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NAZARBAI KADYROVICH BLIYEV
TO THE 85th ANNIVERSARY

We celebrate the 85th birth of the
academician of the National Academy of
Sciences of the Republic of Kazakhstan,
Professor Nazarbai Kadyrovich Bliyev, the
famous scientist, the specialist in the field of the
theory of differential equations, mathematical
physics and functional analysis who has made a
great contribution to the theory of generalized
analytic functions, to the theory of boundary
value problems for equations of mathematical
physics and to the theory of singular integral
equations into functional spaces.

N.K. Bliyev was born in September 1935
in the village of Zharkamys, the Baiganinsky
district of the Aktobe region, in the family of
an employee. In 1952 he graduated from the
Zharkamys secondary school. He dreamed of

becoming a geologist but everything changed in the tenth grade. That year the Mathematics
was taught by a new teacher, Zhakiya Zhusubaliev, a graduate of Ural Pedagogical Institute,
who together with a famous mathematician, academician of the Academy of Sciences of the
Kazakh SSR A.D. Taimanov was recommended for graduate school in Moscow but could
not continue his studies for family reasons. Zh. Zhusubaliev paid attention to mathematical
abilities of his student, taught him and insisted on his entering the Mathematics department
of the university.

In 1952 he entered the Mathematics department of the Faculty of Physics and Mathematics
of Kazakh State University named after S.M. Kirov (now al-Farabi Kazakh National
University). During his university years, he listened with great interest to the lectures of
Professor K.P. Persidskii and associate professors H.I. Ibrashev, M.Ya. Yataev, Sh.M. Enikeev.
Under the leadership of the academician K.P. Persidskii he wrote his diploma paper on
the theory of stability. In 1957 he graduated with honors from Kazakh State University
named after S.M. Kirov and he was offered to go to Moscow to enter the graduate school
of the Steklov Mathematical Institute (MIAS) of the USSR. But he chose to work at Guryev
Pedagogical Institute named after Dosmukhamedov (now Atyrau State University named after
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Dosmukhamedov) in order to have time to fulfill his filial duty to his dear grandmother Bayan
Edilova who raised him and who at that time was already in old age.

In those years, Guryev Pedagogical Institute did not have enough teaching staff, N.K.
Bliyev with full workload and interest worked as a teacher and then as a senior teacher till
1960, lecturing, conducting practical classes in almost all disciplines of Mathematics, that is,
analytical geometry and higher algebra, the theory of functions of real and complex variables,
the theory of differential equations.

In 1960 he entered the graduate school of the Steklov Mathematical Institute of the
Academy of Sciences of the USSR. His first leader and mentor was the candidate and in a
short time the doctor of physical and mathematical sciences Vladimir Sergeevich Vinogradov,
a disciple of the academician of the Academy of Sciences of the USSR Ilya Nesterovich
Vekua. Nazarbai Kadyrovich began to study the behavior of solutions of elliptic systems
of differential equations in the vicinity of singular points of the coefficients. He obtained
necessary and sufficient conditions for the existence of analytical solutions for degenerate first
order elliptic systems in the vicinity of degeneration points. The features (degenerations) under
consideration were such that it was difficult to expect the existence of any "good" solutions.
Therefore, to prove the analyticity of the solution, one had to show extraordinary ingenuity
and perseverance. These results laid the foundation for other studies of the possibility of the
existence of continuous solutions related to questions of the theory of surfaces in the geometry.
The mentioned results of N.K. Bliyev were highly appreciated by I.N. Vekua and were reported
at the international conference (see I.N. Vekua. On one class of the International Conference
on Analysis and Related Topics. Tokyo, April, 1969) that laid the foundation for their further
close cooperation. And in his further research N.K. Bliyev followed the principle: "good"
(topological) properties of solutions of elliptic equations are a consequence of the more elliptic
nature of these equations, rather than the smoothness of the coefficients.

In 1965 N.K. Bliyev successfully defended his candidate thesis "On the existence of analytic
solutions for degenerate elliptic systems in vicinity of a degeneration point" at the Dissertation
Council of the Mathematical Institute of the Academy of Sciences of the USSR. The Institute
of Mathematics of the Siberian Branch of the Academy of Sciences of the USSR gave an
external review of the thesis. The official opponents were doctors of sciences K.T. Akhmedov
(Baku), V. Kh. Kharasakhal (Alma-Ata). It is known from the university course that the
theory of analytic functions of one complex variable is the theory of the Cauchy-Riemann
system which is a special case of another elliptic system with variable coefficients, called by
I.N. Vekua the generalized Cauchy-Riemann system. An attempt to construct the theory of
the generalized Cauchy-Riemann system was yet undertaken by Beltrami. In the early 1930s,
T. Carleman and N. Teodorescu showed that some properties of solutions of the generalized
Cauchy-Riemann system are carried over to solutions of particular classes of the elliptic
systems. Only in the early 50s, due to the works of I.N. Vekua, a uniform theory of general
elliptic systems of two equations of the first order with two independent variables which
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has wide applications in different areas of analysis, geometry and mechanics was created.
It is called the theory of generalized analytic functions (GAF), was constructed in Sobolev
spaces W l

p, l ≥ 0 is an integer, p > 2, and it covers generalized (in some sense) solutions
of the generalized Cauchy-Riemann system with coefficients belonging on the whole plane E
of the complex variable z to the class Lp,2, p > 2, coinciding with the space Lp, p > 2 in
the bounded domains G ⊂ E. The famous American mathematician L. Bers has a slightly
different approach.

In December 1969, after another report of N.K. Bliyev at the seminar, I.N. Vekua invited
him (in a convincing form) to study the problem of possibility (or impossibility) of an
acceptable development of the theory of GAF onto extremely limiting cases, i.e.onto a class
of coefficients of the elliptic systems summable to a power of at most two, i.e. belonging
to the eigensubspaces Lp, 1 < p ≤ 2. Such a proposal by I.N.Vekua was unexpected,
highly responsible and prestigious at the same time. At that time N.K. Bliyev worked at the
laboratory of Professor T.I. Amanov, who was the director of the Institute of Mathematics
and a disciple of Academician of the Academy of Sciences of the USSR S.M. Nikol’skii. Such
connections prompted him to think: to start using the scale of Nikol’skii-Besov spaces where
one can find more exact descriptions of properties of the functions. In those years these spaces
were not yet adapted to study equations with variable coefficients. N.K. Bliyev was the first
to succeed in proving necessary conditions for this statement about multipliers and to obtain
relations between parameters of spaces into which the theory of Vekua can be extended. Here
is an excerpt from the review of I.N. Vekua of these results in a letter addressed to the
director of the Institute T.I. Amanov: Tbilisi, 23.06.1971 ... Today we listened to the report
of N.K. Bliyev which we liked. I think that he discovered a new class of elliptic systems that
admit continuous solutions. The obtained results should be unconditionally published and, in
addition, it is advisable to continue further research in this direction ...". Bliyev managed to
positively formulate the complete solution of the indicated problem on the scale B of Besov
space, it contains the extension of the theory of Vekua known in the Sobolev spaces. We
should note the success of extending the class of GAF to families of generalized solutions of
general elliptic systems of differential equations on planes with coefficients from spaces with
the summability exponent p > 1 not embedded in Lp,2 = Lp. These families contain even such
functions that are not summable in the usual sense but retain a number of basic topological
properties of the analytic functions of a complex variable (uniqueness theorem, argument
principle and others). The results of N.K. Bliyev have extraordinary consequences in various
areas of mathematics. For example, he refined long-established results of a fundamental nature
such as conditions for the existence of classical solutions of partial differential equations,
general boundary value problems of the Riemann-Hilbert type, problems of linear connecting,
quasiconformal mappings which are continuously differentiable Beltrami homeomorphisms.
He established that singular integral equations are Noetherian in classes of functions which
are continuous (not necessarily in Holder’s sense) in terms of B-spaces and others. Thus,
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possibilities are enhanced and the range of applications of GAF expands.
The results on differential equations and boundary value problems in bounded domains

were included in his doctoral thesis "Elliptic systems of the first order differential equations
on a plane in fractional spaces and boundary value problems" which was successfully defended
at the Mathematical Institute of the Academy of Sciences of the USSR in 1980. The external
organization was the Institute of Mathematics of the Siberian Branch of the Academy of
Sciences of the USSR, the official opponents were Corresponding Member of the Academy of
Sciences of the USSR A.V. Bitsadze, Academician of the Academy of Sciences of Ukrainian
SSR I.I. Danilyuk, Doctor of Physical and Mathematical Sciences, Professor of Moscow State
University, later Academician of the Academy of Sciences of Uzbekistan Sh.A. Alimov.

More detailed functional properties of GAF are presented in the monograph by Bliyev
N.K. "Generalized analytic functions in fractional spaces" Alma-Ata, "Nauka" , 1985. This
monograph received the wide approval and the proposal of experts from far abroad to publish
it in English. The results for unbounded domains are included in the monograph published
in the prestigious international series "Pitman Monographs and Surveys in Pure and Applied
Mathematics 86 " in English: Bliyev N. "Generalized analytic functions in fractional spaces,
USA, Addison Wesley longman inc., 1997". Currently, the results by N.K. Bliyev have received
the full recognition from experts and are used in foreign countries. The important results
on the soliton solvability of series of nonlinear equations of mathematical physics, such as
Schrodinger, Kortweg-de Vries and other equations, are due to N.K. Bliyev and his disciples.

Since 1963, the scientific activity of H.K. Bliyev is associated with the Institute (till 1965,
the Sector) of Mathematics and Mechanics of the Academy of Sciences of the Kazakh SSR,
in which he went through all the stages of professional growth from a junior researcher to the
director of the institute: since October 1963 junior researcher, since 1966 senior researcher,
since 1978 the Head of Laboratory of functional analysis and theory of functions, in 1988
he was elected Director of the Institute, since 2000 Honorary Director of the Institute
of Mathematics of the National Academy of Sciences of the Republic of Kazakhstan, the
head of theme, since 2012 Chief Researcher (part-time) of the Institute of Mathematics
and Mathematical Modeling of the Ministry of Education and Science of the Republic of
Kazakhstan.

Having received the baton of the director of the Institute from Academician of the National
Academy of Sciences of the Republic of Kazakhstan U.M. Sultangazin, N.K. Bliyev made
his contribution to scientific and organizational activity of the Institute. Despite economic
difficulties of those years of perestroika as well as the beginning of Kazakhstan’s independence,
he managed to organize a calm creative atmosphere, actively supporting talented young
mathematicians and encouraging the scientists of the Institute to participate in various
international mathematical forums. This had borne fruit. The Institute (of Theoretical and
Applied Mathematics in 1992-1999) became one of the leading institutes of the Department
of Physical and Mathematical Sciences of the National Academy of Sciences of the Republic
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of Kazakhstan, the trend of international scientific activity had increased and international
contacts had been strengthened. In 1995, 11 employees received a Soros grant, three employees
received an INTAS grant. There appeared scholars of different international mathematical
societies, 10 employees of the institute were members of international scientific associations.
That year the Institute became the winner of the INTAS grant. During those years a number
of articles and monographs were published in English.

Simultaneously with the scientific activities N.K. Bliyev devoted a lot of time to teaching.
Since 1964 he worked part-time at his Alma-mater, his relative Kazakh State University (now
al-Farabi Kazakh National University). In September 2000, at the invitation of the rector,
Nazarbai Kadyrovich completely switched to teaching and became the head of the Department
of Functional Analysis and Probability Theory of al-Farabi Kazakh National University. From
2009 to the present he is Professor of the Department of Fundamental Mathematics of the
Faculty of Mechanics and Mathematics of al-Farabi Kazakh National University.

N.K. Bliyev is actively involved in the scientific, organizational and social activities.
He is a member of the editorial board of the journals "Izvestiya NAS RK. Seriya
physiko-manematicheskaya" , "Matematicheskii jurnal" (since 2019, "Kazakh Mathematical
Journal"), "Vestnik KazNU im. al-Farabi" . Repeatedly he was a member, vice-chairman,
chairman of dissertation councils for the defense of doctoral and candidate dissertations of
the Institute of Mathematics of the Ministry of Education and Science of the Republic of
Kazakhstan.

In 1999-2002 he worked part-time as academician-secretary of the Department of
Physical and Mathematical Sciences of the National Academy of Sciences of the Republic
of Kazakhstan. For several terms, he was a member of the Presidium of Higher Attestation
Commission (SAC), chairman of the Section of Physical and Mathematical Sciences of the
Terminology Committee under the Cabinet of Ministers for State Prizes of the Republic
of Kazakhstan, a member of the Presidium of the National Academy of Sciences of the
Republic of Kazakhstan, a deputy executive editor of "Izvestiya NAS RK. Seriya physiko-
manematicheskaya" , editor-in-chief of "Matematicheskii jurnal" , a member of the editorial
board of "Vestnik NAN RK" , Encyclopedia of the Republic of Kazakhstan, Science
Development Fund, dissertation councils of the Institute of Mathematics of the Academy
of Sciences of Uzbekistan, Aktobe University named after K. Zhubanov. He was one of the
organizers and actively participated in organizing and holding of a number of international
scientific forums in Almaty, Aktobe, Semey and Karaganda.

He has published over 150 scientific papers, including one monograph, a number of
articles in such highly rated mathematical publications as "Doklady AN SSSR" , "Sibirskii
matematicheskii jurnal" , "Complex Variables and Elliptic Equations" and others. Among his
direct disciples there are 18 candidates and 3 doctors of sciences who have their own schools
and disciples.

The scientific achievements of N.K. Bliyev have received a worthy assessment. In 1985 he
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received the title of professor, in 1989 he was elected a corresponding member of the Academy
of Sciences of the Kazakh SSR, in 1996 he was elected an academician of the Russian Academy
of Natural Sciences, and in 2004 he became an academician of the National Academy of
Sciences of the Republic of Kazakhstan. In 1998 he was awarded an honorary title "Honored
Worker of Science and Technology of the Republic of Kazakhstan" , in 1999 he was awarded the
international Khorezmi Prize of the first degree. The scientific and social achievements of N.K.
Bliyev were marked with the certificate of honor of the Supreme Council of the Kazakh SSR,
with the commemorative certificate of honor of the Central Committee of the Communistic
Party of Kazakhstan, the Council of Ministers of the Kazakh SSR, the Kazakh Council of
Trade Unions, the Central Committee of the youth union of Kazakhstan for the XIX party
conference of the Central Committee of the Communistic Party of Soviet Union, with medals
"Veteran of labour"and "10 years of the independence of the Republic of Kazakhstan".

Taking care of high-quality and professional training of the younger generation in the
state language, N.K. Bliyev wrote the study guide in Kazakh "Метрикалық кеңiстiктер" ,
Almaty: "Қазақ университетi" , 2005 and the textbook "Функционалдық анализ" , Almaty:
"Universitet" , al-Farabi Kazakh National University, 2014.

N.K. Bliyev made presentations at many international scientific forums, including the
International Congress of mathematicians (Poland, Warsaw, 1983), the Second European
Congress of mathematicians (Hungary, Budapest, 1996), conferences of the European
mathematical society (Poland, Bedlewo, 2004, 2006), with a plenary report at the
International Conference "Differential equations, theory of functions and applications"
(Russia, Novosibirsk, 2007), etc.

