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NAZARBAI KADYROVICH BLIYEV
TO THE 85th ANNIVERSARY

We celebrate the 85th birth of the
academician of the National Academy of
Sciences of the Republic of Kazakhstan,
Professor Nazarbai Kadyrovich Bliyev, the
famous scientist, the specialist in the field of the
theory of differential equations, mathematical
physics and functional analysis who has made a
great contribution to the theory of generalized
analytic functions, to the theory of boundary
value problems for equations of mathematical
physics and to the theory of singular integral
equations into functional spaces.

N.K. Bliyev was born in September 1935
in the village of Zharkamys, the Baiganinsky
district of the Aktobe region, in the family of
an employee. In 1952 he graduated from the
Zharkamys secondary school. He dreamed of
becoming a geologist but everything changed in the tenth grade. That year the Mathematics
was taught by a new teacher, Zhakiya Zhusubaliev, a graduate of Ural Pedagogical Institute,
who together with a famous mathematician, academician of the Academy of Sciences of the
Kazakh SSR A.D. Taimanov was recommended for graduate school in Moscow but could
not continue his studies for family reasons. Zh. Zhusubaliev paid attention to mathematical
abilities of his student, taught him and insisted on his entering the Mathematics department
of the university.

In 1952 he entered the Mathematics department of the Faculty of Physics and Mathematics
of Kazakh State University named after S.M. Kirov (now al-Farabi Kazakh National
University). During his university years, he listened with great interest to the lectures of
Professor K.P. Persidskii and associate professors H.I. Ibrashev, M.Ya. Yataev, Sh.M. Enikeev.
Under the leadership of the academician K.P. Persidskii he wrote his diploma paper on
the theory of stability. In 1957 he graduated with honors from Kazakh State University
named after S.M. Kirov and he was offered to go to Moscow to enter the graduate school
of the Steklov Mathematical Institute (MIAS) of the USSR. But he chose to work at Guryev
Pedagogical Institute named after Dosmukhamedov (now Atyrau State University named after
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Dosmukhamedov) in order to have time to fulfill his filial duty to his dear grandmother Bayan
Edilova who raised him and who at that time was already in old age.

In those years, Guryev Pedagogical Institute did not have enough teaching staff, N.K.
Bliyev with full workload and interest worked as a teacher and then as a senior teacher till
1960, lecturing, conducting practical classes in almost all disciplines of Mathematics, that is,
analytical geometry and higher algebra, the theory of functions of real and complex variables,
the theory of differential equations.

In 1960 he entered the graduate school of the Steklov Mathematical Institute of the
Academy of Sciences of the USSR. His first leader and mentor was the candidate and in a
short time the doctor of physical and mathematical sciences Vladimir Sergeevich Vinogradov,
a disciple of the academician of the Academy of Sciences of the USSR Ilya Nesterovich
Vekua. Nazarbai Kadyrovich began to study the behavior of solutions of elliptic systems
of differential equations in the vicinity of singular points of the coefficients. He obtained
necessary and sufficient conditions for the existence of analytical solutions for degenerate first
order elliptic systems in the vicinity of degeneration points. The features (degenerations) under
consideration were such that it was difficult to expect the existence of any "good" solutions.
Therefore, to prove the analyticity of the solution, one had to show extraordinary ingenuity
and perseverance. These results laid the foundation for other studies of the possibility of the
existence of continuous solutions related to questions of the theory of surfaces in the geometry.
The mentioned results of N.K. Bliyev were highly appreciated by I.N. Vekua and were reported
at the international conference (see I.N. Vekua. On one class of the International Conference
on Analysis and Related Topics. Tokyo, April, 1969) that laid the foundation for their further
close cooperation. And in his further research N.K. Bliyev followed the principle: "good"
(topological) properties of solutions of elliptic equations are a consequence of the more elliptic
nature of these equations, rather than the smoothness of the coefficients.

In 1965 N.K. Bliyev successfully defended his candidate thesis "On the existence of analytic
solutions for degenerate elliptic systems in vicinity of a degeneration point" at the Dissertation
Council of the Mathematical Institute of the Academy of Sciences of the USSR. The Institute
of Mathematics of the Siberian Branch of the Academy of Sciences of the USSR gave an
external review of the thesis. The official opponents were doctors of sciences K.T. Akhmedov
(Baku), V. Kh. Kharasakhal (Alma-Ata). It is known from the university course that the
theory of analytic functions of one complex variable is the theory of the Cauchy-Riemann
system which is a special case of another elliptic system with variable coefficients, called by
I.N. Vekua the generalized Cauchy-Riemann system. An attempt to construct the theory of
the generalized Cauchy-Riemann system was yet undertaken by Beltrami. In the early 1930s,
T. Carleman and N. Teodorescu showed that some properties of solutions of the generalized
Cauchy-Riemann system are carried over to solutions of particular classes of the elliptic
systems. Only in the early 50s, due to the works of I.N. Vekua, a uniform theory of general
elliptic systems of two equations of the first order with two independent variables which
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has wide applications in different areas of analysis, geometry and mechanics was created.
It is called the theory of generalized analytic functions (GAF), was constructed in Sobolev
spaces Wll,, [ > 0 is an integer, p > 2, and it covers generalized (in some sense) solutions
of the generalized Cauchy-Riemann system with coefficients belonging on the whole plane E
of the complex variable z to the class L, 2, p > 2, coinciding with the space Ly, p > 2 in
the bounded domains G C E. The famous American mathematician L. Bers has a slightly
different approach.

In December 1969, after another report of N.K. Bliyev at the seminar, I.N. Vekua invited
him (in a convincing form) to study the problem of possibility (or impossibility) of an
acceptable development of the theory of GAF onto extremely limiting cases, i.e.onto a class
of coefficients of the elliptic systems summable to a power of at most two, i.e. belonging
to the eigensubspaces L,, 1 < p < 2. Such a proposal by [.N.Vekua was unexpected,
highly responsible and prestigious at the same time. At that time N.K. Bliyev worked at the
laboratory of Professor T.I. Amanov, who was the director of the Institute of Mathematics
and a disciple of Academician of the Academy of Sciences of the USSR S.M. Nikol’skii. Such
connections prompted him to think: to start using the scale of Nikol’skii-Besov spaces where
one can find more exact descriptions of properties of the functions. In those years these spaces
were not yet adapted to study equations with variable coefficients. N.K. Bliyev was the first
to succeed in proving necessary conditions for this statement about multipliers and to obtain
relations between parameters of spaces into which the theory of Vekua can be extended. Here
is an excerpt from the review of I.LN. Vekua of these results in a letter addressed to the
director of the Institute T.I. Amanov: Thilisi, 23.06.1971 ... Today we listened to the report
of N.K. Bliyev which we liked. I think that he discovered a new class of elliptic systems that
admit continuous solutions. The obtained results should be unconditionally published and, in
addition, it is advisable to continue further research in this direction ...". Bliyev managed to
positively formulate the complete solution of the indicated problem on the scale B of Besov
space, it contains the extension of the theory of Vekua known in the Sobolev spaces. We
should note the success of extending the class of GAF to families of generalized solutions of
general elliptic systems of differential equations on planes with coefficients from spaces with
the summability exponent p > 1 not embedded in L, 2 = L. These families contain even such
functions that are not summable in the usual sense but retain a number of basic topological
properties of the analytic functions of a complex variable (uniqueness theorem, argument
principle and others). The results of N.K. Bliyev have extraordinary consequences in various
areas of mathematics. For example, he refined long-established results of a fundamental nature
such as conditions for the existence of classical solutions of partial differential equations,
general boundary value problems of the Riemann-Hilbert type, problems of linear connecting,
quasiconformal mappings which are continuously differentiable Beltrami homeomorphisms.
He established that singular integral equations are Noetherian in classes of functions which
are continuous (not necessarily in Holder’s sense) in terms of B-spaces and others. Thus,
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possibilities are enhanced and the range of applications of GAF expands.

The results on differential equations and boundary value problems in bounded domains
were included in his doctoral thesis "Elliptic systems of the first order differential equations
on a plane in fractional spaces and boundary value problems" which was successfully defended
at the Mathematical Institute of the Academy of Sciences of the USSR in 1980. The external
organization was the Institute of Mathematics of the Siberian Branch of the Academy of
Sciences of the USSR, the official opponents were Corresponding Member of the Academy of
Sciences of the USSR A.V. Bitsadze, Academician of the Academy of Sciences of Ukrainian
SSR L.I. Danilyuk, Doctor of Physical and Mathematical Sciences, Professor of Moscow State
University, later Academician of the Academy of Sciences of Uzbekistan Sh.A. Alimov.

More detailed functional properties of GAF are presented in the monograph by Bliyev
N.K. "Generalized analytic functions in fractional spaces" Alma-Ata, "Nauka", 1985. This
monograph received the wide approval and the proposal of experts from far abroad to publish
it in English. The results for unbounded domains are included in the monograph published
in the prestigious international series "Pitman Monographs and Surveys in Pure and Applied
Mathematics 86 " in English: Bliyev N. "Generalized analytic functions in fractional spaces,
USA, Addison Wesley longman inc., 1997". Currently, the results by N.K. Bliyev have received
the full recognition from experts and are used in foreign countries. The important results
on the soliton solvability of series of nonlinear equations of mathematical physics, such as
Schrodinger, Kortweg-de Vries and other equations, are due to N.K. Bliyev and his disciples.

Since 1963, the scientific activity of H.K. Bliyev is associated with the Institute (till 1965,
the Sector) of Mathematics and Mechanics of the Academy of Sciences of the Kazakh SSR,
in which he went through all the stages of professional growth from a junior researcher to the
director of the institute: since October 1963 junior researcher, since 1966 senior researcher,
since 1978 the Head of Laboratory of functional analysis and theory of functions, in 1988
he was elected Director of the Institute, since 2000 Honorary Director of the Institute
of Mathematics of the National Academy of Sciences of the Republic of Kazakhstan, the
head of theme, since 2012 Chief Researcher (part-time) of the Institute of Mathematics
and Mathematical Modeling of the Ministry of Education and Science of the Republic of
Kazakhstan.

Having received the baton of the director of the Institute from Academician of the National
Academy of Sciences of the Republic of Kazakhstan U.M. Sultangazin, N.K. Bliyev made
his contribution to scientific and organizational activity of the Institute. Despite economic
difficulties of those years of perestroika as well as the beginning of Kazakhstan’s independence,
he managed to organize a calm creative atmosphere, actively supporting talented young
mathematicians and encouraging the scientists of the Institute to participate in various
international mathematical forums. This had borne fruit. The Institute (of Theoretical and
Applied Mathematics in 1992-1999) became one of the leading institutes of the Department
of Physical and Mathematical Sciences of the National Academy of Sciences of the Republic
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of Kazakhstan, the trend of international scientific activity had increased and international
contacts had been strengthened. In 1995, 11 employees received a Soros grant, three employees
received an INTAS grant. There appeared scholars of different international mathematical
societies, 10 employees of the institute were members of international scientific associations.
That year the Institute became the winner of the INTAS grant. During those years a number
of articles and monographs were published in English.

Simultaneously with the scientific activities N.K. Bliyev devoted a lot of time to teaching.
Since 1964 he worked part-time at his Alma-mater, his relative Kazakh State University (now
al-Farabi Kazakh National University). In September 2000, at the invitation of the rector,
Nazarbai Kadyrovich completely switched to teaching and became the head of the Department
of Functional Analysis and Probability Theory of al-Farabi Kazakh National University. From
2009 to the present he is Professor of the Department of Fundamental Mathematics of the
Faculty of Mechanics and Mathematics of al-Farabi Kazakh National University.

N.K. Bliyev is actively involved in the scientific, organizational and social activities.
He is a member of the editorial board of the journals "Izvestiya NAS RK. Seriya
physiko-manematicheskaya" , "Matematicheskii jurnal" (since 2019, "Kazakh Mathematical
Journal"), "Vestnik KazNU im. al-Farabi". Repeatedly he was a member, vice-chairman,
chairman of dissertation councils for the defense of doctoral and candidate dissertations of
the Institute of Mathematics of the Ministry of Education and Science of the Republic of
Kazakhstan.

In 1999-2002 he worked part-time as academician-secretary of the Department of
Physical and Mathematical Sciences of the National Academy of Sciences of the Republic
of Kazakhstan. For several terms, he was a member of the Presidium of Higher Attestation
Commission (SAC), chairman of the Section of Physical and Mathematical Sciences of the
Terminology Committee under the Cabinet of Ministers for State Prizes of the Republic
of Kazakhstan, a member of the Presidium of the National Academy of Sciences of the
Republic of Kazakhstan, a deputy executive editor of "Izvestiya NAS RK. Seriya physiko-
manematicheskaya" , editor-in-chief of "Matematicheskii jurnal", a member of the editorial
board of "Vestnik NAN RK", Encyclopedia of the Republic of Kazakhstan, Science
Development Fund, dissertation councils of the Institute of Mathematics of the Academy
of Sciences of Uzbekistan, Aktobe University named after K. Zhubanov. He was one of the
organizers and actively participated in organizing and holding of a number of international
scientific forums in Almaty, Aktobe, Semey and Karaganda.

He has published over 150 scientific papers, including one monograph, a number of
articles in such highly rated mathematical publications as "Doklady AN SSSR", "Sibirskii
matematicheskii jurnal" , "Complex Variables and Elliptic Equations" and others. Among his
direct disciples there are 18 candidates and 3 doctors of sciences who have their own schools
and disciples.

The scientific achievements of N.K. Bliyev have received a worthy assessment. In 1985 he

KAZAKH MATHEMATICAL JOURNAL, 20:3 (2020) 6-15



TO THE 85th ANNIVERSARY 11

received the title of professor, in 1989 he was elected a corresponding member of the Academy
of Sciences of the Kazakh SSR, in 1996 he was elected an academician of the Russian Academy
of Natural Sciences, and in 2004 he became an academician of the National Academy of
Sciences of the Republic of Kazakhstan. In 1998 he was awarded an honorary title "Honored
Worker of Science and Technology of the Republic of Kazakhstan" , in 1999 he was awarded the
international Khorezmi Prize of the first degree. The scientific and social achievements of N.K.
Bliyev were marked with the certificate of honor of the Supreme Council of the Kazakh SSR,
with the commemorative certificate of honor of the Central Committee of the Communistic
Party of Kazakhstan, the Council of Ministers of the Kazakh SSR, the Kazakh Council of
Trade Unions, the Central Committee of the youth union of Kazakhstan for the XIX party
conference of the Central Committee of the Communistic Party of Soviet Union, with medals
"Veteran of labour"and "10 years of the independence of the Republic of Kazakhstan".

Taking care of high-quality and professional training of the younger generation in the
state language, N.K. Bliyev wrote the study guide in Kazakh "Merpukabik kerictikrep" ,
Almaty: "Kazak yausepcureri" , 2005 and the textbook "®yukimonamieik anannz" ; Almaty:
"Universitet" , al-Farabi Kazakh National University, 2014.

N.K. Bliyev made presentations at many international scientific forums, including the
International Congress of mathematicians (Poland, Warsaw, 1983), the Second European
Congress of mathematicians (Hungary, Budapest, 1996), conferences of the European
mathematical society (Poland, Bedlewo, 2004, 2006), with a plenary report at the
International Conference "Differential equations, theory of functions and applications"
(Russia, Novosibirsk, 2007), etc.

Over the years as part of various delegations he visited many countries and cities such
as Delhi, Bombay, Hyderab, Madras (India), Beijin (China), Seoul (South Korea), Istanbul,
Ankara, Konya (Turkey), etc. In 2015, on the occasion of his 80th birthday, an outstanding
scientist-mathematician, Academician of the National Academy of Sciences, Doctor of Physical
and Mathematical Sciences, Professor H.K. Bliyev was awarded with the al-Farabi silver medal
and the order "Kurmet". Every year a series of books titled "Omnereni emip" is published
at al-Farabi Kazakh Natioal University and is dedicated to those who have made a great
contribution to the development of science education in Kazakhstan. In 2015, the release of
this series of books was dedicated to Academician N.K. Bliyev.

Nazarbai Kadyrovich continues research in the field of generalized analytic functions in
the Institute of Mathematics and Mathematical Modeling of the Ministry of Education and
Science of the Republic of Kazakhstan: he was the scientific leader of the projects "Generalized
analytic vectors and their applications, the solvability of soliton nonlinear equations of the
dimension (1+1)" by grant funding for 2012-2014, "Boundary value problems and singular
integral equations with Cauchy kernel with Carleman shift in fractional spaces " by grant
funding for 2015-2017.

He is currently the scientific leader of the project "Boundedness of general (n —
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dimensional) singular integral operators and Noetherity of corresponding singular integral
equations in Besov spaces" by grant funding for 2018-2020.

Academician N.K. Bliyev is full of strength and energy to implement his new mathematical
ideas.

The staff of the Institute and the Editorial Board of "Kazakh Mathematical Journal"
congratulate Nazarbai Kadyrovich on his 85th jubilee and wish him good health, long life,
new creative successes in his fruitful activity!

Editorial board
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1 Introduction

The Bernoulli process and generally Bernoulli scheme are of most attractive and basic
concepts in probability theory, statistics, random processes, dynamical processes related to
chaos [1]-[7]. In the present research, we suggest to consider, beside traditional probabilistic
events, a new one, which is called unpredictable string. It will provide interesting opportu-
nities for extension of the theories as well as exploration of useful deterministic features for
stochastic dynamics.

In recent papers [8], [9], new connections of deterministic chaos with random dynamics
have been developed. This time, the notion of infinite sequences with unpredictable strings
is introduced. This relates to the unpredictable point [10]. Numerical simulations of the
Bernoulli process are performed to demonstrate that the realizations are unpredictable. They
confirm that specific properties for the random dynamics are valid, namely the first and second
laws of large (unpredictable) strings, which are, also, discussed theoretically. Besides, Matlab
algorithm to verify sequences with inductively increasing lengths of unpredictable strings is
provided.

2 Preliminaries

The notion of the realization is one of the basic in the paper. Let us provide the
precise description of it not to have confusion in the comprehension. Fix natural num-
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bers 1,2,...,N, and consider the set Q = {1,2,..., N}, where N is the set of all natu-
ral numbers, as a sample set. Elements w of Q are infinite sequences (w1, ws,...) as well
as finite sequences (wi,...,wy),n € N, where w;,i € N, are natural numbers from 1 to
N. That is, they are members of the cylindrical sets Q" = {1,2,..., N}". Assume, that
p(i) = 1/N for all i = 1,2,..., N. Determine a family of random variables, X (n,w) : N — S|
where S = {s1,...,s.},7 € N, is a finite set of real numbers, such that SN is a collec-
tion of infinite and finite sequences. We shall call the sequences {X(k,w)},k € N, and
{X(k,w)}}_;,w € Q, the infinite and finite realizations of the Bernoilli scheme, respectively.
Thus, the infinite realization is a sequence {a}r,k € N, and the finite realization is a se-
quence {ax},1 < k < n,n € N, with a € S. They are orbits of the dynamics, which we
know as the Bernoilli scheme. In the case N = 2, the dynamics is said to be the Bernoilli
process [4], [7].

3 The unpredictable strings

In this section, we introduce the main concept of this paper, unpredictable strings and
utilize it to determine unpredictable sequences.
Let a;, i = 0,1,2, ..., be an infinite sequence of symbols.

Definition 1. A finite array (as, as41, ..., astr), where s and k are positive integers, is said
to be an unpredictable string of length k if a; = as4q, fori =0,1,2,....k — 1, and ap # asyk.

The diagram in Figure 1 illustrates the definition.

Figure 1 — The illustration of the unpredictable string of length k.

Definition 2. The sequence a; is unpredictable if it admits unpredictable strings with arbi-
trary large lengths.

Definition 3. [10] The sequence a; is unpredictable if there exist sequences (y, N of positive
integers both of which diverge to infinity such that ac,y1 = a;, | = 0,1,2,...,m, — 1, and
¢4 7 Oy, for each n € N.
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Theorem 1. The Definitions 2 and 3 are equivalent.

Proof. Let sequence a; be unpredictable. Then the finite arrays (ac,,a¢,+1, - a¢pgn,,)
are unpredictable strings of length 7, for each natural n. Thus, the sequence admits unpre-
dictable strings with arbitrary large lengths.

Conversely, let a; be a sequence that admits unpredictable strings of arbitrary
large lengths, i.e., there is a sequence i,, n = 1,2,3,..., such that the finite arrays
(@i, @i, +1, ..., a;, +1) are unpredictable strings. By setting (, = i, and 1, = i, + k, we
deduce that the sequence a; is unpredictable in light of Definition 3.

Fix a positive integer k and denote by Sy the sets of all indexes s such that the strings
(as,Gs41, ..., as1+x) are unpredictable within the sequence a;,i = 1,2, ..., which is not neces-
sarily unpredictable.

Theorem 2. The sets S; and S, do not intersect if | < q.

Proof. Assume, on contrary, that sets S; and S; admit a common element s. Then, we
have that a; # asy; if s € S; and a; = as4q if s € S;. This contradiction completes the prove.

Theorem 3. Assume that a; is an unpredictable sequence. Then each aj with positive j is
the first element of an unpredictable string, if a; = ag.

Proof. Assume the opposite. Then one can show that the sequence « is periodic one.
That is not unpredictable sequence.

4 Numerical analysis of the Bernoulli process

We will scrutinize a realization of the Bernoulli process as a sequence consisting of the
digits 1 and 0 with positive probabilities.

First, we provide an algorithm for indication of unpredictable strings in realizations of a
Bernoulli scheme on finite number of complex vectors vy, vo, ..., Uy.

Let us set ag = random({vi,ve,...,v,}) and a3 = random({vi,va,...,v.}). Then
for increasing k = 1,2,3,..., we define app)y; = a4, for j < k, and appy; =
random({vi,ve, ..., v, } — a;), for j =k, where m(k + 1) = m(k) + k with m(1) = 2.

The immediately following Algorithm 1 is for the Bernoulli process with v; = 0 and
vy = 1. The sequence (0,1,0,0,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0,0,0,0,0,1,0,0,0,1,0,...) is
a result of the algorithm application.

Let us introduce several characteristics that are of usage for analysis of finite realizations
of the Bernoulli scheme. For fixed natural number m, consider a finite realization a;,7 =
0,1,...,m. Denote by K(m) the largest length of unpredictable strings in the array. For
every k between 1 and K (m), denote by g the number of k—lengthy unpredictable strings
within the array, by & the largest index such that (ag,, ag, L1 ag,+k) is an unpredictable
string within the array, and by N(m) the number of all unpredictable strings, which have a
non-empty intersection with the array.
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Algorithm 1 Unpredictable sequences

1. m=2

2: for k=1,2,3,... do
3: apg=0

4: a; =1

5: for j=0:kdo
6: if j <k, then
T Am+j = Q5
8: else if j =k, then
9: Am+j # a;
10: m=m-+k
11: end if

12: end for

13: end for

Now, we provide statistical results on the realization, which are obtained by Matlab simu-
lations for the Bernoulli process with probability p = 0.6 and m = 9x 10°. We have evaluated
values of K(n), {x(,) and N(n)/n, for each n from 1 to m. Ten samples of the simulations
are provided in Table 1. According to the full data obtained in simulations, the realization
can be considered as part of an unpredictable sequence, since there are unpredictable strings
with increasing lengths. Moreover, N (n)/n = p, if n is large.

Table 1 — The values K(n), {xn) and N(n)/n for the finite realization

n_ K0 &kw Nm)/n
50 10 20 0.72
200 10 20 0.58
500 10 228 0.586
2000 14 1008 0.596
10000 14 3469 0.6031
20000 18 19206  0.5995
100000 21 74683  0.6014
500000 21 401088  0.6003
800000 21 663684 0.6001
900000 28 874766  0.5686

5 Laws of large strings for the Bernoulli scheme

In this section, we consider a discrete-time random process X (n) with the finite state
space of r different symbols s1, s9, ..., Sp.
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The function admits values s; with positive probabilities p;, i = 1,2, ...,7, which sum is
equal to the unit. A realization « of the process is the sequence a;, i = 1,2, ..., and a finite
realization «,, is the array a;, i = 1, 2, ..., m. We claim that stochastic processes with discrete
time and finite state spaces satisfy the following theorem.

