(t, x)

∂t
we have the following estimate

max
(

max
t∈[0,T ]

‖V (k)(t, x)‖, max
t∈[0,T ]

∣∣∣∣∣∣∂V (k)(t, x)

∂t

∣∣∣∣∣∣)
≤ K̂ max

(
max
t∈[0,T ]

‖v(k)(t, x)‖, max
t∈[0,T ]

‖W (k)(t, x)‖, max
t∈[0,T ]

‖v(k)
1 (t, x)‖, max

t∈[0,T ]
‖u(k)(t, x)‖,

max
t∈[0,T ]

∣∣∣∣∣∣∂v(k)
1 (t, x)

∂t

∣∣∣∣∣∣, max
t∈[0,T ]

∣∣∣∣∣∣∂u(k)(t, x)

∂t

∣∣∣∣∣∣, max
t∈[0,T ]

‖f(t, x)‖, ‖
...
ϕ(x)

)
, (35)

where K̂ = K̃ max
(

max
i=2,7

||Ai||0 + 1,

max
x∈[0,ω]

[||P ′′′(x)||+ 3||P ′′(x)||+ 3||P ′(x)||+ ||S′′′(x)||+ 3||S′′(x)||+ 3||S′(x)||] + 1
)

.
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Introduce the notation

α(k)(x) = max
(

max
t∈[0,T ]

‖V (k+1)(t, x)− V (k)(t, x)‖, max
t∈[0,T ]

∣∣∣∣∣∣∂V (k+1)(t, x)

∂t
− ∂V (k)(t, x)

∂t

∣∣∣∣∣∣),
β(k)(x) = max

(
max
t∈[0,T ]

‖v(k+1)(t, x)− v(k)(t, x)‖, max
t∈[0,T ]

‖W (k+1)(t, x)−W (k)(t, x)‖
)
,

γ(k)(x) = max
(

max
t∈[0,T ]

‖v(k+1)
1 (t, x)− v(k)

1 (t, x)‖, max
t∈[0,T ]

‖u(k+1)(t, x)− u(k)(t, x)‖
)
,

θ(k)(x) = max
(

max
t∈[0,T ]

∣∣∣∣∣∣∂v(k+1)
1 (t, x)

∂t
− ∂v

(k)
1 (t, x)

∂t

∣∣∣∣∣∣, max
t∈[0,T ]

∣∣∣∣∣∣∂u(k+1)(t, x)

∂t
− ∂u(k)(t, x)

∂t

∣∣∣∣∣∣).
Then, similarly to (30)–(35), we obtain

max{γ(k)(x), θ(k)(x)} ≤ max(1, x)

∫ x

0
β(k)(ξ)dξ, (36)

α(k)(x) ≤ K̂ max
(
β(k)(x), γ(k)(x), θ(k)(x)

)
, (37)

β(k)(x) ≤
∫ x

0
α(k−1)(ξ)dξ. (38)

From (37), taking into account (38) and (36), we establish the main inequality

α(k)(x) ≤ K̂ max(1, x, x2)

∫ x

0
α(k−1)(ξ)dξ (39)

for all x ∈ [0, ω] and k = 1, 2, 3, ... .
From (39) it follows

α(k)(x) ≤ (K̂ ·max(1, ω, ω2))k

k!
max
x∈[0,ω]

α(0)(x). (40)

The functional sequence {α(k)(x)} converges uniformly to α∗(x) as k →∞ for all x ∈ [0, ω].
This means that the functional sequences {β(k)(x)}, {γ(k)(x)} and {θ(k)(x)} also converge
uniformly to β∗(x), γ∗(x) and as k → ∞ θ∗(x), respectively for all x ∈ [0, ω]. So, from
here it follows that the functional sequences {V k(t, x)}, {vk(t, x)}, {W k(t, x)}, {vk1 (t, x)}
and {uk(t, x)} converge uniformly to V ∗(t, x), v∗(t, x), W ∗(t, x), v∗1(t, x) and u∗(t, x) as k →
∞, respectively for all (t, x) ∈ Ω. And also the functional sequences of partial derivatives

{∂v
k
1 (t,x)
∂t }, {∂u

k(t,x)
∂t } converge uniformly to the corresponding limits

∂v∗1(t,x)
∂t , ∂u

∗(t,x)
∂t as k →∞

for all (t, x) ∈ Ω. The function u∗(t, x) is a classical solution to the problem (1)–(5). The
uniqueness of the solution to the problem (1)–(5) is proved by the method of contradiction.
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Theorem 2 is proved.

The main condition for the unique solvability of the problem (1)–(5) is the unique solv-
ability of two-point boundary value problem for the system of differential equations (19),
(20). The criteria of well-posedness to boundary value problem for the system of differential
equations with common two-point and integral conditions are established in terms of the
initial data in [10].

References

[1] Ptashnyck B.I. Incorrect boundary value problems for partial differential equations, Naukova
dumka, Kiev, 1984 (in Russian).

[2] Nakhushev A.M. Problems with shift for a partial differential equations, Nauka, Moskow, 2006
(in Russian).

[3] Kiguradze I., Kiguradze T. On solvability of boundary value problems for higher order nonlinear
hyperbolic equations, Nonlinear Analysis, (2008), 1914-1933.
https://doi.org/10.1016/j.na.2007.07.033

[4] Kiguradze T., Lakshmikantham V. On the Dirichlet problem for fourth order linear hyperbolic
equations, Nonlinear Analysis, 49 (2002), 197-219. https://doi.org/10.1016/S0362-546X(01)00101-8.

[5] Midodashvili B. A nonlocal problem for fourth order hyperbolic equations with multiple charac-
teristics, Electr. J. of Differential Equations, 2002:85 (2002), 1-7.

[6] Midodashvili B. Generalized Goursat problem for a spatial fourth order hyperbolic equation with
dominated low terms, Proc. of A. Razmadze Math. Institute, 138 (2005), 43-54.

[7] Kiguradze T. On solvability and well-posedness of boundary value problems for nonlinear hy-
perbolic equations of the fourth order, Georgian Math. J., 15 (2008), 555-569.

[8] Ferraioli D.C., Tenenblat K. Fourth order evolution equations which describe pseudospherical
surfaces, J. Differential Equations, 257 (2014), 3165-3199. https://doi.org/10.1016/j.jde.2014.06.010.