Over the years as part of various delegations he visited many countries and cities such
as Delhi, Bombay, Hyderab, Madras (India), Beijin (China), Seoul (South Korea), Istanbul,
Ankara, Konya (Turkey), etc. In 2015, on the occasion of his 80th birthday, an outstanding
scientist-mathematician, Academician of the National Academy of Sciences, Doctor of Physical
and Mathematical Sciences, Professor H.K. Bliyev was awarded with the al-Farabi silver medal
and the order "Kurmet". Every year a series of books titled "Өнегелi өмiр" is published
at al-Farabi Kazakh Natioal University and is dedicated to those who have made a great
contribution to the development of science education in Kazakhstan. In 2015, the release of
this series of books was dedicated to Academician N.K. Bliyev.

Nazarbai Kadyrovich continues research in the field of generalized analytic functions in
the Institute of Mathematics and Mathematical Modeling of the Ministry of Education and
Science of the Republic of Kazakhstan: he was the scientific leader of the projects "Generalized
analytic vectors and their applications, the solvability of soliton nonlinear equations of the
dimension (1+1)" by grant funding for 2012-2014, "Boundary value problems and singular
integral equations with Cauchy kernel with Carleman shift in fractional spaces " by grant
funding for 2015-2017.

He is currently the scientific leader of the project "Boundedness of general (n –
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dimensional) singular integral operators and Noetherity of corresponding singular integral
equations in Besov spaces" by grant funding for 2018-2020.

Academician N.K. Bliyev is full of strength and energy to implement his new mathematical
ideas.

The staff of the Institute and the Editorial Board of "Kazakh Mathematical Journal"
congratulate Nazarbai Kadyrovich on his 85th jubilee and wish him good health, long life,
new creative successes in his fruitful activity!

Editorial board
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1 Introduction

The Bernoulli process and generally Bernoulli scheme are of most attractive and basic
concepts in probability theory, statistics, random processes, dynamical processes related to
chaos [1]–[7]. In the present research, we suggest to consider, beside traditional probabilistic
events, a new one, which is called unpredictable string. It will provide interesting opportu-
nities for extension of the theories as well as exploration of useful deterministic features for
stochastic dynamics.

In recent papers [8], [9], new connections of deterministic chaos with random dynamics
have been developed. This time, the notion of infinite sequences with unpredictable strings
is introduced. This relates to the unpredictable point [10]. Numerical simulations of the
Bernoulli process are performed to demonstrate that the realizations are unpredictable. They
confirm that specific properties for the random dynamics are valid, namely the first and second
laws of large (unpredictable) strings, which are, also, discussed theoretically. Besides, Matlab
algorithm to verify sequences with inductively increasing lengths of unpredictable strings is
provided.

2 Preliminaries

The notion of the realization is one of the basic in the paper. Let us provide the
precise description of it not to have confusion in the comprehension. Fix natural num-
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bers 1, 2, . . . , N, and consider the set Ω = {1, 2, . . . , N}N, where N is the set of all natu-
ral numbers, as a sample set. Elements ω of Ω are infinite sequences (ω1, ω2, . . .) as well
as finite sequences (ω1, . . . , ωn), n ∈ N, where ωi, i ∈ N, are natural numbers from 1 to
N. That is, they are members of the cylindrical sets Ωn = {1, 2, . . . , N}n. Assume, that
p(i) = 1/N for all i = 1, 2, . . . , N. Determine a family of random variables, X(n, ω) : N→ S,
where S = {s1, . . . , sr}, r ∈ N, is a finite set of real numbers, such that SN is a collec-
tion of infinite and finite sequences. We shall call the sequences {X(k, ω)}, k ∈ N, and
{X(k, ω)}nk=1, ω ∈ Ω, the infinite and finite realizations of the Bernoilli scheme, respectively.
Thus, the infinite realization is a sequence {ak}k, k ∈ N, and the finite realization is a se-
quence {ak}, 1 ≤ k ≤ n, n ∈ N, with ak ∈ S. They are orbits of the dynamics, which we
know as the Bernoilli scheme. In the case N = 2, the dynamics is said to be the Bernoilli
process [4], [7].

3 The unpredictable strings

In this section, we introduce the main concept of this paper, unpredictable strings and
utilize it to determine unpredictable sequences.

Let ai, i = 0, 1, 2, ..., be an infinite sequence of symbols.

Definition 1. A finite array (as, as+1, ..., as+k), where s and k are positive integers, is said
to be an unpredictable string of length k if ai = as+i, for i = 0, 1, 2, ..., k − 1, and ak 6= as+k.

The diagram in Figure 1 illustrates the definition.

as as+1 as+2 as+3 as+k−1

as+k

a0 a1 a2 a3 ak−1

ak

Figure 1 – The illustration of the unpredictable string of length k.

Definition 2. The sequence ai is unpredictable if it admits unpredictable strings with arbi-
trary large lengths.

Definition 3. [10] The sequence ai is unpredictable if there exist sequences ζn, ηn of positive
integers both of which diverge to infinity such that aζn+l = al, l = 0, 1, 2, ..., ηn − 1, and
aζn+ηn 6= aηn, for each n ∈ N.
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Theorem 1. The Definitions 2 and 3 are equivalent.

Proof. Let sequence ai be unpredictable. Then the finite arrays (aζn , aζn+1, ..., aζn+ηn)
are unpredictable strings of length ηn, for each natural n. Thus, the sequence admits unpre-
dictable strings with arbitrary large lengths.

Conversely, let ai be a sequence that admits unpredictable strings of arbitrary
large lengths, i.e., there is a sequence in, n = 1, 2, 3, ..., such that the finite arrays
(ain , ain+1, ..., ain+k) are unpredictable strings. By setting ζn = in and ηn = in + k, we
deduce that the sequence ai is unpredictable in light of Definition 3.

Fix a positive integer k and denote by Sk the sets of all indexes s such that the strings
(as, as+1, ..., as+k) are unpredictable within the sequence ai, i = 1, 2, ..., which is not neces-
sarily unpredictable.

Theorem 2. The sets Sl and Sq do not intersect if l < q.

Proof. Assume, on contrary, that sets Sl and Sq admit a common element s. Then, we
have that al 6= as+l if s ∈ Sl and al = as+l if s ∈ Sq. This contradiction completes the prove.

Theorem 3. Assume that ai is an unpredictable sequence. Then each aj with positive j is
the first element of an unpredictable string, if aj = a0.

Proof. Assume the opposite. Then one can show that the sequence α is periodic one.
That is not unpredictable sequence.

4 Numerical analysis of the Bernoulli process

We will scrutinize a realization of the Bernoulli process as a sequence consisting of the
digits 1 and 0 with positive probabilities.

First, we provide an algorithm for indication of unpredictable strings in realizations of a
Bernoulli scheme on finite number of complex vectors v1, v2, ..., vr.

Let us set a0 = random({v1, v2, ..., vr}) and a1 = random({v1, v2, ..., vr}). Then
for increasing k = 1, 2, 3, ..., we define am(k)+j = aj , for j < k, and am(k)+j =
random({v1, v2, ..., vr} − aj), for j = k, where m(k + 1) = m(k) + k with m(1) = 2.

The immediately following Algorithm 1 is for the Bernoulli process with v1 = 0 and
v2 = 1. The sequence (0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, ...) is
a result of the algorithm application.

Let us introduce several characteristics that are of usage for analysis of finite realizations
of the Bernoulli scheme. For fixed natural number m, consider a finite realization ai, i =
0, 1, ...,m. Denote by K(m) the largest length of unpredictable strings in the array. For
every k between 1 and K(m), denote by qk the number of k−lengthy unpredictable strings
within the array, by ξk the largest index such that (aξk , aξk+1

, ..., aξk+k) is an unpredictable
string within the array, and by N(m) the number of all unpredictable strings, which have a
non-empty intersection with the array.
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Algorithm 1 Unpredictable sequences

1: m = 2
2: for k = 1, 2, 3, ... do
3: a0 = 0
4: a1 = 1
5: for j = 0 : k do
6: if j < k, then
7: am+j = aj
8: else if j = k, then
9: am+j 6= aj

10: m = m+ k
11: end if
12: end for
13: end for

Now, we provide statistical results on the realization, which are obtained by Matlab simu-
lations for the Bernoulli process with probability p = 0.6 and m = 9×105. We have evaluated
values of K(n), ξK(n) and N(n)/n, for each n from 1 to m. Ten samples of the simulations
are provided in Table 1. According to the full data obtained in simulations, the realization
can be considered as part of an unpredictable sequence, since there are unpredictable strings
with increasing lengths. Moreover, N(n)/n ≈ p, if n is large.

Table 1 – The values K(n), ξK(n) and N(n)/n for the finite realization

n K(n) ξK(n) N(n)/n

50 10 20 0.72
200 10 20 0.58
500 10 228 0.586
2000 14 1008 0.596
10000 14 3469 0.6031
20000 18 19206 0.5995
100000 21 74683 0.6014
500000 21 401088 0.6003
800000 21 663684 0.6001
900000 28 874766 0.5686

5 Laws of large strings for the Bernoulli scheme

In this section, we consider a discrete-time random process X(n) with the finite state
space of r different symbols s1, s2, ..., sr.
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The function admits values si with positive probabilities pi, i = 1, 2, ..., r, which sum is
equal to the unit. A realization α of the process is the sequence ai, i = 1, 2, ..., and a finite
realization αm is the array ai, i = 1, 2, ...,m. We claim that stochastic processes with discrete
time and finite state spaces satisfy the following theorem.

Theorem 4. (the first law of large strings). The discrete time random process X(n) with the
finite state space admits uncountable set of realizations, which are unpredictable sequences in
the sense of Definition 2.

Proof. Let us consider the space Σr of infinite sequences of finite set of symbols
s1, s2, ..., sr, with the metric

d(ξ, ζ) = Σ∞k=0

|ξk − ζk|
2k

, (1)

where ξ = (ξ0ξ1ξ2...), ζ = (ζ0ζ1ζ2...). The Bernoulli shift σ on Σr is defined as σ(ξ0ξ1ξ2...) =
(ξ1ξ2ξ3...). The map is continuous and Σr is a compact metric space [11].

It is clear that the set of all realizations of the random dynamics X(n) coincides with
the set of all sequences of the symbolic dynamics on Σr. According to the result in [10], the
symbolic dynamics admits an unpredictable point, i∗, a sequence from the set Σr. There is
the uncountable set of unpredictable points, which are unpredictable sequences in the sense
of Definition 2.

It is important that the set of the realizations is the closure for the unpredictable orbit.
The density is considered in the shift dynamics sense. The property of the metric implies that
each arc of any sequence in the space coincides with some arc of the unpredictable sequence.

Let us fix an unpredictable realization of the scheme. Due to Definition 3 and Theorem
1, the following assertion is valid.

Theorem 5. Each finite realization of the Bernoulli scheme coincides with an arc of the
unpredictable realization for sure. That is, the unpredictable realization happens in each
experiment of the chain, and is a certain event.

Denote by n(m) the number of elements, which are equal to a0 in a finite string. The
limit E[a0] = limm→∞ n(m)/m is said to be the expected value such that E[a0] = pi, if
a0 = si, i = 1, ..., r [4].

Theorem 3 implies the equalityN(m) = n(m), whereN(m) is the number of unpredictable
strings, which intersect the array. Hence, the following proposition is correct, which can be
useful for applications.

Theorem 6. If a realization α is an unpredictable sequence, then the relation

lim
m→∞

N(m)

m
= E[a0] (2)

is valid.
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Theorem 7. (the second law of large strings). If the discrete time random process X(n) admits
a finite state space, then the relation

lim
m→∞

P

(∣∣∣∣N(m)

m
− E[a0]

∣∣∣∣ < ε

)
= 1 (3)

holds for any ε > 0.

Proof. As it has been concluded above, Theorem 5, each finite realization of the scheme
is an arc of an infinite unpredictable realization, and the relation (2) for the last one is valid.
These all prove the theorem.

Example 1. To have more impression of the unpredictable strings, let us consider the graph
of the piece-wise constant function, H(t), which values on intervals [i/10, (i + 1)/10), i =
0, 1, . . . , 199, are assigned randomly 1 or −1 with equal probability 1/2. The two unpredictable
strings as a result of the Bernoulli process are present, in the red, in the Figure 2, (a).
The second one, with length of 0.7 units, is placed between coordinates 14 and 16, shown in
Figure 2, (c), while its corresponding initial arc, in Figure 2, (b). The pieces of the graph are
connected with vertical lines, to improve the visibility.
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Figure 2 – The graph of the function H(t), which illustrates appearance of unpredictable strings.

To make the visibility better, the pieces of the graph are connected with vertical lines.
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Ахмет М., Тола А. БОЛЖАНБАЙТЫН АҚЫРЛЫ ТIЗБЕКТЕР
Таңбалардың ақырлы санында болжанбайтын тiзбектердi анықтау үшiн болжанбай-

тын ақырлы тiзбектердiң жаңа тұжырымдамасы енгiзiлдi. Дискреттi уақыттағы кездей-
соқ процестерге арналған үлкен тiзбектердiң бiрiншi және екiншi заңдарын дәлелдеймiз.
Үлкен тiзбектердiң екiншi заңы Бернулли теоремасымен байланысты. Осы құбылыстың
теориялық және сандық негiздерi келтiрiлдi.

Кiлттiк сөздер. Болжанбайтын ақырлы тiзбектер, болжанбайтын тiзбектер, Бернул-
ли процесi, Бернулли схемасы, үлкен тiзбектердiң бiрiншi заңы, үлкен тiзбектердiң екiншi
заңы.

Ахмет М., Тола А. НЕПРЕДСКАЗУЕМЫЕ КОНЕЧНЫЕ ПОСЛЕДОВАТЕЛЬНО-
СТИ

Введено новое понятие непредсказуемых конечных последовательностей, которое ис-
пользуется для определения непредсказуемых последовательностей на конечном числе
символов. Мы доказываем первый и второй законы больших последовательностей для
случайных процессов в дискретном времени. Второй закон больших последовательно-
стей связан с теоремой Бернулли. Приведены теоретические и численные основы этого
явления.

Ключевые слова. Непредсказуемые конечные последовательности, непредсказуемые
последовательности, процесс Бернулли, схема Бернулли, первый закон больших после-
довательностей, второй закон больших последовательностей.
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Abstract. Two model problems with a small parameter in the boundary condition are studied. They

were obtained by solving nonlinear problems with two free boundaries for the system of the parabolic

equations. In the Hölder space there are established the uniform with respect to small parameter

estimates of the solution of these problems.

Keywords. System of the parabolic equations, small parameter in the boundary condition, solution in

the explicit form, uniform estimates, Hölder space.

1 Statement of the problems. Main results

In the present paper two model conjugation problems with a small parameter in the
boundary condition are studied. They arise by solving the nonlinear two-phase problem with
two free boundaries for the system of parabolic equations that takes into account the fluid
velocity. The nonlinear two-phase problem with two free boundaries describes real physical
processes, mathematical models of which contain small parameters ε > 0 in the condition
on one and κ > 0 in the condition on the other free boundary. Such the problem arises, for
example, when extracting and transporting oil.

The problems with small parameters were investigated in [1]–[6]. J.F. Rodrigues, V.A.
Solonnikov, F. Yi. [1] have investigated one-phase linear and nonlinear free boundary problems
for the second order parabolic equations with a small parameter. They have established the
uniform estimates with respect to small parameter of the solutions in the Hölder space. From
these estimates it follows the existence of the solutions of the considered problems for a small
parameter, equal to zero.
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The linear Stefan problem for the heat equation with a small parameter κ in the boundary
condition with the derivative κ∂tψ, where ψ is a function describing the free boundary, was
studied by G.I. Bizhanova [2]. Estimates of the solutions with constants independent on small
parameter were established in the Hölder space.