Theorem 4. (the first law of large strings). The discrete time random process X (n) with the
finite state space admits uncountable set of realizations, which are unpredictable sequences in
the sense of Definition 2.

Proof. Let us consider the space X, of infinite sequences of finite set of symbols

S1, 82, ..., Sp, with the metric

de.¢) = 3y S S, 1)
where & = (§0&1&2...), ¢ = (C0¢12...). The Bernoulli shift o on ¥, is defined as o(£p&1&2...) =
(£1€2€3...). The map is continuous and ¥, is a compact metric space [11].

It is clear that the set of all realizations of the random dynamics X (n) coincides with
the set of all sequences of the symbolic dynamics on ¥,. According to the result in [10], the
symbolic dynamics admits an unpredictable point, i*, a sequence from the set .. There is
the uncountable set of unpredictable points, which are unpredictable sequences in the sense
of Definition 2.

It is important that the set of the realizations is the closure for the unpredictable orbit.
The density is considered in the shift dynamics sense. The property of the metric implies that
each arc of any sequence in the space coincides with some arc of the unpredictable sequence.

Let us fix an unpredictable realization of the scheme. Due to Definition 3 and Theorem
1, the following assertion is valid.

Theorem 5. Fach finite realization of the Bernoulli scheme coincides with an arc of the
unpredictable realization for sure. That is, the unpredictable realization happens in each
experiment of the chain, and is a certain event.

Denote by n(m) the number of elements, which are equal to ag in a finite string. The
limit Elag] = limy,— 0o n(m)/m is said to be the expected value such that E[ag] = p;, if
apg = Si,i = 1, e T [4]

Theorem 3 implies the equality N (m) = n(m), where N (m) is the number of unpredictable
strings, which intersect the array. Hence, the following proposition is correct, which can be
useful for applications.

Theorem 6. If a realization « is an unpredictable sequence, then the relation

lim N(m) = Elao] (2)

m—oo  m

1s valid.
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Theorem 7. (the second law of large strings). If the discrete time random process X (n) admits
a finite state space, then the relation

N
lim P < Nm) _ Elag]

m—00 m

<g> g (3)

holds for any ¢ > 0.

Proof. As it has been concluded above, Theorem 5, each finite realization of the scheme
is an arc of an infinite unpredictable realization, and the relation (2) for the last one is valid.
These all prove the theorem.

Example 1. To have more impression of the unpredictable strings, let us consider the graph
of the piece-wise constant function, H(t), which values on intervals [i/10, (i + 1)/10),i =
0,1,...,199, are assigned randomly 1 or —1 with equal probability 1/2. The two unpredictable
strings as a result of the Bernoulli process are present, in the red, in the Figure 2, (a).
The second one, with length of 0.7 units, is placed between coordinates 14 and 16, shown in
Figure 2, (¢), while its corresponding initial arc, in Figure 2, (b). The pieces of the graph are
connected with vertical lines, to improve the visibility.

15 T T T T T T T T T

LRI RO W REV

15 L
o

15 15

AELEE TR

15
0

-15
05 1 15 2 145 15 155 16 16.5
b) <)

Figure 2 — The graph of the function H(t), which illustrates appearance of unpredictable strings.

To make the visibility better, the pieces of the graph are connected with vertical lines.
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Axmer M., Tona A. BOJIZKAHBANTBIH AKBIPJIBI TI3BEKTEP

TambamapapiH, aKbIPJIbI CAHBIHIA OO2KAHOANTHIH Ti30EKTep Il aHBIKTAY YIIMH OO/IKaHOal-
TBIH aKbIPJIbI TI30EKTEPIiH KaHa TYKbIPbIMIaMachl eHrisiii. JJuckperTi yakpITTarsl Ke3aei-
COK IIPOIIECTepre apHaJIFaH VIKeH TisOeKTepIiH OipiHIm »KoHe eKiHII 3aHIaphIH Jo e/ IeiMi3.
Yiken TizbeKTepIiH eKiHIm 3aHbl bepHy/m TeopeMachbiMeH OaiiaHbICThl. OChl KYOBLIBICTBIH,
TEOPHUSIJIBIK, YKOHE CaHJIbIK, HEeri3aepi KeaTipii.

Kinrrix cesznep. BomkanbaiTbiH aKbIPbI Tiz0eKTep, OoKaHOaNTEIH Tiz0ekTep, bepmyi-
Jiz iporieci, BepHysum cxeMachl, yikeH Ti30eKTepiH OipiHI 3aHbI, YJIKEH Ti30eKTep/iiH eKiHII
3aHbI.

Axmer M., Tona A. HEIIPE/ICKABYEMBIE KOHEYHBIE ITOCJIELOBATEJIBHO-
CTHU

BBeneno HOBOe MOHATHE HENIPEICKA3yeMbIX KOHEUHBIX TIOC/ICI0BATEILHOCTEH, KOTOPOE HC-
NOJIb3YyeTCd JJIS ONpEJIeJIcHAS HEIPEICKA3yeMbIX IIOCJC/I0BATEIbHOCTEl Ha KOHEYHOM YHCJIC
CUMBOJIOB. MBI JIOKa3bIBa€M TEPBbLI U BTOPOil 3aKOHBI OOJIBLIITNX OCIEI0BATEILHOCTEN I
CJIyIafiHbIX IPOIECCOB B AUCKPETHOM BpeMeHH. BTopoil 3aKOH OOJIBIINX IOC/IEI0BATEILHO-
creit cBsizaH ¢ TeopeMoit Bepuysu. IlpuBenenbl TeopeTudecKue U IUCIEHHbIE OCHOBBI 9TOIO
SIBJIEHUSI.

KirogeBbre ciioBa. HenpeJickazyeMble KOHEUHBIE TIOCIEI0OBATEILHOCTH, HEIPeICKa3yeMble
IIOCJIEIOBATE/ILHOCTH, Mporiece Bepuysan, cxema BepHy/in, nepBblil 3aKOH OOJIBIITUX MTOCTIE-
JIOBaTeILHOCTEH, BTOPO# 3aKOH OOJIBIITNX ITOCIEI0BATEIHHOCTEA.
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Abstract. Two model problems with a small parameter in the boundary condition are studied. They
were obtained by solving nonlinear problems with two free boundaries for the system of the parabolic
equations. In the Holder space there are established the uniform with respect to small parameter

estimates of the solution of these problems.

Keywords. System of the parabolic equations, small parameter in the boundary condition, solution in

the explicit form, uniform estimates, Holder space.

1 Statement of the problems. Main results

In the present paper two model conjugation problems with a small parameter in the
boundary condition are studied. They arise by solving the nonlinear two-phase problem with
two free boundaries for the system of parabolic equations that takes into account the fluid
velocity. The nonlinear two-phase problem with two free boundaries describes real physical
processes, mathematical models of which contain small parameters € > 0 in the condition
on one and s > 0 in the condition on the other free boundary. Such the problem arises, for
example, when extracting and transporting oil.

The problems with small parameters were investigated in [1]-[6]. J.F. Rodrigues, V.A.
Solonnikov, F. Yi. [1] have investigated one-phase linear and nonlinear free boundary problems
for the second order parabolic equations with a small parameter. They have established the
uniform estimates with respect to small parameter of the solutions in the Hélder space. From
these estimates it follows the existence of the solutions of the considered problems for a small
parameter, equal to zero.
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The linear Stefan problem for the heat equation with a small parameter s in the boundary
condition with the derivative sd;1), where 1 is a function describing the free boundary, was
studied by G.I. Bizhanova [2]. Estimates of the solutions with constants independent on small
parameter were established in the Holder space.

In [3] the two-phase problem for the heat equation with a small parameter at the time
derivative edyu1 on the boundary z,, = 0 was considered, in the Hélder space an estimates
of the solution of the problem with the constants independent on & were obtained. The
linear one-phase problem for the heat equation with a small parameter at the time derivative
edyu on the boundary z, = 0 was studied in [4]. Estimates of its solution and the estimate
€0y, —o with respect to € are obtained.

In [5] there were constructed the solution and obtained the estimates of the Green func-
tion of the two-phase boundary value problem for the parabolic equations with two small
parameters at the principal derivatives in the conjugation condition.

In [6] the linear multidimensional two-phase free boundary problem for the parabolic
equations with two small parameters € > 0 and » > 0 at the principal derivatives in the
boundary condition was studied, estimates of the solution in the Hélder space are obtained.

In this article there are constructed the solutions in the explicit form of the model problems
that has not been studied before. The unique solvability is proved, the uniform with respect
to small parameters € and s estimates of the solutions of these problems in the Holder space
are established.

Let Dy :={z: 2/ € R" ', 2, >0}, Dy:={x: 2’ € R" !, 2, <0}, Djv = D;j x (0,T),
j =1,2, R be hyperplane z,, = 0in R", Rp = Rx (0,T), € > 0, 3¢ > 0 be small parameters.

Model conjugation problem I. It is required to find the unknown functions v(x,t),
ui(x,t), ri(2,t), satisfying the following equations and conditions
v — a2A\v — o <6t1"1 - aQA’rl) = f(x,t) in D, (1)
8,5711 — a%Aul — 51 ((157“1 — CL%A/T1> = fl(x,t) in DlT;
U‘t:o = vp(z), ul‘t:o =upi(z) in Dy, r1|t:0 =0 on R,

U‘xn:O =®1 (a:./)t), u1‘xn:0 = @Q(CU/,t) on Rr,

€O — dlvTU‘xnzo —eazdyry + dyV'Try = p3(2’,t) on R,

where all coefficients are constant, a, a; are positive constants, /A’ = 8%1 + -4 8§n_ .
V'=(0yy.-y0p, 4), di=(d},din), d; = (dj1,---,djm-1)), Jj=1,2, are vectors.

We shall investigate the problem in the Hélder space C§+a’t1 +§(QT), a € (0,1), of the
02+a,1+<
functions wu(z,t) with the norm |u|g:a) [7; C, + * (Qr) is the subspace of functions
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u(x,t) € C2+a I+

xT

2 (Qp) such that

oul =0, k=0,1.
t=0

Theorem 1. Let dy, >0, a1 >0, a3 >0,0<e<egy, ac(0,1).

) o a,% 0 2+a, 1+
For every functions f(x,t), fi(z,t) €Cy, (Dir), @j €ECyw (Rr), 7=1,2,
o 1+0471+Ta o2+a,1+5
w3 €Cy + (Rr), the problem (1) - (5) has a unique solution v, u; €C, , ~ (Dir),
o 1+a, 1+a 0 24a,1+2 ol+a, 1+a

ez, —0 €Cp + (Rr), m€Cy + (Rr), edyr1 €C, + (Rr), and it satisfies the
estimate

‘ |(2+a | ’(2+a)

1+ 2+
Dyr ULl D,y —|—|€8t‘ a) | |( o)

+ |28y

<o <|frD1T FIA Z PRGN ) (6)

where the constant Cy is independent on .

Model conjugation problem II. It is required to find the unknown functions v(z,t),
wj(z,t), j=1,2, ro(a’,t), satisfying the following equations and conditions

O — a’ v — an (atrg — aQA’m) = f(x,t) in D,

Oyur — a%Aul — Ba <8tr2 — a%A'm) = fi(x,t) in Dip,

Opug — a3 Auy — fB3 (8{1“2 — a%A/m) = fo(x,t) in Dap, (7)
v|t:O:v0(x) in Dy, uj‘t O:uoj( xz) in Dj, rQ‘t:OZO on R,
ul‘xnzo = o(a2', 1), ug‘xn =1 (2', ), v‘ =o(2';t) on Ry,

Alé)xnul — )\zﬁxnUQ + 20yrog + d3V TT‘Q = 1/13($ ,t) on Rrp,

where all coefficients are constant, a, aj, A;, j = 1,2, are positive constants and dj =
(d31,-..,d3n-1)) is a vector.

Theorem 2. Let 3; >0, j=2,3, 0<x <3, ac(0,1).

0067% 0047% o2+04 1+*
For every functions f(x,t) €C,, (Dir), fj(z,t) €Cy ¢ (Djr), Yo €Cy  (Rr),
0 24a,1+% o l+a, 142
Y €Cp ¢+ (Rr), ¢3 EC t (Rr), 7 = 1,2, the problem (7) has a unique solution
0 2+4a,1+9 024,144 0 2+4a,1+9 o l+a, 142

veC, + (Dir), uj €C, + (Djr), 2 €Cy + (Rr), 202 €Cp + (Rr),
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7 = 1,2, and it satisfies the estimate

2+ 2+ (2+ (1+
DI:+Zrugr< D 4 ol 4 |edyra| G

<1115, +ZlmDﬂ +Z\w]r<2+“ il ), ®

where the constant Cy s mdependent on .

2 Auxiliary problems. Construction of a solution to the model problem I

We reduce the problem (1)—(5) to the problem with homogeneous equations, homogeneous
initial and boundary conditions (4). For this we construct the auxiliary functions V(x,t),
Ui(z,t), as solutions of the first boundary value problems for the parabolic equations

OV —a*AV = f(x,t) in D,
V|,_o=wo(x) in D, V|zn:0:go1(x’,t) on Ryp;

oUq — a%AUl = f1($,t) in Dir,
Ur|,_y = woi(x) in Dy, Ul}znzo = po(2’,t) on Rrp.

02+a,14+%
The problems (9)—(10) have unique solutions V' (z,t), Ui(z,t) €C, ’ (D17) [7], and

the following estimates for them are fulfilled

VISR < Ca(1A150, + lerl 5™, (11)
5 < Ca(1A15S), + ol ). (12)

In the equations and conditions of the problem (1)-(5) we make the substitution
U(J},t) :V(l‘,t)+0517‘1+w(l‘,t), ul(xat) :U1($,t)+ﬁ1T1+Zl($,t), (13)

where w(z,t), z1(z,t) are new unknown functions.

Taking into account that the constructed functions V (z,t), Ui(x,t) satisfy the equations
and conditions of the problems (9), (10), we obtain the problem for functions w(x,t), zi(x,t)
and ri(a/,t):

ﬁtw — a2Aw =0 in DlT, (14)
Orz1 —aiNz =0 in Dir, (15)
w|t:0 =0, zl}t:o =0 in Dy, rl‘t:o =0 on R, (16)
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w‘xnzo +ayr1 =0 on Ry, Zl| 4+ 6ir1=0 on Rrp, (17)

xn=0
edw — dlva’mnzo +e(ag — az)ory + (d/2 — ald/l)V/Trl =®(2',t) on Ry, (18)

where

o 1+a, 1+°‘

D! t) = py(a, ) = (0 — i VTV)|,  €Cw [ (Br)

and satisfies the estimate

(1+ (1+ (2+
@15 < G5 (lpslr™ + L+ VIS, (19)
Theorem 3. Let di, >0, a1 >0, a3 >0, 0<e <eg.
01+Oé,1+7a
For every function ®(x',t) €C, , (Rr), a € (0,1), the problem (14) - (18) has
o 24a,1+5 0241144 olta,te
a unique solution w €C,  (Dir), 21 €C,  (Dir), €0wlz,—0 €Cp + (Rr7),
024a, 1+ o l+a, 1t
r1 €Cy + (Rr), €01 €Cyp  (Rr), and it satisfies the estimate
w5 4 2] + el G + 15T+ e < Colo(a! )T, (20)

where the constant Cg does not depend on €.

We apply Laplace transform with respect to the variable ¢ and Fourier transform with
respect to 2’ [8] to the problem (14)—(18):

o
FLu(z,t)] = (s, zn,p) = /e_ptdt / e ' g

0 Rn—1

where s = (s1,...,8,-1)-

The solution of the problem in the domain of Laplace and Fourier images has the form

- - 1 -
b= Motz = PGk 5 L g
ea3( cazl eas(
where
b by, d d 242 2.2
C=p—izs + Tk b=, b)) = (2 o 1”) i _Vp+a = YPEUT
a3 a3 ai
1
Here Re( > Cy > 0, so we can represent — as follows
o0
== /e‘gudu, (21)
0
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and obtain
oo
- a1 = (it g bn _ al = X
W= —@ [ e PriTs T R)u kl"”"du:—@-GE,
Eas EQs
0
o0
- 1 = (p—it g tn _ 1 = =
z1=76 $ [ emprics k) u—ken gy — B DG
gag €

0

Applying the inverse Laplace and Fourier transforms and convolution formula, we find
the functions w, z; in the explicit forms

/dT / y T) Jc -, :Un,t—T)dy,
8043

/dT / y aT)G1,€<:L‘/ - ylvl‘nvt - T)dy/a
60&3

where .

b bn
Ge(z,t) = —2a2/8xnf(:v' + ?u, Tn + Tu, t—u)du
0
t

+ buu (@' + Y1) 24 (o4 P02

/ g e_ 4a2 (t—u) du7
2a/7(t —u) t—u)) (t—u)

0

/

¢
Gie(z,t) = /Gxnglyg(z" + b?u,:cn, bn?u,t — u)du,

b'u bou

gl,s(wl + ?733117 ?a t)

t
4 b
= 4a2a%/d7—1 / Fl(x, - 77/ + ?u’xnat - Tl)annr(nlvnn + nTu,Tl) dn/
0

=0
Rn—1

t 1 (@ —77+b u) +x bpu n/2+(bn?u)2

2 By Y
= —2a2/d7 / e 4a2(t—71) € e TR
1 1 T —\n_ n
(2a1/7(t —71))" (2a/77m1)" 11 7
0 Rn—1

22
1 —

4a2t

=——7—e€ 9,5=01 T'o(z,t) =T(z,t), ap = a.
(2aj\/77t)" J o(z,t) (@,1), ao
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1
Taking into account that r1 = ——w‘ , we find the function 71:
aq
. t
r=——[dr / Oy, 7)Ge (x’ —y,0,t— T)dy’,
S8 %]
Rn—l
where ,
/ 2 b bn,
Ge(2',0,t) = —2a° | 0y F(:c + —u, Tp + —u, t—u) du
g g n,=0
0

C o, (i)' (1)
= € B 402 (t—u) du.
/ (2aw/ﬁ(t—u))n(t—u)€ !

The fundamental solutions I';(x, t) of the heat equations (14), (15) satisfy the estimate [7]

22

1 T 842t

me J',j:O,l. (22)
t 2

‘afa;”rj(x,t)‘ < ¢y

For the function g; and Green’s function G . the following estimates hold [3]

b'u b 1 _afe?+qsu’
atka;nal“nglﬁ(:n/ + —, Zn, n’t)‘ = Cgm € ¢ ) (23)
2 2 A —
o _ae? | st
’@ 8x Gl’g(ﬂj,t)} S 096 Tnt kg m| (& t 4+ 010 n+2k+|m|—1 € 4t ’ (24)
t— 2 (2% + ¢5t?)
where ) )
2 bn 2 bn

N = 16622 +02) T 16022

the constants Cg - C1p do not depend on ¢, a = max(a,ay).

3 Estimates for the functions w(z,t)|;,—0 and zi(x,t)|s, =0

Consider the functions w(z,t), z1(x,t) on the plane x,, =0

w(x',0,t) Eag/dT / (', 17)Ge(2' =, xp, t — T)dY' |2, =0

2 b b
L
3
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2 "u by
aal/ / dy/ (v, 7 —u)0y F< —l—bu,bu,t—T) du = wy (2, t);
EaQg e

21 (2, 0,¢) 6&3/dT / (Y, 7)G1e (2" — Y ap, t — T)dY |2,—0
Rn—

—T

b'u b
/dT / y T dyl / 81’ngle x —y + — t—T—’U,)du’mnfo
5043
f Vu b,
= & /dT / dy/ / (I)(y/>T - u)axngl,s(lj — y' + 7“, 0, J,t — T)du = wg(:L‘,, t).
eas 5 €
Rn—1 0
(b
Lemma. Let 0 <e <egg, dip >0, ag >0, ag >0, ®(2/,t)eC, , (Rr), ae€(0,1).
02+Oé 1+a
Then the function w;(x’,t) €Cy (Rr) and satisfies the estimate

| ]2*“’<can (@ Bl i=12 (25)

where the constant C11 is independent on €.

Proof. To prove the lemma we must estimate the norm of the function w(z’,t) := wy(2/,t)
in Hélder space [7]

1+a
WIS = 3" (ko wlay, + [0S Z 2 Lwle) + Z Dol g s (26)
2k+|m/|<2 w,r=1
where @)
ulgy = sup  fu(@, ), [u)ls) = 1], + [, s
(x’,t)ERT
/ _ / a / _ /
[u]gf!)RT _ sup |u(a: 775/) %f 7t)| ’ [u]i %)T _ sup |u(ac >t) U(,f ’t1)| )

’ (@,),(+' )Ry |z’ — 2| ’ (@b),(z' +1)E Ry it — 1]

Therefore, we must obtain estimates for the Holder constants

aq (o) a1 ()
%[(Q) * atGE)|xn=0]RT, %[(@xl, * a:L‘MGENIn:O]RT)
041 (1+a

)
a[(q’xV*G Men=0ly g, vip=1...,n—1
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We shall make use of the following notations and estimates for the function

+71+TD‘

, ol+a k (1+37k) (@)
(I)(iL' ,t) eCy (RT): M1 = [6xyq)]t,RT , Mz = [‘I)x”]$’7RT;

108 &2/, 8)| < Mysqt 2 (27)
08 B2/ ) — OF (o' 1) < Mysr(tE—11) 5, <t (28)
@xu(x',t)—q)zy(z/, )|§M3|$ _Z|a7 k:()?l? v = 7"'7n_1' (29)
We estimate the Holder constants with respect to t. For that we represent the derivatives
Oyw, 82;4%“’7 v,u=1,...,n—1, in the form
2a aq /
Ow(a',t) p— dy Oy, 7 —u) — Oy, t —u)]
0 Rn—1
, o, by,
X 00y, I'(z' —y' + —u, —u,t — 7)du
e ¢
t
/ / / b/ bn /
+ [ du Oy, t —u)0y, (' —y + ~U ?u,t —u)dy' |; (30)
0 Rn—1
t
2
8£Hmyw($’,t :ajl /dT / dy// u ( —u) — @, (2,7 — u)]
0 0

b b,

X, 0, T (2 — ' + p? u,t — 7)du. (31)

For the definiteness we assume that t; <t and compose the differences

Ay = O (2!, t) — Oy w(a’ )

r ¥ooby,
dy// (', 7 —u) — Py, t —u)]0;0,, T(x —y + gu, ?u,t —7)du

dy’ /
t1

t
2
a a1</d7_ /
[0 %
t1 n—l
t1

+/d7'
0

t
(7 —u)— 0y, t1 — u)]du/@fzé)znf(.,h — 7)dty
t1

Rn—1

/ Dyt — u) — Bt — )], Tt — t1)dy

Rn—1

+/du

0
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t

t1 t
+/du / <I>(y',t—u)@xnf(-,t—u)dy’+/du / (D(y',tl—u)dy’/8t28xnf(-,t2—u)dt2>;
0 Rn—1 t1

t1 Rn—1

A _8323#5171, ( ) 8:)%#351, (x/7t1)

2a aq _ ;o o
o ( / dr / dy / (U7 — ) = Dy (21, 7 — )]0y, By Tyt — 7)el

t1 T t
—i—/dr / dy’ /[Q)yy (v, 7 —u) — @y, (2,7 — u)}du/(?m@%@xnl“(.,tg — T)dt2>.
0 Rn—1 0 t1

First, we estimate A;. Applying the estimate (22) for the function I and the estimates
(27), (28) for the function ®, we shall have

t T 1+ I b2 bnus2
]\41 t—7) 2 @ -y )+ ()
|A] < Cra— dr %du e 8a?(t—7) dy’
3 t—7) 2
t1 0 ( ) Rn—1
roor (th —7)2" |y b2
+/dt2/d7/ —— 5 du / e 8a(iz—n) dy’
2
t1 0 0 ) Rn—
14+a t1 /b w2, bpus2 t 1o blun2,  brun2
(t—tl)T [y b2 (20t @ -y )+ ()
7 [ du sa(t=t1) dy' + n+1 e Ba¥(t-w) dy’
t—t1) 2
( ]-) 0 t1 Rnfl
t t
; (t, — u)lT“ @y b2y (bany?
+ [ dty | ——T55du e 8aZ(t3—u) dy' ).
to —u) 2
t1 0 ( 2 ) Rn—1
Integrating over 3/, we obtain
t T
M, 1 e
A1 < Ci3— ———————dr [ e 8FF0-ndy
€ (t—71) 2
t1 0
t t1 1t T t1
tl — T ; 71322 2 —1 7”2 ?
+ [ dts e 8a2e(t2—7) dy + (t—tl) 2 e 8aZe(t—t1)
(tg —7)3
t1 0 0
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t
b2 u2

_ L \1+5 b2 W2 _
_i_/(t(u));e 8a2e2(t—u) 2(t w) du+/dt2/ tlt ’LL 2 e " 8a 52(t2 u)du>
t—u)2 (t2 — u)?