[9] Assanova A.T., Boichuk A.A., Tokmurzin Zh.S. On the initial-boundary value problem for sys-
tem of the partial differential equations of fourth order, News of the NAS RK. Physico-Mathem. Ser.
323 (2019), 14-21. https://doi.org/10.32014/2019.2518-1726.2.

[10] Asanova A.T., Dzhumabaev D.S. Well-posedness of nonlocal boundary value problems with in-
tegral condition for the system of hyperbolic equations, Journal of Mathematical Analysis and Appli-
cations, 402:1 (2013), 167-178. https://doi.org/10.1016/j.jmaa.2013.01.012.

[11] Assanova A.T., Imanchiev A.E. On conditions of the solvability of nonlocal multi-point boundary
value problems for quasi-linear systems of hyperbolic equations, Eurasian Mathematical Journal, 6
(2015), 19-28.

[12] Assanova A.T. Multipoint problem for a system of hyperbolic equations with mixed derivative,
Journal of Mathematical Sciences (United States), 212 (2016), 213-233.

[13] Asanova A.T. Criteria of unique solvability of nonlocal boundary-value problem for systems
of hyperbolic equations with mixed derivatives, Russian Mathematics (Iz.VUZ), 60 (2016), 1-17.
https://doi.org/10.3103/S1066369X16050017

[14] Assanova A.T. Periodic solutions in the plane of system of second-order hyperbolic equations,
Mathematical Notes, 101 (2017), 39-47. https://doi.org/10.1134/S0001434617010047

Kazakh Mathematical Journal, 19:3 (2019) 66–78



On two-point initial boundary value problem for fourth order partial ... 77

[15] Assanova A.T., Tokmurzin Z.S. Parameter identification in an initial-boundary value problem
for hyperbolic equation of the fourth order, International Conference ”Actual Problems of Analysis,
Differential Equations and Algebra” (EMJ-2019), dedicated to the 10th anniversary of the Eurasian
Mathematical Journal. Abstract books. Nur-Sultan, October 16-19, 2019, P. 27.

Асанова А.Т., Токмурзин Ж.С. ТӨРТIНШI РЕТТI ДЕРБЕС ТУЫНДЫЛЫ ДИФ-
ФЕРЕНЦИАЛДЫҚ ТЕҢДЕУЛЕР ҮШIН ЕКI НҮКТЕЛI - БАСТАПҚЫ ШЕТТIК
ЕСЕП ТУРАЛЫ

Төртiншi реттi дербес туындылы дифференциалдық теңдеулер үшiн екi нүктелi - ба-
стапқы шеттiк есеп зерттеледi. Бiз төртiншi реттi дербес туындылы дифференциалдық
теңдеулер үшiн бастапқы-екi нүктелi шеттiк есептiң классикалық шешiмдерiнiң бар бо-
луы және оның жуық шешiмдерiн табуға арналған әдiстердi ұсынамыз. Төртiншi реттi
дербес туындылы дифференциалдық теңдеулер үшiн бастапқы-екi нүктелi шеттiк есеп-
тiң классикалық шешiмiнiң бар болуы мен жалғыздығының жеткiлiктi шарттары тағай-
ындалған. Бiз екi мәрте жаңа функциялар енгiземiз және қарастырылып отырған есептi
алдымен екiншi реттi гиперболалық теңдеулер жүйесi үшiн интегралдық қатынастары
бар бейлокал есептi, сосын бiрiншi реттi дифференциалдық теңдеулер жүйесi үшiн екi
нүктелi шеттiк есептi қамтитын пара-пар есепке келтiремiз. Зерттелiнiп отырған есептiң
жүық шешiмiн табу алгоритмi тұрғызылады және оның жинақтылығы дәлелденедi.

Кiлттiк сөздер. Төртiншi реттi дербес туындылы дифференциалдық теңдеулер, екi
нүктелi - бастапқы шеттiк есеп, бейлокал есеп, екiншi реттi гиперболалық теңдеулер
жүйесi, бiрiншi реттi дифференциалдық теңдеулер, шешiлiмдiлiк, алгоритм.
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Асанова А.Т., Токмурзин Ж.С. О ДВУХТОЧЕЧНО-НАЧАЛЬНОЙ КРАЕВОЙ ЗА-
ДАЧЕ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ
ЧЕТВЕРТОГО ПОРЯДКА

Исследуется двухточечно-начальная краевая задача для дифференциальных уравне-
ний в частных производных четвертого порядка. Мы рассматриваем существование клас-
сических решений двухточечно-начальной краевой задачи для дифференциальных урав-
нений в частных производных четвертого порядка и предлагаем методы нахождения ее
приближенных решений. Установлены достаточные условия существования и единствен-
ности классического решения двухточечно-начальной краевой задачи для дифферен-
циальных уравнений в частных производных четвертого порядка. Мы дважды вводим
новые неизвестные функции: мы сводим рассмотренную проблему сначала к эквивалент-
ной задаче, состоящей из нелокальной задачи для системы гиперболических уравнений
второго порядка с интегральными соотношениями, затем к двухточечной краевой зада-
че для системы дифференциальных уравнений первого порядка. Предложен алгоритм
нахождения приближенного решения исследуемой задачи и доказана его сходимость.

Ключевые слова. Дифференциальные уравнения в частных производных четвертого
порядка, двухточечно-начальная краевая задача, нелокальная задача, система гипербо-
лических уравнений второго порядка, дифференциальные уравнения первого порядка,
разрешимость, алгоритм.
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Abstract. Numerous important physical phenomena in space are modelled as multidimensional hyper-

bolic equations. This paper proves the solvability of non-local boundary-value problems in a cylindrical

domain for multidimensional hyperbolic equations with the wave operator. These problems are general-

izations of the mixed problem, the Dirichlet problem, and the Poincaré problem.

Keywords. Multidimensional PDEs, hyperbolic equations, non-local problem, Bessel functions.

1 Introduction

Mathematical modelling of oscillatory processes is a key area of study in mathematical
physics. Numerous important physical phenomena in space are modelled as multidimensional
hyperbolic equations. For example, the vibration of an elastic string is often modelled as
a hyperbolic equation (see [1]). In models of oscillations of elastic membranes in space,
considering the deflection of the membrane as a function u(x, t), x = (x1, ..., xm), m ≥ 2, and
then applying the Hamilton principle, one obtains a multi-dimensional hyperbolic equation
(see [2]). Also, in the mathematical modelling of electromagnetic and wave fields in space
([3]), the key feature is the properties of the medium. If the medium is non-conducting, the
analysis leads to a multidimensional hyperbolic equation.