In [3] the two-phase problem for the heat equation with a small parameter at the time
derivative ε∂tu1 on the boundary xn = 0 was considered, in the Hölder space an estimates
of the solution of the problem with the constants independent on ε were obtained. The
linear one-phase problem for the heat equation with a small parameter at the time derivative
ε∂tu on the boundary xn = 0 was studied in [4]. Estimates of its solution and the estimate
ε∂tu|xn=0 with respect to ε are obtained.

In [5] there were constructed the solution and obtained the estimates of the Green func-
tion of the two-phase boundary value problem for the parabolic equations with two small
parameters at the principal derivatives in the conjugation condition.

In [6] the linear multidimensional two-phase free boundary problem for the parabolic
equations with two small parameters ε > 0 and κ > 0 at the principal derivatives in the
boundary condition was studied, estimates of the solution in the Hölder space are obtained.

In this article there are constructed the solutions in the explicit form of the model problems
that has not been studied before. The unique solvability is proved, the uniform with respect
to small parameters ε and κ estimates of the solutions of these problems in the Hölder space
are established.

Let D1 := {x : x′ ∈ Rn−1, xn > 0}, D2 := {x : x′ ∈ Rn−1, xn < 0}, DjT = Dj × (0, T ),
j = 1, 2, R be hyperplane xn = 0 in Rn, RT = R× (0, T ), ε > 0, κ > 0 be small parameters.

Model conjugation problem I. It is required to find the unknown functions v(x, t),
u1(x, t), r1(x′, t), satisfying the following equations and conditions

∂tv − a24v − α1

(
∂tr1 − a24′r1

)
= f(x, t) in D1T , (1)

∂tu1 − a2
14u1 − β1

(
∂tr1 − a2

14′r1

)
= f1(x, t) in D1T , (2)

v
∣∣
t=0

= v0(x), u1

∣∣
t=0

= u01(x) in D1, r1

∣∣
t=0

= 0 on R, (3)

v
∣∣
xn=0

= ϕ1(x′, t), u1

∣∣
xn=0

= ϕ2(x′, t) on RT , (4)

ε∂tv − d1∇T v
∣∣
xn=0

− εα3∂tr1 + d′2∇′T r1 = ϕ3(x′, t) on RT , (5)

where all coefficients are constant, a, a1 are positive constants, 4′ = ∂2
x1

+ · · · + ∂2
xn−1

,
∇′ = (∂x1 , . . . , ∂xn−1), d1 = (d′1, d1n), d′j = (dj 1, . . . , dj (n−1)), j = 1, 2, are vectors.

We shall investigate the problem in the Hölder space C
2+α,1+α

2
x t (Ω̄T ), α ∈ (0, 1), of the

functions u(x, t) with the norm |u|(2+α)
ΩT

[7];
◦
C

2+α,1+α
2

x t (ΩT ) is the subspace of functions
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u(x, t) ∈ C2+α,1+α
2

x t (ΩT ) such that

∂kt u
∣∣∣
t=0

= 0, k = 0, 1.

Theorem 1. Let d1 n > 0, α1 > 0, α3 > 0, 0 < ε < ε0, α ∈ (0, 1).

For every functions f(x, t), f1(x, t) ∈
◦
C
α,α

2

x t (D1T ), ϕj ∈
◦
C

2+α,1+α
2

x′ t (RT ), j = 1, 2,

ϕ3 ∈
◦
C

1+α, 1+α
2

x′ t (RT ), the problem (1) - (5) has a unique solution v, u1 ∈
◦
C

2+α,1+α
2

x t (D1T ),

ε∂tv|xn=0 ∈
◦
C

1+α, 1+α
2

x′ t (RT ), r1 ∈
◦
C

2+α,1+α
2

x′ t (RT ), ε∂tr1 ∈
◦
C

1+α, 1+α
2

x′ t (RT ), and it satisfies the
estimate

|v|(2+α)
D1T

+ |u1|(2+α)
D1T

+ |ε∂tv|(1+α)
RT

+ |r1|(2+α)
RT

+ |ε∂tr1|(1+α)
RT

≤ C1

(
|f |(α)

D1T
+ |f1|(α)

D1T
+

2∑
j=1

|ϕj |(2+α)
RT

+ |ϕ3|(1+α)
RT

)
, (6)

where the constant C1 is independent on ε.

Model conjugation problem II. It is required to find the unknown functions v(x, t),
uj(x, t), j = 1, 2, r2(x′, t), satisfying the following equations and conditions

∂tv − a24v − α2

(
∂tr2 − a24′r2

)
= f(x, t) in D1T ,

∂tu1 − a2
14u1 − β2

(
∂tr2 − a2

14′r2

)
= f1(x, t) in D1T ,

∂tu2 − a2
24u2 − β3

(
∂tr2 − a2

14′r2

)
= f2(x, t) in D2T ,

v
∣∣
t=0

= v0(x) in D1, uj
∣∣
t=0

= u0j(x) in Dj , r2

∣∣
t=0

= 0 on R,

u1

∣∣
xn=0

= ψ0(x′, t), u2

∣∣
xn=0

= ψ1(x′, t), v
∣∣
xn=0

= ψ2(x′, t) on RT ,

λ1∂xnu1 − λ2∂xnu2 + κ∂tr2 + d′3∇′T r2 = ψ3(x′, t) on RT ,

(7)

where all coefficients are constant, a, aj , λj , j = 1, 2, are positive constants and d′3 =
(d3 1, . . . , d3 (n−1)) is a vector.

Theorem 2. Let βj > 0, j = 2, 3, 0 < κ < κ0, α ∈ (0, 1).

For every functions f(x, t) ∈
◦
C
α,α

2

x t (D1T ), fj(x, t) ∈
◦
C
α,α

2

x t (DjT ), ψ0 ∈
◦
C

2+α,1+α
2

x′ t (RT ),

ψj ∈
◦
C

2+α,1+α
2

x′ t (RT ), ψ3 ∈
◦
C

1+α, 1+α
2

x′ t (RT ), j = 1, 2, the problem (7) has a unique solution

v ∈
◦
C

2+α,1+α
2

x t (D1T ), uj ∈
◦
C

2+α,1+α
2

x t (DjT ), r2 ∈
◦
C

2+α,1+α
2

x′ t (RT ), κ∂tr2 ∈
◦
C

1+α, 1+α
2

x′ t (RT ),
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j = 1, 2, and it satisfies the estimate

|v|(2+α)
D1T

+

2∑
j=1

|uj |(2+α)
DjT

+ |r2|(2+α)
RT

+ |κ∂tr2|(1+α)
RT

≤ C2

(
|f |(α)

D1T
+

2∑
j=1

|fj |(α)
DjT

+

2∑
j=0

|ψj |(2+α)
RT

+ |ψ3|(1+α)
RT

)
, (8)

where the constant C2 is independent on κ.

2 Auxiliary problems. Construction of a solution to the model problem I

We reduce the problem (1)–(5) to the problem with homogeneous equations, homogeneous
initial and boundary conditions (4). For this we construct the auxiliary functions V (x, t),
U1(x, t), as solutions of the first boundary value problems for the parabolic equations

∂tV − a24V = f(x, t) in D1T ,

V
∣∣
t=0

= v0(x) in D1, V
∣∣
xn=0

= ϕ1(x′, t) on RT ;
(9)

∂tU1 − a2
14U1 = f1(x, t) in D1T ,

U1

∣∣
t=0

= u01(x) in D1, U1

∣∣
xn=0

= ϕ2(x′, t) on RT .
(10)

The problems (9)–(10) have unique solutions V (x, t), U1(x, t) ∈
◦
C

2+α,1+α
2

x t (D̄1T ) [7], and
the following estimates for them are fulfilled

|V |(2+α)
D1T

≤ C3

(
|f |(α)

D1T
+ |ϕ1|(2+α)

RT

)
, (11)

|U1|(2+α)
D1T

≤ C4

(
|f1|(α)

D1T
+ |ϕ2|(2+α)

RT

)
. (12)

In the equations and conditions of the problem (1)–(5) we make the substitution

v(x, t) = V (x, t) + α1r1 + w(x, t), u1(x, t) = U1(x, t) + β1r1 + z1(x, t), (13)

where w(x, t), z1(x, t) are new unknown functions.
Taking into account that the constructed functions V (x, t), U1(x, t) satisfy the equations

and conditions of the problems (9), (10), we obtain the problem for functions w(x, t), z1(x, t)
and r1(x′, t):

∂tw − a24w = 0 in D1T , (14)

∂tz1 − a2
14z1 = 0 in D1T , (15)

w
∣∣
t=0

= 0, z1

∣∣
t=0

= 0 in D1, r1

∣∣
t=0

= 0 on R, (16)
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w
∣∣
xn=0

+ α1r1 = 0 on RT , z1

∣∣
xn=0

+ β1r1 = 0 on RT , (17)

ε∂tw − d1∇Tw
∣∣
xn=0

+ ε(α1 − α3)∂tr1 +
(
d′2 − α1d

′
1

)
∇′T r1 = Φ(x′, t) on RT , (18)

where

Φ(x′, t) = ϕ3(x′, t)−
(
ε∂tV − d1∇TV

)∣∣
xn=0

∈
◦
C

1+α, 1+α
2

x′ t (RT )

and satisfies the estimate

|Φ|(1+α)
RT

≤ C5

(
|ϕ3|(1+α)

RT
+ (1 + ε)|V |(2+α)

D1T

)
. (19)

Theorem 3. Let d1 n > 0, α1 > 0, α3 > 0, 0 < ε < ε0.

For every function Φ(x′, t) ∈
◦
C

1+α, 1+α
2

x′ t (RT ), α ∈ (0, 1), the problem (14) - (18) has

a unique solution w ∈
◦
C

2+α,1+α
2

x t (D1T ), z1 ∈
◦
C

2+l,1+ l
2

x t (D1T ), ε∂tw|xn=0 ∈
◦
C

1+α, 1+α
2

x′ t (RT ),

r1 ∈
◦
C

2+α,1+α
2

x′ t (RT ), ε∂tr1 ∈
◦
C

1+α, 1+α
2

x′ t (RT ), and it satisfies the estimate

|w|(2+α)
D1T

+ |z1|(2+α)
D1T

+ |ε∂tw|(1+α)
RT

+ |r1|(2+α)
RT

+ |ε∂tr1|(1+α)
RT

≤ C6|Φ(x′, t)|(1+α)
RT

, (20)

where the constant C6 does not depend on ε.

We apply Laplace transform with respect to the variable t and Fourier transform with
respect to x′ [8] to the problem (14)–(18):

FL[u(x, t)] = ũ(s′, xn, p) =

∞∫
0

e−ptdt

∫
Rn−1

e−ix
′s′dx′,

where s′ = (s1, . . . , sn−1).

The solution of the problem in the domain of Laplace and Fourier images has the form

w̃ =
α1

εα3ζ
Φ̃e−k1xn , z̃1 =

β1

εα3ζ
Φ̃e−k2xn , r̃1 = − 1

εα3ζ
Φ̃,

where

ζ = p− ib
′

ε
s′ +

bn
ε
k1, b = (b′, bn) =

(
d′2
α3
,
α1d1n

α3

)
, k1 =

√
p+ a2s′2

a
, k2 =

√
p+ a2

1s
′2

a1
.

Here Reζ ≥ C0 > 0, so we can represent
1

ζ
as follows

1

ζ
=

∞∫
0

e−ζudu, (21)
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and obtain

w̃ =
α1

εα3
Φ̃

∞∫
0

e−(p−i b
′
ε
s′+ bn

ε
k1)u−k1xndu =

α1

εα3
Φ̃ · G̃ε,

z̃1 =
β1

εα3
Φ̃

∞∫
0

e−(p−i b
′
ε
s′+ bn

ε
k1)u−k2xndu =

β1

εα3
Φ̃ · G̃1,ε.

Applying the inverse Laplace and Fourier transforms and convolution formula, we find
the functions w, z1 in the explicit forms

w =
α1

εα3

t∫
0

dτ

∫
Rn−1

Φ(y′, τ)Gε
(
x′ − y′, xn, t− τ

)
dy′,

z1 =
β1

εα3

t∫
0

dτ

∫
Rn−1

Φ(y′, τ)G1,ε

(
x′ − y′, xn, t− τ

)
dy′,

where

Gε(x, t) = −2a2

t∫
0

∂xnΓ
(
x′ +

b′u

ε
, xn +

bnu

ε
, t− u

)
du

=

t∫
0

xn + bnu
ε(

2a
√
π(t− u)

)n
(t− u)

e
− (x′+ b′u

ε )2+(xn+ bnu
ε )2

4a2(t−u) du,

G1,ε(x, t) =

t∫
0

∂xng1,ε(x
′ +

b′u

ε
, xn,

bnu

ε
, t− u)du,

g1,ε(x
′ +

b′u

ε
, xn,

bnu

ε
, t)

= 4a2a2
1

t∫
0

dτ1

∫
Rn−1

Γ1(x′ − η′ + b′u

ε
, xn, t− τ1)∂ηnΓ(η′, ηn +

bnu

ε
, τ1)

∣∣∣
ηn=0

dη′

= −2a2
1

t∫
0

dτ1

∫
Rn−1

1(
2a1

√
π(t− τ1)

)n e− (x′−η′+ b′u
ε )2+x2

n

4a2
1(t−τ1)

bnu
ε(

2a
√
πτ1

)n
τ1

e
− η
′2+( bnuε )2

4a2τ1 dη′,

Γj(x, t) =
1

(2aj
√
πt)n

e
− x2

4a2
j
t , j = 0, 1, Γ0(x, t) ≡ Γ(x, t), a0 = a.
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Taking into account that r1 = − 1

α1
w
∣∣
xn=0

, we find the function r1:

r1 = − 1

εα3

t∫
0

dτ

∫
Rn−1

Φ(y′, τ)Gε
(
x′ − y′, 0, t− τ

)
dy′,

where

Gε(x
′, 0, t) = −2a2

t∫
0

∂xnΓ
(
x′ +

b′

ε
u, xn +

bn
ε
u, t− u

)∣∣∣
xn=0

du

=

t∫
0

bn
ε u(

2a
√
π(t− u)

)n
(t− u)

e
−

(
x′+ b′

ε u

)2
+

(
bn
ε u

)2

4a2(t−u) du.

The fundamental solutions Γj(x, t) of the heat equations (14), (15) satisfy the estimate [7]∣∣∣∂kt ∂mx Γj(x, t)
∣∣∣ ≤ C7

1

t
n+2k+|m|

2

e
− x2

8a2
j
t , j = 0, 1. (22)

For the function g1 and Green’s function G1,ε the following estimates hold [3]∣∣∣∣∂kt ∂mx ∂xng1,ε(x
′ +

b′u

ε
, xn,

bnu

ε
, t)

∣∣∣∣ ≤ C8
1

t
n+2k+|m|+1

2

e−
q21x

2+q22u
2

t , (23)

∣∣∣∂kt ∂mx G1,ε(x, t)
∣∣∣ ≤ C9ε

1

t
n+2k+|m|

2

e−
q21x

2

t + C10
1

(q2
1x

2 + q2
2t

2)
n+2k+|m|−1

2

e−
q21x

2+q22t
2

4t , (24)

where

q2
1 =

b2n
16ã2(b′2 + b2n)

, q2
2 =

b2n
16ã2ε2

,

the constants C8 - C10 do not depend on ε, ã = max(a, a1).