51

We integrate the first three integrals over wu, for this in the first integral we make change
bpu

V8asvt — T
and estimate them by Poisson integral; we make use of the inequality t; — 7 < to — 7 in the
second, (t —u)'"2 < t(t —t;)2 and extend the integration domain up to the interval (0,t)
in the fourth, t; —u < Vts —u, (t; — u)% < t2 and extend the domain of integration over
u from (0,t1) to (0,t2) in the last integrals, then we obtain

= (, in the second and the third integrals we introduce similar substitutions,

Ml @ a ! b%u2
|A1| §014(E(t_t1)2 t_tl 2/ e T 8a2e2(t—u) 2(t u)du
€ t—u
0
t . to b2 2
+/t§dt2/ e L) du>
tg — u
t1 0

Applying the estimate for the integral [2]

t 1 b2 2
/368(1 oy du < 015 (32)
(t—u)?
we shall have
Bl 1) — By w(a’ t1)] == |Ar| < CreMy(t — )%, [Ow]i%, < CigMi.  (33)
Now we evaluate the difference Ay with the help of the inequality (22) for the function I'

and estimate (29) for the function ®

M / 7 | / /|O! (:c’—y’-&-bliu)Q_‘_(bni”)?
r — — £ 5
|Ag] < C'17</d7'/du / 73’%26 82 (=) &y
€ (t—7)2

t1 0 Rn—1

t T 11 b N2, bnus2
o oyl e
+/dt2/d7’/du / ( )n+4€ 8a?(tg—T) dy X
g to —7) 2

€% < Cue™€2, a >0, (34)
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and integrate over v/, u, then over 7 and ¢

t

M- 1 Ul
|Ag| < Clsd</MdT e St du
(t—71) 2

t1
t t1 T b%uQ
+/dt2/ — /e_Sazei(th) du>
tz — 7’ 2
t1 0 0

t1

t t
< 019M3</ 1 —_— -l-/dtQ/ > < CgoMg(t—tl)%.
—T 2 / tg —T -3

t1 t1
Thus,

02 4 w(a! 6 =02, w(@ 1)] = [Aa] < CooMa(t—11)%, (02, w(a’, )]\ %) < CooMs. (35)

1ta
To estimate the Holder constant [(%cuw]i R2T) we represent the derivative 0, w, v =
1,...,n—1, in the form
t T
2
Op,w(x' ) = Z U </d7’ / dy’/[@yy(y’,r —u) — Py, (v, t —u)]
e
° N Rn—1 0
b b t t—u
X0y, (2 — vy + —u %u t—7) du—l—/du / Dy, (v, t —u)dy' / 8an(-,T)dT), (36)
0 Rn—1 0

compose the difference
Ag = 0y w(a' t) — Oy, w(a 1)

2 bu by,
”1( / dr / ay / " @, (), T o+ P

EQg

t . t
+/dT / a /[(I)y” (W', m =) = Py (v t1 — “)]du/atzaxnf(‘, to — 7)dts
0 Rn—l 0

t1

t t—u

+/du / ‘Pyu(y’,t—U)dy’/6%1“(-,7)617
0

t1 Rn—1
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t1 t—t1
+/du / [@y, (Yt —u) — Dy, (v, 11 — u)]dy’ / 0, L(-, 7)dT
0 Rn—1 0

t t1
—|—/d7’ / dy’/%u(y’,tl — )0y, (-, 7 — u)du)
t1 Rn—1 0

and estimate it using the estimate (22) for the function I', the estimates (27), (28) for function
®. Integrating the first over 3/, we shall have

My [ d [
T __n®%
|As] < 0212</1a/6 8a2e2(t=7)
5 (t_r) )
t1 0

t t1 t _7— % T _ﬂ . tful 2.2

+/dt2/ G /e 8“282<t27>du+/ (t —u) 2du/ e 8a227 dr
2 — 7’
t1 0 t1 0

t—t1 t1
dr t1 —u) 3 T—u)% L
+(t—t1 / /e 8a ezrdu—i—/d’]'/ 3 e 8a 2:2(r— u)du>
A (1 —u)?

In the first, in the second and the fourth integrals we integrate over u and apply the
inequality t7 — 7 < to — 7 in the second integral. In the third integral we make use of
the inequality (¢t — u)% < (t —t1)2 and in the integral upper limit over 7 the inequality
t —u <t —t1. In the last integral we apply the inequalities t; —u < t; < 7, V7 —u < T,
extend the integration domain over u from (0,¢;) to (0,7). Then we obtain

- t
M- o dr b2 u2
’A3|S0222<(t_t1) t—t12//e 8a22 du
€ T
0 t1
t T
b%u2
+/ 1+ad7/1368a252(7u)du>‘
(T —u)2
t1 0

Integrating further over u and 7, estimating in the last term the integral over u with the
help of the inequality (32), we shall have

(5%)

lﬁzyw(m’,t) @cuw(x t1)| |A3| < 023M2(t — tl) , [axyw]tg < Co3Ms. (37)
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In the formulas (30), (31) in the integral over y’ we carry out the change of the variable

y — b—“’ =g, then the derivatives dyw, 8§M%w, v,u=1,...,n— 1, may be written as
2 b
Ow(a' t) = aal(/dT/dy/ y—i——UT—u) b (y’ —|——ut—u)]
[S(0%:]
b / v b
X 00y, (2" — o/, Lu, t—7)du + /du / Sy + —u,t —u)0,, D(x — v, Lu, t— u)dy’);
€ € €
Rn—1

EQsg

t
2 b
02 t) = =200 [ g / @y / T R N R )
0

X0y, 0, L2’ — o/, bnTu,t — 7)du.

We compose the differences of these derivatives, denoting r = |2/ — 2|,

Ay = Oww(2't) — O (2 t) (38)
2 v
aa /dT / dy/ y—l——r—u) @(y’—i——u,t—u)]
EQg e
f—2'|<2r

by by
x (atamnrw Y, T) = 00, Dy T T))du

t T
b 4
+/d7' / dy’/[@(y’—i—Eu,r—u)—tﬁ(y/—i-gu,t—u)]
0 |y —2'|>2r 0
/ / / bpu
/at ZiZn _y +>\(1' _Z)’T,t_T)d)\du

/ , bhu

¢
+/du / O (y ertu)(a F(az'y,g,tu)8ZnF(z/y,€,tu)>dy’
0 |y—a|<2r
t /
+/du / @(y’—i—b—u,t—u)
0 |y—s|>2r :
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n—1

X Z:(:UZ —2) [ 0,0, T(Z —y + X' —2), bn—u,t —u)d\dy' |;
=1 <
Ag = (ﬁuxuw(aﬁl, t) — afuzyw(z’, t) (39)

T

2 ! :
_ _2a Oél /d’T / dy//[(byy(y/—l_T’T_u)_(pxy(:r/—l_bE;UJ’T_U):I

[0 %
0 |y-zl<zr 0
, , bpu
X0, Op, I'(z" — ’T’t_T)du
/ [ Y Y b
o [ [ - e T )0, 0, - o P e

0 ly'—z'|<2r 0

T

+/td7 / dy’/[ yu(y+iT—U) ‘I’xu(ﬂf+b;7_“)]
0

ly' —z'|>2r 0

by
XZ —zZ/ZZHaanz—y —l—)\(a:—z)Tu,t—T)d)\du

t T
4 4
+/d7/[q>zy(x’+ g,f—u) — @, (2 + ?u,T—u)]du
0 0

bnu
,7 %’t - T)dy, .

X / 0y, 02, T (2 —
|y’ —z'|>2r
We evaluate the difference A4. We apply the inequalities (22) for the function I'" and
(27), (28) for the function ®; when integrating over 3’ we pass to the spherical coordinates
assuming p = |2/ — ¢/| in the first and fourth integrals, p = |2’ — ¢/| in the second and fifth
integrals, p = |2/ —y' + A\(a’ — 2/)| in the third and last integrals, then we shall have

3r 2r bnu )2

o P2+ (
| A4l <C247 </ /> " de/ )n+2 adT/ TSI du
0
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0 L T 2, bpuy2
1 _PTH(2)
+T/pn_2dp/md7/€ 8a2(t—) du
(t—7) 2
T 0 0

3r 2r o)

_p2+(b"Tu)2 ! 1 _p2-&-(b”T“)2
</ /> n— 2dp/ niae 8a2 (t—u) dU"‘T/pnzdp/me 8a2(t—u)
(t—u) =z (t—u) 2
T 0
We integrate the first two integrals over w, then when integrating over 7 we make
o
8a2(t — 1)
Cae /2 a >0 (34), then we obtain

the change = ¢% in the last two integrals we apply the inequality |¢ |°‘e‘52 <

3r 2r
M
| Ay SC’25?1 (/ /> o ldp/ e ds
+ar/pa2dp/<”1o‘e<2d<
r 0

([ [y o) [y =)

In the integral over u we use the inequality ¢t — u < ¢ and the estimate (32), then after
integration we shall have

Ou(a’ 1) — B (2, )] = |Au| < Capbhi]a’ — 1%, [0w]( . < CasM. (40)

Now we evaluate the difference Aj using the inequality (22) for the function I' and estimate
(29) for the function ®. The first two integrals in Aj are estimated as the first two ones in Ay;
in the third integral when integrating over 1/ we pass to the spherical coordinates assuming
p=12"—y + Xz’ — 2|, and make use of the inequality |z’ — y/|* < Cor(p® + r*) < 2C7p%,
r < p. In the last integral, denoting it by I4, if n > 3 we apply the formula

0y, 0., T (2" —f, b"?u t—T1)dy = / 9., T (2 =, b"Tu t —7)cos (7, yu)dSy,

ly/—2'|>2r ly' =2 |=2r

where 7i is the normal to the sphere |y — 2’| = 2r, then we shall have

t
|14] < CQgJ\ZSTQ/dT/dU ‘ / 0., Tz -, b ,t —T)cos(7, y,,)dSy

ly'—'|=2r
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Thus, we obtain

Y t 3r 2r T 1 , +<bnu)2

|As| < Cag—> /d7—</+/>pn_2+adp/n+2€ sa?(t=1) du
c =
0 0 0 0 (t T) :

t
n—2+a ar24(fnuy2

/ 1 PP (bat? o
+r [dr [ pn2 Ty | ———¢ 82 du+ [ dr | ———¢ 821 du
n+3 nt1
J 4 (t—7) 2 4 / (t—7)2

Further we integrate As over u, 7 and p

3r 2r t 5

pi
|As| < C30Ms </+/)p”‘2+o‘d / n+1€ 8a26-7) dr
(t—71)2
0 0

0

o) t 2 t 2

+r / P dp / ey g e / e ETETdr
(

t—T)z t—T
T 0 0

3r 2 oo
< Cs1 (/ /) > ldp/ 2e_§2d§+r/p°‘_2dp/§”_le_g2dg
T 0
o0
+ra/§"3e<2dg < Cyo M|z’ — 2'|°.
0

For n = 2 the last integral I, is equal to zero.
Therefore, we have obtained the required estimate for the difference (39)

02 4w t) — 02 w(Z )] == |As| < CxaMsla' — 2'[*, (02, 0] < CaaMs.

We evaluate the modulus of the function w(z’,t)

@y )2 (bn )2

|w(a/, t|<C’33/dT/dy/ ; 8a?(t—7) du

b2 2
¢ 522 duy < Oy M1+ .

IN
&
o|R
—
=13
gk
Q.
O\ﬂ

(41)

(42)
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The modules of derivatives dyw, 8§M%w, Oy,w, v, =1,...,n — 1, defined by formulas
(30), (31), (36), are evaluated in the same way, then we shall have the estimates

|6tw(x’,t)\ < 036M1t%, ’82 w(x’,t)| < 037M3t%, |axyw(l'l,t)| < ngMth—Ta. (43)

TuTy

Thus, we have estimated all the terms of the norm (26) of the function w(2/,t), all
constants in the obtained estimates do not depend on e.

Gathering the estimates (42), (43), (33), (35), (37), (40), (41), we obtain an inequality
(25) for the function w(a/,t) := wq(2’,t). The estimate for wy (2, t) is established in the same
way as for wy(2/,t), for this we make use of the inequalities (27)—(29) for the function ® and
/

b'u bru
the estimate (23) for the function g; . (J:’ + — L t)

4 Proofs of Theorem 3 and Theorem 1

Proof of Theorem 3. The functions w(z,t), z1(z,t) satisfy the heat equations (14),

(15) and, moreover, in accordance with Lemma and the estimate (25) on the plane x,, = 0 the
02+a,1+<
functions w(z, t)|z,—0 = w1(2/,t), z1(x,t)]s,—0 = w2(a’, t) belong to the space C,. ’ (R7)

and for them the estimates hold
w (@, )]s, ol ™ < C3ol@(@, )%, J21(,)|mpolfer ) < Cuol@(@', )], (44)

with constants Csg, Cy9 independent on the small parameter €.

The functions w(x,t), z1(x,t) may be considered as solutions of the first boundary-value

problems for the equations (14), (15) in Dy with the trace on the plane z,, = 0 from the space
o 2+a, 1+2 o 2+a, 1+2
Cy (Rr), but then the functions w(z,t), z1(z,t) belong to the space ¢, , =~ (Dir)

and due to (44) satisfy the estimate [7]

w(z, )55 < fw(, t)]a,—olGr ™ < Ol 6)| 5,

(45)
21, O[5 < L1 (@, O)lemolfr ™ < Canl@(@, 0)|3, ",
where the constants C41, C42 do not depend on .
1
From the formula r; = w’ o, and the estimate (44) it follows that the function
«
° 2%1—04 1+< 5
r1(2’,t) belongs to the space C, (Rr) and satisfies the estimate
C
|um_$uwwm (46)
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From the boundary condition (18) we obtain that the time derivatives sf)tw(x,t)}x o’

° 1+a 1+a
edyr1 (2, t) belong to the space Oy t (RT) and satisfy the estimate

le0pw| G + |edm| ) < Cusl@ (!, )]G, (47)

where the constant Cy3 does not depend on &.
Gathering estimates (45)—(47) for functions w(zx,t), 21(x,t), r1 (2, t) and time derivatives

edww(x, t)!x _g» €01 (2, t) we derive the required inequality (20). Theorem 3 is proved.

Proof of Theorem 1. Remembering the change formulas (13) and applying the inequalities
(10), (11), the estimate (19) for the function ®(a’,t), due to Theorem 3 and the estimate
(20), we obtain the inequality (6) and the proof of Theorem 1.

o 2+a, 1+“
Corollary 1. The problem (1)- (5) with € = 0 has a unique solution v €C, ,  (Dir),
o2+a,1+5 o2+a,1+5
ui €C, + (Dir), meC,  (Rr), and it satisfies the estimate

2+ (2+1) 2+l (2+ (1+
05 [ |5 - ) < O <|f|D1T+|f1|DlT+Z|wJ| )+ sl C“)). (48)
j=1

5 Construction of a solution to the model problem II. Proof of Theorem 2

We construct the auxiliary functions Uj(z,t), j = 1,2, V(x,t) as solutions of the first
boundary value problems

8tUj — CL%AU]' = fj(l’,t) in D1T7

. 49
Uj‘t:O = qu<1') m Dj, Uj‘xn:() = ¢j_1(a}/,t) on RT. ( )
oV —a’AV = f(x,t) in Dp, (50)
V‘t:O =uwvp(z) in Dy, V‘xn:() =o(2';t) on Ryp.
o 2-‘1-04,14-% _
The problems (49), (50) have unique solutions V(z,t) €C, (D17),
02+a,1+%
Uj(xz,t) eC, ’ (Djr), j =1,2, which satisfy the inequalities [7]
155 < Cas (165150, + il ™), (51)
24« 24«

VIS < Cas (17150, + lalier®)). (52)

In the equations and conditions of the problem (7) we make the substitution
U(aj?t) = V(l‘,t) —|—a2r2+w(a:,t), u]‘(l‘,t) = Uj(xat) +ﬁj+lr2+zj($vt)a (53)
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where w(z,t), zj(z,t) j=1,2, are new unknown functions, we obtain
Ow—a?Aw=0 in Dir, (54)
Orzj — aJQ.Azj =0 in Djpr, j=1,2, (55)
w|,_,=0 in Di, z|,_,=0 in Dj, j=1,2, ry,_,=0 on R,  (56)
w‘xnzo + agry =0, Zl‘xn:O + Barg = 0, 22‘:1:”:0 +psra =0 on Rr, (57)
A0y, 21 — A0y, 29 + 320ym2 + dyV'Trg = U(2/t) on Ry, (58)

where
o l+a, 1+a

U(x, 1) = a2’ 1) — (Alaanl - A28$nU2) 0 €C 1 (Rr)

and the following estimate is fulfilled

]G5 < Car (sl 4, + Z 155 (59)

Theorem 4. Let 3; >0, j=2,3, 0< 3 < .

o l4a,te
For every function W(x',t) €C, tz (Rr), a € (0,1), the problem (54)-(58) has a
0 2+4a,1+9 0241144 0240, 1+9
unique solution w €C, , ~ (Dir), 2z €C,  (Djr), =12, meCy  (Rr),

o 1+0¢ 1~ga
#Oiro €Cy 4 (Rr), and it satisfies the estimate

2a 2a 2a 14+
] Gt +Z|zg| | ST 4 e < Cus| W, 1) G, (60)

where the constant Cyg does not depend on .

Proof. To the problem (54)—(58) we apply Laplace transform with respect to the variable
t and Fourier transform with respect to 2’. From the equations (54), (55) and the initial
conditions (56) of the problem we find the solution in the domain of images of Laplace and
Fourier transforms

W = Ae Fon, Z = Aje M o> 0, Zy = Agef?™ 1, <0, (61)

where

1 1
k==\p+a®s?, k;j= —\/p+a; 252§ =1,2,
a

aj
and A = A(s',p), A; = A;(s',p), j = 1,2, are unknown coefficients, which are determined
from the boundary conditions on the hyperplane x, = 0.
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The boundary conditions (57)—(58) in the image domain of Laplace and Fourier transforms

have the form
A = —qoTy, Ay = —fofa, As=—[372 on Rrp,

—AMk1A1 — Noko Aoy + (%p + idgsl)fg = @(S/,p).
From these conditions we find the functions 72, A, A;, j=1,2,

\ij( ) A= _2 ‘il(slup)v A] = _Bjiz-_ll \i/(S/,p), j = 1)2>

1
T9 = T

where .
1 2 .C

G=p+ Pk + By 1S, = MBay pa =B, d=d
yaa a4 yal

Re(1 > C > 0, if the conditions of the theorem §; > 0, j = 2,3, are fulfilled. Due to this
1
condition we can represent a as an integral (21), in which ¢ := (j.

Substituting the functions A, A; into (61) and applying the representation a as an
1

integral, we write the solution of the problem in the image domain of Laplace and Fourier

transforms in the form

50
5= 5J+1 T / ~Gokylanl gy 1 2,
0
0 o0
Py = i U(s, )/e—@”da, W= 7% \j(s',p)/e—cla—md(,_
0

0
With the help of inverse Laplace and Fourier transforms we obtain the solution to the
(58) in the explicit form. First, we find the functions zi(z,t), z2(z,t)

problem (54) -

t
zj(x,t) = —Bj—; /dT / \I/(y’,T)Gj(:c' —y o, t—7)dy, j=1,2, (62)
1

where
(1) / 0u i (&' + < eal, 1t = u)ida (63)

t
cu U cu 11U
gl(x'—i—;,xn,;, )—4a1a2/dﬁ / Iy(2 +——?7, n+M u, t— 1)
Rnfl
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2U
X0, To(n', 0 + %,n) dn’

=0

/
(@ + G2 1)+ (an+H12)2

—2a? /dﬁ / e 4a3 (t=71)
! 2@1 t—’l‘l))

0 Rn—1

2+ (F20)?

T 4424 /
e 271 dny, x, >0,

pau

x (20,2./71’7’1)nT1

»

N

t
cu U cu u
go(a' + —, —xp,, —, )—4a1a2/dﬁ / I‘g(x’—i—; —n’,% — Tt —
0

Rn—1

U
xannfl( % — Ny T1) dn’

Nn=0

/
@+ ')+ (2 —wn)?

t
1 =
= 2a2/d7' / e 4a2(t—7—1)
2 / ! (2@2 w(t — Tl))n

Rn—1

11U Gt ok

X x
(2@11 /7771)”71

Ij(z,t), j =1,2, is a fundamental solution to the heat equation (55).

4&% T

dn', T, <0,

Taking into account that ro = — zl} ZQ‘m _o’ then

- 1
By en=0 B3

t
1
= /dT / \Il(y',T)Gj(x/—y’,O,t—T)dyl
0 Rn—1

t—1

t
1 /
/dT/ (v, 7)dy /8xngaw—y+ L0, L t—r—wdu
x %4
0

n—l

Now we find the function w(z,t)

t
wlet)==2 [ar [ W )G’ oot = )y
0 Rn—1

(64)

(65)

(67)
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where .
/
() = /azng?)(m' + Y w)du, (68)
» »
0
cu U cu U
93(x, + — Tn, 77t) - _2a2/d7—2 / F(ﬁlawn77-2)aﬁgl(x/ +— = 77]/7 f]na 77t - 7—2) _ dﬁ/
> » » » fin=0
Rn—l

7I+x /

t
= —2d2(d 0.9 LT iy =t dif, x, >0, (69
a/TZ/ 2@\/772) ngL (@' T, )| di (69)
0 Rn—1

I'(z,t) is a fundamental solution to the heat equation (54).

The functions I'g(z,t) = T'(z,t), T'i(x,t), Ta(x,t) satisfy the estimate (22), where
j=0,1,2.

For the constructed functions g;, Gj, j = 1,2, defined by formulas (64), (65), (63), and
functions g3, G3, defined by formulas (68), (69), the following inequalities hold

du U 1 _afe?+agu® .
O O, g5 (2 + ,xm,t)’ < Cao—rzmamris © T, j=1,2,3, (70)
V74 ” S B
. 1 afs?
OFO Gy (,0)| < Coo gy €
tz
1 _ajz’+a3t? ,
+C51 nt2k+|m|—1 € 4t ) J= 17 2a 3’ (71)
(gfa? +q5t2)~ 2
where ) )
4 = - B=—ts
VU6a (2 2+ pd) P 16a%s2)

the constants Cyg - C51 do not depend on s, p = min(u1, p2), a = maz(ay,as) for functions
gj, Gj, j=1,2, a=max(a,ar,az) for functions g3, Gs.
Inequalities (70), (71) for functions g;, Gj, j = 1,2, were proved in [2]. The estimates

for functions g, G are established in the same way.
o l+a, 1+O‘
For the norms of the function ¥ (z', t) GC t (Rr) we introduce the following notation

(1+o¢ k) N (a)

MkJrl [8 ‘I/]tRT , Mz = [\I/mu]gc/,RT

and estimates
1+a—k

|05, (2, 1)] < Myyrt (72)
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0 (! 1) — OF U2/ ty)| < Myppa(t—t1) 2, b <t (73)
W, (2, t) — U, (2, t)] < Ms|a' —2'|% k=01, v=1,...,n—1. (74)

Theorem 4 is proved as Theorem 2 and the estimate (60) is established as the estimate
(20), using the inequalities (72)—(74) for the function ¥ and estimates (70), (71) for functions
9j, G]7 .] = 1>273'

Proof of Theorem 2. Remembering the change formulas (53) and applying the inequalities
02+a,1+& o 2+a,1+5
(51), (52) for functions Uj(z,t) €C, ’ (Djr), j=1,2, V(z,t) GC . (D1ir), the
estimate (59) for the function ¥(z/,t), due to Theorem 4 and the estimate (60), we obtain
the estimate (8) and the proof of Theorem 2.
02+a,1+< 5

Corollary 2. The problem (7) with s = 0 has a unique solution v €C, , ~ (Dir),

o 2+a,1+% o 2+a, 1+
uj €C, +  (Dyjr), =12, meC,  (Rr), and it satisfies the estimate

2 o 2 a 2 a 24« 1 «
o] 2+) +Z| w2 +{ral 2 <csz(|f|D1T+Z|f]|DT+Zw* sl ) (75)
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Capcekeesa A.C. ITAPABOJIAJIBIK TEHJAEVJIEP YKYMECI YIIIH KIIII ITAPA-
METPI BAP MOJAEJIBI EPKIH IITEKAPAJIBI ECEIITEP

[IekapaJiblK, MAPTHIHJIA Killll apamMerpi 6ap exi mouenbii ecern seprresineni. Omap exi
epKiH meKapachl 6ap mapabosaJibIK TEHIEYJIep YKYiecl VI ChI3BIKTBIK, eMeC €CeIITi IIeNryae
maiiga 6osanel. eabaep KeHICTITiHIE OCBI ecenTep IeNmiMaepiHin Kimi mapamerp OofibIHIIA
OipKaJIBIITEl Oarajayiapbl aJIbIHFaH.