Despite the importance of multidimensional hyperbolic equations for applied work, their
mathematical analysis is still a rather under-studied topic, mostly because of the analytical
complexity of the multidimensional case. So far, good progress has been made in the analysis
of local boundary-value problems for multidimensional hyperbolic equations in a cylindrical
domain (see [4]–[8]).
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To the best of our knowledge, the non-local problems for these equations have not yet been
subjected to analysis, with the exception of [9], which focuses on the simple wave equation.

This paper shows the existence of solutions of non-local boundary-value problems in a
cylindrical domain for the more general multidimensional hyperbolic equations with the wave
operator. These problems are generalizations of the mixed problem and of the Dirichlet and
Poincaré problems.

2 Setup of the problem and main results

Let Dα be a cylindrical domain of the Euclidean space Em+1 of points (x1, ..., xm, t),
bounded by the cylinder Γ = {(x, t) : |x| = 1}, the planes t = α > 0 and t = 0, where |x| is
the length of the vector x = (x1, ..., xm). Let us denote, respectively, with Γα, Sα, and S0 the
parts of these surfaces that form the boundary ∂D of the domain D.

We study, in the domain Dα, the following multidimensional hyperbolic equation

Lu ≡ ∆xu− utt +

m∑
i=1

ai(x, t)uxi + b(x, t)ut + c(x, t)u = 0, (1)

where ∆x is the Laplace operator on the variables x1, ..., xm, m ≥ 2.
Hereafter, it is useful to switch from the Cartesian coordinates x1, ..., xm, t to the spherical

ones r, θ1, ..., θm−1, t, r ≥ 0, 0 ≤ θ1 < 2π, 0 ≤ θi ≤ π, i = 2, 3, ...,m− 1.
Let us analyze the following non-local boundary-value problems.

Problem 1. Find a solution of (1) in the domain Dα belonging to the class C(Dα)∩C1(Dα∪
S0 ∪ Sα) ∩ C2(Dα), and satisfying the boundary-value conditions

β1u(r, θ, 0) = γ1u(r, θ, α) + ϕ1(r, θ),

β2ut(r, θ, 0) = γ2ut(r, θ, α) + ϕ2(r, θ), u
∣∣∣
Γα

= ψ(t, θ).
(2)

Problem 2. Find a solution of equation (1) in the domain Dα belonging to the class
C(Dα) ∩ C1(Dα ∪ S0) ∩ C2(Dα), and satisfying the boundary-value conditions

u(r, θ, 0) = ϕ1(r, θ), β1ut(r, θ, 0) = γ1u(r, θ, α) + ϕ2(r, θ), u
∣∣∣
Γα

= ψ(t, θ), (3)

where βj , γj = const, β2
j + γ2

j 6= 0, j = 1, 2.
These problems are generalizations of the mixed problem, and of the Dirichlet and

Poincaré problems, that have been analyzed in [4]–[8]. Let us also note that the well-posedness
of the above problems for the simple multidimensional wave equation has been shown in [9].

Let
{
Y k
n,m(θ)

}
be a system of linearly independent spherical functions of order n, 1 ≤ k ≤

kn, (m− 2)!n!kn = (n+m− 3)!(2n+m− 2), θ = (θ1, ..., θm−1), and let W l
2(S0), l = 0, 1, ...,

be the Sobolev spaces.
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The following lemmas, that we will use later, were shown in [10].

Lemma 1. Let f(r, θ) ∈W l
2(S0). If l ≥ m− 1, then the series

f(r, θ) =
∞∑
n=0

kn∑
k=1

fkn(r)Y k
n,m(θ), (4)

as well as the series obtained through its differentiation of order p ≤ l − m + 1, converge
absolutely and uniformly.

Lemma 2. For f(r, θ) ∈ W l
2(S0), it is necessary and sufficient that the coefficients of the

series (3) satisfy the inequalities

|f1
0 (r)| ≤ c1,

∞∑
n=0

kn∑
k=1

n2l|fkn(r)|2 ≤ c2, c1, c2 = const.

Let us denote as ãkin(r, t), akin(r, t), b̃kn(r, t), c̃kn(r, t),ρkn, ϕ̄k1n(r), ϕ̄k2n(r), ψkn(t), the coefficients
of the series (4), respectively, of the functions ai(r, θ, t)ρ(θ), ai

xi
r ρ, b(r, θ, t)ρ, c(r, θ, t)ρ, ρ(θ), i =

1, ...,m, ϕ1(r, θ), ϕ2(r, θ), ψ(t, θ), whereas ρ(θ) ∈ C∞(H), and H is a unit sphere in Em.
Let ai(r, θ, t), b(r, θ, t), c(r, θ, t) ∈W l

2(Dα) ⊂ C(D̄α), i = 1, ...,m, l ≥ m+ 1, ϕ1(r, θ),
ϕ2(r, θ) ∈W p

2 (S0), ψ(t, θ) ∈W p
2 (Γα), l > 3m

2 .

Then, the following theorems hold.

Theorem 1. If the following condition holds

(β1γ2 + β2γ1) cosµs,nα 6= β1β2 + γ1γ2, s = 1, 2, ... , (5)

then Problem 1 has a solution.

Theorem 2. If the following relationship holds

γ1 sinµs,nα 6= µs,nβ1, s = 1, 2, ... , (6)

then Problem 2 has a solution. Here µs,n are positive nulls of the Bessel functions of the first
kind J

n+
(m−2)

2

(z).

Proof of Theorem 1. In the spherical coordinates equation (1) has the form

Lu ≡ urr +
m− 1

r
ur −

δu

r2
− utt +

m∑
i=1

ai(r, θ, t)uxi + b(r, θ, t)ut + c(r, θ, t)u = 0, (7)

δ ≡ −
m−1∑
j=1

1

gjsinm−j−1θj

∂

∂θj

(
sinm−j−1θj

∂

∂θj

)
, g1 = 1, gj = (sinθ1...sinθj−1)2, j > 1.
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It is known [10] that the spectrum of the operator δ consists of eigenvalues λn = n(n +
m− 2), n = 0, 1, ..., to each of which correspond kn orthonormalized eigenfunctions Y k

n,m(θ).

We will look for the solution of Problem 1 in the form of the series

u(r, θ, t) =

∞∑
n=0

kn∑
k=1

ūkn(r, t)Y k
n,m(θ), (8)

where ukn(r, t) are the functions to be determined.