3 Estimates for the functions w(x, t)|xn=0 and z1(x, t)|xn=0

Consider the functions w(x, t), z1(x, t) on the plane xn = 0

w(x′, 0, t) =
α1

εα3

t∫
0

dτ

∫
Rn−1

Φ(y′, τ)Gε(x
′ − y′, xn, t− τ)dy′|xn=0

= −2a2α1

εα3

t∫
0

dτ

∫
Rn−1

Φ(y′, τ)dy′
t−τ∫
0

∂xnΓ

(
x′ − y′ + b′

ε
u, xn +

bn
ε
u, t− τ − u

)
du|xn=0
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= −2a2α1

εα3

t∫
0

dτ

∫
Rn−1

dy′
τ∫

0

Φ(y′, τ − u)∂xnΓ

(
x′ − y′ + b′u

ε
,
bnu

ε
, t− τ

)
du := ω1(x′, t);

z1(x′, 0, t) =
β1

εα3

t∫
0

dτ

∫
Rn−1

Φ(y′, τ)G1,ε

(
x′ − y′, xn, t− τ

)
dy′|xn=0

=
β1

εα3

t∫
0

dτ

∫
Rn−1

Φ(y′, τ)dy′
t−τ∫
0

∂xng1,ε(x
′ − y′ + b′u

ε
, xn,

bnu

ε
, t− τ − u)du|xn=0

=
β1

εα3

t∫
0

dτ

∫
Rn−1

dy′
τ∫

0

Φ(y′, τ − u)∂xng1,ε(x
′ − y′ + b′u

ε
, 0,

bnu

ε
, t− τ)du := ω2(x′, t).

Lemma. Let 0 < ε < ε0, d1 n > 0, α1 > 0, α3 > 0, Φ(x′, t) ∈
◦
C

1+α, 1+α
2

x′ t (RT ), α ∈ (0, 1).

Then the function ωj(x
′, t) ∈

◦
C

2+α,1+α
2

x′ t (RT ) and satisfies the estimate

|ωj |(2+α)
RT

≤ C11|Φ(x′, t)|(1+α)
RT

, j = 1, 2, (25)

where the constant C11 is independent on ε.

Proof. To prove the lemma we must estimate the norm of the function ω(x′, t) := ω1(x′, t)
in Hölder space [7]

|ω|(2+α)
RT

=
∑

2k+|m′|≤2

|∂kt ∂m
′

x′ ω|RT + [∂tω]
(α)
RT

+
n−1∑
µ,ν=1

[∂2
xµxνω]

(α)
RT

+
n−1∑
ν=1

[∂xνω]
( 1+α

2
)

t,RT
, (26)

where

|u|RT = sup
(x′,t)∈RT

|u(x′, t)|, [u]
(α)
RT

:= [u]
(α)
x′,RT

+ [u]
(α

2
)

t,RT
,

[u]
(α)
x′,RT

= sup
(x′,t),(z′,t)∈RT

|u(x′, t)− u(z′, t)|
|x′ − z′|α

, [u]
(α

2
)

t,RT
= sup

(x′,t),(x′,t1)∈RT

|u(x′, t)− u(x′, t1)|
|t− t1|α

.

Therefore, we must obtain estimates for the Hölder constants

α1

εα3
[(Φ ∗ ∂tGε)|xn=0]

(α)
RT
,

α1

εα3
[(Φxν ∗ ∂xµGε)|xn=0]

(α)
RT
,

α1

εα3
[(Φxν ∗Gε)|xn=0]

( 1+α
2

)

t,RT
, ν, µ = 1, . . . , n− 1.
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We shall make use of the following notations and estimates for the function

Φ(x′, t) ∈
◦
C

1+α, 1+α
2

x′ t (RT ): Mk+1 = [∂kxνΦ]
( 1+α−k

2
)

t,RT
, M3 = [Φxν ]

(α)
x′,RT

;

|∂kxνΦ(x′, t)| ≤Mk+1t
1+α−k

2 ; (27)

|∂kxνΦ(x′, t)− ∂kxνΦ(x′, t1)| ≤Mk+1(t− t1)
1+α−k

2 , t1 ≤ t; (28)

|Φxν (x′, t)− Φzν (z′, t)| ≤M3|x′ − z′|α, k = 0, 1, ν = 1, . . . , n− 1. (29)

We estimate the Hölder constants with respect to t. For that we represent the derivatives
∂tω, ∂2

xµxνω, ν, µ = 1, . . . , n− 1, in the form

∂tω(x′, t) = −2a2α1

εα3

( t∫
0

dτ

∫
Rn−1

dy′
τ∫

0

[Φ(y′, τ − u)− Φ(y′, t− u)]

×∂t∂xnΓ(x′ − y′ + b′

ε
u,
bn
ε
u, t− τ)du

+

t∫
0

du

∫
Rn−1

Φ(y′, t− u)∂xnΓ(x′ − y′ + b′

ε
u,
bn
ε
u, t− u)dy′

)
; (30)

∂2
xµxνω(x′, t) = −2a2α1

εα3

t∫
0

dτ

∫
Rn−1

dy′
τ∫

0

[Φyν (y′, τ − u)− Φxν (x′, τ − u)]

×∂xµ∂xnΓ(x′ − y′ + b′

ε
u,
bn
ε
u, t− τ)du. (31)

For the definiteness we assume that t1 < t and compose the differences

∆1 := ∂tω(x′, t)− ∂t1ω(x′, t1)

= −2a2α1

εα3

( t∫
t1

dτ

∫
Rn−1

dy′
τ∫

0

[Φ(y′, τ − u)− Φ(y′, t− u)]∂t∂xnΓ(x′ − y′ + b′

ε
u,
bn
ε
u, t− τ)du

+

t1∫
0

dτ

∫
Rn−1

dy′
τ∫

0

[Φ(y′, τ − u)− Φ(y′, t1 − u)]du

t∫
t1

∂2
t2∂xnΓ(·, t2 − τ)dt2

+

t1∫
0

du

∫
Rn−1

[Φ(y′, t− u)− Φ(y′, t1 − u)]∂xnΓ(·, t− t1)dy′
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+

t∫
t1

du

∫
Rn−1

Φ(y′, t−u)∂xnΓ(·, t−u)dy′+

t1∫
0

du

∫
Rn−1

Φ(y′, t1−u)dy′
t∫

t1

∂t2∂xnΓ(·, t2−u)dt2

)
;

∆2 := ∂2
xµxνω(x′, t)− ∂2

xµxνω(x′, t1)

= −2a2α1

εα3

( t∫
t1

dτ

∫
Rn−1

dy′
τ∫

0

[Φyν (y′, τ − u)− Φxν (x′, τ − u)]∂xµ∂xnΓ(·, t− τ)du

+

t1∫
0

dτ

∫
Rn−1

dy′
τ∫

0

[Φyν (y′, τ − u)− Φxν (x′, τ − u)]du

t∫
t1

∂t2∂xµ∂xnΓ(·, t2 − τ)dt2

)
.

First, we estimate ∆1. Applying the estimate (22) for the function Γ and the estimates
(27), (28) for the function Φ, we shall have

|∆1| ≤ C12
M1

ε

( t∫
t1

dτ

τ∫
0

(t− τ)
1+α

2

(t− τ)
n+3

2

du

∫
Rn−1

e
− (x′−y′+ b′u

ε )2+( bnuε )2

8a2(t−τ) dy′

+

t∫
t1

dt2

t1∫
0

dτ

τ∫
0

(t1 − τ)
1+α

2

(t2 − τ)
n+5

2

du

∫
Rn−1

e
− (x′−y′+ b′u

ε )2+( bnuε )2

8a2(t2−τ) dy′

+
(t− t1)

1+α
2

(t− t1)
n+1

2

t1∫
0

du

∫
Rn−1

e
− (x′−y′+ b′u

ε )2+( bnuε )2

8a2(t−t1) dy′+

t∫
t1

(t− u)
1+α

2

(t− u)
n+1

2

du

∫
Rn−1

e
− (x′−y′+ b′u

ε )2+( bnuε )2

8a2(t−u) dy′

+

t∫
t1

dt2

t1∫
0

(t1 − u)
1+α

2

(t2 − u)
n+3

2

du

∫
Rn−1

e
− (x′−y′+ b′u

ε )2+( bnuε )2

8a2(t2−u) dy′
)
.

Integrating over y′, we obtain

|∆1| ≤ C13
M1

ε

( t∫
t1

1

(t− τ)
3−α

2

dτ

τ∫
0

e
− b2nu

2

8a2ε2(t−τ)du

+

t∫
t1

dt2

t1∫
0

(t1 − τ)
1+α

2

(t2 − τ)3
dτ

τ∫
0

e
− b2nu

2

8a2ε2(t2−τ)du+ (t− t1)
α−1

2

t1∫
0

e
− b2nu

2

8a2ε2(t−t1)du
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+

t∫
t1

(t− u)1+α
2

(t− u)
3
2

e
− b2nu

2

8a2ε2(t−u)du+

t∫
t1

dt2

t1∫
0

(t1 − u)
1+α

2

(t2 − u)2
e
− b2nu

2

8a2ε2(t2−u)du

)
.

We integrate the first three integrals over u, for this in the first integral we make change
bnu√

8aε
√
t− τ

= ζ, in the second and the third integrals we introduce similar substitutions,

and estimate them by Poisson integral; we make use of the inequality t1 − τ ≤ t2 − τ in the
second, (t − u)1+α

2 ≤ t(t − t1)
α
2 and extend the integration domain up to the interval (0, t)

in the fourth,
√
t1 − u ≤

√
t2 − u, (t1− u)

α
2 ≤ t

α
2
2 and extend the domain of integration over

u from (0, t1) to (0, t2) in the last integrals, then we obtain

|∆1| ≤ C14
M1

ε

(
ε(t− t1)

α
2 + t(t− t1)

α
2

t∫
0

1

(t− u)
3
2

e
− b2nu

2

8a2ε2(t−u)du

+

t∫
t1

t
α
2
2 dt2

t2∫
0

1

(t2 − u)
3
2

e
− b2nu

2

8a2ε2(t2−u)du

)
.

Applying the estimate for the integral [2]

t∫
0

1

(t− u)
3
2

e
− b2nu

2

8a2ε2(t−u)du ≤ C15
ε

t
, (32)

we shall have

|∂tω(x′, t)− ∂t1ω(x′, t1)| := |∆1| ≤ C16M1(t− t1)
α
2 , [∂tω]

(α
2

)

t,RT
≤ C16M1. (33)

Now we evaluate the difference ∆2 with the help of the inequality (22) for the function Γ
and estimate (29) for the function Φ

|∆2| ≤ C17
M3

ε

( t∫
t1

dτ

τ∫
0

du

∫
Rn−1

|x′ − y′|α

(t− τ)
n+2

2

e
− (x′−y′+ b′u

ε )2+( bnuε )2

8a2(t−τ) dy′

+

t∫
t1

dt2

t1∫
0

dτ

τ∫
0

du

∫
Rn−1

|x′ − y′|α

(t2 − τ)
n+4

2

e
− (x′−y′+ b′u

ε )2+( bnuε )2

8a2(t2−τ) dy′
)
.

We apply the inequality [2]

|ξ|αe−ξ2 ≤ Cαe−ξ
2/2, α ≥ 0, (34)
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and integrate over y′, u, then over τ and t2

|∆2| ≤ C18
M3

ε

( t∫
t1

1

(t− τ)
3−α

2

dτ

τ∫
0

e
− b2nu

2

8a2ε2(t−τ)du

+

t∫
t1

dt2

t1∫
0

1

(t2 − τ)
5−α

2

dτ

τ∫
0

e
− b2nu

2

8a2ε2(t2−τ)du

)

≤ C19M3

( t∫
t1

dτ

(t− τ)1−α
2

+

t∫
t1

dt2

t1∫
0

dτ

(t2 − τ)2−α
2

)
≤ C20M3(t− t1)

α
2 .

Thus,

|∂2
xµxνω(x′, t)−∂2

xµxνω(x′, t1)| := |∆2| ≤ C20M3(t−t1)
α
2 , [∂2

xµxνω(x′, t)]
(α

2
)

t,RT
≤ C20M3. (35)

To estimate the Hölder constant [∂xνω]
( 1+α

2
)

t,RT
we represent the derivative ∂xνω, ν =

1, . . . , n− 1, in the form

∂xνω(x′, t) = −2a2α1

εα3

( t∫
0

dτ

∫
Rn−1

dy′
τ∫

0

[Φyν (y′, τ − u)− Φyν (y′, t− u)]

×∂xnΓ(x′ − y′ + b′u

ε
,
bnu

ε
, t− τ)du+

t∫
0

du

∫
Rn−1

Φyν (y′, t− u)dy′
t−u∫
0

∂xnΓ(·, τ)dτ

)
, (36)

compose the difference
∆3 := ∂xνω(x′, t)− ∂xνω(x′, t1)

= −2a2α1

εα3

( t∫
t1

dτ

∫
Rn−1

dy′
τ∫

0

[Φyν (y′, τ − u)− Φyν (y′, t− u)]∂xnΓ(x′ − y′ + b′u

ε
,
bnu

ε
, t− τ)du

+

t1∫
0

dτ

∫
Rn−1

dy′
τ∫

0

[Φyν (y′, τ − u)− Φyν (y′, t1 − u)]du

t∫
t1

∂t2∂xnΓ(·, t2 − τ)dt2

+

t∫
t1

du

∫
Rn−1

Φyν (y′, t− u)dy′
t−u∫
0

∂xnΓ(·, τ)dτ
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+

t1∫
0

du

∫
Rn−1

[Φyν (y′, t− u)− Φyν (y′, t1 − u)]dy′
t−t1∫
0

∂xnΓ(·, τ)dτ

+

t∫
t1

dτ

∫
Rn−1

dy′
t1∫

0

Φyν (y′, t1 − u)∂xnΓ(·, τ − u)du

)

and estimate it using the estimate (22) for the function Γ, the estimates (27), (28) for function
Φ. Integrating the first over y′, we shall have

|∆3| ≤ C21
M2

ε

( t∫
t1

dτ

(t− τ)1−α
2

τ∫
0

e
− b2nu

2

8a2ε2(t−τ)du

+

t∫
t1

dt2

t1∫
0

t1 − τ)
α
2

(t2 − τ)2
dτ

τ∫
0

e
− b2nu

2

8a2ε2(t2−τ)du+

t∫
t1

(t− u)
α
2 du

t−u∫
0

1

τ
e−

b2nu
2

8a2ε2τ dτ

+(t− t1)
α
2

t−t1∫
0

dτ

τ

t1∫
0

e−
b2nu

2

8a2ε2τ du+

t∫
t1

dτ

t1∫
0

(t1 − u)
α
2 (τ − u)

1
2

(τ − u)
3
2

e
− b2nu

2

8a2ε2(τ−u)du

)
.

In the first, in the second and the fourth integrals we integrate over u and apply the
inequality t1 − τ ≤ t2 − τ in the second integral. In the third integral we make use of
the inequality (t − u)

α
2 ≤ (t − t1)

α
2 and in the integral upper limit over τ the inequality

t − u ≤ t − t1. In the last integral we apply the inequalities t1 − u ≤ t1 ≤ τ ,
√
τ − u ≤ τ ,

extend the integration domain over u from (0, t1) to (0, τ). Then we obtain

|∆3| ≤ C22
M2

ε

(
ε(t− t1)

1+α
2 + (t− t1)

α
2

t−t1∫
0

dτ

τ

t∫
t1

e−
b2nu

2

8a2ε2τ du

+

t∫
t1

τ
1+α

2 dτ

τ∫
0

1

(τ − u)
3
2

e
− b2nu

2

8a2ε2(τ−u)du

)
.