Kinrrix ceznep. [lapabonaibik TeHaeyep xKyiteaepi, mekapasblK MapTTarbl Kirri mapa-
MeTp, aliKbIH TYPeri mremntiM, OipKaJIbIThl Darasiayiap, lerbaep KeHicTiri.

Capcexeesa A.C. MOJEJILHBIE 3AJIAUM CO CBOBOJIHBIMU T'PAHUIIAMU C
MAJIBIM TTAPAMETPOM JIJIST CUCTEMBI TTAPABOJIMYECKUX YPABHEHMNIT

N3y4ens! iBe MOJAEIbHBIE 331091 C MaJIbIM ITapaMeTpoM B I'paHndHOM yciaoBun. OHE BO3-
HUKAIOT IPU PEIIeHNH HeJMHEWHBIX 3371a49 C ABYyMsi CBOOOIHBIMU TDAHUIIAMU JJIsi CHCTEMBbI
mapabonvdeckux ypasHeHuit. B mpocrpamcrse 'esibiepa ycTaHOBIEHBI pABHOMEPHBIE OTHOCH-
TEJIbHO MAJIOrO TapaMeTpa OIEHKU PEIeHUs 3TUX 3a1a4.

Kurouesnre cioBa. CucreMbl apabOINIecKX YpaBHEHU, MaJIbIi TapaMeTp B IPAaHITHOM
YCJIOBUH, pellleHne B sIBHOM BHUJIe, PABHOMEPHBIE OIIEHKHU, IPOCTPAHCTBO ['enbaepa.
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Abstract. We consider an eigenvalue problem for a second-order differential equation with a loaded
term that contains value of derivative of the desired function at zero, with regular, but not strong
regular boundary value conditions. We study the basis properties of systems of eigenfunctions of the
loaded operator of multiple differentiation, with antiperiodic boundary value conditions. It is known that
the system of eigenfunctions of an operator defined by formally self-adjoint differential expression with
arbitrary self-adjoint boundary value conditions, providing a discrete spectrum, forms an orthonormal
basis. Along with this, it is known, that in the case of non-self-adjoint ordinary differential operators, the
basis properties of systems of root functions, in addition to boundary conditions, can also be influenced
by coefficients of the differential operator. Moreover, the basis properties of root functions can change
even at whatever pleasing small change in values of the coefficients. V.A. Il'in first noted this result in
his work. A.S. Makin developed the ideas of V.A. Il'in in the case of non-self-adjoint perturbation of a
self-adjoint periodic problem. In the work of A.S. Makin the operator changes due to perturbation of
one of the boundary value conditions.

In this paper, the considered operator is a non-self-adjoint perturbation of the self-adjoint antiperiodic
problem. In contrast to the work of A.S. Makin, here the perturbation occurs due to a change in
the equation; and the boundary value conditions are antiperiodic. Characteristic determinant of the
considered spectral problem is constructed, which is an entire analytical function. Theorems on stability

and instability of the basis property of systems of eigenfunctions are proved.

Keywords. Characteristic determinant, Riesz basis, loaded operator, antiperiodic boundary value con-

ditions, regular, not strong regular, perturbation.

1. Introduction

In the case of non-self-adjoint ordinary differential operators, in addition to the boundary
value conditions, values of coefficients of the differential operator also influence to the basis

2010 Mathematics Subject Classification: Primary 34B05, 341.10; Secondary 34B09.
© 2020 Kazakh Mathematical Journal. All right reserved.
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properties of systems of root functions. Knowing this fact, the basis properties of root
functions can change with a small change in the values of coefficients. V.A. II'in first noted
this result in his work [1]. A.S. Makin developed the ideas of V.A. I'in in the case of a
non-self-adjoint perturbation of a self-adjoint periodic problem, where operator changes due
to the perturbation of one of the boundary conditions [2].

In this paper, we consider another variant of perturbation of the self-adjoint problem, in
particular, the spectral problem of the following form in the space L2(0,1) :

Lu= —u" + q(z) -4/ (0) = Mu(z),0 <z < 1, (1)
Up(u) = u(0) +u(1) = 0,Us(u) = u/(0) + /(1) = 0, (2)

where ¢(x) € L1(0,1).

Equations of the type (1) belong to the class of loaded differential equations, since the
second term on the left-hand side of the equality (1) contains the value of derivative of the
desired function at zero. The considered problem (1)—(2) is a non-self-adjoint perturbation
of antiperiodic problem, and for a periodic problem they were studied in [3,4]. In contrast
to [2], here the perturbation occurs due to a change in the equation.

Questions of the basis property of root functions of loaded differential operators were
studied in the works of I.S. Lomov [5,6]. He managed to extend the method of spectral de-
compositions of V.A.Il'in [1] to the case of loaded differential operators. By another method,
the basis properties of functional differential equations were studied in [7]. Earlier, other ap-
proaches to the study of the Samarsky-Ionkin type problems were published in our works [8,9].

2. Characteristic determinant of a spectral problem

Assuming u/(0) as some independent constant, we see that the general solution of the equation
(1) is representable in the form

u(x) = C1 cos VAz 4 Co

x
sin vz —sinvV\(z —
(o) [a@EAE =g 3
VA VA
Therefore, first considering # = 0, and then satisfying (3) the boundary value condition

(2), we get the system of the equations, which can be represented in the vector-matrix form
as follows:

0 ~1 1 |
sin V' A 1 C 0
l1+cosvVA —- L O)sinvVA(1 - ¢ !
o wJ© ey | =lo|. @
1 '(0 0
—VAsinVA 1+cosA  — [q(¢)cos V(1 — ¢)d¢ w(0)
L 0 i
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We directly obtain the characteristic determinant A(\) from (4):

1
A(N) = 2(1 + cos V) — (14 cos V) - /q(()cos VA1 = ¢)d¢
0

1
—I—Sin\f/ )sin VA(1 — ¢)d¢ (5)
0

In the case when ¢g(z) = 0, we get characteristic determinant of the antiperiodic spectral
problem:
Lou = —u"(z) = \u(z), 0<z<l, (6)
u'(0) + /(1) =0, u(0) + u(1) =0, (7)
Ag(A\) = 2(1 + cos V). Numbers \) = ((2k — 1)),k = 1,2,3,..., are double eigenvalues,

moreover

up, = V2cos((2k — 1)), up, = V2sin((2k — 1)mz)

are corresponding eigenfunctions, which form the complete orthonormal system in Lo (0, 1).
Function ¢(x) can be represented in the form of expansion in a Fourier series by the
trigonometric system {u)) , uj } :

o0

q(x) = Z[akcos(@k‘ — D)mz) + bgsin((2k — 1)7x)]. (8)
k=1

Then, after calculating the integrals from (5), we have

A = Ao(A) - A,

where

i +zbk T o)

We formulate the result as the following theorem.

Theorem 1. Characteristic determinant of the spectral problem for the loaded second-order
differential equation with antiperiodic boundary conditions (1)—(2) can be represented in the
form (9), where Ag(\) is the characteristic determinant of the antiperiodic spectral problem
of multiple differentiation (6)-(7); by are Fourier coefficients of the expansion (8) of the
functions q(x) by the trigonometric system of eigenfunctions of the spectral problem (6)—(7).
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Remark 1. The function A()\) from (9) has poles of the second order at the points X = A2,
but the function Ag(\) has zeros of the second order at the same points. Therefore, the
function A(X), represented by the formula (9), is an entire analytic function of the variable

A

3. The case of the basis property of root functions
The characteristic determinant (9) looks simpler when
N
Z [agcos((2k — 1)mx) + bsin((2k — 1)7x)).
k=1

That is, there exists a number N such that ap = by = 0 for all & > N. In this case,
formula (9) takes the form

Ar(N) = 1+Zbk 2]‘;;_1)1) B (10)

From this particular case of formula (9), we have the following corollary.

Corollary 1. For any preassigned numbers (a complex X\ and a positive integer m) there al-
ways exists a function q(x) such that A will be an eigenvalue of problem (1) - (2) of multiplicity
m.

From the analysis of formula (10) it is easy to see that A(A?) = 0 for all K > N. That
is, all eigenvalues \?, k > N, of the unperturbed antiperiodic problem are the eigenvalues
of the spectral problem (1)—(2). It is also not difficult to show that the multiplicity of the
eigenvalues A\?, k > N, is also preserved. Moreover, from the condition of orthogonality of
the trigonometric system it follows that in this case:

1
@l —0 -
/q( ugi(r)dz =0, j=0,1, k> N.
0

Thus, the eigenfunctions uk (x) of the antiperiodic problem when k > N satisfy the
boundary value conditions (2) and therefore, they are eigenfunctions of the spectral problem
(1) - (2). Hence, in this case the system of eigenfunctions of (1)-(2) and the system of
eigenfunctions of the antiperiodic problem (an orthonormal basis) differ from each other only
in a finite number of the first members. Consequently, the system of eigenfunctions of (1)—(2)
also forms the Riesz basis in L2(0,1). The set of functions ¢(z), that can be represented as
a finite series (8), is dense in L1(0,1). Thus, we have proved the following result.
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Theorem 2. Let q(x) € L1(0,1). Then the system of eigenfunctions of the spectral problem
(1)-(2) forms Riesz basis in the space Lo(0,1), and is complete in L1(0,1).

4. Instability of the basis property

Now we show the absence of the basis properties of eigenfunctions system of the spectral
problem (1)—(2).

Theorem 3. The set of functions q(z) € L1(0,1), such that the system of eigenfunctions
of the spectral problem (1)—(2) does not form even a normal basis in L(0,1), is dense in
L1(0,1).

Proof. Let in (8) the coefficients by # 0 for all sufficiently large k. Then from (9) we note
that A = A} is a simple eigenvalue of the spectral problem (1)-(2). By direct calculation we
get that

ur = by - cos((2k — 1)m)z — ay, - sin((2k — 1)m)z

are eigenfunctions of (1)—(2), corresponding to A? = ((2k—1)7)2. Moreover, the eigenfunction
of the dual problem [10]:

L*(v) = =" (z) = Mv(z), 0<z<l,

1
Vi(v) ='(0) + /(1) =0, Va(v) =v(0) +v(1) = /q(x)u(x)dx, q(z) € L1(0,1),
0

corresponding to the eigenvalue A, is v} = ¢, - cos((2k — 1))x.
Since the eigenfunctions of the dual problems form a biorthogonal system, then we have
the equality of the scalar product (u},,vi) = 1. Hence, it is easy to obtain by = 2. Therefore,

2
W\ (11)

lakll - [lo&ll = /1 + 5,

Denote by oy (x) a partial sum of the Fourier series (8). It is obvious, that the set of functions,
which can be represented as the infinite series

q(z) = on(z) + Z [ar, cos((2k — 1)7x) + by sin((2k — 1)7z)] ,
k=N+1
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—k

— 2
where a; = 27F, b, = = k > N, is dense in L1(0,1). However, from (11) it follows that

for the corresponding eigenfunctions ¢(x) and for the corresponding eigenfunctions systems
of the direct and adjoint problems the following holds:
lim [Ju}] - [[vi]] = oo.
i [t - |
That is, the condition of uniform minimal property (see [11] and references in it) of the
system does not hold, and therefore, it does not form even a basis in L9(0, 1).
Since adjoint operators possess the Riesz basis property of the eigenfunction.

5. Conclusion

Results of this paper demonstrate stability of the basis property of eigenfunctions of a loaded
operator of multiple differentiation with antiperiodic boundary conditions that are regular
but not strongly regular [12-16].
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Nmanbaes H.C. AHTUITEPUOATHIK IIETTIK IIIAPTTAPMEH BEPLJI'EH EKIH-
I PETTI IMOOPEPEHIMAJIIBIK 2KYKTEJI'EH OITEPATOP/IBIH MEHIIIIKTI
OYHKIUAIAP YKYNECIHIH BABUCTIIITI

Perynsapimbl, 6ipak KymeiTiiMeren peryispJbl IMETTIK IapTTapMen OepijireH, KypaMbIHia
i3memiag QYHKIUSIIAH aJbIHFAH TYBIHIBIHBIH HOJI HYKTECIHIer MOHIMEH KAMTBIIFaH YKYKTe-
IeH KOCBLIFBIIIBI 0ap eKiHii perTi auddepeHnuaiblk TeHIey/I1H MEHIIKTI MOHIepiH 3epTTe-
yre apHaJIFaH ecell KAPacThIPbLIaIbl. AHTUIIEPUOATHIK, IIETTIK IapTTapMeH OeplireH eKiHIi
perTi auddepeHuaIgbK KYKTEINeH OllepaTopablH MEHIIIKTI (PyHKIAIap XKyilecinin 6a3u-
criiiri moceseci 3eprreseni. JuckperTi cClieKTpMeH KaMTaMaChl3 €TeTiH epKiH Typ/eri e3iHe-
©31 TYiiiH/eC MIEeTTIK mapTTapMeH KoHe o3iHe-031 TyiiiHgec popMaibbl quddepeHnnaIbK,
aMaJIMEH OepLIreH OIepaTOP/IbIH, MEHIMKTI DYHKIUIap XKYyHeciHin opToHOpMaJIaHTan 6a3uc
KYPaTBIHILIFEI Oesril xoit. OcbiMen Karap, o3iHe-e31 TyiliHgec eMec KapamaibiM auddepeH-
UAJIIBIK, OllepaTopsap YImH Je TyOip/ik pyHKIusaaapabH 0a3uCTiIr He MeTTiK IapTTap-
JaH 6esex muddepeHnuaiIblK, OIepaTOPIbIH, KoahuimenTepinin MoHIepPi j1e ocep eTeTiH/Ii-
ri 6enrini. By xkarmalina koadduimenTTep/lin MOHIEP] ITaMa/ibl FaHa e3represe TyOipJik
dyHKIMIAPABIH Oa3UCTLIIK KacueTTepine ocep ereai. MyHmail Hotuxke anram B.A. VibusHiH
JKYMBICBIHJIA aTajarad 6oarbia. B.A. VibunHiH uaeschl ©3iHe-031 TYHIHIEC MEPUOITHIK, €Cell
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VIIiH e3iHe-e31 TyiiHjiec eMec TOJAKbIThbLIFa arsl »Karnaiiga A.C. Makuauin enoeribie JaMbl-
TeuLabl. A.C. MakuHHIH >KYMBICBIHIA OIIEpaToOp LIETTIK INapTTapAblH OipeyiH TOJKLITKAHIA
e3repre’ OOJIATHIH.

Byn makanamgarbl KapacTBIPBLIBII OTHIPFAH OIEpATOp ©3iHe-031 TYHiHIeC aHTUIEPUOITHI
€CeITiH o3iHe-031 TYHIHIEC eMeC TOJKBITYbI 00JIBIT TabbLIabl. KapacThIPhLIbIIT OTBIPFaH KY-
MbicThIH A.C.MakuHHIH eHOeriHeri omepaTopiaH e3reneiri, Oy KyMbICTa TOJKBITY TeH-
JeyTe KOIe Il »KoHe MEeTTIK MapTTap/IblH aHTUIIEPUOITHLILIFBIHIA. KapacThIphLIbIT OThIPFaH
CIIEKTPAJIIBIK €eCeIITiH XapaKTepUCTUKAJBIK aHBIKTAYBINIBI KYPBLIFAH >KoHEe 0J1 OYTiH aHAIU-
TUKAJIBIK, DPYHKIUsT O0/IBIT TabbLIaabl. MeHikTi pyHKInsamap Kyiiecinin 6a3ucTiIiK Kacuer-
TePiHIH OPHBIKTBLIBIFBI, OPHBIKCHI3/IBIFBI TYPAJIbI TEOpEMAJIAp DI ICHTeH.

Kinrrix ce3mep. xapaKTepUCTUKAJBIK aHbIKTaybII, Prcc 6a3uCTiIir, »KyKTeJITreH ornepa-
TOp, AHTUIIEPUOJTHLIK IIETTIK MIapTTap, PeryjapJbl, Oipak KYIIEHTIIPeH PEeryJisipjibl eMec,
TOJIKBITBLIY.

Nnman6aes H.C. O BABUCHOCTU CUCTEM COBCTBEHHBIX OYHKIINI HATPY-
2KEHHOI'O JINOOPEPEHIIMAJIBHOTI'O OIIEPATOPA BTOPOT'O ITOPAIKA C AH-
TUITEPNOANYECKNMU KPAEBBIMU YCJIOBAMU

PaccmarpuBaerca 3amada Ha coOCcTBeHHBIE 3HadeHUsT audepeHInaaIbHOr0 YPaBHEHUsT
BTOPOT'O MOPSIJIKA C HAIPYKEHHBIM CJIATaeMbIM, COJEPXKAIIUM 3HAUEHHUE TPOU3BOJIHON OT HC-
KOMOI (DYHKIIMM B TOYKE HYJIb, C PEryJISPHBIMH, HO HEYCHJIEHHO PErYJISPHBIMU KPAEBBIMHU
yenoBusimu. Mcciemyercst BOpoc 0a3uCHOCTH CUCTeM COOCTBEHHBIX (DYHKIMI HAI'DY2KEHHOTO
ornepaTopa KparHOro aud@epeHnupoBanusa ¢ aHTHIEPUOIMICCKUMUA KPAEBBIMU yCJIOBUSIMU.
NzBecTHO, uTO cmcrema cOOCTBEHHBIX (DYHKIMI OlepaTopa, 3aJaHHOIO (POPMAaJIbHO CaMo-
COITPAZKEHHBIM ILH(b(bepeHL[HaﬂbeIM BhIpazKEHHEM, C IIPOMU3BOJIBHBIMU CaMOCOITPAZKEeHHBIMHA
KPaeBbIMU YCJIOBUSMU, 0OECIIEIUBAIOIUMEI JUCKPETHBIH CIIEKTD, 00pa3yeT OpTOHOPMUPOBaH-
welit 6asuc. Hapsay ¢ 9TuMm, u3BeCTHO, UTO B CIyUae HECAMOCOIPSAXKEHHBIX OOBIKHOBEHHBIX
nuddepeHnnaaIbHbIX OIEPATOPOB Ha OA3MCHOCTDL CHCTEM KOPHEBBIX (DYHKIIMH, TOMIMO Kpae-
BBIX YCJIOBUI, MOT'YT BJIMATH TaKkKe 3HaUeHUsl KO3 puimenTos quddepeHnnaabHOro onepa-
topa. [Ipu aTom 6a3ucHble CBOMCTBA KOPHEBBIX (DYHKIIUH MOI'YT U3MEHSITHCH JIayKe IIPU CKOJIb
YTOJHOM MaJIOM U3MEHEHUU 3HaUYeHUi KO3(PDUIUEHTOB. DTOT pe3yJibTaT BIIEPBbIE OTMEUYEH B
pabore B.A Unbuna. Unen B.A.Wnbuna 6butn passurel A.C.MakuHbIM Ha ciydail Hecamo-
COIIPSI?)KEHHOT'O BO3MYIIEHUsT CAMOCOIIPSI?)KEHHON niepuoanveckoii 3ajgaquu. Omnepatop B pabore
A.C.Maknna U3MEHSJICS 38 CIET BO3MYIIEHUS OTHOTO U3 KPAEBBIX YCJIOBHIl.

B nacrostieit paboTe paccMaTpUBaeMblil OTIepaTop SBJISIETCS HECAMOCOIPSIYKEHHBIM BO3MY-
MMEHNEM CaMOCOPSKEHHOM aHTUIIepHoamdeckoil 3aaqu. B ormmane ot pabotsr A.C.Makuna
3/1eCb BOSMYIIEHNE ITPOUCXOAUT 3a CUET M3MEHEHU yYpaBHEHUA U KPaeBbl€ YCJ/IOBUA ABJIAIOT-
¢ anTunepuogndeckumu. [locTpoen xapakTepucTUYecKuil onpesenTeb PacCMaTPUBAEMOii
CHEKTPAJIBHOM 381291, KOTOPBIH sIBJISETCS 1eJI0i aHauTudIeckoit pyHkiumeil. Jlokazaubr Teo-
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peMbl 00 yCTOMYIUBOCTYA W HEYCTOWYIMBOCTH CBOMCTBA OA3MCHOCTH CHCTEM CODCTBEHHBIX (DYHK-
M.

Kurrouesble cjioBa. XapaKTepUCTHIECKHIT ONPeIe/INTeNb, ba3uc Pucca, Harpy»KeHHBIi orre-
paTop, aHTUIIEPUOIMIECKIE KPAECBbIE YCIOBUS, PETy/IsPHbIE, HEYCUJIIEHHO PEryJIsIpHbIE, BO3MY-
[IEeHHe.
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Abstract. The approximation properties of means of trigonometric Fourier series in variable exponent

Lebesgue spaces are studied.

Keywords. Lebesgue spaces with a variable exponent, approximation by trigonometric polynomials,

Fourier series, means of Fourier series, modulus of continuity.

1. Introduction and The Main Results

Let L,(T), 1 < p < oo, be the Lebesgue space of all measurable 2m-periodic functions defined
on T:= [0, 27] such that

111, = / PPz | < oo
T

In the Lebesgue spaces Ly(T), 1 < p < oo, we define integral modulus of continuity of f by

0<[h|<d

apl£.8)i= sup {50 [+ h) - S ds
T

We define the Lipschitz class Lip(a,p) (1 <p<o0,0<a<1)as
Lip(a,p) = {f € Lp(T) : wp(f,6) = O(8%), 6§ > 0}.

Let us denote by p the class of Lebesgue measurable functions p = p(z) : T — [1, 00)
such that

1 < ps:=ess infp(z) < p* := esssupp(z) < co. (1)
z€T zeT

2010 Mathematics Subject Classification: Primary 42A10, 41A25; Secondary 46E30.
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p(z)
p(x)—1"
Lp(')(’]T) of 27 -periodic measurable functions f:T — C satisfying the condition

The conjugate exponent of p(x) is shown by p/(z) := For p € p, we define a class

/ F(@)P@ de < oo,
T

This class Lp(')(’]I‘) is a Banach space with respect to the norm

p(z)

£ 1= oy = mt{ A >0 \J”g) dr < 1},
T

It is known that for p(z) :== p (0 < p < 1), the space LP(*)(T) coincides with the Lebesgue
space LP(T). Note that detailed information about properties of the Lebesque spaces with
variable exponent can be found in [1], [2], [3], [4], and [5].