Substituting (8) into (7), multiplying the obtained expression by ρ(θ) 6= 0, and then
integrating over the unit sphere H, we obtain for ukn:

ρ1
0ū

1
0rr − ρ1

0ū
1
0tt +

(
m− 1

r
ρ1

0 +
m∑
i=1

a1
i0

)
ū1

0r + b̃10ū
1
0t + c̃1

0ū
1
0

+
∞∑
n=1

kn∑
k=1

{
ρknū

k
nrr − ρknūkntt +

(
m− 1

r
ρkn +

m∑
i=1

akin

)
ūknr + b̃knū

k
nt

+

[
c̃kn − λn

ρkn
r2

+

m∑
i=1

(ãkin−1 − nakin)

]
ūkn

}
= 0. (9)

Next, let us analyze the infinite system of differential equations

ρ1
0ū

1
0rr − ρ1

0ū
1
0tt +

(m− 1)

r
ρ1

0ū
1
0r = 0, (10)

ρk1ū
k
1rr−ρk1ūk1tt+

(m− 1)

r
ρk1ū

k
1r−

λ1

r2
ρk1ū

k
1 =− 1

k1

(
m∑
i=1

a1
i0ū

1
0r + b̃10ū

1
0t + c̃1

0ū
1
0

)
, n = 1,

k = 1, k1, (11)

ρknū
k
nrr − ρknūkntt +

(m− 1)

r
ρknū

k
nr −

λn
r2
ρknū

k
n = − 1

kn

kn−1∑
k=1

{
m∑
i=1

akin−1ū
k
n−1r

+b̃kn−1ū
k
n−1t +

[
c̃kn−1 +

m∑
i=1

(ãkin−2 − (n− 1)akin−1)

]
ūkn−1

}
, k = 1, kn, n = 2, 3, ... . (12)

Summing equation (11) from 1 to k1, and equation (12) from 1 to kn, and finally summing
the obtained expressions to (10), we obtain equation (9).

Clearly, if
{
ūkn
}
, k = 1, kn, n = 2, 3, ..., is the solution of the system (10)–(12), then it is

also the solution of equation (9).
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It is easy to see that each equation of the system (10)–(12) can be represented in the form

ūknrr +
(m− 1)

r
ūknr −

λn
r2
ūkn − ūkntt = fkn(r, t), (13)

where fkn(r, t) are determined from the previous equations of this system, whereby f1
0 (r, t) ≡ 0.

Next, from the boundary-value condition (2), taking into account (8) and Lemma 1, we
get

β1ū
k
n(r, 0)=γ1ū

k
n(r, α)+ϕ̄k1n(r), β2ū

k
nt(r, 0)=γ2ū

k
nt(r, α)+ϕ̄k2n(r), ūkn(1, t)=ψkn(t),

k = 1, kn, n = 0, 1, ... .

(14)

In (13)–(14), substituting ῡkn(r, t) = ūkn(r, t)− ψkn(t), we obtain

ῡknrr +
(m− 1)

r
ῡknr −

λn
r2
υkn − ῡkntt = f̄kn(r, t), (15)

β1ῡ
k
n(r, 0) = γ1ῡ

k
n(r, α) + ϕk1n(r), β2ῡ

k
nt(r, 0) = γ2ῡ

k
nt(r, α) + ϕk2n(r), ῡkn(1, t) = 0,

k = 1, kn, n = 0, 1, ... ,

(16)

f̄kn(r, t) = fkn(r, t) + ψkntt +
λn
r2
ψkn(t), ϕk1n(r) = ϕ̄k1n(r) + γ1ψ

k
n(α)− β1ψ

k
n(0),

ϕk2n(r) = ϕ̄k2n(r) + γ2ψ
k
nt(α)− β2ψ

k
nt(0).

Then, substituting ῡkn(r, t) = r
(1−m)

2 υkn(r, t), we can reduce the problem (15), (16) to the
following problem

Lυkn ≡ υknrr − υkntt +
λ̄n
r2
υkn = f̃kn(r, t), (17)

β1υ
k
n(r, 0) = γ1υ

k
n(r, α) + ϕ̃k1n(r), β2υ

k
nt(r, 0) = γ2υ

k
nt(r, α) + ϕ̃k2n(r),

υkn(1, t) = 0, k = 1, kn, n = 0, 1, ... ,

(18)

λ̄n =
(m− 1)(3−m)− 4λn

4
, f̃kn(r, t) = r

(m−1)
2 f

k
n(r, t), ϕ̃kjn(r) = r

(m−1)
2 ϕkjn(r), j = 1, 2.

Let us analyze the solution of the problem (17), (18) in the form

υkn(r, t) =

∞∑
s=1

Rs(r)Ts(t), (19)
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whereby

f̃kn(r, t) =
∞∑
s=1

akns(t)Rs(r), ϕ̃
k
1n(r) =

∞∑
s=1

bknsRs(r), ϕ̃
k
2n(r) =

∞∑
s=1

eknsRs(r). (20)

Substituting (19) into (17), (18), and taking into account (20), we obtain

Rsrr +

(
λn
r2

+ µ

)
Rs = 0, 0 < r < 1, (21)

Rs(1) = 0, |Rs(0)| <∞, (22)

Tstt + µTs(t) = −akns(t), 0 < t < α, (23)

β1Ts(0) = γ1Ts(α) + bkns, β2Tst(0) = γ2Tst(α) + ekns. (24)

The bounded solution of the problem (21), (22) is ([11])

Rs(r) =
√
rJν(µs,nr), (25)

where ν = n+ (m−2)
2 , µ = µ2

s,n.

The general solution of equation (23) can be represented in the form ([10])

Ts,n(t) = c1s cosµs,nt+ c2s sinµs,nt+
cosµs,nt

µs,n

t∫
0

akns(ξ) sinµs,nξdξ

−sinµs,nt

µs,n

t∫
0

akns(ξ) cosµs,nξdξ,

(26)

where c1s, c2s are arbitrary constants. Satisfying the condition (24), we obtain the system of
algebraic equations

(β1 − γ1 cosµs,nα)c1s − γ1c2s sinµs,nα

=
γ1

µs,n
[cosµs,nα

α∫
0

akns(ξ) sinµs,nξdξ − sinµs,nα
α∫
0

akns(ξ) cosµs,nξdξ] + bkns,

γ2c1s sinµs,nα+ (β2 − γ2 cosµs,nα)c2s

=

[ekns − γ2(sinµs,nα
α∫
0

akns(ξ) sinµs,nξdξ + cosµs,nα
α∫
0

akns(ξ) cosµs,nξdξ)]

µs,n
,

(27)
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which has the unique solution if the condition (5) is satisfied.
Substituting (25) into (20), we obtain

r−
1
2 f̃kn(r, t) =

∞∑
s=1

akns(t)Jν(µs,nr), r
− 1

2 ϕ̃k1n(r) =
∞∑
s=1

bknsJν(µs,nr),

r−
1
2 ϕ̃k2n(r) =

∞∑
s=1

eknsJν(µs,nr), 0 < r < 1.