Integrating further over u and τ , estimating in the last term the integral over u with the
help of the inequality (32), we shall have

|∂xνω(x′, t)− ∂xνω(x′, t1)| := |∆3| ≤ C23M2(t− t1)
1+α

2 , [∂xνω]
( 1+α

2
)

t,RT
≤ C23M2. (37)
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In the formulas (30), (31) in the integral over y′ we carry out the change of the variable
y′ − b′u

ε = ς, then the derivatives ∂tω, ∂2
xµxνω, ν, µ = 1, . . . , n− 1, may be written as

∂tω(x′, t) = −2a2α1

εα3

( t∫
0

dτ

∫
Rn−1

dy′
τ∫

0

[Φ(y′ +
b′

ε
u, τ − u)− Φ(y′ +

b′

ε
u, t− u)]

×∂t∂xnΓ(x′ − y′, bnu
ε
, t− τ)du+

t∫
0

du

∫
Rn−1

Φ(y′ +
b′

ε
u, t− u)∂xnΓ(x′ − y′, bnu

ε
, t− u)dy′

)
;

∂2
xµxνω(x′, t) = −2a2α1

εα3

t∫
0

dτ

∫
Rn−1

dy′
τ∫

0

[Φyν (y′ +
b′

ε
u, τ − u)− Φxν (x′ +

b′

ε
u, τ − u)]

×∂xµ∂xnΓ(x′ − y′, bnu
ε
, t− τ)du.

We compose the differences of these derivatives, denoting r = |x′ − z′|,

∆4 := ∂tω(x′, t)− ∂tω(z′, t) (38)

= −2a2α1

εα3

 t∫
0

dτ

∫
|y′−z′|≤2r

dy′
τ∫

0

[Φ(y′ +
b′u

ε
, τ − u)− Φ(y′ +

b′u

ε
, t− u)]

×
(
∂t∂xnΓ(x′ − y′, bnu

ε
, t− τ)− ∂t∂znΓ(z′ − y′, bnu

ε
, t− τ)

)
du

+

t∫
0

dτ

∫
|y′−z′|>2r

dy′
τ∫

0

[Φ(y′ +
b′u

ε
, τ − u)− Φ(y′ +

b′u

ε
, t− u)]

×
n−1∑
i=1

(xi − zi)
1∫

0

∂t∂
2
ziznΓ(z′ − y′ + λ(x′ − z′), bnu

ε
, t− τ)dλdu

+

t∫
0

du

∫
|y′−z′|≤2r

Φ(y′ +
b′u

ε
, t− u)

(
∂xnΓ(x′ − y′, bnu

ε
, t− u)− ∂znΓ(z′ − y′, bnu

ε
, t− u)

)
dy′

+

t∫
0

du

∫
|y′−z′|>2r

Φ(y′ +
b′u

ε
, t− u)
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×
n−1∑
i=1

(xi − zi)
1∫

0

∂zi∂znΓ(z′ − y′ + λ(x′ − z′), bnu
ε
, t− u)dλdy′

;

∆5 := ∂2
xµxνω(x′, t)− ∂2

zµzνω(z′, t) (39)

= −2a2α1

εα3

 t∫
0

dτ

∫
|y′−z′|≤2r

dy′
τ∫

0

[Φyν (y′ +
b′u

ε
, τ − u)− Φxν (x′ +

b′u

ε
, τ − u)]

×∂xµ∂xnΓ(x′ − y′, bnu
ε
, t− τ)du

−
t∫

0

dτ

∫
|y′−z′|≤2r

dy′
τ∫

0

[Φyν (y′+
b′u

ε
, τ −u)−Φzν (z′+

b′u

ε
, τ −u)]∂zµ∂znΓ(z′−y′, bnu

ε
, t− τ)du

+

t∫
0

dτ

∫
|y′−z′|>2r

dy′
τ∫

0

[Φyν (y′ +
b′u

ε
, τ − u)− Φxν (x′ +

b′u

ε
, τ − u)]

×
n−1∑
i=1

(xi − zi)
1∫

0

∂2
zizµ∂znΓ(z′ − y′ + λ(x′ − z′), bnu

ε
, t− τ)dλdu

+

t∫
0

dτ

τ∫
0

[Φxν (x′ +
b′u

ε
, τ − u)− Φzν (z′ +

b′u

ε
, τ − u)]du

×
∫

|y′−z′|>2r

∂yµ∂znΓ(z′ − y′, bnu
ε
, t− τ)dy′

.
We evaluate the difference ∆4. We apply the inequalities (22) for the function Γ and

(27), (28) for the function Φ; when integrating over y′ we pass to the spherical coordinates
assuming ρ = |x′ − y′| in the first and fourth integrals, ρ = |z′ − y′| in the second and fifth
integrals, ρ = |z′ − y′ + λ(x′ − z′)| in the third and last integrals, then we shall have

|∆4| ≤ C24
M1

ε

( 3r∫
0

+

2r∫
0

)
ρn−2dρ

t∫
0

1

(t− τ)
n+2−α

2

dτ

τ∫
0

e
− ρ

2+( bnuε )2

8a2(t−τ) du
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+r

∞∫
r

ρn−2dρ

t∫
0

1

(t− τ)
n+3−α

2

dτ

τ∫
0

e
− ρ

2+( bnuε )2

8a2(t−τ) du

+

( 3r∫
0

+

2r∫
0

)
ρn−2dρ

t∫
0

1

(t− u)
n−α

2

e
− ρ

2+( bnuε )2

8a2(t−u) du+ r

∞∫
r

ρn−2dρ

t∫
0

1

(t− u)
n+1−α

2

e
− ρ

2+( bnuε )2

8a2(t−u) du

.
We integrate the first two integrals over u, then when integrating over τ we make

the change
ρ2

8a2(t− τ)
= ς2; in the last two integrals we apply the inequality |ξ|αe−ξ2 ≤

Cαe
−ξ2/2, α ≥ 0 (34), then we obtain

|∆4| ≤ C25
M1

ε

ε( 3r∫
0

+

2r∫
0

)
ρα−1dρ

∞∫
0

ςn−2−αe−ς
2
dς

+εr

∞∫
r

ρα−2dρ

∞∫
0

ςn−1−αe−ς
2
dς

+

(( 3r∫
0

+

2r∫
0

)
ρα−1dρ+ r

∞∫
r

ρα−2dρ

) t∫
0

t− u
(t− u)

3
2

e
− b2u2

8a2ε2(t−u)du

.
In the integral over u we use the inequality t − u ≤ t and the estimate (32), then after

integration we shall have

|∂tω(x′, t)− ∂tω(z′, t)| := |∆4| ≤ C26M1|x′ − z′|α, [∂tω]
(α)
x′,RT

≤ C26M1. (40)

Now we evaluate the difference ∆5 using the inequality (22) for the function Γ and estimate
(29) for the function Φ. The first two integrals in ∆5 are estimated as the first two ones in ∆4;
in the third integral when integrating over y′ we pass to the spherical coordinates assuming
ρ = |z′ − y′ + λ(x′ − z′)|, and make use of the inequality |x′ − y′|α ≤ C27(ρα + rα) ≤ 2C27ρ

α,
r ≤ ρ. In the last integral, denoting it by I4, if n ≥ 3 we apply the formula∫
|y′−z′|>2r

∂yµ∂znΓ(z′ − y′, bnu
ε
, t− τ)dy′ =

∫
|y′−z′|=2r

∂znΓ(z′ − y′, bnu
ε
, t− τ)cos(~n, yµ)dSy′ ,

where ~n is the normal to the sphere |y′ − z′| = 2r, then we shall have

|I4| ≤ C28
M3

ε
rα

t∫
0

dτ

τ∫
0

du
∣∣∣ ∫
|y′−z′|=2r

∂znΓ(z′ − y′, bnu
ε
, t− τ)cos(~n, yµ)dSy′

∣∣∣.
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Thus, we obtain

|∆5| ≤ C29
M3

ε

 t∫
0

dτ

( 3r∫
0

+

2r∫
0

)
ρn−2+αdρ

τ∫
0

1

(t− τ)
n+2

2

e
− ρ

2+( bnuε )2

8a2(t−τ) du

+r

t∫
0

dτ

∞∫
r

ρn−2+αdρ

τ∫
0

1

(t− τ)
n+3

2

e
− ρ

2+( bnuε )2

8a2(t−τ) du+

t∫
0

dτ

τ∫
0

rn−2+α

(t− τ)
n+1

2

e
− 4r2+( bnuε )2

8a2(t−τ) du

.
Further we integrate ∆5 over u, τ and ρ

|∆5| ≤ C30M3

( 3r∫
0

+

2r∫
0

)
ρn−2+αdρ

t∫
0

1

(t− τ)
n+1

2

e
− ρ2

8a2(t−τ)dτ

+r

∞∫
r

ρn−2+αdρ

t∫
0

1

(t− τ)
n+2

2

e
− ρ2

8a2(t−τ)dτ + rn−2+α

t∫
0

1

(t− τ)
n
2

e
− r2

2a2(t−τ)dτ



≤ C31

( 3r∫
0

+

2r∫
0

)
ρα−1dρ

∞∫
0

ςn−2e−ς
2
dς + r

∞∫
r

ρα−2dρ

∞∫
0

ςn−1e−ς
2
dς

+rα
∞∫

0

ςn−3e−ς
2
dς

 ≤ C32M3|x′ − z′|α.

For n = 2 the last integral I4 is equal to zero.

Therefore, we have obtained the required estimate for the difference (39)

|∂2
xµxνω(x′, t)− ∂2

zµzνω(z′, t)| := |∆5| ≤ C32M3|x′ − z′|α, [∂2
xµxνω]

(α)
x′,RT

≤ C32M3. (41)

We evaluate the modulus of the function ω(x′, t)

|ω(x′, t)| ≤ C33
M1

ε

t∫
0

dτ

∫
Rn−1

dy′
τ∫

0

(τ − u)
1+α

2

(t− τ)
n+1

2

e
− (x′−y′+ b′u

ε )2+( bnuε )2

8a2(t−τ) du

≤ C34
M1

ε

t∫
0

τ
1+α

2

t− τ
dτ

τ∫
0

e
− b2nu

2

8a2ε2(t−τ)du ≤ C35M1t
1+α

2 . (42)
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The modules of derivatives ∂tω, ∂
2
xµxνω, ∂xνω, ν, µ = 1, . . . , n − 1, defined by formulas

(30), (31), (36), are evaluated in the same way, then we shall have the estimates

|∂tω(x′, t)| ≤ C36M1t
α
2 , |∂2

xµxνω(x′, t)| ≤ C37M3t
α
2 , |∂xνω(x′, t)| ≤ C38M2t

1+α
2 . (43)

Thus, we have estimated all the terms of the norm (26) of the function ω(x′, t), all
constants in the obtained estimates do not depend on ε.

Gathering the estimates (42), (43), (33), (35), (37), (40), (41), we obtain an inequality
(25) for the function ω(x′, t) := ω1(x′, t). The estimate for ω2(x′, t) is established in the same
way as for ω1(x′, t), for this we make use of the inequalities (27)–(29) for the function Φ and

the estimate (23) for the function g1,ε

(
x′ +

b′u

ε
, xn,

bnu

ε
, t
)
.

4 Proofs of Theorem 3 and Theorem 1

Proof of Theorem 3. The functions w(x, t), z1(x, t) satisfy the heat equations (14),
(15) and, moreover, in accordance with Lemma and the estimate (25) on the plane xn = 0 the

functions w(x, t)|xn=0 = ω1(x′, t), z1(x, t)|xn=0 = ω2(x′, t) belong to the space
◦
C

2+α,1+α
2

x′ t (RT )
and for them the estimates hold

|w(x, t)|xn=0|(2+α)
RT

≤ C39|Φ(x′, t)|(1+α)
RT

, |z1(x, t)|xn=0|(2+α)
RT

≤ C40|Φ(x′, t)|(1+α)
RT

, (44)

with constants C39, C40 independent on the small parameter ε.

The functions w(x, t), z1(x, t) may be considered as solutions of the first boundary-value
problems for the equations (14), (15) in D1T with the trace on the plane xn = 0 from the space
◦
C

2+α,1+α
2

x′ t (RT ), but then the functions w(x, t), z1(x, t) belong to the space
◦
C

2+α,1+α
2

x t (D1T )
and due to (44) satisfy the estimate [7]

|w(x, t)|(2+α)
D1T

≤ |w(x, t)|xn=0|(2+α)
RT

≤ C41|Φ(x′, t)|(1+α)
RT

,

|z1(x, t)|(2+α)
D1T

≤ |z1(x, t)|xn=0|(2+α)
RT

≤ C42|Φ(x′, t)|(1+α)
RT

,
(45)

where the constants C41, C42 do not depend on ε.

From the formula r1 = − 1

α1
w
∣∣
xn=0

and the estimate (44) it follows that the function

r1(x′, t) belongs to the space
◦
C

2+α,1+α
2

x′ t (RT ) and satisfies the estimate

|r1|(2+α)
RT

≤ C39

α1
|Φ(x′, t)|(1+α)

RT
. (46)
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From the boundary condition (18) we obtain that the time derivatives ε∂tw(x, t)
∣∣
xn=0

,

ε∂tr1(x′, t) belong to the space
◦
C

1+α, 1+α
2

x′ t (RT ) and satisfy the estimate

|ε∂tw|(1+α)
RT

+ |ε∂tr1|(1+α)
RT

≤ C43|Φ(x′, t)|(1+α)
RT

, (47)

where the constant C43 does not depend on ε.
Gathering estimates (45)–(47) for functions w(x, t), z1(x, t), r1(x′, t) and time derivatives

ε∂tw(x, t)
∣∣
xn=0

, ε∂tr1(x′, t) we derive the required inequality (20). Theorem 3 is proved.

Proof of Theorem 1. Remembering the change formulas (13) and applying the inequalities
(10), (11), the estimate (19) for the function Φ(x′, t), due to Theorem 3 and the estimate
(20), we obtain the inequality (6) and the proof of Theorem 1.

Corollary 1. The problem (1)–(5) with ε = 0 has a unique solution v ∈
◦
C

2+α,1+α
2

x t (D1T ),

u1 ∈
◦
C

2+α,1+α
2

x t (D1T ), r1 ∈
◦
C

2+α,1+α
2

x t (RT ), and it satisfies the estimate

|v|(2+α)
D1T

+ |u1|(2+l)
D1T

+ |r1|(2+l)
RT

≤ C44

(
|f |(α)

D1T
+ |f1|(α)

D1T
+

2∑
j=1

|ϕj |(2+α)
RT

+ |ϕ3|(1+α)
RT

)
. (48)

5 Construction of a solution to the model problem II. Proof of Theorem 2

We construct the auxiliary functions Uj(x, t), j = 1, 2, V (x, t) as solutions of the first
boundary value problems

∂tUj − a2
14Uj = fj(x, t) in D1T ,

Uj
∣∣
t=0

= u0j(x) in Dj , Uj
∣∣
xn=0

= ψj−1(x′, t) on RT .
(49)

∂tV − a24V = f(x, t) in D1T ,

V
∣∣
t=0

= v0(x) in D1, V
∣∣
xn=0

= ψ2(x′, t) on RT .
(50)

The problems (49), (50) have unique solutions V (x, t) ∈
◦
C

2+α,1+α
2

x t (D̄1T ),

Uj(x, t) ∈
◦
C

2+α,1+α
2

x t (D̄jT ), j = 1, 2, which satisfy the inequalities [7]

|Uj |(2+α)
DjT

≤ C45

(
|fj |(α)

DjT
+ |ψj−1|(2+α)

RT

)
, (51)

|V |(2+α)
D1T

≤ C46

(
|f |(α)

D1T
+ |ψ2|(2+α)

RT

)
. (52)

In the equations and conditions of the problem (7) we make the substitution

v(x, t) = V (x, t) + α2r2 + w(x, t), uj(x, t) = Uj(x, t) + βj+1r2 + zj(x, t), (53)
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where w(x, t), zj(x, t) j = 1, 2, are new unknown functions, we obtain

∂tw − a24w = 0 in D1T , (54)

∂tzj − a2
j4zj = 0 in DjT , j = 1, 2, (55)

w
∣∣
t=0

= 0 in D1, zj
∣∣
t=0

= 0 in Dj , j = 1, 2, r2

∣∣
t=0

= 0 on R, (56)

w
∣∣
xn=0

+ α2r2 = 0, z1

∣∣
xn=0

+ β2r2 = 0, z2

∣∣
xn=0

+ β3r2 = 0 on RT , (57)

λ1∂xnz1 − λ2∂xnz2 + κ∂tr2 + d′3∇′T r2 = Ψ(x′, t) on RT , (58)

where

Ψ(x′, t) = ψ3(x′, t)−
(
λ1∂xnU1 − λ2∂xnU2

)∣∣
xn=0

∈
◦
C

1+α, 1+α
2

x t (RT )

and the following estimate is fulfilled

|Ψ|(1+α)
RT

≤ C47

(
|ψ3|(1+α)

RT
+

2∑
j=1

|Uj |(2+α)
DjT

)
. (59)

Theorem 4. Let βj > 0, j = 2, 3, 0 < κ < κ0.