We denote by M the set of all measurable 27 -periodic functions p : R — [1, 0o) satisfying
the conditions (1) and

C1

N =

| p(z) — p(y) |< 0<|zr—y|l<

T —Injz—y|’

Unfortunately the space LP()(T) is not p (-)-continuous and not transation invariant [3].
Note that from condition f(z) € LP®*)(T) it does not follow f(z + h) € LP*)(T).
Let pe M, f € Lp(')(’]I‘). We define the shift operator T}, by

h

/ e+ t) — fo)] dt

0

S| =

Tn(f)(@) =

and the moduli of continuity of the function f by

Qo (f,0) := sup || Th( )|\, 6 > 0.
() (f+0) |h\§6H () lpcy

Note that the function €,)(f,-) is continuous, nonnegative and satisfies
Lim Q) (f,0) = 0, Q) (f + f1) < iy (f ) + iy (1)

for f, f1 € LPO).
Let p e M. For 0 < o <1 we set

Lip (a, p(-)) = {f € 1’0 Q) (f,5) = 0(5%), § > o} .
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According to [6] in the Lebesgue spaces LP the moduli of continuity wy(f,-) and Q,)(f,")
are equivalent.

Let {d};° be a sequence of positive real numbers. If there exists a constant C', depending
on the sequence {d,};” only, such that, for all n > m the inequality

dn < Cdm (pn > Cpm)

satisfies, then sequence {d,};" is called almost monotone decreasing (increasing). In the
paper such sequences will be denoted by {d, };” €AMDS and {d,};~ €AMIS, respectively.
We also use the notation

Alp =1y — lp+1, Apl(n,m) :=1(n,m)—1l(n,m+1).

Let

C;()+kZIAk(x,f), Ap(z, f) = ag(f) cos kx + by(f) sin kx (2)

be the Fourier series of the function f € L1(T), where ai(f) and bi(f) are Fourier coefficients
of the function f. The nth partial sums of the series (2) is defined by

Sula, f) = % +3 A, f).
k=1

As in the [7] we suppose that F is an infinite subset of N and consider F as the range of
strictly increasing sequence of positive integers, say F ={A(n)}{°. Following [8], the Cesaro
submethod C') is defined as

A(n)
1
C\T)p = —— T, n=12 ..
(Cxm)n = 375 ;

where {x}} is a sequence of a real or complex numbers. Therefore, the Cy,— method yields a
subsequence of the Cesaro method (', and hence it is regular for any A. C) is obtained by
deleting a set of rows from Ceséro matrix. We suppose that {d, };~ is a sequence of positive
real numbers. We define the mean of the series (2), as

1 n

N,i\(f7(13) - D)\( ) Z d)\(n)fmsm(f;x%
") m=0

where Dy, == " _dm #0 (n>0), d_y = D_; = 0. Note that in the case d,, =1, n > 0,
N(f;x) is equal to the mean

KAZAKH MATHEMATICAL JOURNAL, 20:3 (2020) 57-68



60 Sadulla Z. Jafarov

A(n)
(f 1‘ 1 ZOSm Ve x
We consider trigonometric polynomial defined by
A(n)
No\(f, ) ),
A(n)
where D)) Zd #0,d_1=D_1:=0.

Note that in the paper [7] M.L. Mittal and M.V. Singh gave some conditions on the
sequence {d,};° and obtained results about approximation of the functions by N, (f) in
Lip(a, p), 0 < p < 1. The problems of approximation theory in Lebesgue spaces with variable
exponents have been investigated by several authors (see, for example, [9], [10], [6], [11], [12],
18], [14]).

In the present paper, the analogues of result [see [7], Theorem 5] was obtained for variable
exponent Lebesgue spaces Lp(’)(T). Similar problems of the approximation of the functions
in the different spaces have been studied in [6], [11]- [32].

Note that in the proof of the main results we use the methods as in the proofs of [19], [6]
and [7].

Our main results are as follows.

Theorem 1. Ifp e M, f € Lip(a,p(-)) and {d,}q is a sequence of positive numbers and if
one of the following conditions
(A) 0<a <1, and {d,}; € AMDS,
(B) 0 <a<1,{dn}y € AMIS and (A(n) + 1) dyny = O(Dy(y) holds,
A(n)—1
(€)a=Lland 3 k|Adi = O (D)) 5

)\(n)fl

(D) a=1, kZO |Adg| = O (%) and (A(n) + 1) dxmy = O(Dx(m))
18 maintained,_ then forn=1,2, ...

|r=m2n, = o))

holds.
In the proof of main results we need the following lemmas.

Lemma 1 [6]. Let p e M and 0 < o < 1. Then for every f € Lip (c,p(-)) the estimate
1 = SulPl) = O~®), n=1,2,...
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holds.
Lemma 2 [6]. Let p € M and f € Lip(1,p(-)). Then for n =1,2,... the estimate

190 (f) = on()llpy = O(n™)
holds.

Lemma 3 [7]. Let {d,};”° € AMDS or let {d,};” € AMIS and satisfy the relation
(A(n) +1) = O(Dyn))- Then, for 0 < a <1, the estimate

A(n)

> mT %y —m= O((\(n))"*Dyn))
m=1

holds.

2. Proofs of Theorems

Proof of Theorem 1. First of all we consider cases (A) and (B) together. The following
relation holds:

Nk(fa m{smfv ) f( )}

Then by virtue of Lemmas 1 and 3 and condition (A(n) + 1) dyn) = O(Dy()) we reach

_ N < -
Hf n(f)Hp(.) < 2 () = Fllpey
1 A(n)
Do mz_:l (n) P()
dx(n)
+ so(f) —
Dy [so(f) = £l
A(n)
1 _ dx(n)
= d)\n*mO(m O‘)—l—O( >
Dym) mzl e Dxn)

= O((A(n)™").
We suppose that (D) conditions hold. Using Abel’s transformation, we have

A(n

)
Z D)\(n)fmum(f; .%')

) m=0

Ny (f;2) =
(f;z) Do
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Then we find that

A(n)
sn(fim) = N (f;2) Z — Di(n)—m)tim (f 7).
If Abel’s transformation is administered to (3), we obtain
1w
si\z(fﬂv) - Nfé\(.ﬂ l’) = D)\( : Z Am(m_l(D,\(n) — D/\(n)—m))
") m=1

An)

U 1
X ’; kug(f;x) + m ; kug(f; )

Using (3), we have

A(n)
1
i) =N < 5 3 A (Dage) = Dagey-m)|
") m=1
X kug(f) + kug(f)
k=1 () ()\(n)—{—l) k=1 ()

It is clear that

sulf50) = oul i) = —— > hue(f;0)
k=1

Then from Lemma 2 and (5) we conclude that

= (n+1)[[sn(f) = on( ) = O).
p(-)

Consideration of (4) and (6) gives us

S

A =N,

s

B <D/\ n)> Z | Am(m ™ (D) = Dag)—m))|

+0((/\(n))_1)-
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The following relation holds:

Dy(n) = Drtn)—m 1
A = —A,, (D - D
m ( m mom ( A(n) )\(n)fm)

Din) = Drgn)—m—1

m(m + 1)
D)\(n)fmfl - D)\(n)fm

m

Dxny = Drxtn)—m—-1

m(m + 1)
Dym) = Drxy=m-1  Dam)-m
m(m+ 1) m
1

= m [D)\(n) - D)\(n)—m—l — (m+ 1)dx<n),m} )

_l’_

_|_

Dxtn) = Datn)—m
Am<Mm A(n) >

m
1 A(n)

S di — (m+ Dy . 8
m(m 1) k%_m K — (m+1)dyp) (8)

We prove that the inequality

A(n)

Z dk — (m + 1)d)\(n)fm-
k=X(n)—m

< ) k|damy—ks1 — drmy—n) 9)
=1

holds. We suppose that m = 1. Then

A(n)

Y di—2dym)
k=X(n)—m

= |dam) — dam) — 1]

That is the inequality (9) holds for m = 1. We suppose that the inequality (9) is true for
m = j. We prove the inequality (9) for m = j + 1. For m = j + 1 we find that
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An)
> di— (G +2)drm)—(+)
k=X(n)—(5+1)
A(n)
= Z di, — (7 + Ddxm)—(j+1)
k=A(n)—j
A(n)

= Z di — (§ + Ddxmy—; + (G + Ddrmy—; — (7 + Ddrm)—(j+1)

k=A(n)—J
A(n)

Z dg — (J + 1)d)\(n) —J
k=X(n)—j

IN

< Zk‘ ‘d)\(n) k+1 — dx(n) k;’ +(+1) ‘dk(n - d)\(n)—(j'i‘l)’
k=1
J+1

= Z k ‘d)\(n)fk+1 - d/\(n)fk‘ .
k=1

+ |G+ Ddrmy—j — (G + Ddrm)—+1)|

Consequently, the inequality (9) is true for any 1 < m < A(n). Consideration of (8) and

(9) gives us

A(n)

>

m=1

A(n)

1
> mm+ 1) Zk\dx et — D)k |

m=1 k=1
A(n)

Zk‘d)\(n) k1 — Ax(n)—k| Z m+1

k=1
- 5 waimo (),

The last inequality and (7) imply that

Dxtm) = Da(m)—m
Am( Am) =~ Dam) )’

m

IN

IN

0 ((A(n))_l) .

SRR ] IS
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Using (10) and Lemma 1, for a =1 we get

|- Né(f)Hp(.)

-0 <()\(n))_1) .

Next, we consider case (C). First of all we prove that if the condition

-1

Z k|Apy| =

satisfies, then the relation

An)

-D
Am< A(n)=m

m=1

holds.

We denote by r the integral part of (A(n)/2).

account, we obtain

g

O (Pw))

)-o(%)

Taking the relations (8) and (9) into

m
1 m
m(m+1) Zk

1
= Wzk

k=1

(]

(D)\(n) - D/\(n)m>

| Ardgn) k]

| Ak -k

1 m

If we use Abel’s transformation and the condition

A(n)—1

Z ke |Agdy| =

in the case (C), we find that

A(n)—1

J1<Z\Ade il < Z y

k=1 Jj=r—2

(12)

O (Dxm)) (13)

Adj| =0 (l;?;:))) . (14)
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Jo can be written as

A(n)
1
J2 — m;1W Zk‘Ad)\(n k‘+;kﬁ|Ad>\n) k|]
= Jo1 + Joo.

Using the condition (13), we find that

A(n) 1 Aln)—1 D)\( )
< S | = o
Ja1 < = (m+ 1) jZT;2 ‘Ad]| O < )\(n) > ) (15)

J2o

IA
™
=

1
1) 2 Z | Adm) -]

m=r

- 0 (1) [|Ado| + 2]|Ady| + ... 4 (r + 1) [Adypa ]
B (n)
- o(5): "

Now combining (12), (14), (15), and (16), we obtain the relation (11). Consequently, using
(11), (7) and Lemma 1 we reach

|r = w2, = o™,

Thus, the proof of Theorem 1 is complete.
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Kadapos C.3. AUHBIMAJIBI KOPCETKIIITI JIEBEI' KEHICTIKTEPIHAETT OY-
PbE KATAPJIAPBI OPTAITAJIAPEI APKBIJIBI AIIIIPOKCUMAIINA

Ajitabivasiel KepceTkiniTi Jleber KeHicTiKTepiHIeri opraiia TpuroHoMeTpusiibiK Oypbe Ka-
TapJIapbIHBIH allIIPOKCUMAIIASAIBIK KACUETTEP] 3epTTeIe .

Kisrrrix ce3nep.

AjiabiMansl kepceTkimTi Jleber KeHicTIKTepi, TPUIOHOMETPUSIBIK IIOJUHOMIAPMEH all-
npokcuMarusiaay, Pypbe Karapapbl, Pypbe KaTapJapblHbIH OpTalllaJgaphl, Y3LIiCCi3IiK MO-
Ty

Txacapos C.3. AIIIMTIPOKCUMAIINS CO CPEJHUMU PSIOB ®YPLE B IIPO-
CTPAHCTBAX JIEBETA C IIEPEMEHHBIM [TOKABATEJIEM

Nsy4aroTcs anmpoKCUMaIinOHHbIE CBOMCTBA, CPEIHNX TPUTOHOMETPUIECKNX psinoB Pypbe
B mpocTpancTBax Jlebera ¢ mepeMeHHBIM TOKA3aTEJIEM.

Krouesnre cioBa. Ilpocrpancrsa Jlebera ¢ nmepeMeHHBIM TOKA3aTeJIEM, AITPOKCAMAIINS
TPUTOHOMETPUYECKUME TOJTMHOMAaMHU, psaabl Dypbe, cpeanne psioB Pypbe, MOIY/Ib HEmpe-
PBIBHOCTH.
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Abstract. In this paper, we consider global Morrey-type spaces GM,(.y,uw(.),0(Q2) with variable ex-
ponent p(:), where © C R"™ is a bounded open set. Conditions for the boundedness of a maximal
operator, fractional maximal operator, and Riesz type potential from the global Morrey-type space
GMy, (y,w,(),6(82) to the global Morrey space GM,,, () w,(.),0(§2) are obtained for different ratios
between variable indicators p1(z),p2(x) and between functions w1 (x,r), w2(x,r). Spanne-type and

Adams-type theorems are proved.

Keywords. Morrey space, global Morrey-type spaces with variable exponent, Riesz potential, maximal

function, fractional maximal operator, boundedness of an operator in spaces.

1 Introduction, definitions and auxiliary results

The classical Morrey space was introduced by Charles Morrey in 1938 [1] in connection
with the study of solutions of quasilinear elliptic differential equations. In recent decades,
the questions of the boundedness of various operators in general spaces of Morrey type have
been actively investigated.

The questions of the boundedness of the maximal operator, the fractional maximal oper-
ator, and the Riesz potential in various function spaces have been well studied. For classical
Lebesgue spaces, they are presented in detail in the monographs [2] - [4]. Then, such results
were extended to general Morrey type spaces. The results of the boundedness of classical
operators of function theory in general Morrey type spaces are presented in detail in the
review articles by V.I. Burenkov [5], [6] and in the Adams’s book [7].

2010 Mathematics Subject Classification: 35M99, 35R99, 53C35.
© 2020 Kazakh Mathematical Journal. All right reserved.
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In this article, we will consider the questions connected with the boundedness of Hardy-
Littlewood maximal operator, fractional maximal operator, potential type operator on global
Morrey-type spaces with variable exponent G M.y (. 0-

Let us present the necessary definitions and notations.

Let f € Lijpe(2), where Q C R™ is an open bounded set. We consider the following
operators:

- Hardy-Littlewood maximal operator

r>0

1
M f(z) = sup W /E?(r,r) |f(y)|dy,

where B(z,r) is an open ball in R"™ centered at the point x € R™ of radius r, and

|B(x,r)| is the volume of this ball, B(z,r) = B(z,r) N,
- the fractional maximal operator of variable order «a(z)

a(33>_1

M@ f(z) = sup| B(z, 1)) 5 / F@)\dy.

r>0 B(z,r)

where 0 < a(z) <n;
- Riesz potential type operator with variable order «(x)

a(z) _ fy)
I f(CL') - /}:?,” |x . y‘nia(z) dya

where 0 < a(z) < n.

When «(z) = a = const these operators coincide, respectively, with the classical maxi-
mal fractional operator M“ and Riesz potential 1.

For e R, 0 < p < o0, Morrey space Mg‘(R") is defined as the set of all functions
fe LéOC(R”) with finite quasi-norm

3=

Pl = s o [ rwpay | <o,
zER™, r>0 Bler)

If we replace here the power function 7~* by an arbitrary positive function w(x,r) mea-
surable on (), then we get the space M), ,.(€2), called the generalized Morrey space. Such
spaces were considered in [8] — [10].

Global Morrey-type spaces GM), ,(.)¢(£2), containing the generalized Morrey spaces, were
considered in [11] — [14], in which sufficient and, in the case of some parameters, necessary
conditions for the boundedness of classical operators of function theory in these spaces are
obtained.
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We will consider the global Morrey-type spaces GMp(.).(.),6(€2) Wwith variable exponent
p(-), where Q C R™ is a bounded open set.
Let p(x) be a measurable function on the open bounded set @ C R"™ with values (1, 00).
Suppose
1 <p- <p(x) < ps < oo, (1)

where p_ = p_(Q) = infyecop(z), pt+ = p+ () = sup,cap(x).
We denote by P'98(Q) the class of functions defined on Q satisfying the log-condition

C

1
7’ - <77 ) GQ’
< eyl v =yl =5, (2,9)

where C'= C(p) >0 does not depend on z and y.
Denote by L,)(£2) the Lebesque space with variable exponent [15] which is defined as
the set of all measurable functions f(z) on Q such that

- / (@) dz < oo,
Q

where the norm is defined as follows

The Morrey spaces Mz?((-.)) (R™) with variable exponents p(-) were introduced and studied

n [16], [17].

Let w(x,r) be positive measurable function on 2x[0,(], where  C R", | = diam$Q, 1 <
¢ < co. The generalized Morrey space Mp(.) ,(.)(€2), with variable exponent p(-) is defined
by the norm

rp()

Flia = sup fllz
17110ty 2 veq, r>0 W(, )H ey ey

The generalized Morrey spaces M,y.) () (€2) with variable exponent p(-), were studied in
[18], [19] and boundedness conditions for the maximal operator, fractional maximal operator,
and Riesz potential in this spaces were obtained.

We will define the global Morrey-type spaces GMp(.)Vw(,)ﬂ(Q) with variable exponent
p(-). Throughout this work, we will assume that inf,cq ¢~owa(x,t) > 0.

Definition. Let p(-) € P9(Q), w(x,r) be a positive measurable function on § x
[0,1], where Q C R"™ | = diamfQ, 1 < 6§ < oo. The global Morrey type spaces
GMp()w(),0(82)  with variable exponent p(-) is defined as the set of all functions f €

L;‘E?)(R"Q) with a finite norm

”fHGMp(.),w(.),e(Q) sup Hw (x,r)r o Ly 5oy ‘Le(o , < 0.
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Az)—n
When w(z,r) =7 ?&  the corresponding space is denoted by GM (()) Q) :

Az)—n

Q) = GMp(_)M(.),g(Q)w(ac,r) =7 »@ |

AC)
GM (50

Note that
GMip(),0(),6(2) = Mp()u( (2)
at 0 = oo

For p(z) = const we have global Morrey type spaces GM,,,» which were considered
by V.I. Burenkov, V.S. Guliyev, A. Gogatishvili, R. Mustafaev and etc. [11] — [14].

In this paper, we obtain boundedness conditions for a maximal operator, fractional
maximal operator, and Riesz potential type operator from one global Morrey-type space
GMp, (y,w,,(19(©2) Wwith a variable exponent p(-) to another space G'M,, () w,(),0(S2) at vari-
ous ratios between variables exponents pj(z), p2(z) and between functions wy (z,7), wa(z, 7).

We will denote by C and C, positive constants that depend on the indicated parameters
and, generally speaking, are different in different formulas.

Here are some auxiliary statements.

Theorem A [18]. Let Q C R" be a bounded open set, p(-) € P%8(Q) and satisfy
condition (1).
Then

l
_n_ __n__q l
IMAlly, s xt))<Ct:v(z)/tr Il ey 0< <5, (2)

where C  does not depend on f,x,t.

Theorem B [18]. Let 2 C R™ be a bounded open set, p(-),a(-) € P8(Q) satisfy
condition (1) and

inga(:n) >0, supa(z)p(zr) <n, (3)
S z€Q
1 1 a(z)

=22 (4)
Then

l
_n_ l
Oé T T _
[| 1 f||L() yM))<C'tq()/t7" ) HfHLp() )dr, 0<t<2,

where C  does not depend on f,x,t.

Theorem C [18]. Let Q C R™ be a bounded open set, p(x) € P9(Q) and satisfy
condition (1), the function «o(x) satisfy condition (3).
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Then

l\D\N

l n
1190 f ()] < Ct*@ M f () + C/ PO Ay erydr, 0<t <
t

where the constant C' does not depend on f,x,t.

2 The main results

In the following statements we give the conditions for boundedness of the maximal oper-
ator, the fractional maximal operator, and the potential Riesz potential type operator from
space G M, (),w,(),0(82) to space GMp, (. ,(.),0()-

Theorem 1. Let Q C R™ be a bounded open set, p(-) € P'9(Q) and satisfy condition
(1), 1 <6< 0, % + (71, =1, positive measurable functions wi(x,r), we(x,r) satisfy the

condition ,
A? /l o {/l( Ly ( ))eld }Gldt (6)
= sup rwi(z, T T < 00.
zeQ Jo wg(x,t) t

Then the mazimal operator M is bounded from GMp(.) ., (),6(82) t0 GMp() wy(),0(82)-
Proof. According to Theorem A, we have

HMfHGMp(,%wQ(A),e( Q) = sup sz (z, t)r P(”C)HMfHLp() @) Lo (0,0)
! n 1
< Csup " (@t) [ 77y e
p(-)
e t LG(O»Z)

=

l l o] 0
—1 -1 rr
= C'sup /0 w, (xt)/r wi(z,r)———||fllL, ., (B@m)dr| dt
t

€ wl( )

-

% 0 0
' S g 10| L r
=su — rwi(x,r)) dr dr| dt
Seh /owz(x,t) [/( i(w.r) ] / oM e e

S lleMygy y 0(2) - A-

This implies the boundedness of the operator M from G M,y (.y,0(€2) t0 GMp() wy(),0(2).
Theorem 1 is proved.

Consequence. Let 2 C R™ be a bounded open set,

AMz) >0, 1<0< o0, Aaz) — p(z) > 0'p(z).
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Then the operator M is bounded from GM;\((.'))O(Q) to GM:((.'))H(Q).

Theorem 2. Let Q C R™ be a bounded open set, p(-) € P°9(Q) and satisfy condition
(1), 1 <0< o0, 3+ ei’ =1, ax), q(x) satisfy conditions (3) and (4), and the functions

wy(x,r), wa(w,r) satisfy the condition

< 400, (7)
L (0,1)

Lel (1)

r@ =1y, (z, 7‘))

B = sup ||wy *(x, 1)

e

where C' does not depend on x and t.
Then the operators M), 1%0) qre bounded from G My ()0, (9,0(82) t0 GMy() 0 (),6(€2)-

Proof. Let f € GMp(.y., (). Estimate the norm

‘LQ(O,Z) '

10 fllear, ot = 598 [0z @ 0 TTNOf L, 3y

For this, it is enough to consider the values t € (0, %) due to condition inf,cq ¢>owa(x,t) >

0.
By using Theorem B and Holder’s inequality, we have

l
wy N, t /rqé)l - dr
s | 1],

1°Ollaur q) < C'sup
NGy iy ) .0(92) sup

1

—1 ! —n(L——‘—l) 1 __n_
= Csup Wo (x’ t) r p(z) q(z) w1 (x, T)wl (‘r?r)'r p(z) Hf”L (.)(B(:v,r))dr
z€Q t ! Lg(0,0)
< Csup wy ! x,t ‘ra(x)*lwl T, T H . Hw_1 x,r r_ﬁ f _
er 2 ( ) ( ) Lgf(t,l) 1 ( ) H HL‘I()(B(x7r)) Lg(tl) LG(OJ)
< Cl|fllem Q) Sup ‘ wy L (z,1) ‘ ra(ﬂf)_lwl(gj r)’ .
p()wy (),0( )$€Q 2 T, ) Ly (k) LoD

From this and condition (5) it follows that

17Ol ety 00 < CrllFllansygy w00

that is, the operator I*() is bounded from GMp(),(),0(82) t0 GMy(y 1y(),0(2).
The boundedness of fractional maximal operator M) in these spaces follows from the

following estimate
MO f(z) < eI*O|f|(z), 0< a(z)<n,

where ¢ does not depend on f and z. This estimate is known for a(x) = a = const.
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For variable «(z) we put

1— a(x)

n n
c=sup | —— < 00
€N <‘Sn_1|> ’

where S"~! is a unit sphere R""!. Tt is clear that |B(z,r)| = wnTA'r”.
Therefore ]
M) = [ty
|B(z,7)|'~"n J(Blar)
1_a(z)

n " ()l )

<\ tanT / — o dy < IV f|(2).
(’5" 1\) (Blar)) |z —y[r—o@

Theorem 2 is proved.

Theorem 3. Let Q. C R™ be a bounded open set, p(-) € P'9(Q) and satisfy condition
(1), ofz) satisfy condition (3), 1 < 0 < oo, §+ 9—1, = 1 and the functions wi(z,t)

()
and wo(x,t), where wo(x,t) = (wi(x,t))90), satisfy the conditions

2]
/l 1 {/Z(—l ( ))eld}e/dt< (8)
su —_— r—wi(z,r r 00,
:ceg 0 wg(ﬂfvt) t !