(28)

The series (28) is a decomposition into the Fourier-Bessel series ( [12]), if

akns(t) = 2[Jν+1(µs,n)]−2
1∫
0

√
ξf̃kn(ξ, t)Jν(µs,nξ)dξ,

bkns = 2[Jν+1(µs,n)]−2
1∫
0

√
ξϕ̃k1n(ξ)Jν(µs,nξ)dξ,

ekns = 2[Jν+1(µs,n)]−2
1∫
0

√
ξϕ̃k2n(ξ)Jν(µs,nξ)dξ,

(29)

where µs,n, s = 1, 2, ..., are positive nulls of the Bessel functions Jν(z) ranked in the growing
order.

From (25), (26) we obtain the solution of the problem (17), (18) in the form

υkn(r, t) =
∞∑
s=1

√
rTs,n(t)J

n+
(m−2)

2

(µs,nr), (30)

where akns(t), b
k
ns, e

k
ns are determined from (29), whereas c1s, c2s are determined from (27).

Hence, first having solved the problem (10), (14) (n = 0), then the problem (11), (14)(n =
1), etc., we find sequentially all υkn(r, t) from (30), k = 1, kn, n = 0, 1, ... .

Therefore, in the domain Dα, it holds that∫
H

ρ(θ)LudH = 0. (31)

Now, let f(r, θ, t) = R(r)ρ(θ)T (t), where as R(r) ∈ V0, V0 is dense in L2((0, 1)), ρ(θ) ∈
C∞(H) is dense in L2(H), and T (t) ∈ V1, V1 is dense in L2((0, α)). Then f(r, θ, t) ∈ V, V =
V0 ⊗H ⊗ V1 is dense in L2(Dα) (see [13]).

From this and from (31), it follows that∫
Dα

f(r, θ, t)LudDα = 0
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and
Lu = 0, ∀(r, θ, t) ∈ Dα.

Hence, the solution of Problem 1 has the form

u(r, θ, t) =

∞∑
n=0

kn∑
k=1

[
ψkn(t) + r

(1−m)
2 υkn(r, t)

]
Y k
n,m(θ), (32)

where υkn(r, t) is found from (30).
Taking into account the formula 2J ′ν(z) = Jν−1(z) − Jν+1(z) (see [12]), the estimates

(see [14], [10])

Jν(z) =
√

2
πz cos

(
z − π

2 ν −
π
4

)
+ 0

(
1

z3/2

)
, ν ≥ 0,

|kn| ≤ c1n
m−2,

∣∣∣∣ ∂q∂θqj Y k
n,m(θ)

∣∣∣∣ ≤ c2n
m
2
−1+q, j = 1,m− 1, q = 0, 1, ... ,

the lemmas above, the restrictions on the coefficients of the equation (1) and on the given
functions ϕ1(r, θ), ϕ2(r, θ), ψ(t, θ) we can show, as in [6]- [8], that the obtained solution (32)
belongs to the class C(D̄α) ∩ C1(Dα ∪ S0 ∪ Sα) ∩ C2(Dα).

Therefore, we have established the solvability of Problem 1.

This completes the proof of Theorem 1.

Proof of Theorem 2. We will look for the solution of the problem (1), (3) in the form (8),
where the functions ūkn(r, t) are determined below. Then, analogously to the previous section,
the functions ūkn(r, t) satisfy the system of equations (10)–(12).

Next, from the boundary-value condition (3), taking into account (8), we obtain

ūkn(r, 0) = ϕk1n(r), β1ū
k
nt(r, 0) = γ1u

k
n(r, α) + ϕ̄k2n(r), ūkn(1, t) = ψkn(t),

k = 1, kn, n = 0, 1, ... .

(33)

As it was established earlier, each equation of the system (10)–(12) can be represented in
the form (13).

Then, substituting ῡkn(r, t) = ūkn(r, t)−ψkn(t), and then letting ῡkn(r, t) = r
(1−m)

2 υkn(r, t) we
reduce the problem (13), (33) to the problems

Lυkn = f̃kn(r, t), (17)

υkn(r, 0)= ϕ̃k1n(r), β1υ
k
nt(r, 0)=γ1υ

k
n(r, α)+ϕ̃k2n(r), υkn(1, t)=0, k=1, kn, n = 0, 1, ... , (34)

where ϕ̃k1n(r) = r
(m−1)

2 (ϕ̄k1n(r)− ψkn(0)), ϕ̃k2n(r) = r
(m−1)

2 (ϕ̄k2n(r) + γ1ψ
k
n(α)− β1ψ

k
nt(0)).
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If we look for the solution of the problem (17), (34) in the form (19), then we obtain the
problem (21), (22) and to the problem for (23) with the data

Ts(0) = bkns, β1Tst(0) = γ1Ts(α) + ekns. (35)

Satisfying the general solution (26) of equation (23) with the boundary-value condition
(35), we obtain

c1s = bkns,

(µs,nβ1 − γ1 shµs,nα)c2s

=γ1b
k
ns+

γ1

µs,n
(cosµs,nα

α∫
0

akns(ξ) sinµs,nξdξ−sinµs,nα
α∫
0

akns(ξ) cosµs,nξdξ)+ekns,

(36)

from which the coefficients c1s, c2s are uniquely determined, if the condition (6) is satisfied.

Therefore, from (25), (26) we get the solution of the problem (17), (34) in the form (30),
where akns(t), b

k
ns, e

k
ns are found from (29), whereas c1s, c2s are found from (36).

The rest of the proof of Theorem 2 is completed just like in the case of Theorem 1.