For every function Ψ(x′, t) ∈
◦
C

1+α, 1+α
2

x′ t (RT ), α ∈ (0, 1), the problem (54)–(58) has a

unique solution w ∈
◦
C

2+α,1+α
2

x t (D1T ), zj ∈
◦
C

2+l,1+ l
2

x t (DjT ), j = 1, 2, r2 ∈
◦
C

2+α,1+α
2

x′ t (RT ),

κ∂tr2 ∈
◦
C

1+α, 1+α
2

x′ t (RT ), and it satisfies the estimate

|w|(2+α)
D1T

+
2∑
j=1

|zj |(2+α)
DjT

+ |r2|(2+α)
RT

+ |κ∂tr2|(1+α)
RT

≤ C48|Ψ(x′, t)|(1+α)
RT

, (60)

where the constant C48 does not depend on κ.

Proof. To the problem (54)–(58) we apply Laplace transform with respect to the variable
t and Fourier transform with respect to x′. From the equations (54), (55) and the initial
conditions (56) of the problem we find the solution in the domain of images of Laplace and
Fourier transforms

w̃ = Ae−kxn , z̃1 = A1e
−k1xn , xn > 0, z̃2 = A2e

k2xn , xn < 0, (61)

where

k =
1

a

√
p+ a2s′2, kj =

1

aj

√
p+ a2

js
′2, j = 1, 2,

and A = A(s′, p), Aj = Aj(s
′, p), j = 1, 2, are unknown coefficients, which are determined

from the boundary conditions on the hyperplane xn = 0.
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The boundary conditions (57)–(58) in the image domain of Laplace and Fourier transforms
have the form

A = −α2r̃2, A1 = −β2r̃2, A2 = −β3r̃2 on RT ,

−λ1k1A1 − λ2k2A2 +
(
κp+ id′3s

′)r̃2 = Ψ̃(s′, p).

From these conditions we find the functions r̃2, A, Aj , j = 1, 2,

r̃2 =
1

κζ1
Ψ̃(s′, p), A = − α2

κζ1
Ψ̃(s′, p), Aj = −βj+1

κζ1
Ψ̃(s′, p), j = 1, 2,

where

ζ1 = p+
µ1

κ
k1 +

µ2

κ
k2 + i

c′

κ
s′, µ1 = λ1β2, µ2 = λ2β3, c′ = d′3.

Reζ1 ≥ C > 0, if the conditions of the theorem βj > 0, j = 2, 3, are fulfilled. Due to this

condition we can represent
1

ζ1
as an integral (21), in which ζ := ζ1.

Substituting the functions A, Aj into (61) and applying the representation
1

ζ1
as an

integral, we write the solution of the problem in the image domain of Laplace and Fourier
transforms in the form

z̃j = −βj+1

κ
Ψ̃(s′, p)

∞∫
0

e−ζ1σ−kj |xn|dσ, j = 1, 2,

r̃2 =
1

κ
Ψ̃(s′, p)

∞∫
0

e−ζ1σdσ, w̃ = −α2

κ
Ψ̃(s′, p)

∞∫
0

e−ζ1σ−kxndσ.

With the help of inverse Laplace and Fourier transforms we obtain the solution to the
problem (54) - (58) in the explicit form. First, we find the functions z1(x, t), z2(x, t)

zj(x, t) = −βj+1

κ

t∫
0

dτ

∫
Rn−1

Ψ(y′, τ)Gj(x
′ − y′, xn, t− τ)dy′, j = 1, 2, (62)

where

Gj(x, t) =

t∫
0

∂xngj(x
′ +

c′u

κ
, |xn|,

u

κ
, t− u)du, (63)

g1(x′ +
c′u

κ
, xn,

u

κ
, t) = 4a2

1a
2
2

t∫
0

dτ1

∫
Rn−1

Γ1(x′ +
c′u

κ
− η′, xn +

µ1u

κ
u, t− τ1)
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×∂ηnΓ2(η′, ηn +
µ2u

κ
, τ1)

∣∣∣
ηn=0

dη′

= −2a2
1

t∫
0

dτ1

∫
Rn−1

1(
2a1

√
π(t− τ1)

)n e− (x′+ c′u
κ −η

′)2+(xn+
µ1u
κ )2

4a2
1(t−τ1)

×
µ2u
κ(

2a2
√
πτ1

)n
τ1

e
− η
′2+(

µ2u
κ )2

4a2
2τ1 dη′, xn > 0, (64)

g2(x′ +
c′u

κ
,−xn,

u

κ
, t) = 4a2

1a
2
2

t∫
0

dτ1

∫
Rn−1

Γ2(x′ +
c′u

κ
− η′, µ2u

κ
− xn, t− τ1)

×∂ηnΓ1(η′,
µ1u

κ
− ηn, τ1)

∣∣∣
ηn=0

dη′

= 2a2
2

t∫
0

dτ1

∫
Rn−1

1(
2a2

√
π(t− τ1)

)n e− (x′+ c′u
κ −η

′)2+(
µ2u
κ −xn)2

4a2
2(t−τ1)

×
µ1u
κ(

2a1
√
πτ1

)n
τ1

e
− η
′2+(

µ1u
κ )2

4a2
1τ1 dη′, xn < 0, (65)

Γj(x, t), j = 1, 2, is a fundamental solution to the heat equation (55).

Taking into account that r2 = − 1

β2
z1

∣∣
xn=0

= − 1

β3
z2

∣∣
xn=0

, then

r2(x′, t) =
1

κ

t∫
0

dτ

∫
Rn−1

Ψ(y′, τ)Gj(x
′ − y′, 0, t− τ)dy′ (66)

=
1

κ

t∫
0

dτ

∫
Rn−1

Ψ(y′, τ)dy′
t−τ∫
0

∂xngj(x
′ − y′ + c′u

κ
, 0,

u

κ
, t− τ − u)du.

Now we find the function w(x, t)

w(x, t) = −α2

κ

t∫
0

dτ

∫
Rn−1

Ψ(y′, τ)G3(x′ − y′, xn, t− τ)dy′, (67)
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where

G3(x, t) =

t∫
0

∂xng3(x′ +
c′u

κ
, xn,

u

κ
, t− u)du, (68)

g3(x′ +
c′u

κ
, xn,

u

κ
, t) = −2a2

t∫
0

dτ2

∫
Rn−1

Γ(η̄′, xn, τ2)∂η̄g1(x′ +
c′u

κ
− η̄′, η̄n,

u

κ
, t− τ2)

∣∣∣
η̄n=0

dη̄′

= −2a2

t∫
0

dτ2

∫
Rn−1

1(
2a
√
πτ2

)n e− η̄′2+x2
n

4a2τ2 ·∂η̄g1(x′+
c′u

κ
−η̄′, η̄n,

u

κ
, t−τ2)

∣∣∣
η̄n=0

dη̄′, xn > 0, (69)

Γ(x, t) is a fundamental solution to the heat equation (54).

The functions Γ0(x, t) ≡ Γ(x, t), Γ1(x, t), Γ2(x, t) satisfy the estimate (22), where
j = 0, 1, 2.

For the constructed functions gj , Gj , j = 1, 2, defined by formulas (64), (65), (63), and
functions g3, G3, defined by formulas (68), (69), the following inequalities hold∣∣∣∣∂kt ∂mx ∂xngj(x′ + c′u

κ
, xn,

u

κ
, t)

∣∣∣∣ ≤ C49
1

t
n+2k+|m|+1

2

e−
q21x

2+q22u
2

t , j = 1, 2, 3, (70)

∣∣∣∂kt ∂mx Gj(x, t)∣∣∣ ≤ C50κ
1

t
n+2k+|m|

2

e−
q21x

2

t

+C51
1

(q2
1x

2 + q2
2t

2)
n+2k+|m|−1

2

e−
q21x

2+q22t
2

4t , j = 1, 2, 3, (71)

where

q2
1 =

µ2

16ã2(c′2 + µ2
1 + µ2

2)
, q2

2 =
µ2

16ã2κ2
,

the constants C49 - C51 do not depend on κ, µ = min(µ1, µ2), ã = max(a1, a2) for functions
gj , Gj , j = 1, 2, ã = max(a, a1, a2) for functions g3, G3.

Inequalities (70), (71) for functions gj , Gj , j = 1, 2, were proved in [2]. The estimates
for functions g, G are established in the same way.

For the norms of the function Ψ(x′, t) ∈
◦
C

1+α, 1+α
2

x′ t (RT ) we introduce the following notation

M̂k+1 = [∂kxνΨ]
( 1+α−k

2
)

t,RT
, M̂3 = [Ψxν ]

(α)
x′,RT

and estimates

|∂kxνΨ(x′, t)| ≤ M̂k+1t
1+α−k

2 ; (72)

Kazakh Mathematical Journal, 20:3 (2020) 23–47



46 Aigul S. Sarsekeyeva

|∂kxνΨ(x′, t)− ∂kxνΨ(x′, t1)| ≤ M̂k+1(t− t1)
1+α−k

2 , t1 ≤ t; (73)

|Ψxν (x′, t)−Ψzν (z′, t)| ≤ M̂3|x′ − z′|α, k = 0, 1, ν = 1, . . . , n− 1. (74)

Theorem 4 is proved as Theorem 2 and the estimate (60) is established as the estimate
(20), using the inequalities (72)–(74) for the function Ψ and estimates (70), (71) for functions
gj , Gj , j = 1, 2, 3.

Proof of Theorem 2. Remembering the change formulas (53) and applying the inequalities

(51), (52) for functions Uj(x, t) ∈
◦
C

2+α,1+α
2

x t (D̄jT ), j = 1, 2, V (x, t) ∈
◦
C

2+α,1+α
2

x t (D̄1T ), the
estimate (59) for the function Ψ(x′, t), due to Theorem 4 and the estimate (60), we obtain
the estimate (8) and the proof of Theorem 2.

Corollary 2. The problem (7) with κ = 0 has a unique solution v ∈
◦
C

2+α,1+α
2

x t (D1T ),

uj ∈
◦
C

2+α,1+α
2

x t (DjT ), j = 1, 2, r2 ∈
◦
C

2+α,1+α
2

x t (RT ), and it satisfies the estimate

|v|(2+α)
D1T

+
2∑
j=1

|uj |(2+α)
DjT

+|r2|(2+α)
RT

≤ C52

(
|f |(α)

D1T
+

2∑
j=1

|fj |(α)
DjT

+
2∑
j=0

|ψj |(2+α)
RT

+|ψ3|(1+α)
RT

)
. (75)
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Сарсекеева А.С. ПАРАБОЛАЛЫҚ ТЕҢДЕУЛЕР ЖҮЙЕСI ҮШIН КIШI ПАРА-
МЕТРI БАР МОДЕЛЬДI ЕРКIН ШЕКАРАЛЫ ЕСЕПТЕР

Шекаралық шартында кiшi параметрi бар екi модельдi есеп зерттелiнедi. Олар екi
еркiн шекарасы бар параболалық теңдеулер жүйесi үшiн сызықтық емес есептi шешуде
пайда болады. Гельдер кеңiстiгiнде осы есептер шешiмдерiнiң кiшi параметр бойынша
бiрқалыпты бағалаулары алынған.

Кiлттiк сөздер. Параболалық теңдеулер жүйелерi, шекаралық шарттағы кiшi пара-
метр, айқын түрдегi шешiм, бiрқалыпты бағалаулар, Гельдер кеңiстiгi.

Сарсекеева А.С. МОДЕЛЬНЫЕ ЗАДАЧИ СО СВОБОДНЫМИ ГРАНИЦАМИ С
МАЛЫМ ПАРАМЕТРОМ ДЛЯ СИСТЕМЫ ПАРАБОЛИЧЕСКИХ УРАВНЕНИЙ

Изучены две модельные задачи с малым параметром в граничном условии. Они воз-
никают при решении нелинейных задач с двумя свободными границами для системы
параболических уравнений. В пространстве Гельдера установлены равномерные относи-
тельно малого параметра оценки решения этих задач.

Ключевые слова. Системы параболических уравнений, малый параметр в граничном
условии, решение в явном виде, равномерные оценки, пространство Гельдера.
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Abstract. We consider an eigenvalue problem for a second-order differential equation with a loaded
term that contains value of derivative of the desired function at zero, with regular, but not strong
regular boundary value conditions. We study the basis properties of systems of eigenfunctions of the
loaded operator of multiple differentiation, with antiperiodic boundary value conditions. It is known that
the system of eigenfunctions of an operator defined by formally self-adjoint differential expression with
arbitrary self-adjoint boundary value conditions, providing a discrete spectrum, forms an orthonormal
basis. Along with this, it is known, that in the case of non-self-adjoint ordinary differential operators, the
basis properties of systems of root functions, in addition to boundary conditions, can also be influenced
by coefficients of the differential operator. Moreover, the basis properties of root functions can change
even at whatever pleasing small change in values of the coefficients. V.A. Il’in first noted this result in
his work. A.S. Makin developed the ideas of V.A. Il’in in the case of non-self-adjoint perturbation of a
self-adjoint periodic problem. In the work of A.S. Makin the operator changes due to perturbation of
one of the boundary value conditions.

In this paper, the considered operator is a non-self-adjoint perturbation of the self-adjoint antiperiodic

problem. In contrast to the work of A.S. Makin, here the perturbation occurs due to a change in

the equation; and the boundary value conditions are antiperiodic. Characteristic determinant of the

considered spectral problem is constructed, which is an entire analytical function. Theorems on stability

and instability of the basis property of systems of eigenfunctions are proved.

Keywords. Characteristic determinant, Riesz basis, loaded operator, antiperiodic boundary value con-

ditions, regular, not strong regular, perturbation.

1. Introduction

In the case of non-self-adjoint ordinary differential operators, in addition to the boundary
value conditions, values of coefficients of the differential operator also influence to the basis

2010 Mathematics Subject Classification: Primary 34B05, 34L10; Secondary 34B09.
c© 2020 Kazakh Mathematical Journal. All right reserved.
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properties of systems of root functions. Knowing this fact, the basis properties of root
functions can change with a small change in the values of coefficients. V.A. Il’in first noted
this result in his work [1]. A.S. Makin developed the ideas of V.A. Il’in in the case of a
non-self-adjoint perturbation of a self-adjoint periodic problem, where operator changes due
to the perturbation of one of the boundary conditions [2].