0

l (o)1 0 o' _ a(x)p(z)
/ (@ () i< Or i (9)
t

Then the operators M®")  and I*0)  are bounded from G My w,(9,0(82)  to
GMq()7w2()79(Q).
Proof. Let f € GMp(.) ., (.19(2). We will estimate the following norm

__n_
t alx)

« — a(-)
I f||GMp(_),w2(,)(Q>,a igg w2(x’t)|\l IXBE) Lo @)

Lg(0,1)

According to Theorem C
l n
(IQO f(x)‘ < Ct@Mf(z) + C / O Il e @ = Li(@) + La(z),
t

where 0 <t < % By applying Holder’s inequality and condition (8), we get

r p@)

! I
a(z)——"=—1 alz)—
Ly(x) :/t 5 HfHLp(_)(B(x,r))dTZ/t rol®) 1w1($7r)7w1($77,)HfHLP(_)(B(:L‘,r))dT
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o) 2L t o 7
TP a(x)—
S /t <’U)1(CC7")”fHLP()(B(x’T))> dr ) {/t (T (@) lwl(a:,r)) dT}
_ a(z)p(z)
< HfHGMp(.%wI(A)’g(Q) -1 pl@)=a@),
Therefore
_ a(@)p()
I“<'>f<x>\ < Cr*OM (@) + | Fllamty g, 0@ T 7O,
Here we choose 7, so that
_a(@)=p(=)
= HfHGMp(.),wl(.)’g(Q) (@)p(=)
M f(z) '
Then
720) C(M e 1555
q(x) .
@) < CUF@) fllgai oy
Therefore
05" < e g
GMp(),w1(),0 ()"
Then we have
Hfa(')fHLq(,)(B(x,t)) < CIMFllL, (B
Hence,
P 3@ ra®
o) . _
w1 ey B =C iy 1M1z, By
L (0,00) (wl(xa T)) Lg(0,00)

Hence, in view of the boundedness of the maximal operator by Theorem 1, we obtain

’|Ia(.)f’|GMq(~),w2(~),0(Q) < Cl”MfHGMp(‘)’wl(.)’e.

Hence, under the condition of the theorem, it follows that the operator I% is bounded
from GMp()u,(),0(2) 10 GMp() s (),0(62)-
Theorem 3 is proved.

Theorem 2 is a Spanne type result and Theorem 3 is an Adams type result. The similar
theorems for the generalized Morrey spaces M) ,(.)(€2) with variable exponent p(-) were
proved in [18].
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Amnixanos A.H., Bokaes H.A., Onepbex 2K.M. MAKCHUMAJI/IbI OIIEPATOPJIAP
MEH PHUCC THUIITEC IIOTEHIMAJIABIH IHIEHEJI'EH OBJIBICTAPOA AHBIK-
TAJIFAH AVTHBIMAJIBI KOPCETKIIITI MOPPU TUIITEC T'JIOBAJIZIBI KEHICTIK-
TEPAE INEHEJIT'EHAOITI'T TYPAJIBI

Byur xkymbicra aitabivadsl p(-) kepcerkimTi Moppu Tunrec KeHicrikrep GMp(.)jw(.)ﬂ(Q)
KapacTbIpbIraln, MyHgarsl ) C R — meHesnreH amiblK JKUbIH. ARHbIMaIBl p1(z), p2(x)
KOpCeTKIITep/H KoHe wi(x, ), wa(x,r) GyHKIUAIAPbIHbIH 63apa CofiKec KaTblHACTAPBIH-
Jla MAKCUMAJIIbl OIEPATOP/IbIH, OOJIIIeK-MaKCUMaJJIbl OllepaTopbliH KoHe Pucc Tunrec mo-
renruanibi, Moppu tunrec G My, (), (),0(Q2)  T0banapl xenicririnen Moppu Tumnrec
GMPQ(.)7,LU2(,),9(Q) riobasapl KeHicTirine meHeareHirinin maprrapbl aabinrad. Cueiin »xoHe
Anamc Tunrec TeopeMasiap JIpJIesIeHTEH.

Kinrrik ceznep. Moppu kenicriri, aiiubiMasbl KepceTkimTi Moppu tumnrec ryrodasiibl
keHicrikrep, Pucc norennuasibr, MakcuMasibl GyHKITS, OOJIIIIEK-MaKCUMAJIIbI OLIEPATOD, Ole-
PaTOpP/IbIH, KEHICTIKTEp/Ie TEHEJINeH T,

Apninxanos A.H., Bokaes H.A., Onepoex 2K.M. Ob O'PAHUYEHHOCTU MAKCHU-
MAJIBHBIX OITEPATOPOB U ITOTEHIIMAJIA TUIIA PUCCA B I'JIOBAJIBHBIX TTPO-
CTPAHCTBAX THUITIA MOPPU C IIEPEMEHHBIM ITOKA3ATEJIEM HA OI'PAHU-
YEHHBIX OBJIACTAX

B janmoit paboTe paccMoTpens! riobasibabie TpocTpancTsa THia Moppu G My 4 (.),(€2) ¢
nepeMeHHbIM okazareseM p(-), rae ) C R™ — orpaHnvyeHHOE OTKPBITOE MHOXKeCTBO. 1oy de-
HBI YCJIOBUS OIPAHUIEHHOCTH MaKCUMAJILHOTO OIlepaTopa, JIpOoOHO-MAKCUMAaJILHOIO OllepaTopa
U noTennmaia THa Prcca us riobambnoro mpoctpanctsa Tuna Moppu GM, (1w, (),6(52) B
riobambHOe npocTpancTBo Turma Moppu  GM,, () wy(),6(§2) TIPH COOTBETCTBYIOMEX CO-
OTHOIIEHUSIX MEXKJIy IEePEMEHHBIMU MokasareasMu  pi(x),p2(x) u Mexay GYHKIIAMI
wy(x,r), wa(x,r). Jokasaubl Teopembr Tuna Creiina u Agamca.

Krrouesnre ciioBa. ipoctpancTBo Moppu, riobaibubie npocrpancTsa Tuna Moppu ¢ mepe-
MEHHBIM II0Ka3aTrejieM, norennuan Pucca, MmakcumasibHast DYHKIHA, TPOOHO-MAKCHMAJILHBIIH
OIIepaTOpP, OTPAHMYEHHOCTDb OIlEPATOPa B TPOCTPAHCTBAX.
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Abstract. In the present paper, we study a linear boundary value problem for a system of integro-
differential equations with weakly singular kernels. Conditions for the solvability of the considered prob-
lem are established using a method based on splitting the interval and introducing additional parameters.
Necessary and sufficient conditions for the solvability of the two-point problem for the integro-differential

equations with weakly singular kernels are received.

Keywords. Linear boundary value problem, integro-differential equations, kernel with weakly singularity,

parameterization method, solvability.

1 Introduction

We consider a linear two-point boundary value problem for the system of Fredholm
integro-differential equations with weakly singular kernels on [0, T7:

T
% _ A(b)o+ / K(t,s)z(s)ds + f(1), =z €R" (1)
0
Bxz(0)+ Cx(T)=d, deR", (2

)
where (n x n) matrix A(t) and n vector f(t) are continuous on [0, 7], (n x n) matrix K (t,s)
has the form K (t,s) = —= H(t,s), and (n x n) matrix H(t, s) is continuous on [0, 7] x [0, T],

= =
0<a<l, [af = max |z
1=1n
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A solution to problem (1), (2) is a continuous on [0,7] and continuously differentiable
on (0,T") vector function x(t) satisfying the Fredholm integro-differential equation (1) and
boundary condition (2).

Integro-differential equations and different problems for them are used as mathematical
models of various physical processes [1]. Linear boundary value problems for the Fredholm
integro-differential equations are investigated in [2-7] for the cases of smooth kernels. Two-
point boundary value problems for linear Fredholm integro-differential equations with weakly
singular or other non-smooth kernels are studied by the Galerkin and collocation methods in
[8-18].

In present paper, based on the parameterization method [19] we investigate the existence
and uniqueness of solution to problem (1), (2). Dividing the interval [0,7] into N parts,
we introduce additional parameters. While applying the method to problem (1), (2), an
intermediate problem, special Cauchy problem for the system of integro-differential equations
with parameters, arises. Note, the problem is always uniquely solvable for sufficiently small
partition step. This property of the intermediate problem in [2] allowed us to establish
necessary and sufficient conditions for solvability and unique solvability of problem (1), (2) in
the case of smooth kernels. In [3-6], the smallness of interval’s partition step is also required
for solving the linear boundary value problems for Fredholm integro-differential equations.
In [7], the arbitrary partitions of the interval are considered.

Hereby we expand the results of paper [2] to a linear two-point boundary value problem for
a system of Fredholm integro-differential equations with weakly singular kernels. Algorithms
of parameterization method are based on the smallness of interval’s partition and solving
the system of algebraic equations with respect to the additional parameters introduced. If a
fundamental matrix of differential part of Eq.(1) is known and the erasing definite integrals
can be evaluated, then the algorithm gives a solution to the linear two-point boundary value
problem for the Fredholm integro-differential equations in the explicit form.

Let C([0,T], R™) denote the space of continuous functions x : [0,7] — R™ with the norm
|zl = nas [z (@)l

2 Scheme of the method

N
Given a step h > 0 : Nh = T we introduce the partition [0,7T) = U[(r — 1)h,rh) and

r=1

restrict z(t) to the rth interval [(r — 1)h,rh), which is denoted by x,(t), i.e., z,(t) = x(t) for
t € [(r—1)h,rh).
Problem (1), (2) is then reduced to the equivalent multi-point boundary value problem

N h
dc‘Zr = A(t)z, + ; / K(t,s)z;(s)ds + f(t), t €[(r—1)h,rh), r=1,N, (5)
T G-Dh

KAZAKH MATHEMATICAL JOURNAL, 20:3 (2020) 79-91



Problem for the integro-differential equation with weakly singular kernels 81

Bz(0) + Ctiliglo xn(t) =d, (6)
1i = =1,N-1
t—)gf?f(] xp(t) xp-i—l(ph’): p ) ) (7>

where (7) are conditions for matching the solution at the interior points of the partition of
[0,T).
Let C([0,T], h, R*V) denote the space of systems of functions z[t] = (z1(t), z2(t), ...,

xn(t)), where x, : [(r — 1)h,Th) — R"™ are continuous and have finite left limits . 1i%1 OxT(t)
—rh—

for all r = 1, N, with the norm ||z[]||]o = max  sup ||z, (¢)]].
r=1,N te[(r—1)h,rh)

Obviously, C([0,T], h, R™V) is a complete space.
Introducing the parameters A\, =z, [(r—1)h] and making the substitution u,(t) = z,(t)— A,
at every rth interval, we obtain the parametric boundary value problem

N Jh
duy

= AO A+ [ K@) A+ @), e (0= Dhrh), (9

T=NG=1h
up[(r—1)h] =0, r=1N, (9)
BM\ +CAy +C lim upn(t) =d, (10)

t—T—0

Ap + t_g%l_oup(t) —Apr1 =0, p=1,N—-1 (11)

The solution of problem (8)—(11) is a pair (\*, u*[t]) with elements \* = (A}, A3, ..., \iy) € R™Y
and w*[t] = (u(t),us(t), ..., ui(t)) € C([0,T), h, R™N). If (\*,u*[t]) is a solution to problem
(8)—(11), then x*(t), defined by the relations: z*(t) = A + wX(t) for

t € [(r —1)h,rh) and r = 1,N, and z*(T) = Ny + tiijrgouyv(t), solves problem (1), (2).

Conversely, if Z(t) is a solution to problem (1), (2), then the pair (X,ﬁ[t]) with elements
5 = ()\1,)\2,...,)\]\[) S RnN, and ﬂ[t] = (ﬂl(t),ﬂg(t),...,ﬂN(t)) S C([O,T],h,RnN), where
Ar = Z[(r — 1)h], u,(t) is the restriction of z(t) — Z[(r — 1)h] to [(r — 1)h,rh) for r = 1, N,
solves problem (8)—(11). By introducing additional parameters, we obtain initial data (9)
for the unknown functions w,(t), 7 = 1, N. For fixed parameter values A € R™ the system
of functions u[t] is determined from problem (8), (9), which is a special Cauchy problem
for systems of integro-differential equations. Problem (8), (9) is equivalent to the system of
integral equations

() = X (1) / XL r)A(m)dmA,
(r=1)h
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X (1) / TIZ / K (1, 9)[uy (s) + A Jdsdr

(r=1)h =LG-1)n

+X(t) / XY m) f(m)dm, t € [(r—1)h,rh), r=1,N. (12)
(r—1)h

Solving (12), we find a representation of w,(t) in terms of A € R™, r = 1,N, and f(t).
Substituting them into (10) and (11) yields a system of equations for finding the unknown
parameters. Thus, if the parametrization method is applied to problem (1), (2), we also
have to solve an intermediate problem, namely, the special Cauchy problem (8), (9) or the
equivalent system of integral equations (12). However, in contrast to the above methods, the
partition step h > 0 : Nh = T can always be chosen so that problem (8), (9) is uniquely
solvable.
Consider hg > 0 satisfying the inequality

1
o(ho) = BT ———h{ ¥eho <1, (13)
1-a
where ap = max ||A(t)|| and 8 = max ||H(t,s)||. Let us show that, for any h €
t€(0,T) (t,5)€[0,T]x[0,T

(0,ho] : Nh =T system (12) is uniquely solvable.
We use the equality

t

X(1) /t X1y F(my)dry = j Fr)dm + / A(Tl)]lp(fg)dmdﬁ

a

+ / A(r) / Ar) / Flrg)drsdradri + ... at €0, T], (14)

which holds for any function F'(t) that is continuous on [0,7]. Indeed, the functional series
on the right-hand side of (14) converges uniformly on [0,7] and, like the left-hand side of
(14), solves the Cauchy problem

d

dit” = A(t)z + F(t),  z(a)=0, tel0,T]. (15)

Since problem (15) is uniquely solvable, we have (14). By using (14), we obtain the estimates
jh

N
HX /X ()Y / K(m,s) )dsdnH
1

(r—1)h JZI(] h
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_HX /X 7'12 / \Tl—s\a Tl,S)Uj(S)deTlH

]1h

< oot / 5 / s -l

r—1)h =16 h

jh

< fevot / Z{ / ﬁ_s)dH](s_lﬁ)ads}dn-uu[iuz

Tlh‘jljl)h T1

_ pesoh / Zl_a (jh =)' = (11 = (= DA~ b - [[ul )2

(r— 1hj7

t N
<pert [ n e (= G D)l
(

r—1)h j=1
Lt N
1
=gt [0 il < 8T h
(r—1)n I=1
= o(ho) - ||u[]||2, te[(r—1)h,rh), r=1,N. (16)

Using (16) and the inequality o(hg) < 1 and applying the contraction mapping principle,
we prove the unique solvability of systems (12) for any h € (0, hgo] : Nh =T.

Setting ¢ = 7 in (12) and multiplying both sides by K(¢,7), we integrate the result with
respect to 7 on the interval [(r — 1)h,rh] and sum up the left- and right-hand sides over r to
obtain

N Th T
Z / K(t, m)u,(T dT—Z / K(t,7)X / Xﬁl(ﬁ)
=10 1n =1 1) (r—1)h
N Jh T
X Z / K (71, s)u;(s )dsdTldT—i—Z / K(t,7)X(7) / Xﬁl(n){A(n))\r
=G == (r=1)h
N Ik
+> / K (1, 5)dsA, +f(7'1)}d7'1d7' te [0, 7). (17)
=G0
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After introducing the notation

o
Dy (t) = Z / K(t, s)u;(s)ds,
I=1G20)n
rh T
Mo (h, 1) = / K(t,7)X(7) / XY r)A(r1)dri dr
(r—=1)h (r—1)h
N jh T rh
3 / K(t,7)X(r) / X)) / K (1, s)dsdrdr,
=2 h (G—Dh (r—1)h
N Jh T
Fn =Y [ Ktnx0) / XL(r) f(r)dmdr,
I=1G20)n (G—1)h
Eq. (17) can be written as
N Jh T
wo=Y [ Kenx@ [ Xmesmind
=G 0n (G—1)h
+) My (h,t)A + F(h,t),  te[0,T]. (18)

r=1

Once again using estimates (16), we conclude that Eq. (18) is uniquely solvable for
h e (0,hg]: Nb=T.
Defining sequences of matrices and vectors depending on t € [0, 7] by the relations

N Jh T

MO (h,t) = My(h,t), MF (b, t)=>" K(t,7)X () / XY r) MFY(h, 71)drdr,
1= G-1n (r=1)h
N IR T

FO(hty=F(h,t), FP(ht)=>)" K(t,7)X () / X)) F* (b, 1)drdr,
1= G-1)n (j—1)h
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k: 1,2, ..., and applying the method of successive approximations, we find the solution of
q. (18) in the form

N
®p(t) = > Dp(h, )\ + Fi(t),  t€[0,T], (19)
r=1

k=0 =
Note that for h € (0, ho] : Nh = T the functional series converge uniformly and D, (h,t),
r = 1,N, and F},(t) are continuous on [0,7]. Substituting (19) into the right-hand side of
(12), we express u,(t) in terms of A\, and f(t):

where D, (h,t) = 3> MY (h,t), Fp(t) = S F® (k).
k=0

(r—1)h
jh
X~ i(h,T) + K(7,s)ds|dT);
giro { walpins | s
+X(t) / XY [f(1) + F(r))dr, te|(r—1)h,rh), r=1N. (20)

(r—1)h

Finding lim wux(t) and lim wu,(t), p = 1, N — 1, substituting them into conditions (10)
t—T—0 t—ph—0

and (11), and multiplying both sides of (10) by h > 0, we obtain a linear system of equations
for A, r =1, N:

T h
S B+CX(T) | X () DhT+ KTsdsdT/\
reex [aolpin - frconr]

N-1 T ih

+hC' Y X(T) / X~Y(7) [Dj(h,T) + / K(r, s)ds} dr )
Jj=2 T—h (G=Dh

T T
+hC’{I + X(T)T/h X~Y7) [A(T) + Dy (h,T) —i—T/h K(T, s)ds} dT})\N
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— hd — hCX(T) / X)) + Fa(r)dr, (21)
T—h
p—1 jh ph
ZX ph) / X~ i(h,T) / K(, s)ds} dr)\j + {I—l—X(ph) / X (7) |:A(T)
7=l (p—Dh (G—1h (p—D)h
ph ph
+Dy(h, T) + / K(r, s)ds} dT})\p - {I — X(ph) / X7 [Dp+1(h, T)
(p—1)h (p—1)h
(p+1)h jh
+ / K(r, s)ds] dT} i1+ Z X (ph) / X~ )[Dj(h, )+ / K(r, s)ds} dr);
ph P2 (p—1)h (G—Dh
wh) [ x- ) + Fy(7)|dr, TN 1L (22)
X (ph) ; /) h h(r p

By denoting nN x nN matrix corresponding to the left-hand side of system (21), (22) by
Q+,«(h), this system can be written as

Qus(R)\ = —F.i(h), A€ R™, (23)
where F, .(h) = (—hd—i—hC’X(T) Tfh X’l(T)[f(T)—i—Fh(T)]dT, X (h) thXl(T) [f(T)+Ey(7)]dT,
2h (N=1)h
X(20) [ XD + Bl XY = 0] [ X7 + Falrlar ).
h (N=2)h

3 Main results

System (23) with h € (0, hg] : Nh = T has the following property.

Lemma 1. Let h € (0,ho] : Nh=T. Then the following assertions hold:
(a) The vector \* = (A}, A5, ..., \y) € R™Y, consisting of the values of the solution x*(t)
to problem (1), (2) at the partition points i = z*[(r — 1)h], r = 1, N, satisfies system (23);
(b) The function z(t), defined by the equalities: T(t) = X+ Up(t), t € [(r — 1)h,rh),
r=1,N, and 2(T) = A\ +t—l>i%n—0aN(t)’ where X = (A1, Ao, ..., \n) € R solves system (23)
and the system of functions ult] = (ui(t),ua(t), ..., un(t)) solves the special Cauchy problem
(8), (9) for Ay = Ay, and r =1, N, and is the solution to problem (1), (2).

KAZAKH MATHEMATICAL JOURNAL, 20:3 (2020) 79-91



Problem for the integro-differential equation with weakly singular kernels 87

Proof. (a) Let 2*(t) be a solution to problem (1), (2). Then the pair [(A], A3, ..., A}),
(ui(t),u5(t), ..., up(t))] with elements A\ = z*[(r — 1)h], and wi(t) = x*(t) — «*[(r — 1)h],
t € [(r — 1)h,rh), r = 1,N, is a solution to the equivalent parametric boundary value
problem (8)-(11). Taking into account the assumption h € (0,hg] : Nh = T and repeating
the above reasoning, we see that \* = (A}, A3, ..., \iy) € R™Y satisfies system (23).

(b) Let A = (A1, Az, ..., Av) € R™ be a solution to systems (23). Since h € (0, ko] : Nh =
T, the special Cauchy problem (8), (9) has a unique solution for any A = (A1, A2,..., An) €
R™. Tts solution for A = X\ = (A1, A2, ..., Ay) ) is denoted by u[t] = (uy(t), ua(t), ..., un(t)).
Let us show that the pair LX, u[t]) solves problem (8)—(11). Indeed, (8) and (9) hold by virtue
of the choice of u[t] from A. If A = (A1, Ag, ..., An) satisfies (23), then it satisfies (21) as well;
ie.,

T N T
BX1+cﬁN-+c{xxT)/"X‘%TQA@ﬁdﬁXN-+§:xxT)/ﬁx—wﬁ)Pgm,n)
T—h 7=l T—h
jh
+ K(r1,8)ds|dn\j+ X(T) | X~Yr)[f(n) + Fa(r)ldr § = d. (24)
(j—[)h } T—/h }

The pair (X, [t]) satisfies (20). Therefore, the expression in curly brackets on the left-hand
side of (24) is equal to . 1171;1 OﬂN (t) and boundary condition (10) is fulfilled. Similarly, using
ST

(20) and (22), we show that (11) holds. Then the function z(t), constructed using the pair
[(A1, A2, oo, AN), (w1 (t), ua(t), ..., un(t))] is a solution to problem (1), (2). Lemma 1 is proved.

Theorem 1. If the matriz Q. .(h) : R™ — RN is invertible for some h € (0,ho] : Nh =T,
then problem (1), (2) has the unique solution x*(t) satisfying the estimate

aph

S 1o

aogh aph

e

a(h)’1—o(h)

where Yu i (h) = [|[Quex (M) 7| and o(h) = BT - hy~*e0ho,

11—«

JEAI

L (a1 B )| a1, 25

Proof. For given f(t), d, h € (0,hg] : Nh =T, we construct system (23) and, using the
invertibility of Q. «(h), find its unique solution

N = —[QualM T Fiu(h), X = (A, A5, . AN) € R

Taking into account that h € (0,hg] : Nh = T we solve Cauchy problem (8), (9) with
the found parameter values to obtain a system of functions u*[t] = (uf(t), us(t), ..., u} (t)).
Then, according to Lemma 1, the function z*(t), defined by the equalities z*(t) = A+ w’(¢),
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t € [(r—=1)h,rh), r = 1,N, and 2*(T) = Xy + , lijgloujv(t), solves problem (1), (2). Let
ST

us show that the solution is unique. Assume that, in addition to z*(¢) problem (1), (2) has
another solution z(t). Then problem (8)-(11), in addition to (A\*,u*[t]) has another solution
(A, uft]). According to Lemma 1, system (23) is satisfied by both A* and A; i.e.,

Qua(WN = —Fou(h),  Qui(h)X = —F,.(h).