Thus, the solvability of Problem 2 is shown.
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Алдашев С.А. КӨП ӨЛШЕМДI ГИПЕРБОЛАЛЫҚ ТЕҢДЕУЛЕРДIҢ БIР КЛАСЫ
ҮШIН ЛОКАЛДЫ ЕМЕС ШЕТТIК ЕСЕПТЕР

Кеңiстiктегi көптеген маңызды физикалық құбылыстар көп өлшемдi гиперболалық
теңдеулермен моделденедi. Осы мақалада цилиндрлiк аймақтағы толқындық оператор-
лы көп өлшемдi гиперболалық теңдеулер үшiн локалды емес шеттiк есептердiң шешiлiм-
дiлiгi дәлелденедi. Бұл есептер аралас есептiң, Дирихле және Пуанкаре есептерiнiң жал-
пылауы болып табылады.

Кiлттiк сөздер. Көп өлшемдi дербес туындылы теңдеулер, гиперболалық теңдеулер,
локалды емес есеп, Бессель функциялары.

Алдашев С.А. НЕЛОКАЛЬНЫЕ КРАЕВЫЕ ЗАДАЧИ ДЛЯ ОДНОГО КЛАССА
МНОГОМЕРНЫХ ГИПЕРБОЛИЧЕСКИХ УРАВНЕНИЙ

Многочисленные важные физические явления в пространстве моделируются много-
мерными гиперболическими уравнениями. В данной статье доказывается разрешимость
нелокальных краевых задач в цилиндрической области для многомерных гиперболиче-
ских уравнений с волновым оператором. Эти задачи являются обобщением смешанной
задачи, задачи Дирихле и задачи Пуанкаре.

Ключевые слова. Многомерные уравнения в частных производных, гиперболические
уравнения, нелокальная задача, функции Бесселя.
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Abstract. In this paper we study blow-up of solutions for the nonlinear pseudo-parabolic equation for

Rockland operators on graded Lie groups. Also, we show Fujita type exponent for the pseudo-parabolic

Rockland equation.
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1 Introduction

In the paper we study blowing-up results of the nonlinear pseudo-parabolic equation{
ut + aRut +Ru = |u|p + f(x, t), (x, t) ∈ G× R+ := Ω,

u(x, 0) = u0(x) ≥ 0, x ∈ G,
(1)

where R is a Rockland operator on a graded Lie group (see Section 1.1), and a ≥ 0.

We start by recalling previous results. When a = 0 equation (1) restricts to the heat
equation case, which was firstly considered by Fujita [1]. Namely, it is showed that if 0 <
p < 2

N then the Cauchy problem{
ut −∆xu = |u|1+p, (x, t) ∈ RN × (0,∞),

u(x, 0) = u0(x) ≥ 0, x ∈ RN ,
(2)
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has blow-up a finite time. In papers [2]–[4], authors showed the blowing-up of solutions to
the following initial value problem for the fractional Laplacian (−∆)s :{

ut + (−∆)su = a(x, t)|u|1+p, (x, t) ∈ RN × (0,∞),

u(x, 0) = u0(x) ≥ 0, x ∈ RN .
(3)

So, in [5], [6] it is considered non-existence results for parabolic equations on the Heisen-
berg groups with Kohn-Laplacian. For more information, we refer to [7]–[9] and references
therein.

In this paper, we are focused on the nonzero coefficient case (a > 0) in equation (1),
that is a pseudo-parabolic Rockland equation. As for motivation part, we note that the
pseudo-parabolic equations appear in describing the nonlinear dispersive long wave unidirec-
tional propagation [10], creep buckling [11], and the population aggregation [12]. For more
information, we refer to the book [13].

The critical Fujita exponent determined as p∗ = 1 + 2
N for the pseudo-parabolic equation

in the Euclidean case was firstly established in the papers [14], [15]. In [16] authors studied the
nonexistence of global solutions to the nonlinear pseudo-parabolic equation on the Heisenberg
group

ut + (−∆H)mut + (−∆H)mu = |u|p, (η, t) ∈ H × (0,∞), (4)

with the Cauchy data

u(η, 0) = u0(η), η ∈ H, (5)

where m > 1, p > 1, ∆H is the Kohn-Laplace operator on (2 × 2)-dimensional Heisenberg
group H. For more details, the reader is referred to [16] and references therein, [17]–[21].

1.1. Graded Lie groups. Now we give a very brief introduction to graded Lie groups [22].
Recall that G is a graded Lie group if its Lie algebra g admits a gradation as

g =

∞⊕
l=1

gl,

where gl are vector subspaces of g for all l = 1, 2, ..., but finitely many equal to {0}, and
satisfying the following inclusion

[gl, gl′ ] ⊂ gl+l′ , ∀l, l′ ∈ N.

The group is called stratified if g1 generates the whole of g through these commutators.
Let us fix a basis {X1, ..., Xn} of g adapted to the gradation. By the exponential mapping
expG : g→ G we get points in G:

x = expG(x1X1 + ...+ xnXn).
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A family of linear mappings

Dr = Exp(A ln r) =
∞∑
k=0

1

k!
(ln(r)A)k

is a family of dilations of g. Here A is a diagonalisable linear operator on the Lie algebra g
with positive eigenvalues. Every Dr is a morphism of g, i.e., Dr is a linear mapping from the
Lie algebra g to itself with the property

∀X,Y ∈ g, r > 0, [DrX,DrY ] = Dr[X,Y ],

here [X,Y ] := XY − Y X is the Lie bracket. One can extend these dilations through the
exponential mapping to the group G by

Dr(x) = rx := (rν1x1, ..., r
ν1xn), x = (x1, ..., xn) ∈ G, r > 0,

where ν1, ..., νn are weights of the dilations. The sum of these weights of the form

Q := TrA = ν1 + . . .+ νn

is called the homogeneous dimension of the graded Lie group G. Also recall that the standard
Lebesgue measure dx on Rn is the Haar measure for the graded Lie group G. Also, in this
note we denote a homogeneous quasi-norm on G by q(x), which is a continuous non-negative
function

G 3 x 7→ q(x) ∈ [0,∞), (6)

with the properties 1) q(x) = q(x−1) ∀x ∈ G, 2) q(λx) = λq(x) for all x ∈ G and λ > 0, and
3) q(x) = 0 ⇔ x = 0.

Moreover, the following property will be used in our proofs.

Property 1. Let G be a graded Lie group with homogeneous dimension Q, r > 0 and dx be
a Haar measure. Then, we have

drx = rQdx.

For more detailed information, see, e.g. the book of Fischer and Ruzhansky [22].

The main object of this paper is equation (1). In this paper we are interested in pseudo-
parabolic type equations. Without loss of generality, we study the case when a = 1.