In this paper, we consider another variant of perturbation of the self-adjoint problem, in
particular, the spectral problem of the following form in the space L2(0, 1) :

Lu = −u′′ + q(x) · u′(0) = λu(x), 0 < x < 1, (1)

U1(u) = u(0) + u(1) = 0, U2(u) = u′(0) + u′(1) = 0, (2)

where q(x) ∈ L1(0, 1).
Equations of the type (1) belong to the class of loaded differential equations, since the

second term on the left-hand side of the equality (1) contains the value of derivative of the
desired function at zero. The considered problem (1)–(2) is a non-self-adjoint perturbation
of antiperiodic problem, and for a periodic problem they were studied in [3, 4]. In contrast
to [2], here the perturbation occurs due to a change in the equation.

Questions of the basis property of root functions of loaded differential operators were
studied in the works of I.S. Lomov [5, 6]. He managed to extend the method of spectral de-
compositions of V.A.Il’in [1] to the case of loaded differential operators. By another method,
the basis properties of functional differential equations were studied in [7]. Earlier, other ap-
proaches to the study of the Samarsky-Ionkin type problems were published in our works [8,9].

2. Characteristic determinant of a spectral problem

Assuming u′(0) as some independent constant, we see that the general solution of the equation
(1) is representable in the form

u(x) = C1 cos
√
λx+ C2

sin
√
λx√
λ

+ u′(0)

x∫
0

q(ζ)
sin
√
λ(x− ζ)√
λ

dζ. (3)

Therefore, first considering x = 0, and then satisfying (3) the boundary value condition
(2), we get the system of the equations, which can be represented in the vector-matrix form
as follows:

0 −1 1

1 + cos
√
λ

sin
√
λ√

λ
1√
λ
·

1∫
0

q(ζ) sin
√
λ(1− ζ)dζ

−
√
λ sin

√
λ 1 + cosλ −

1∫
0

q(ζ) cos
√
λ(1− ζ)dζ

 ·
 C1

C2

u′(0)

 =

0
0
0

 . (4)
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We directly obtain the characteristic determinant ∆(λ) from (4):

∆(λ) = 2(1 + cos
√
λ)− (1 + cos

√
λ) ·

1∫
0

q(ζ) cos
√
λ(1− ζ)dζ

+ sin
√
λ ·

1∫
0

q(ζ) sin
√
λ(1− ζ)dζ (5)

In the case when q(x) = 0, we get characteristic determinant of the antiperiodic spectral
problem:

L0u = −u′′(x) = λu(x), 0 < x < 1, (6)

u′(0) + u′(1) = 0, u(0) + u(1) = 0, (7)

∆0(λ) = 2(1 + cos
√
λ). Numbers λ0k = ((2k − 1)π)2, k = 1, 2, 3, . . . , are double eigenvalues,

moreover

u0k0 =
√

2 cos((2k − 1)πx), u0k1 =
√

2 sin((2k − 1)πx)

are corresponding eigenfunctions, which form the complete orthonormal system in L2(0, 1).

Function q(x) can be represented in the form of expansion in a Fourier series by the
trigonometric system {u0k0 , u

0
k1
} :

q(x) =
∞∑
k=1

[akcos((2k − 1)πx) + bksin((2k − 1)πx)]. (8)

Then, after calculating the integrals from (5), we have

∆(λ) = ∆0(λ) ·A(λ),

where

A(λ) =

[
1 +

∞∑
k=1

bk
(2k − 1)π

λ− ((2k − 1)π)2

]
. (9)

We formulate the result as the following theorem.

Theorem 1. Characteristic determinant of the spectral problem for the loaded second-order
differential equation with antiperiodic boundary conditions (1)–(2) can be represented in the
form (9), where ∆0(λ) is the characteristic determinant of the antiperiodic spectral problem
of multiple differentiation (6)–(7); bk are Fourier coefficients of the expansion (8) of the
functions q(x) by the trigonometric system of eigenfunctions of the spectral problem (6)–(7).
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Remark 1. The function A(λ) from (9) has poles of the second order at the points λ = λ0k,
but the function ∆0(λ) has zeros of the second order at the same points. Therefore, the
function ∆(λ), represented by the formula (9), is an entire analytic function of the variable
λ.

3. The case of the basis property of root functions

The characteristic determinant (9) looks simpler when

q(x) =

N∑
k=1

[akcos((2k − 1)πx) + bksin((2k − 1)πx)].

That is, there exists a number N such that ak = bk = 0 for all k > N . In this case,
formula (9) takes the form

∆1(λ) = ∆0(λ)

[
1 +

N∑
k=1

bk
(2k − 1)π

λ− ((2k − 1)π)2

]
. (10)

From this particular case of formula (9), we have the following corollary.

Corollary 1. For any preassigned numbers (a complex λ and a positive integer m̂) there al-
ways exists a function q(x) such that λ̂ will be an eigenvalue of problem (1) - (2) of multiplicity
m̂.

From the analysis of formula (10) it is easy to see that ∆(λ0k) = 0 for all k > N . That
is, all eigenvalues λ0k, k > N , of the unperturbed antiperiodic problem are the eigenvalues
of the spectral problem (1)–(2). It is also not difficult to show that the multiplicity of the
eigenvalues λ0k, k > N , is also preserved. Moreover, from the condition of orthogonality of
the trigonometric system it follows that in this case:

1∫
0

q(x)u0kj(x)dx = 0, j = 0, 1, k > N.

Thus, the eigenfunctions u0kj(x) of the antiperiodic problem when k > N satisfy the
boundary value conditions (2) and, therefore, they are eigenfunctions of the spectral problem
(1) - (2). Hence, in this case the system of eigenfunctions of (1)–(2) and the system of
eigenfunctions of the antiperiodic problem (an orthonormal basis) differ from each other only
in a finite number of the first members. Consequently, the system of eigenfunctions of (1)–(2)
also forms the Riesz basis in L2(0, 1). The set of functions q(x), that can be represented as
a finite series (8), is dense in L1(0, 1). Thus, we have proved the following result.
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Theorem 2. Let q(x) ∈ L1(0, 1). Then the system of eigenfunctions of the spectral problem
(1)–(2) forms Riesz basis in the space L2(0, 1), and is complete in L1(0, 1).

4. Instability of the basis property

Now we show the absence of the basis properties of eigenfunctions system of the spectral
problem (1)–(2).

Theorem 3. The set of functions q(x) ∈ L1(0, 1), such that the system of eigenfunctions
of the spectral problem (1)–(2) does not form even a normal basis in L2(0, 1), is dense in
L1(0, 1).

Proof. Let in (8) the coefficients bk 6= 0 for all sufficiently large k. Then from (9) we note
that λ = λ0k is a simple eigenvalue of the spectral problem (1)–(2). By direct calculation we
get that

u1k = bk · cos((2k − 1)π)x− ak · sin((2k − 1)π)x

are eigenfunctions of (1)–(2), corresponding to λ0k = ((2k−1)π)2. Moreover, the eigenfunction
of the dual problem [10]:

L∗(v) ≡ −v′′(x) = λv(x), 0 < x < 1,

V1(v) ≡ v′(0) + v′(1) = 0, V2(v) = v(0) + v(1) =

1∫
0

q(x)u(x)dx, q(x) ∈ L1(0, 1),

corresponding to the eigenvalue λ0k, is v1k = ck · cos((2k − 1)π)x.

Since the eigenfunctions of the dual problems form a biorthogonal system, then we have
the equality of the scalar product (u1k, v

1
k) = 1. Hence, it is easy to obtain bkck = 2. Therefore,

∥∥u1k∥∥ · ∥∥v1k∥∥ =

√
1 +

∣∣∣∣akbk
∣∣∣∣2. (11)

Denote by σN (x) a partial sum of the Fourier series (8). It is obvious, that the set of functions,
which can be represented as the infinite series

q(x) = σN (x) +

∞∑
k=N+1

[
ak cos((2k − 1)πx) + bk sin((2k − 1)πx)

]
,
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where ak = 2−k, bk =
2−k

k
, k > N, is dense in L1(0, 1). However, from (11) it follows that

for the corresponding eigenfunctions q(x) and for the corresponding eigenfunctions systems
of the direct and adjoint problems the following holds:

lim
k→∞

∥∥u1k∥∥ · ∥∥v1k∥∥ =∞.

That is, the condition of uniform minimal property (see [11] and references in it) of the
system does not hold, and therefore, it does not form even a basis in L2(0, 1).

Since adjoint operators possess the Riesz basis property of the eigenfunction.

5. Conclusion

Results of this paper demonstrate stability of the basis property of eigenfunctions of a loaded
operator of multiple differentiation with antiperiodic boundary conditions that are regular
but not strongly regular [12–16].

6. Acknowledgments

Author thanks Professor B.E. Kanguzhin and Corresponding Member of the NAS of RK
M.A. Sadybekov for their attention to the work. Author is supported by the funding from
the Ministry of Education and Science of the Republic of Kazakhstan.

References

[1] Il’in V.A. On connection between the types of boundary value conditions and basis properties
and equiconvergence with trigonometric series of expansions by root functions of a non-self-adjoint
differential operator, Differential Equations, 30 (1994), 1516-1529.

[2] Makin A.S. On a nonlocal perturbation of a periodic eigenvalue problem, Differential Equations,
42 (2006), 599-602.

[3] Imanbaev N.S. and Sadybekov M.A. Basic properties of root functions of loaded second order
differential operators, Reports of National Academy of Sciences of the Republic of Kazakhstan, 2
(2010), 11-13.

[4] Sadybekov M.A. and Imanbaev N.S. Characteristic Determinant of a Boundary Value Problem,
which does not have the basis property, Eurasian Math. J., 8 (2017), 40-46.

[5] Lomov I.S. Basis property of root vectors of loaded second order differential operators on an
interval, Differential Equations, 27:1 (1991), 80-94.

[6] Lomov I.S. Theorem on unconditional basis property of root vectors of loaded second order
differential operators, Differential Equations, 27:9 (1991), 1550-1563.

[7] Gomilko A.M. and Radzievsky G.V. Basic properties of eigenfunctions of a regular boundary
value problem for a vector functional, Differential Equations, 27:3 (1991), 385-395.

Kazakh Mathematical Journal, 20:3 (2020) 48–56



54 Nurlan S. Imanbaev

[8] Imanbaev N.S. On stability of basis property of root vectors system of the Sturm-Liouville oper-
ator with an integral perturbation of conditions in nonstrongly regular Samarskii-Ionkin type problems,
International Journal of Differential Equations, 2015:641481 (2015), 1-6.

[9] Sadybekov M.A. and Imanbaev N.S. On a problem not having the property of basis property of
root vectors, connected with the perturbed regular operator of multiple differentiation, Mathematical
Journal, 17 (2017), 117-125.

[10] Imanbaev N.S. and Sadybekov M.A. Construction of a characteristic determinant for one type
of eigenvalue problems under integral perturbation of two boundary conditions, Journal of Mathematics,
Mechanics and Computer Science, 104:4 (2019), 12-23.

[11] Il’in V.A. and Kritskov L.V. Properties of spectral expansions corresponding to non-self-adjoint
differential operators, Journal of Mathematical Sciences, 116:5 (2003), 3489-3550.

[12] Naimark M.A. Linear Differential Operators, Moscow: Nauka, 1969.

[13] Veliev O.A., Shkalikov A.A. On basis property of eigenfunctions and associated functions of
periodic and antiperiodic Sturm-Liouville problems, Mathematical Notes, 85:5 (2009), 671-686.

[14] Lang P. and Locker J. Spectral Theory of Two-Point Differential Operators Determined by -
D2, J. Math. Anal. And Appl., 146 (1990), 148-191.

[15] Sadybekov M.A. and Imanbaev N.S. A Regular Differential Operator with Perturbed Boundary
Condition, Mathematical Notes, 101:5 (2017), 878-887.

[16] Imanbaev N.S. Stability of the basis property of eigenvalue systems of Sturm-Liouville operators

with integral boundary condition, Electronic Journal of Differential Equations, 87 (2016), 1-8.

Иманбаев Н.С. АНТИПЕРИОДТЫҚ ШЕТТIК ШАРТТАРМЕН БЕРIЛГЕН ЕКIН-
ШI РЕТТI ДИФФЕРЕНЦИАЛДЫҚ ЖҮКТЕЛГЕН ОПЕРАТОРДЫҢ МЕНШIКТI
ФУНКЦИЯЛАР ЖҮЙЕСIНIҢ БАЗИСТIЛIГI

Регулярлы, бiрақ күшейтiлмеген регулярлы шеттiк шарттармен берiлген, құрамында
iзделiндi функциядан алынған туындының нөл нүктесiндегi мәнiмен қамтылған жүктел-
ген қосылғышы бар екiншi реттi дифференциалдық теңдеудiң меншiктi мәндерiн зертте-
уге арналған есеп қарастырылады. Антипериодтық шеттiк шарттармен берiлген екiншi
реттi дифференциалдық жүктелген оператордың меншiктi функциялар жүйесiнiң бази-
стiлiгi мәселесi зерттеледi. Дискреттi спектрмен қамтамасыз ететiн еркiн түрдегi өзiне-
өзi түйiндес шеттiк шарттармен және өзiне-өзi түйiндес формальды дифференциалдық
амалмен берiлген оператордың меншiктi функциялар жүйесiнiң ортонормаланған базис
құратындығы белгiлi жәй. Осымен қатар, өзiне-өзi түйiндес емес қарапайым дифферен-
циалдық операторлар үшiн де түбiрлiк функциялардың базистiлiгi не шеттiк шарттар-
дан бөлек дифференциалдық оператордың коэффициентерiнiң мәндерi де әсер ететiндi-
гi белгiлi. Бұл жағдайда коэффициенттердiң мәндерi шамалы ғана өзгергенде түбiрлiк
функциялардың базистiлiк қасиеттерiне әсер етедi. Мұндай нәтиже алғаш В.А. Ильиннiң
жұмысында аталған болатын. В.А. Ильиннiң идеясы өзiне-өзi түйiндес периодтық есеп
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үшiн өзiне-өзi түйiндес емес толқытылғандағы жағдайда А.С. Макиннiң еңбегiнде дамы-
тылды. А.С. Макиннiң жұмысында оператор шеттiк шарттардың бiреуiн толқытқанда
өзгерген болатын.

Бұл мақаладағы қарастырылып отырған оператор өзiне-өзi түйiндес антипериодты
есептiң өзiне-өзi түйiндес емес толқытуы болып табылады. Қарастырылып отырған жұ-
мыстың А.С.Макиннiң еңбегiндегi оператордан өзгешелiгi, бұл жұмыста толқыту тең-
деуге көшедi және шеттiк шарттардың антипериодтылығында. Қарастырылып отырған
спектралдық есептiң характеристикалық анықтауышы құрылған және ол бүтiн анали-
тикалық функция болып табылады. Меншiктi функциялар жүйесiнiң базистiлiк қасиет-
терiнiң орнықтылығы, орнықсыздығы туралы теоремалар дәлелденген.

Кiлттiк сөздер. характеристикалық анықтауыш, Рисс базистiлiгi, жүктелген опера-
тор, антипериодтық шеттiк шарттар, регулярлы, бiрақ күшейтiлген регулярлы емес,
толқытылу.