Since @y «(h) is invertible, these relations imply A* = . Since the special Cauchy problem
(8), (9) has a unique solution, we have w'(t) = u,(t), t € [(r — 1)h,rh), r = 1, N, and
. li%n Ou}‘v(t) =, li:rpn OﬂN(t), whence x*(t) = Z(t) for all t € [0,T]. Let us prove estimate (25).
—T— —T—

Since o(h) < o(hg) < 1 for h € (0,ho] : Nh =T, it holds that

1
il < —— EF(h,t)|
1By < gy mace [1F (. )]

Based on (14), we obtain

HX(rh) /h XN f(7) + Fu(r)Jdr
(

r—1)h
rh
< aph agh
<o [ I)lar+ e s ma 1F(h. )]
(r=1)h
< e hfllF b+ oh) s Iflh] = et b iflh, =T
- 1—o(h) 1—o(h) ’ T

which implies the estimate

[INI] < Yo ([ F e ()] < e (R) maX<thH +A[[C|

T

ph
{xa) [ x e+ pelad. e [xen [ x oo + o)
T—h ’ (p—1)h

aph aph

< Yun(R) - maX<1 + h[|C]] 1 i o(h)’ 1 i ;(h))

hmax([[ f][1, [|d]])- (26)

Since

ol =[S M@ < —L < Bl jgoon_
1D (k)| HkZoMJ (00| < Ty s oo 1M )] < s e = o (),
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it follows from (20) and (26) that

" llle < [e" = 14+ Te™" max max |[D; (k. 1)]|+ o ()] I3

j=1,N t€[0,T]
6ozoh eaoh -1 +U(h> eaoh eaoh
1_~(h) ’ < *,%k 1 s
o " 11l < [ o " (h)max( +h||0||1—0(h) l—a(h))
eaoh
e T o)

Using (26), (27) and relation ||z*||1 < [|A*|| + ||u*[-]||2, we have (25). Theorem 1 is proved.

Definition 1. Problem (1), (2) is called uniquely solvable if for any pair (f(t),d), where
f(t) € C([0,T],R™) and d € R™, it has a unique solution.

Theorem 2. If problem (1), (2) is uniquely solvable, then the matriz Q .(h) is invertible
for all h € (0,ho] : Nh=T.

Proof. Assume the opposite, i.e., there exists h € (0, ho] : Nh = T such that Q**(ﬁ) is
not invertible. Then the homogeneous system of equations

Qun(R)A =0 (28)

has a nontrivial solution \ = (Xl, Xg, ey XN) c RV,

In the case of a homogeneous boundary value problem for an integro-differential equation,
i.e., for problem (1), (2) with f(¢f) = 0 and d = 0, system (23) becomes (28). Therefore, by
Lemma 1, the function defined by the relations z(t) = A+ 0r(t), t € [(r = Dh,rh), r =1,N
and Z(T) = \g + . li:rpnoﬂﬁ(t), where the system of functions ult] = (u1(t),uz2(t), ..., ug(t))

T

solves problem (8), (9) with A, = A, r = 1, N and f(t) = 0, is the nontrivial solution of the
homogeneous boundary value problem. This contradicts the unique solvability of problem
(1), (2), since, when f(t) = 0, d = 0 it has, in addition to the trivial solution, the nontrivial
one Z(t). Theorem 2 is proved.
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AcanoBa A.T., Hypmykauber II.H. oJICI3 EPEKIIEJIIKTI ©3EI'l BAP
VMHTEI'PAJIABIK- ANOOEPEHIIMAJIABIK TEHAEY YIIIIH ECEII

OJICI3 epeKINeTiKTI o3eri 6ap MHTErpasIbiK-auddepeHnuaIbK, TeHIeyIep Kyeci yImn
CBIBBIKTHI MIETTIK €Cell KapacThIPbLIa Ibl. KapacThIpbLIAThIH €CEITiH MENiIiMIIIK apTTaphl
apaJIBIKTBI 06Ty MEH KOCBIMINA [TapaMeTpJjep €HIi3yre Heri3/e/ireH 9IUC KOMeriMeH OpHAThI-
JIaJbI. 3epPTTEIN OThIPFaH €CEeITiH IIeImiIiMIUINTIHIH KaXKeTTi »KoHe KeTKIIIKTI ImapTTapbl
AJIBIHTBI.

Kinrrik ceznep. ChI3BIKTBI IIETTIK €CEll, HWHTErPAJIBIK-IuddOEpEeHITIAIIbIK TeHIeyIep,
oJICi3 epekImeir 6ap e3ek, mapaMerpJey dJIici, mernmiTiMIIK.

AcanoBa AT, Hypmykanber I1.H. SATAYA JLJIA NHTEI'PO-
JINOOPEPEHIIMAILBHOTO YPABHEHUS CO CJIABOII OCOBEHHOCTbBIO

PaccmarpuBaercsa sunelinast KpaeBas 3a/iada JJisi CUCTEMbI HHTETPO-TuddepeHITnaTbHBIX
YPaBHEHWUI C SIAPOM €O CJIab0 0COOEHHOCTHIO. YCTaHOBJIEHBI YCJIOBUS PA3PEITUMOCTH PACCMAT-
puUBaeMoil 3aa9u C MMOMOIIBI0 METOJ[a, OCHOBAHHOI'O Ha pa30MEHUU WHTEPBAJA U BBEJICHUU
JIOTIOJTHATEIbHBIX TapaMeTpoB. [loydeHbl HeOOXOIUMbBIE U TOCTATOYHBIE YCIOBUST PA3PEI-
MOCTH UCCJIEIyeMON 3a/1atu.

Kouesbre cioBa. Jluneiinast KpaeBas 3ajata, HHTErpo-1uddepeHnnaibible ypaBHEHU I,
SJIPO €O €J1abOI 0COOEHHOCTHIO, METOJL, TAPAMETPU3AINH, PA3PEIUMOCTD.
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Abstract. We study the question of the existence of special extensions of a set A, which are characterized
by the fact that the type over A of any tuple in the extension satisfies a condition C, where C' is some
property of types; C' can mean either that any type under consideration is definable, or that any type
is locally isolated, or that any type is non-definable, etc. In particular, we study the question of the

existence of a conservative extension of a model.

Keywords. Conservative extension, definability of types.

1 Introduction

Here we describe a method for constructing models using the Tarski-Vaught criterion and
the theory of non-orthogonality of 1-types for constructing a conservative extension.

Theorem 1 (Tarski-Vaught). Let A be a subset of a model M of a complete theory T. For the
set A to be an elementary submodel of the model M, it is necessary and sufficient that for any
formula of the form Jx¢(x,a), where a € A, the following condition holds: M = Jx¢(x,a)
implies that there exists b € A such that M = ¢(b,a).

Throughout the paper, N is a saturated model of the theory T of large cardinality and
the cardinality of all models and sets under consideration are less than the cardinality of the
model V. Assume we are going to construct an elementary submodel M of A such that the
types of tuples of elements from M \ A have some property C (C-types), which we define
later. We can divide properties of types of elements or tuples of elements from M \ A into
the following kinds:
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1. isolated over finite subsets from the family of finite subsets of A,
2. isolated over A,
3. not isolated but locally isolated over A,

4. not locally isolated, non-isolated and not belonging to a fixed family of non-isolated
(non) definable types over A.

The case of isolated types over a finite set from the family of finite subsets A is considered
as a rule in small theories over a countable set A.
A condition C on a type over A defines a special extension B: A C. B.

Definition 1. We say that B is a C-extension of A and write A Co B for this if the type
tp(a/A) satisfies the condition C for any tuple & € B\ A.

Definition 2. We say that a condition C' satisfies the transitivity property if the following
holds for any three sets:
ACoBANBCecD=AcC¢gD.

In any case, the following four conditions are necessary for constructing a model which is
a C-extension of a set A:

UO¢. For any sets A C B and any C-type p € S1(A) there exists a C-type g € S1(B)
which extends p (the extension property).

Ule. For any tuple @ € N \ A whose type satisfies the condition C, for any formula
¢(x,a,a), where a € A and N | Jz(¢(x,a@,a)), there exists a type p(xz) € S1(Aa) such
that ¢(x,@,a) € p and for any 5 € N with § |= p(z), we obtain that tp(Sa/A) satisfies the
condition C.

U2¢. For the theory T, the condition C' has the transitivity property.

U3¢. The theory T has the restriction property for C-types, that is if tp(a/A) is a C-type,
then tp(3/A) is a C-type for any 3 C a.

Failure to meet at least one of these four conditions prevents the constructing a model with
the property C. In the case when we build a model over finite subsets of A, condition U2¢
is bypassed by simultaneously constructing a countable family of countable models nested
into each other, in a countable number of steps, in this case, the choice of a new element
at each final step is carried out (to satisfy the Tarski-Vaught condition) so that the new
element together with the already selected one forms a tuple of elements whose type over A
is a C-type.

Definition 3. We say that a model M, which is a C-extension of a set A, is a C-w-saturated
extension of A if q is realized in M whenever q is a C-type from S1(AUa&) for some & € M\ A.

The existence of a C-w-saturated extension of a set A is due to the joint extension property
for C-1-types.
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Definition 4. We say a complete theory T has the joint extension property for C-1-types
if for any set A C N, where N |= T is sufficiently saturated, for any a,f,v € N \ A the
following is true: if the types q := tp(B/AU &), p := tp(y/AU &), tp(a/A) are C-types over
A, then the type tp(vB/Aa) is a C-type.

U4¢c. The theory T has the joint extension property for C-1-types.

Theorem 2. Let T be a complete theory, then the following is true:

1) For any set A, there is a model M with (A C M < N) which is constructed using
Tarski- Vaught test.

2) If the theory T satisfies the conditions UOc, Ulc, U2¢, and U3¢, then for any set A
there exists a model M < N such that A Co M.

3) If the theory T satisfies the conditions UOc, Ulc, U2¢, U3c, and Ude, then for any
set A there exists a model M < N such that A Co M and M is a C-w-saturated extension
of A.

Proof. 1) This is well-known, nevertheless we remind the proof of this statement. To build
models over any set and without conditions on types (general case), there is no need to satisfy
any of Unc. The construction of the model is as follows.

Step 1. Consider the set of all formulas with one variable and constants from A:
Fi(z,A) :={¢(z,a) | a € A, N |E Jzé(x,a)}. The set Ay contains all elements of real-
izations of formulas from Fj(z, A). Obviously, A C A;.

Step n 4+ 1(n < w). We have Fi'*(z, A,) = {¢(z,a) | a € A,, N |= Jzp(z,a)}. The
set A, contains all elements of realizations of formulas from F"™(z, A,,). Construction is
carried out by sequential implementation of formulas from F{**!(x, A,) := {¢(z,a)|a € A,}
with a fixed enumeration. Clearly, A, C A,+1.

The model M is defined as the union M = (J
Tarski-Vaught criterion implies that M < N.

2) The condition Ul¢ provides the possibility of applying the Tarski-Vaught criterion for
choosing a C-type, which contains ¢x11(z,a) € F{LH(:E, A,) and realizes this type by some
element oy 1, whose type over A, U{ao,...,a,} is a C-type. The transitivity property U2¢
provides the possibility to move from A,, to A,41 (on the limit steps). We show below this
process in details.

We put A° = A.

Step 1. Consider the set of all formulas with one variable and constants from A°:
Fl(.T,AO) = {gbl(l‘,dl) | a € AO, N ‘: E|.T¢)i(fL‘,ELi),i < )\}

We consider ¢g(z,ap). By Ul there is a C-type p(z) € S1(A) which contains ¢g(z, agp).
Let ap realize p and A = A% U {ap}. Now we assume that we have realized ¢;(,a;) and
constructed AY. We consider ¢;11(z,d;11). By Ul there is a C-type pi11(z) € S1(A°) which
contains ¢;41(z,d;+1). By the extension property UO¢ there is an extension g;+1(z) € S1(AY)
of p;y1 which is a C-type. Now we realize ¢; 1 by some «;41 and put A9 1= A? U{ai+1}. By

A,. Then by construction A C M.

n<w

()
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construction, tp(ag, aq,...,a;+1/A) is a C-type. By the restriction property U3¢ the type
of any subtuple of (g, aq,...,q;+1) is a C-type, that is why A?H is a C-extension of Ag,
where p = 0 if 4 + 1 is a natural number or y is the largest limit ordinal which is less that
i + 1. By the transitivity property U2¢ the set A? 1 is a C-extension of AY = A, provided
that Ag is a C-extension of A°. We show the later below.

If 1 is a limit ordinal we put Ag = Uicp AY%. We show that AB is the C-extension of
A% Let v = 0if g = wp, otherwise v is the largest limit ordinal which is less than p. By
the induction hypothesis AY is the C-extension of A°. So, in order to show that Ag is the
C-extension of AY it is sufficient by transitivity to show that A?L is the C-extension of A%.
Letiﬁ_ € Ag \ A%, Then 8 € Ag , for some finite k. Since Ag 41 is the C-extension of AY so
tp(3/AY) is the C-type by the restriction property U3c.

We put Al = Ag. It is the C-extension of A°. The set A! contains all elements of
realizations of formulas from Fj(z, A°).

Step n + 1(n < w). We put F["™(z, A") := {¢i(x,a;) | a € A", N |= Fwg(x,a), i < \}.
Up to changing the superscript 0 with n we repeat Step 1 in order to construct A”*1. Clearly,
AP Ceo A"'H.

We define M as the union M =
criterion implies that M < N.

3) Let M; be a C-extension of A constructed the way which we have described in the
previous item of this theorem. Assume that we have constructed M,, which is the C-
extension of A. We enumerate all tuples & from M, \ A and all C-types p € S1(Aa) as p; for
1 < K. Let

A"™. Then by construction A Co M. Tarski-Vaught

n<w

Bp+1 = {6 : i E pi and p; is not reallized in M", i < k}.

The joint extension property Udo guarantees that B, is the C-extension of A. By the pre-
vious item of this theorem there exists the C-extension M,,11 of B, 11 which is an elementary
submodel of N. By the transitivity property M, is the C-extension of A.

We put M = J,,.,, Mn. Obviously, M is a C-w-saturated extension of A and an ele-
mentary submodel of /. The theorem is proved.

2 Conditions for constructing a conservative extension with a given property
of models

Let a D-property of a type over a set A be that this type is definable over the set A, that
is, p € S(A) is definable, in this case we will say and write that p is a D-type.

Definition 5. For sets A C B, we say that B is a D-extension (conservative) of A (A Cp B)
if tp(a/A) is a D-type for any & € B\ A.

An important condition for constructing a conservative extension is the transitivity prop-
erty U2¢, and for our situation, U2p.
The following is well-known.
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Theorem 3. Any complete theory satisfies the transitivity property U2p and the restriction
property U3p.

Thus, taking into account this theorem for D-extensions, we can formulate the following.

Theorem 4. If a complete theory T satisfies the conditions UOp and Ulp, then for any set
A there exists a D-extension (conservative extension) of A.

It is well-known, that the extension property does not hold in general. Indeed, we consider
M= (N,<)and N = (NUZ, <), where each n’ € Z' is bigger than any k € N. Let s stand
for the successor function, which is definable in this structures. Let A = NU{0'}, B = NUZ/,
and let

p={n<z:xeN}U{s"(z) <0 :m<w}

Clearly, that p defines a unique complete type over A, which is definable. Moreover, p
defines a unique complete type over B, but this type is not definable.

The joint extension property U4p in general does not hold.
Theorem 5 [1]. There is an o-minimal theory T such that for AC N =T and p,q € S1(A)
the following holds:

1. q s weakly orthogonal to p;
2. both q and p are locally isolated types and hence are D-types;
3. the unique 2-type p(x) U q(y) € S2(A) is not definable.

In this [1] example, A is just a subset. This example can be modified so that A contains
an elementary submodel. But we obtain a weakly o-minimal theory.

Let ¥ = {=,<,R* E} and T be the theory of the signature ¥ which consists of the
following axioms.

1. < is a dense linear order without endpoints;

2. F is an equivalence relation with convex infinite classes and the order induced on E-
classes is a dense linear order without endpoints;

3. R(z,y, z,t) implies that y, z,t € [z]g;
4. for each x,y, z there is a unique ¢t with R(z,y, z,t);

5. for each fixed z the restriction of R to [z]g is an ordered Abelian divisible group, where
the addition z+y = t is defined as R(z, y, z,t). For example, if some F-class is (Q, <, +)
then R(z,y,z,t) is equivalent to x + y = z + t.
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If we consider Q copies of (Q, <,+), where each copy is an E-class, we obtain a prime
model of T. Thus, T is complete. Let us fix a finite set A = {a; < az < ...a,} in a model
M of T. We consider b; and by such that each of them belongs to neither of [a;] and either
b1,by < a1, or a; < by, by < a;41 for some ¢ < n, or a, < by, ba, then obviously there exists an
automorphism which fixes A pointwise and moves b; to ba. Now we consider ¢(z,a). Clearly,
©(M,a) N [a;] is a finite union of intervals and points because the restriction of M to a; is
o-minimal. Also we can state that each convex set of the form (a;, a;+1) \ ([ai] U [aiy1]) either
belongs to ¢(M,a) or has an empty intersection with ¢(M,a). That is why this theory is
weakly o-minimal.

Now we proceed as in [1]. We consider an elementary extension of M and consider
a € M such that [a] " M = 0. Let (a, : n < w) be an increasing sequence of rational
numbers, converging to v/2, and let (b, : n < w) be a decreasing sequence of rational numbers,
converging to v/2. Let A = M U{ap-a,b,-a:n < w}. Let B=+2-a, v=n-aand
§ = (7 — v2)a. Repeating reasoning form [1], we can prove that the types tp(y/A) and
tp(0/A) are locally isolated and weakly orthogonal to each other, but their union defines a
complete type, which contains tp(8/A) and this type is not definable.

Taking into account the last theorem we will restrict ourselves mainly to considering the
definability of the union of two weakly orthogonal 1-types over the union of a model and a
definable finite set, and in the case of a positive answer, it becomes possible to construct a
D-w-extension.

We consider a proof that generalizes the consideration of similar questions for the partic-
ular case of weakly o-minimal theories [1].

Definition 6. We say that a D-extension B of a set A is an w-saturated D-extension if for
any tuple & € M \ A each D-1-type from Si(AU @) is realized in B. We write A Cp,, B for
this.

Now we can reformulate Theorem 2.

Theorem 5. 1) Let a complete theory T satisfy the conditions UOp and Ulp. Then for any
set A there is a model M, which is a D-extension of A and M < N

2) Let a complete theory T satisfy the conditions UOp, Ulp, and Udp. Then for any set
A there is a model M,,, which is an w-saturated D-extension of A and My, < N

It is well-known that if A is a model, then the extension property UOp holds. Then we
obtain another corollary of Theorem 2.

Theorem 6. 1) Let a complete theory T satisfy the condition Ulp. Then for any model A
there is a model M, which is a D-extension of A and M < N. Note that if A is a model, it
s not necessary that M is a proper extension of A, by construction A = M may happen.

2) Let a complete theory T satisfy the condition Ulp and U4dp. Then for any model A
there is a model M,,, which is an w-saturated D-extension of A and M, < N
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3 Classes of complete theories for which the existence of a definable 1-type
ensures the existence of an elementary conservative extension

Let M be a model of a complete theory T. Let S1(M) contain a definable non-isolated
1-type. From the construction in Theorems 2 and 6 we know that in order to construct a
conservative extension, it is necessary to select a subclass of D-types such that they provide
construction steps, that is, Ulp.

Theorem 7. Let T be a complete theory. Assume that for any infinite formula ¢(x,a) with
a € A, there ezists a definable 1-type p € S1(A) such that ¢(x,a) € p. Then for any model of
this theory there is a proper conservative extension.

Recall the following definition.

Definition 7. Let A be an arbitrary set in a saturated model N of a complete theory and
p,q € S(A). We say that p is not almost orthogonal to q if there exists ¢(T,a,a) such that
d(WN,a,a) C q(N), where & = p.

Proposition 1. Let A be an arbitrary set in a saturated model of a complete theory. Let p
and q € S(A) be such that p is not almost orthogonal to q. If p is definable, then so is q.

Proof. Let p,q € S(A) be such that p is not almost orthogonal to ¢. This means that there
exists (7, @, a) such that ¢(N,a,a) C q(N), where a [= p. Since ¢(N) = Ny, HWN,0),
so ¢(N,a,a) C H(N,é). Let Ky(a,é¢ a) = Vz(p(z,a,a) — H(Z,c)). Hence, Ky (z,¢,a) €
p. Conversely, if Ky(z,¢,a) € p, then H(Z,¢) € q. Thus, Kg(z,¢,a) € p if and only if
H(z,¢) € q. Let p be definable. We show that ¢ is also definable. Suppose there exists
an A-formula ©(z,7y) such that the set Bg, := {b € A | O(z,b) € ¢} is infinite. The
definability of the type ¢ means that the set Bg , is definable over A for each ©. Now we
define B, := {b € A | Ko(z,b,a) € p}. Since the type p is definable, the set B, , is
definable, too. It follows from definition that Bgg , = Be 4. The proposition is proved.

Proposition 1 can be strengthened for the class of weakly o-minimal theories, as it has
been shown in [2] and [3]. The first author proved that if two one-types p and g over a set
A of a model of a weakly o-minimal theory are not weakly orthogonal, that is their union
p(z)Uq(y) has at least two completions over A, then p is definable if and only if ¢ is definable.
It would be interesting to investigate the question for which theories the this property holds:
if two types are not weakly orthogonal, then definability of one of these two types implies
definability of the other type.

The condition for existence of a definable type over an arbitrary set A containing a formula
with parameters from the set A for constructing a D-extension can be weakened in the case
of the existence of a conservative extension of a model. The following holds.

Theorem 8. Let T be a complete theory and M < N = T. For the existence of a conservative
elementary extension My with M < My < N it is necessary and sufficient that for any tuple
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of elements & € N\ M such that tp(a/M) is definable, for any (M&)-formula ¢(z, a, a) such
that N |= Jxg(x, @, a) the following holds: if (N, a,a) N M = 0, then there is a definable
1-type q € S1(Ma) with ¢(z, @, a) € q.

Thus, the condition for the existence of at least one definable 1-type must be accompanied
by the condition for the existence of at least one definable 1-type for a set that is the union
of the universe of a model and a tuple of elements, whose type over the model is definable.
The question of the existence of a saturated conservative elementary expansion requires the
condition of joint expansion, but for the model.

The existence of a conservative extension of the model provided that at least one definable
1-type exists is provided by such a condition as the condition of the existence of a simple
model over a set. In this case, in the proof of the theorem, we need facts about isolated types
and orthogonality of types.

Theorem 9. Let T' be a complete theory such that there is a prime model over any set.
Then for any model that has at least one definable non-isolated 1-type there is a conservative
extension.

Proof. Let M =T and p € S;(M) be definable and non-isolated. Let « = p and N be
a prime model over M«. Then p is not almost orthogonal to any type ¢ € S(M) which is
realized in V. By Proposition 1 the type ¢ is definable. The theorem is proved.

4 Classes of complete theories for models of which there is a conservative
extension

The class of o-minimal theories contains a complete theory in which no model has a
conservative extensions, due to the fact that there are no definable 1-types over any model
of this theory. Nevertheless, over an arbitrary model M of an o-minimal theory, if there is
at least one definable 1-type p € S1(M), then for an arbitrary realization a € p(N) in a
large saturated model N, one can take a prime model over M U {a}, which exists by Pillay-
Steinhorn theorem [4]. Then a simple model (M, «) is a conservative extension of M. This
is explained by the fact that any tuple of elements from 3 € (M, a)/M of the type tp(3/Ma)
is isolated and, therefore, is definable over (M U {a}). Then, since the type of a over M is
definable, it follows that the type tp(3/M) is definable, too.

In [1] B. Baizhanov proved that the class of weakly o-minimal theories satisfies the con-
ditions of Theorem 2 and, therefore, any model of a weakly o-minimal theory with a dense
order has a conservative extension. Moreover, for any model of the weakly o-minimal theory,
the existence of at least one 1-definable 1-type over the model implies the existence of the
conservative extension.

The class of o-stable theories contains its proper subclass of weakly o-minimal theories,
which in turn contains its proper subclass of o-minimal theories. Therefore, we consider
the class of o-stable and not weakly o-minimal theories. The question of the existence of a
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conservative extension of the model of o-stable theories is reduced to proving the condition
in Theorem 5.