2 Main results

In this section, we concern nonexistence of global weak solutions to the following nonlinear
pseudo–parabolic equation

ut(x, t) +Rut(x, t) +Ru(x, t) = |u(x, t)|p + f(x, t), (x, t) ∈ G× (0,∞) := Ω, (7)
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under the initial condition

u(x, 0) = u0(x), x ∈ G, (8)

where R is a Rockland operator of k-th order on the graded Lie group G, that is,

R =

n∑
j=1

(−1)
ν0
νj cjX

2
ν0
νj

j .

We denote by Ck,1x,t (Ω) the space of test functions ϕ with a compact support supp ϕ ⊂
Ω such that ϕ, ∂tϕ, Rϕ and ∂tRϕ are continuous functions on Ω with compact supports
supp ∂tϕ, suppRϕ, supp ∂tRϕ ⊂ Ω.

Definition 1. We say that u is a global weak solution to the problem (7)–(8) on Ω with the
initial data u(·, 0) = u0(·) ∈ L1

loc(G), if u ∈ Lploc(Ω) and satisfies∫
Ω

|u|pϕdxdt+

∫
G

u0(x)ϕ(x, 0)dx+

∫
Ω

fϕdxdt

= −
∫
Ω

uϕtdxdt+

∫
Ω

u(Rϕ)tdxdt−
∫
Ω

uRϕdxdt+

∫
G

u0(x)Rϕ(x, 0)dx (9)

for any regular test function ϕ with ϕ(·, t) = 0 for large enough t.

For R > 0, we define

ΓR = {(x, t) ∈ Ω : 0 ≤ t ≤ Rα, 0 ≤ q(x) ≤ R}.

Theorem 1. Assume that R is a Rockland operator of k-th order. Let u0 ∈ L1(G) and
f− ∈ L1(Ω), where f− = max{−f, 0}. Suppose that∫

G

u0dx+ lim
R→∞

inf

∫
ΓR

fdxdt > 0. (10)

If 1 < p ≤ p∗ = 1 + k
Q , then the problem (7)–(8) does not admit any global weak solution.

Proof. Suppose that u is a global weak solution to the problem (7)–(8). Then for any regular
test function ϕ, we have∫

Ω

|u|pϕdxdt+

∫
G

u0(x)ϕ(x, 0)dx+

∫
Ω

fϕdxdt
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≤
∫

Ω
|u||ϕt|dxdt+

∫
Ω

|u||(Rϕ)t|dxdt−
∫
Ω

|u||Rϕ|dxdt

+

∫
G

|u0(x)||Rϕ(x, 0)|dx. (11)

Using the ε-Young inequality

ab ≤ εap + C(ε)bp
′
,

1

p
+

1

p′
= 1, a, b ≥ 0,

with parameters p and p/(p− 1), we obtain∫
Ω

|u||ϕt|dxdt ≤ ε
∫
Ω

|u|pϕdxdt+ cε

∫
Ω

ϕ
−1
p−1 |ϕt|

p
p−1dxdt, (12)

for some positive constant cε.
Similarly, we have∫

Ω

|u||(Rϕ)t|dxdt ≤ ε
∫
Ω

|u|pϕdxdt+ cε

∫
Ω

ϕ
−1
p−1 |(Rϕ)t|

p
p−1dxdt (13)

and ∫
Ω

|u||Rϕ|dxdt ≤ ε
∫
Ω

|u|pϕdtdv + cε

∫
Ω

ϕ
−1
p−1 |Rϕ|

p
p−1dtdv. (14)

Using (11)–(14), for ε > 0 small enough, we get∫
Ω

|u|pϕdxdt+

∫
Ω

u0(x)ϕ(x, 0)dx+

∫
Ω

fϕdxdt

≤ C
(
Ap(ϕ) +Bp(ϕ) + Cp(ϕ) +

∫
G

|u0(x)||Rϕ(x, 0)|dx
)
, (15)

where

Ap(ϕ) =

∫
Ω

ϕ
−1
p−1 |ϕt|

p
p−1dxdt, (16)

Bp(ϕ) =

∫
Ω

ϕ
−1
p−1 |(Rϕ)t|

p
p−1dxdt, (17)

Cp(ϕ) =

∫
Ω

ϕ
−1
p−1 |Rϕ|

p
p−1dxdt. (18)
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Let Φ1,Φ2 : R+ → [0, 1] be smooth nonincreasing functions such that

Φi(ρ) :=

{
1, if 0 ≤ ρ ≤ 1,

0, if ρ ≥ 2,
(19)

for i = 1, 2.
Now, for R > 0, let us consider the test function

ϕR(x, t) = Φ1

(
q(x)

R

)
Φ2

(
t

Rα

)
,

for some α > 0 to be defined later.
We observe that supp ϕR is a subset of

ΩR = {(x, t) ∈ Ω : 0 ≤ t ≤ 2Rα, 0 ≤ q(x) ≤ 2R},

while supp ∂tϕR, suppRϕR and supp ∂tRϕR are subsets of

ΘR = {(x, t) ∈ Ω : Rα ≤ t ≤ 2Rα, R ≤ q(x) ≤ 2R},

also, we put
ΓR = {(x, t) ∈ Ω : 0 ≤ t ≤ Rα, 0 ≤ q(x) ≤ R}.

It follows that there is a positive constant C > 0, independent of R, such that for all
(x, t) ∈ ΩR, we have

|RxϕR(t, x)| ≤ CR−kχ(t, x), (20)

where χ(t, x) is a nonnegative function with a compact support in ΩR, and

|∂tRϕR(t, x)| ≤ CR−k−αξ(t, x), (21)

where ξ(t, x) is a nonnegative function with a compact support in ΩR.
Using (20) and (21), we get

Ap(ϕ) ≤ CR
−αp
p−1 , (22)

Bp(ϕR) ≤ CR
−(k+α)p
p−1 , (23)

Cp(ϕR) ≤ CR
−kp
p−1 . (24)
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Let us consider now the change of variables

t̃ = R−αt, x̃ = R−1x.

Put ΣR = {x ∈ G : R ≤ q(x) ≤ 2R}.
Using Property 1, (22), (23) and (24), from (15) we obtain∫

Ω

|u|pϕRdxdt+

∫
Ω

u0(x)ϕR(x, 0)dxdt+

∫
Ω

fϕRdxdt

≤ C
(
Rλ1 +Rλ2 +Rλ3 +

∫
ΣR

|u0(v)||RϕR(0, v)|dv
)
, (25)

where

λ1 = Q+ α− αp

p− 1

and

λ2 = Q+ α− (k + α)p

p− 1

and

λ3 = Q+ α− kp

p− 1
.