An interesting question is to investigate the existence of conservative extension for the
class of o-stable theories [5], [6].
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Baitxkanos B., Opsiabacapos /1., Bepbosckuit B. TUITTIH, AHBIK TAJIBIMJIBIT'BI MEH
KOHCEPBATHUBTI KEHENTYJIEP TYPAJIBI KENBIP ECKEPTIIEJIEP

A >KUBIHBIHBIH epeKIlie KeHelTysiepiniH 6ap OOYBIH 3epTTeiMi3, oJap OChl KeHeWTyeri
Ke3 KeJTeH KopTexX A-ubiH yerinmeri tun C' MApPTHIH KAHAFATTAHIBIPYBIMEH CHUITATTAJIAJIH,
myHa C' — Tuike KoifbLFaH Kauaail ga 6ip mapt; C' — Ke3 KeJireH, KapacThIPBLIBII XKaTKAH
THII JIOKAJJIbI OKIIAYJIAHFaH, HEMECEe aHbIKTAJIBIMIbI, HEMeCe aHbIKTAJLIMIIBI €eMeC, JKOHE T.T.
0oJIaTBIH TapT 60yl MYMKiH. ATan aiflTKaH/a, MOJIEJIJIIH, KOHCEPBATUBTI KeHElTyi 6ap 60Ty b
MOCeJIeCiH 3epTTeiiMis.

Tyitiaai ceznep. KoncepBaTuBTi KeHEHTYIep, TUNTEP/IIH aAHBIKTAJIBIMIHIFHL.

Baitxkanos B., Opsrabacapos JI., Bepoosckuit B. HEKOTOPBIE 3AMEYAHUA OB
OIIPEAEJINMMOCTU TUITOB 1 KOHCEPBATUBHBIX PACIHNPEHUAX

MBI u3y4daeM BOIPOC CYLIECTBOBAHUSI OCOOBIX PACIINPEHUsT MHOXKECTBa A, KOTOpbIE Xapak-
TEpU3yITCs TeM, 9T0 TUl Hay A JI0O60r0 KOpTeXKa U3 JAaHHOTO PACIIUPEHUs YIOBJIETBOPSET
yeaosuio C, tine C' — HekoTOpoe ycyioBue Ha THIIbl; C' MOXKeT ObITh TeM YCJIOBHEM, 9TO JII0DOI
paccMaTpUBAEMbBII THUII JIOKAJILHO M30JIMPOBAHHDIN, WK OIPEASIUMbIN, WA HEOIPEISTUMBbIIA,
1 Tak jajiee. B 4acTHOCTH, MBI U3yYaeM BOIIPOC CYIIECTBOBAHMS KOHCEPBATUBHOIO PACIIHPE-
HUS MOJIEJIN.

Krouesnre cioBa. KoncepBaTuBHbIE PACIIUPEHUS, ONPEICTUMOCTD TUIIOB.
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Abstract. In the paper, we establish estimates exact in order for error of optimal cubature formulas
on the Nikol'skii—Besov and Lizorkin—Triebel type spaces, B,5(T™) and L;7%(T™), respectively, for
a number of relations between parameters s, p, ¢, m (s = (s1,...,8,) € R}, 1 < p, g < co,m =

(1,10 € N = s 44 ).
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1 Introduction

Let © be a compactum in R™ (m > 2) (with nonempty interior), F a set (class) of
complex—valued continuous functions with domain 2. In numerical integration, for the ap-
proximation of the integral

ff(x)dac, feF,
Q

expressions of the form (cubature formulas)

N
2(f,Cn,AN) =D elk) FA(R)), (1)

k=1
are used; here Cy := (c¢(1),...,¢(N)) € CV are weights and Ay := (A(1),...,A(N)) c QV is

grid of nodes of the cubature formula, and

R(f,9,Cn, Ay) = [ flz)de — 2(f,Cn, Ax)
Q
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is its error on a function f. Denote
Z(F,Q,Cn, An) :=sup{|Z(f,Q,Cn,AN)| | f€F}

The problem of optimal numerical integration under consideration here consists in deter-
mining the exact (in N) order of the quantity

Zn(F,Q) :=inf{Z(F,Q,Cn,AN) | Cn, AN} (2)

(which is (N-th) optimal error of numerical integration) and constructing a sequence
(CXs AN | N € IN) of weights and nodes such that the errors Z(F, Q, Cy;, A}y) of the cubature
formulas (1) realize the order of the optimal error (2). Cubature formulas 2(f, Cy, A} ) are
called optimal (in order).

A lot of works are devoted to the study of different formulations of problems of optimal
numerical integration for various classes of smooth functions in several variables, see, for
example, monographs [1], [3, ch.6] and surveys [2], [4, ch.8] and the bibliography therein.
The construction and study of optimal (or, at least, "good”) cubature formulas for certain
classes of (periodic) functions of mixed smoothness originates in the well-known works of N.M.
Korobov [5], N.S. Bakhvalov [6], and E. Hlawka [7]. Comprehensive survey [4], monograph [3],
papers [8], [9], [10] show that interest in the problem of optimal numerical integration we will
study here is unabated; there is also a fairly detailed history of the issue and an extensive
bibliography.

In this section, we give exact (in the sense of the order) estimates for the quantity (2) in
the case when 0 = T™ is m-diensional torus, F is the function class B,%(T™) of Nikol’skii -
Besov type or Lzz(’]l‘m) of Lizorkin—Triebel type, for a number of relations between the
parameters of these classes.

Let us introduce the notation that we will use throughout this article. Let k € I,
Z = {1,...,k}, INO = INU{O}, R+ = (0,+OO) For x = (wl,...,xk),y = (yl,...,yk) S Rk,
put xy = x1y1 + ... + Tk, || = |z + .o |2k, [Tleo = max(zk| k€ zi); 2 <y (x <y)
<z < yp (xn < yx) for all k € z,. When o < y we denote by [z,y], [z,v), (x,y) closed,
half-open and open parallelepipeds with ”lower left corner” x and ”upper right corner” y in
R*, respectively. For a = (aq,...,ax) € N}, as usual, 2% = z{---ap*, 9% = 9t - OF,
where J, is partial derivative with respect to x-th variable.

Let S := S®) := S(RF) and &' :AS’(IR’“) be the Schwartz spaces of test functions and
tempered distributions, respectively; f = Fi(f) and F Y(f) be direct and inverse Fourier
transforms of f € S’(R¥); in particular, for ¢ € S*),

(&) = Fu(@)(©) = [ p@)e ¢ dw, FHp)(©) = | p@)e™ < de, ¢ € RE.
Rk RF

Let TF = (R/Z)* be k-dimensional torus; we denote by &' = S&'(T*) the space of all
distributions f from &’ 1-periodic in each variable (i.e. such that (f, (- +y)) = (f, ¢) for all
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¢ € S® and for any y € Z*) and by S:i=8W .= S(T*) the space of all infinitely differen-
tiable functions on T* endowed with the topology of uniform convergence of all derivatives
Then the space S'(T*) is naturally identified _with the space topologically dual to § (T*). 1
is well known that f € S’ if and only if supp f C ZF, i.e. distribution f vanishes on the open
set RF\ZF. N

Let f : R* — C be an arbitrary function, its periodization f : T — C is defined as

(formal) sum of the series Y f(z+&).
cczk

First we choose the function ng := n(()k) e S®) such that
0<7p() <1, R M) =1 [fo <1 suppiio = {6 €R" | [¢loo <2}
Put 7(€) := %) = M0 (271¢) = (&), 75(&) == 0j(&) = N(2'77€), j € N. Then

Z ﬁj(g)EL §€]Rka

JENo

ie. {7j(€)]j € No} is smoth partition of unity (corresponding to ”corridors”) on R*. It is
clear that

n(z) == n®(x) = 2ng(22) — 1o (2), mj(2) == (@) = 20 VEy(27 1e), je N, (3)

H®(2) = (3 (2) | j € No}(z € R¥), H®(2) = {7V (2)|j e No}(z e TH).  (4)

Let mneN,m>2,0<p, qg<o0;

L,(I"™) be the space of measurable functions f : I'™ — C, which are Lebesgue integrable
in p-th power (essentially bounded when p = c0) over I, endowed with standard quasi-norm
(norm if p > 1)

17120 | = ( [ 1F@)Fde)” (p.< 50), ||| Looll™) | = ess sup(| f(z) | : 0 € T
Im

here I'is R or T; L, := L,(R™), Ep := L,(T™); sometimes we will identify T™ with cube
[0,1) in R™ (we write a = (a,...,a) € R™ for a € R);

by = Ly" := L,(IN7) be the space of (multiple complex) number sequences (c) = (cx :
k € INj) with finite standard quasi-norm (norm if ¢ > 1) ||(ck) | 44l

Lq(Ly(I'™)) (respectively, L,(I"; £,)) be the space of function sequences (gi(z)) = (gi(z) :
k € IN§) (z € I'") with finite standard quasi-norm (norm if p, g > 1)

1 (gx(2)) [ £g(Lp(@™)) | = 1| Cll g | Lp(@™) 1) [ £
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(respectively, || (gk(2)) | Lp(I"™; £q) || = [ (g1c(-)) [ € | Lp(@™)1);
Ly(Lp) = Lg(Lp(R™)), Ly(Lp) := Lg(Lp(T™)), Lp(lq) = Lp(R™;4q), Lp(Ly) = Lyp(T™; ).

Let n < m. We fix multi-index m = (my,...,my) € N” such that |m| = m along with
representation R = R™! x ... x R™» and corresponding representation z = (z1,...,Zm) €
R™ of the form z = (z,...,2"), where 2¥ € R™ (m=m if n =1 and m = 1 if n = m).

We choose systems H(™) (2¢) and H™) () as in (4) (v € 2,) and define (m-fold) systems
H® (z) and H® (z) as follows:

H® () = @pe,, H™ (@) = (0P (@) = [] 0" @) |k = (ku,... . ky) € N§}(z € R™),

VEZn
H® () = @pey, ™) (@) = (1 (@) = [] 70" @) |k = (ku,... . ky) € N§}(z € T™).
VEZn

Next we define operators A} = A" on &’ and &Z = AZ’t onS (ke Ng) as follows: for
feS andge S

Al(f, ) = AV (f,2) = f ™ (@) = (f,n™ (@ =), (5)
Alg.x) = A (g,2) = g (2) = (0.7 (@ — ) = Y l€)FE)eX™ . (6)
cezm

Definition 1. Let s = (s1,...,s,) € R", 0 <p,q < o0; (1,I) € {(¢,T),(r,R)}.
I The Nikol’skii - Besouv type space Byy(I™) consists of all distributions f € S'(I™), for
which the quasi-norm

1F1Byg (@) || = (AT (f,2)) [4g(Lp(@™))]

is finite.
II. The Lizorkin— Triebel type space Lyg(I™) (p < oo) consists of all distributions f €
S'(I™), for which the quasi-norm

1FILpe@™) I = [@FAL(f,2)) | Lp(@™: )

is finite.
We will call the unit balls By7(I'™) and L7 (I'™) of those spaces the Nikol'skii-Besov and
Lizorkin-Triebel classes, respectively.

In what follows, for brevity, we will often use the notation F;7 = FJ2(R™), ﬁ;;‘ =
F5™(T™), here F € {B, L, B,L}.

Remark 1 Comments and bibliography on spaces Bpg(I') and Ly7(I"™) can be found

in [17]. Here we note only the following. When n = m (= m = 1), EE% and Z;; are
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spaces of ("pure”) mixed smoothness; in particular, for s € R, M W; = E;% is the space of
functions with dominating mixed derivative bounded in Ep (if 1 <p<o0)and M fI; = E;;o
is the space of functions with dominating mixed difference bounded in L, (if 1 < p < o00).
When n = 1(= m=m), By, = By’ and L;, = Ly are the isotropicNNikol’ikii—Besov
and Lizorkin-Triebel spaces, respectively; in particular, when 1 < p < oo Wy = L;, is the

isotropic Sobolev space and HS = Egoo(l < p < ) is the isotropic Nikol’skii space.

2 Optimal error of numerical integration on classes B;7 and L7

In this section, we formulate and discuss the main result on estimates exact in order for
optimal errors of numerical integration on the Nikol’skii —Besov and Lizorkin —Triebel classes
Bo(T™) and Ly7(T™) for a number of relations between parameters s,p,q,m (s € R}, 1 <
paQSOOam: (m17"‘7mn) EINnv m:ml++mn)

For given s = (s1,...,5,) € R}, m = (my,..,my,) € N", we put ¢, = o (v € zy,); without
loss of generality, we will assume that

c=min{q |vEzZ )= =...=¢ <, VEZ\7

(with some ¢ € zy,).

In what follows, we will use the signs < and =< of the ordinal inequality and equality:
for functions F' : Ry — R4 and H : Ry — Ry, we write F(u) < H(u) as u — oo, if
there exists a constant C' = C(F, H) > 0 such that the inequality F'(u) < CH(u) holds for
u>ug > 0; F(u) < H(u), if F(u) < H(u) H(u) < F(u) simultaneously.

In what follows, log = logy. When Q = T™ or [0, 1] we will often write simply Zx (F)
instead of Zn(F, ).

Theorem 1. Let 1 <p,q <00, s=(s1,...,8,) € R}.. Then

L for ¢ > 1/p, the relation

Zn(B3E, T™) < N~ (log N)-~ (1 =1/9)

PQ
holds;
II. for p < oo and ¢ > max(1/p,1/q), the relation

Zn (L2, T™) < N~ (log N)~ D01/

holds.

Remark 2. By theorem C from [18] the condition ¢ > % provides the embedding ﬁlfqm
— C(T™), which is necessary in problems of numerical integration (F € {B, L}).

Remark 3. As noted above, there is an extensive literature devoted to optimal cubature
formulas for classes of functions of several variables. Here we discuss results directly related

KAZAKH MATHEMATICAL JOURNAL, 20:3 (2020) 101-110



106 Dauren B. Bazarkhanov

to Theorem 1, namely, results on function classes on the torus included in the Nikol’skii —
Besov and Lizorkin — Triebel scales from definition 1. But here we do not touch on the case of
low smoothness (p > ¢,1/p < ¢ < 1/q) of the Lizorkin — Triebel classes; for this, see Remark
4 below.

The estimates of Zn(F) exact in order of the isotropic Sobolev and Nikol’skii classes are
given in [3, ch.3] (in fact, the anisotropic case is considered there).

For %’N(MW;), the right (in order) upper bounds were proved by N.S. Bakhvalov [2] (the
case p = m = 2,51 = s9 € IN; there Fibonacci’s cubature formulas were used for the first
time), V.N. Temlyakov (1989) (the general case p =m = 2,1/2 < s; = s2 € Ry; see [3]), K.K.
Frolov [12] (the case p = 2, s = 511, 1 € IN, m > 2 is arbitrary; a new construction of cubature
formulas was invented), further, V.A. Bykovskii (1985) (p = 2,m > 2,5 = 511,51 € R,s1 >
1), then V.N. Temlyakov [13] (p > 2,m > 2,5 € R' : 1/2 < 51 = s5,,5, > s1(1 +1/[s1])),
M.M. Skriganov [15] (1 < p < co,m > 2,s = s11,s51 € IN), and the right (in order) lower
bounds were established by V.A. Bykovskii (1985) (the case p=2,m > 2,5 = s11,s1 > 1/2)
and V.N. Temlyakov [13] (the general case 1 < p < co,m > 2,5 = 11,81 > 1/p).

For Zn (Mﬁ;), the right (in order) lower bounds were established by N.S. Bakhvalov [11]
in the general case, the right (in order) upper bounds were proved by N.S. Bakhvalov [2, 6]
(the case m = 2, 51 = so; Fibonacci’s cubature formulas) and V.V. Dubinin [14] (the general
case, Frolov’s cubature formulas). Exact order of the quantity %N(]Aé;;) was found by V.V.

Dubinin [16]. Finally, exact order of the quantity %N(Ef,;) in the case s1 = ... = s, was
obtained by V.K. Nguyen, M. Ullrich, T. Ullrich [9].

3 Estimates from below

There are two main methods for obtaining lower bounds of Zy(F,§2). The first one was
proposed by N.S. Bakhvalov [11]. His idea is for a given N and any cubature formula (1)
to construct a "bad” function ga,, |lgay | F|| = 1, vanishing at its nodes, in the form of a
sum with equal positive coefficients of special shifts of contractions of a suitable fixed smooth
bump function for which

(G 2 On AN) = [ gay (@)dz = lgay | L1
Q

has the required order. In the second one, proposed by V.N. Temlyakov [13] for Q = T™, the
function g, with those properties is sought among trigonometric polynomials with spectrum
in the "hyperbolic layer” depending on N. The existence of such a polynomial is established
using deep estimates for the volumes of the sets of Fourier coefficients of such polynomials.
Lower bounds in Theorem 1 is proved by Bakhvalov’s method.

Denote by #I' the number of elements of a finite set I' (I' = @ < #I' = 0) and by |P|
the volume of a parallelepiped P.

Let R™ = R™ be the collection of all half-open dyadic parallelepipeds from RR™ of the
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form P= P, ={zeR™: 25 2 -£€0,1)} (ke Nj, £ € Z™),
R=R™ = {(PeR"|PC0,1)} ={PL|keNj, £cZm:0<¢<25 1},

here a* = (a*,...,a*"), z -z = (z12},...,2,2") for a € R, z € R®, x € R™. Below
ap:=2"5-& k(P) =k, if P = Pf. It is clear that

{PeR™|K(P) =k} ={PL|E€Z™:0<¢< 25 1},

is the partition of the torus [0,1), #{P € R | k(P) = k} = 2k |P| = 2-K(P)m,

Key ingredient in the estimating from below is atomic characterization of the Nikol’skii—
Besov and Lizorkin —Triebel spaces from proposition 1.

Under hypotheses of Theorem 1, we call a collection of functions (d]gr)) = (op: P €

R") C S(R™) a family of atoms for F,)7, if for each P € R" the conditions

supp /p C 3P, |0%p(x)| < |P|7V/22kP)rel 4 e R™ a <K 1 (7)

are fulfilled, and a collection (szf’lgt)) = (Bp : P € R") C S(T™) a family of atoms for F;g‘, if

for each P € R™ &p is periodization of a function «p € S(R™) (i.e. Bp = JZZ;) satisfying
the conditions (7) (here 3P is the dilation of P with the same center).

For a sequence (cggi)) = (cggi) : P eR™) C C, we put

ICEN Bpat =12 D0 eplPIT2xp () [ 4o(LpM™)Il;

Pesimi k(P)=k
I I =11 >0 epPI T2 () [ L(D)™5y))|
Penni:k(P)=k
(xp is the indicator of P).
Proposition 1. Let (i,I) € {(r,R),(t,T)}, (F,F) € {(B,B)(L,L)}. Then, under hy-
potheses of Theorem 1, f € F,2(I™), if and only if there exist a family of atoms (fojgl)) for
Fj2(I'™) and a sequence (cEDi)) € Lomt such that

f= Z cggi) ,Qi]gi) (convergence in Ly(I)™), (8)
Penimi
moreover,
| f | Ep2@m)|| = inf || () | P52, (9)

where inf is taken over all representations (8).
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4 Estimates from above

Under hypotheses of definition 1( F € {B, L}, u,v € R,u < v), we consider the space
F;;n([mv]) ={g € F;(R™) : suppg C [u, v]}.

and its unit ball (class) F;g([u, v]).

Scheme for proving upper bounds of Zx (F, 2) when = [0, 1] or T™, m > 2, for classes of
functions with mixed smoothness was proposed by K.K. Frolov [12]. The scheme is as follows:
i) by a suitable smooth change of variables, the class F is mapped to the class G = G([0, 1]™)
of functions vanishing on the cube boundary, ii) the inequality Zy(F,Q) < Zn(G,[0,1])
is established, iii) a special lattice A is chosen such that the number of its nodes falling
into an arbitrary parallelepiped with sides parallel to the coordinate axes is proportional
to its volume, iv) a cubature formula with equal weights equal to % and a grid of nodes
A3 = (Ndet(A))"Y/™A N (0,1) (Frolov’s cubature formula) has the number of nodes of
order N and the required order of error for G, v) and the cubature formula induced by it
gives the same order of error for F on . This approach has been applied and developed
in [13], [14], [15], [16]. In [8], [9], the minimal smoothness conditions for the change of
variables are substantiated; the scheme was simplified (using the characterizations of the
spaces B,p(R™) and Ly7(R™) by so-called local means); for 2 = T™ a simple way of passing
from F to G is proposed using a smooth periodic partition of unity instead of changing
variables.

When proving upper bounds, we adhere to Frolov’s scheme with modifications and sim-
plifications from [8], [9].

5 Estimates from above for Lizorkin— Triebel classes in the case of small
smoothness

Here we consider upper estimates for error of optimal numerical integration for classes
L;%([0,1]) in the case of small smoothness: p > ¢ and 1/p <¢ < 1/q.

Theorem 2. Let1 < g <p<o0,s=(s1,...,5,) € R}. Then
L for 1/p << < 1/q, the relation

%N(L;!;([Ov 1])7 [07 1]) < N™*(log N)(L_l)(l—c)

holds;
II. for ¢ =1/q, the relation

Zn(L55(10,1]),[0,1]) < N7 (log N)“ DU (log log N)'~

holds.
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Remark 4. V.N. Temlyakov [19,20] was the first to discover and fully investigate the
phenomenon of ”small smoothness” in problems of optimal numerical integration for the
classes MW} of functions of two variables with a bounded mixed derivative for the case of
2 <p<ooandl/p<s; <1/2. Note that the Fibonacci cubature formulas again turned out
to be optimal in this case. Theorem 2 is a generalization to the case of the Lizokin—Triebel
classes Lgrg([O, 1]) of the recent result of M. Ullrich and T. Ullrich [8] for classes L;{]([O, 1)).
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Bazapxanos JI.B. KOII AUHBIMAJIBL/IBI TENIC ®YHKINAIAP KJTACTAPBIHIA
EH TUIMJII UTHTET'PAJIJIBI 2KYBIKTAY

Byn xywmbicta s, p, ¢,m (s = (s1,...,8,) € R}, 1 < p, g < oco,m = (my,...,my) €
N*'m = mj; + -+ + m,) napamerpjiepi apacblHIarbl OGIpKATAp KATBIHACTAPHI YIIiH
Huxonbexuit-Becos By 7 (T™) xxone JInsopkun—Tpubems L7 (T™) kenicrikrepi yrmin ex TrinM-
i KybaTypaJiblK, (OPMYJIAHBIH KATEJIriHIH peTi OOfbIHINA HAKThI Oarayiaybl ajbIHFAH.

Kinrrik ceznep. nterpanipl XKybIkTay, eH THiMII KybaTypaJiblk, dpopmysa, Top, Oposio-
BTBIH KybaTypasblk dhopmynacsl, Hukonbckuii—becos/JTuzopkua—Tpubess Kenicriri/Kiacs,
apaJiac TericTiri.

Bazapxamnos /I.Bb. OIITUMAJIBHOE YNC/JTEHHOE UHTET'PUPOBAHUNE HA KJTAC-
CAX I'VIAJIKNX OVHKIINN HECKOJBKNX ITEPEMEHHBIX

B mpesgnaraemoit pabore yCTAHOBJIEHBI TOUHBIE B CMBIC/IE MOPSIJIKA OIEHKHU MOTPEITHOCTH
ONTUMAJIBHBIX KyOaTypHBIX (opMysI 1jist mpocTpancTB Tuna Hukoabckoro—becosa BZ;‘(Tm)
u Jluzopkuna — Tpubesrs L;“&(Tm) JJIs PsJla COOTHOIIEHUN MeXKJly IapaMeTpaMu S, P, ¢, m
(s=(s1,...,80) ERY, 1 <p,g<00,m= (Mmy,...,my) € N* m=mq +---+my).

KimoueBbre csioBa. Yucjennoe wuHTerpupoBaHue, OITHMaJbHAsA Kybaryphas ¢op-
Mysia, pemiérka, Kybaryphas dopmyina PposioBa, HpocTpaHcTBO/KIace HUKOIBCKOro—

Becosa/Jluzopkuna—Tpubesist, cMemmanias riaikocTh, MHOTOMEPHBIH TOD.
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