On the other hand, we have

lim
R→∞

inf
(∫

Ω

|u|pϕRdxdt+

∫
G

u0(x)ϕR(x, 0)dx+

∫
Ω

fϕRdxdt
)

≥ lim
R→∞

inf

∫
Ω

|u|pϕRdxdt+ lim
R→∞

inf

∫
Ω

u0(x)ϕR(x, 0)dx+ lim
R→∞

inf

∫
Ω

fϕRdxdt.

Using the monotone convergence theorem, we get

lim
R→∞

inf

∫
Ω

|u|pϕRdxdt =

∫
Ω

|u|pdxdt.

Since u0 ∈ L1(Ω), by the dominated convergence theorem, we have

lim
R→∞

inf

∫
G

u0(x)ϕR(x, 0)dx =

∫
G

u0(x)dx.
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Writing f = f+ − f−, where f+ = max{f, 0}, we have∫
Ω

fϕRdxdt =

∫
ΓR

fdxdt+

∫
ΘR

f+ϕRdxdt−
∫

ΘR

f−ϕRdxdt

≥
∫

ΓR

fdxdt−
∫

ΘR

f−ϕRdxdt.

Since f− ∈ L1(Ω), by the dominated convergence theorem we have

lim
R→∞

∫
ΘR

f−ϕRdxdt = 0.

Then

lim
R→∞

inf

∫
Ω

fϕRdxdt ≥ lim
R→∞

inf

∫
ΓR

fdxdt.

Now, we have

lim
R→∞

inf
(∫

Ω

|u|pϕRdxdt+

∫
Ω

u0(x)ϕR(x, 0)dx+

∫
Ω

fϕRdxdt
)

≥
∫
Ω

|u|pdxdt+ `,

where (10) has the form,

` =

∫
Ω

u0(x)dx+ lim
R→∞

inf

∫
ΓR

fdxdt > 0.

By the definition of the limit inferior, for every ε > 0, there exists R0 > 0 such that∫
Ω

|u|pϕRdxdt+

∫
Ω

u0(x)ϕR(x, 0)dx+

∫
Ω

fϕRdxdt

> lim
R→∞

inf
(∫

Ω

|u|pϕRdxdt+

∫
Ω

u0(x)ϕR(x, 0)dx+

∫
Ω

fϕRdxdt
)
− ε
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≥
∫
Ω

|u|pdxdt+ `− ε,

for every R ≥ R0. Taking ε = `/2, we obtain∫
Ω

|u|pϕRdxdt+

∫
Ω

u0(x)ϕR(x, 0)dx+

∫
Ω

fϕRdxdt

≥
∫
Ω

|u|pdxdt+
`

2
,

for every R ≥ R0. Then from (25), we have∫
Ω

|u|pdxdt+
`

2
≤ C

(
Rλ1 +Rλ2 +Rλ3 +

∫
ΣR

|u0(x)||RxϕR(x, 0)|dx
)
, (26)

for R large enough.

Now, we put α = k and require that λ = max{λ1, λ2, λ3} ≤ 0, which is equivalent to
1 < p ≤ 1 + k

Q . We distinguish two cases.

• Case 1. If 1 < p < 1 + k
Q .

In this case, letting R → ∞ in (26) and using the dominated convergence theorem, we
obtain ∫

Ω

|u|pdxdt+
`

2
≤ 0,

which is a contradiction with ` > 0.

• Case 2. If p = 1 + k
Q .

In this case, from (26), we obtain∫
Ω

|u|pdxdt ≤ C <∞. (27)

Using the Hölder inequality with parameters p and p/(p− 1) from (11) we obtain
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∫
Ω

|u|pdxdt+
`

2
≤ C

(∫
ΘR

|u|pϕRdxdt
) 1
p
.

Letting R→∞ in the above inequality and using (27), we obtain∫
Ω

|u|pdxdt+
`

2
= 0.

This contradiction completes the proof of the theorem.
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Касымов А. ПСЕВДО-ПАРАБОЛАЛЫҚ РОКЛАНД ТЕҢДЕУI ҮШIН СЫЗЫҚТЫ
ЕМЕС ТЕҢДЕУЛЕРДIҢ ЛИ МЕЖЕЛЕНГЕН ТОПТАРЫНДАҒЫ ШЕШIМДЕРIНIҢ
БҰЗЫЛЫМДЫЛЫҒЫ

Бұл жұмыста бiз Рокланд операторлары үшiн сызықты емес псевдо-параболалық
теңдеудiң Ли межеленген топтарындағы шешiмдерiнiң бұзылымдығын зерттеймiз. Оған
қоса, бiз псевдо-параболалық Рокланд теңдеуi үшiн Фудзита тектес экспонентаны көр-
сетемiз.

Кiлттiк сөздер. Рокланд операторы, сызықты емес псевдо-параболалық теңдеу, Ли
межеленген тобы, шешiмнiң бұзылымдығы, Фудзита экспонентасы.

Касымов А. РАЗРУШИМОСТЬ РЕШЕНИЙ НЕЛИНЕЙНЫХ УРАВНЕНИЙ ДЛЯ
ПСЕВДО-ПАРАБОЛИЧЕСКОГО УРАВНЕНИЯ РОКЛАНДА НА ГРАДУИРОВАН-
НЫХ ГРУППАХ ЛИ

В настоящей работе мы изучаем разрушимость решений нелинейного псевдо-
параболического уравнения для операторов Рокланда на градуированных группах Ли.
Также мы показываем экспоненту типа Фудзиты для псевдопараболического уравнения
Рокланда.

Ключевые слова. Оператор Рокланда, нелинейное псевдо-параболическое уравнение,
градуированная группа Ли, разрушимость решения, экспонента Фудзита.

Kazakh Mathematical Journal, 19:3 (2019) 89–100



KAZAKH MATHEMATICAL JOURNAL

19:3 (2019)

Собственник "Kazakh Mathematical Journal":
Институт математики и математического моделирования

Журнал подписан в печать
и выставлен на сайте http://kmj.math.kz / Института математики и

математического моделирования
31.10.2019 г.

Тираж 300 экз. Объем 101 стр.
Формат 70×100 1/16. Бумага офсетная № 1

Адрес типографии:
Институт математики и математического моделирования

г. Алматы, ул. Пушкина, 125
Тел./факс: 8 (727) 2 72 70 93
e-mail: math_journal@math.kz
web-site: http://kmj.math.kz