Иманбаев Н.С. О БАЗИСНОСТИ СИСТЕМ СОБСТВЕННЫХ ФУНКЦИЙ НАГРУ-
ЖЕННОГО ДИФФЕРЕНЦИАЛЬНОГО ОПЕРАТОРА ВТОРОГО ПОРЯДКА С АН-
ТИПЕРИОДИЧЕСКИМИ КРАЕВЫМИ УСЛОВИЯМИ

Рассматривается задача на собственные значения дифференциального уравнения
второго порядка с нагруженным слагаемым, содержащим значение производной от ис-
комой функции в точке нуль, с регулярными, но неусиленно регулярными краевыми
условиями. Исследуется вопрос базисности систем собственных функций нагруженного
оператора кратного дифференцирования с антипериодическими краевыми условиями.
Известно, что система собственных функций оператора, заданного формально само-
сопряженным дифференциальным выражением, с произвольными самосопряженными
краевыми условиями, обеспечивающими дискретный спектр, образует ортонормирован-
ный базис. Наряду с этим, известно, что в случае несамосопряженных обыкновенных
дифференциальных операторов на базисность систем корневых функций, помимо крае-
вых условий, могут влиять также значения коэффициентов дифференциального опера-
тора. При этом базисные свойства корневых функций могут изменяться даже при сколь
угодном малом изменении значений коэффициентов. Этот результат впервые отмечен в
работе В.А.Ильина. Идеи В.А.Ильина были развиты А.С.Макиным на случай несамо-
сопряженного возмущения самосопряженной периодической задачи. Оператор в работе
А.С.Макина изменялся за счет возмущения одного из краевых условий.

В настоящей работе рассматриваемый оператор является несамосопряженным возму-
щением самосопряженной антипериодической задачи. В отличие от работы А.С.Макина
здесь возмущение происходит за счет изменения уравнения и краевые условия являют-
ся антипериодическими. Построен характеристический определитель рассматриваемой
спектральной задачи, который является целой аналитической функцией. Доказаны тео-
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ремы об устойчивости и неустойчивости свойства базисности систем собственных функ-
ций.

Ключевые слова. характеристический определитель, базис Рисса, нагруженный опе-
ратор, антипериодические краевые условия, регулярные, неусиленно регулярные, возму-
щение.
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2Institute of Mathematics and Mechanics NAS Azerbaijan, Baku, Azerbaijan

ae-mail: s.jafarov@alparslan.edu.tr

Communicated by: Daurenbek Bazarkhanov

Received: 11.03.2020 ? Final Version: 05.09.2020 ? Accepted/Published Online: 25.09.2020

Abstract. The approximation properties of means of trigonometric Fourier series in variable exponent
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1. Introduction and The Main Results

Let Lp(T), 1 ≤ p <∞, be the Lebesgue space of all measurable 2π-periodic functions defined
on T:= [0, 2π] such that

‖f‖p :=

∫
T

|f(x)|p dx

 <∞.

In the Lebesgue spaces Lp(T), 1 ≤ p <∞, we define integral modulus of continuity of f by

ωp(f, δ) := sup
0≤|h|≤δ

 1

2π

∫
T

|f(x+ h)− f(x)|p dx


1
p

.

We define the Lipschitz class Lip(α, p) (1 ≤ p <∞, 0 < α ≤ 1) as

Lip(α, p) = {f ∈ Lp(T) : ωp(f, δ) = O(δα), δ > 0} .

Let us denote by ℘ the class of Lebesgue measurable functions p = p (x) : T −→ [1,∞)
such that

1 < p∗ := ess inf
x∈T

p(x) ≤ p∗ := ess
x∈T

sup p(x) <∞. (1)
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The conjugate exponent of p(x) is shown by p′(x) := p(x)
p(x)−1 . For p ∈ ℘, we define a class

Lp(·)(T) of 2π -periodic measurable functions f : T→ C satisfying the condition∫
T

|f(x)|p(x) dx <∞.

This class Lp(·)(T) is a Banach space with respect to the norm

‖f‖p(·) := ‖f‖Lp(.)(T) := inf{ λ > 0 :

∫
T

∣∣∣∣f(x)

λ

∣∣∣∣p(x) dx ≤ 1}.

It is known that for p(x) := p (0 < p ≤ 1), the space Lp(x)(T) coincides with the Lebesgue
space Lp(T). Note that detailed information about properties of the Lebesque spaces with
variable exponent can be found in [1], [2], [3], [4], and [5].

We denote byM the set of all measurable 2π -periodic functions p : R→ [1,∞) satisfying
the conditions (1) and

| p(x)− p(y) |≤ c1
− ln |x− y|

, 0 < |x− y| ≤ 1

2
.

Unfortunately the space Lp(·)(T) is not p (·)-continuous and not transation invariant [3].
Note that from condition f(x) ∈ Lp(x)(T) it does not follow f(x+ h) ∈ Lp(x)(T).

Let p ∈M, f ∈ Lp(·)(T). We define the shift operator Th by

Th(f)(x) :=
1

h

h∫
0

|f(x+ t)− f(x)| dt

and the moduli of continuity of the function f by

Ωp(·)(f, δ) := sup
|h|≤δ

‖Th(f)‖p(·) , δ > 0.

Note that the function Ωp(·)(f, ·) is continuous, nonnegative and satisfies

lim
δ→0

Ωp(·)(f, δ) = 0, Ωp(·)(f + f1, ·) ≤ Ωp(·)(f, ·) + Ωp(·)(f1, ·)

for f, f1 ∈ Lp(·).
Let p ∈M. For 0 < α ≤ 1 we set

Lip (α, p(·)) =
{
f ∈ Lp(·) : Ωp(·)(f, δ) = O(δα), δ > 0

}
.

Kazakh Mathematical Journal, 20:3 (2020) 57–68



Approximation by means of Fourier series in Lebesgue spaces with variable exponent 59

According to [6] in the Lebesgue spaces Lp the moduli of continuity ωp(f, ·) and Ωp(·)(f, ·)
are equivalent.

Let {dn}∞0 be a sequence of positive real numbers. If there exists a constant C, depending
on the sequence {dn}∞0 only, such that, for all n ≥ m the inequality

dn ≤ Cdm (pn ≥ cpm)

satisfies, then sequence {dn}∞0 is called almost monotone decreasing (increasing). In the
paper such sequences will be denoted by {dn}∞0 ∈AMDS and {dn}∞0 ∈AMIS, respectively.

We also use the notation

∆ln = ln − ln+1, ∆ml(n,m) := l(n,m)− l(n,m+ 1).

Let

a0
2

+

∞∑
k=1

Ak(x, f), Ak(x, f) : = ak(f) cos kx+ bk(f) sin kx (2)

be the Fourier series of the function f ∈ L1(T), where ak(f) and bk(f) are Fourier coefficients
of the function f. The nth partial sums of the series (2) is defined by

Sn(x, f) =
a0
2

+

n∑
k=1

Ak(x, f).

As in the [7] we suppose that F is an infinite subset of N and consider F as the range of
strictly increasing sequence of positive integers, say F = {λ(n)}∞1 . Following [8], the Cesáro
submethod Cλ is defined as

(Cλx)n =
1

λ(n)

λ(n)∑
k=1

xk, n = 1, 2, ...,

where {xk} is a sequence of a real or complex numbers. Therefore, the Cλ− method yields a
subsequence of the Cesáro method C1, and hence it is regular for any λ. Cλ is obtained by
deleting a set of rows from Cesáro matrix. We suppose that {dn}∞0 is a sequence of positive
real numbers. We define the mean of the series (2), as

Nλ
n (f ;x) =

1

Dλ(n)

n∑
m=0

dλ(n)−msm(f ;x),

where Dn :=
∑n

m=0 dm 6= 0 (n ≥ 0), d−1 = D−1 = 0. Note that in the case dn = 1, n ≥ 0,
N(f ;x) is equal to the mean
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σλn(f ;x) =
1

λ(n) + 1

λ(n)∑
m=0

Sm(f ;x).

We consider trigonometric polynomial defined by

Nλ
n (f, x) =

1

Dλ(n)

λ(n)∑
m=0

dλ(n)−mSm(f, x),

where Dλ(n) :=
λ(n)∑
m=0

dm 6= 0, d−1 = D−1 := 0.

Note that in the paper [7] M.L. Mittal and M.V. Singh gave some conditions on the
sequence {dn}∞0 and obtained results about approximation of the functions by Nλ

n (f) in
Lip(α, p), 0 < p ≤ 1. The problems of approximation theory in Lebesgue spaces with variable
exponents have been investigated by several authors (see, for example, [9], [10], [6], [11], [12],
[13], [14]).

In the present paper, the analogues of result [see [7], Theorem 5] was obtained for variable
exponent Lebesgue spaces Lp(·)(T). Similar problems of the approximation of the functions
in the different spaces have been studied in [6], [11]– [32].

Note that in the proof of the main results we use the methods as in the proofs of [19], [6]
and [7].

Our main results are as follows.

Theorem 1. If p ∈M , f ∈ Lip (α, p(·)) and {dn}∞0 is a sequence of positive numbers and if
one of the following conditions

(A) 0 < α < 1, and {dn}∞0 ∈ AMDS,
(B) 0 < α < 1, {dn}∞0 ∈ AMIS and (λ(n) + 1) dλ(n) = O(Dλ(n)) holds,

(C) α = 1 and
λ(n)−1∑
k=1

k |∆dk| = O
(
Dλ(n)

)
,

(D) α = 1,
λ(n)−1∑
k=0

|∆dk| = O
(
Dλ(n)

λ(n)

)
and (λ(n) + 1) dλ(n) = O(Dλ(n))

is maintained, then for n = 1, 2, ...∥∥∥f −Nλ
n (f)

∥∥∥
p(·)

= O((λ(n))−α)

holds.

In the proof of main results we need the following lemmas.

Lemma 1 [6]. Let p ∈M and 0 < α ≤ 1. Then for every f ∈ Lip (α, p(·)) the estimate

‖f − Sn(f)‖p(·) = O(n−α), n = 1, 2, ...,
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holds.

Lemma 2 [6]. Let p ∈M and f ∈ Lip (1, p(·)). Then for n = 1, 2, ... the estimate

‖Sn(f)− σn(f)‖p(·) = O(n−1)

holds.

Lemma 3 [7]. Let {dn}∞0 ∈ AMDS or let {dn}∞0 ∈ AMIS and satisfy the relation
(λ(n) + 1) = O(Dλ(n)). Then, for 0 < α < 1, the estimate

λ(n)∑
m=1

m−αdλ(n)−m= O((λ(n))−αDλ(n))

holds.

2. Proofs of Theorems

Proof of Theorem 1. First of all we consider cases (A) and (B) together. The following
relation holds:

Nλ
n (f ;x) =

1

Dλ(n)

λ(n)∑
m=0

dλ(n)−m {sm(f ;x)− f(x)} .

Then by virtue of Lemmas 1 and 3 and condition (λ(n) + 1) dλ(n) = O(Dλ(n)) we reach

∥∥∥f −Nλ
n (f)

∥∥∥
p(·)

≤ 1

Dλ(n)

λ(n)∑
m=0

dλ(n)−m ‖sm(f)− f‖p(·)

=
1

Dλ(n)

λ(n)∑
m=1

dλ(n)−m ‖sm(f)− f‖p(·)

+
dλ(n)

Dλ(n)
‖s0(f)− f‖p(·)

=
1

Dλ(n)

λ(n)∑
m=1

dλ(n)−mO(m−α) +O

(
dλ(n)

Dλ(n)

)
= O

(
(λ(n))−α

)
.

We suppose that (D) conditions hold. Using Abel’s transformation, we have

Nλ
n (f ;x) =

1

Dλ(n)

λ(n)∑
m=0

Dλ(n)−mum(f ;x).
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Then we find that

sλn(f ;x)−Nλ
n (f ;x) =

1

Dλ(n)

λ(n)∑
m=1

(Dλ(n) −Dλ(n)−m)um(f ;x). (3)

If Abel’s transformation is administered to (3), we obtain

sλn(f ;x)−Nλ
n (f ;x) =

1

Dλ(n)

λ(n)∑
m=1

∆m(m−1(Dλ(n) −Dλ(n)−m))

×
m∑
k=1

kuk(f ;x) +
1

(λ(n) + 1)

λ(n)∑
k=1

kuk(f ;x).

Using (3), we have

∥∥∥sλn(f ;x)−Nλ
n (f ;x)

∥∥∥
p(·)

≤ 1

Dλ(n)

λ(n)∑
m=1

∣∣∆m(m−1(Dλ(n) −Dλ(n)−m))
∣∣

×

∥∥∥∥∥
m∑
k=1

kuk(f)

∥∥∥∥∥
p(·)

+
1

(λ(n) + 1)

∥∥∥∥∥∥
λ(n)∑
k=1

kuk(f)

∥∥∥∥∥∥
p(·)

. (4)

It is clear that

sn(f ;x)− σn(f ;x) =
1

n+ 1

n∑
k=1

kuk(f ;x). (5)

Then from Lemma 2 and (5) we conclude that∥∥∥∥∥
n∑
k=1

kuk

∥∥∥∥∥
p(·)

= (n+ 1) ‖sn(f)− σn(f)‖p(·) = O(1). (6)

Consideration of (4) and (6) gives us∥∥∥sλn(f)−Nλ
n (f)

∥∥∥
p(·)

= O

(
1

Dλ(n)

) λ(n)∑
m=1

∣∣∆m(m−1(Dλ(n) −Dλ(n)−m))
∣∣

+O((λ(n))−1). (7)
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The following relation holds:

∆m

(
Dλ(n) −Dλ(n)−m

m

)
=

1

m
∆m

(
Dλ(n) −Dλ(n)−m

)
+
Dλ(n) −Dλ(n)−m−1

m(m+ 1)

=
Dλ(n)−m−1 −Dλ(n)−m

m

+
Dλ(n) −Dλ(n)−m−1

m(m+ 1)

=
Dλ(n) −Dλ(n)−m−1

m(m+ 1)
−
Dλ(n)−m

m

=
1

m(m+ 1)

[
Dλ(n) −Dλ(n)−m−1 − (m+ 1)d

λ(n)−m

]
,

∆m

(
Dλ(n) −Dλ(n)−m

m

)

=
1

m(m+ 1)

λ(n)∑
k=λ(n)−m

dk − (m+ 1)dλ(n)−m. (8)

We prove that the inequality ∣∣∣∣∣∣
λ(n)∑

k=λ(n)−m

dk − (m+ 1)dλ(n)−m.

∣∣∣∣∣∣
≤

m∑
k=1

k
∣∣dλ(n)−k+1 − dλ(n)−k

∣∣ (9)

holds. We suppose that m = 1. Then∣∣∣∣∣∣
λ(n)∑

k=λ(n)−m

dk − 2dλ(n)−1

∣∣∣∣∣∣
=

∣∣dλ(n) − dλ(n) − 1
∣∣ .

That is the inequality (9) holds for m = 1. We suppose that the inequality (9) is true for
m = j. We prove the inequality (9) for m = j + 1. For m = j + 1 we find that
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∣∣∣∣∣∣
λ(n)∑

k=λ(n)−(j+1)

dk − (j + 2)dλ(n)−(j+1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
λ(n)∑

k=λ(n)−j

dk − (j + 1)dλ(n)−(j+1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
λ(n)∑

k=λ(n)−j

dk − (j + 1)dλ(n)−j + (j + 1)dλ(n)−j − (j + 1)dλ(n)−(j+1)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
λ(n)∑

k=λ(n)−j

dk − (j + 1)dλ(n)−j

∣∣∣∣∣∣+
∣∣(j + 1)dλ(n)−j − (j + 1)dλ(n)−(j+1)

∣∣
≤

j∑
k=1

k
∣∣dλ(n)−k+1 − dλ(n)−k

∣∣+ (j + 1)
∣∣dλ(n)−j − dλ(n)−(j+1)

∣∣
=

j+1∑
k=1

k
∣∣dλ(n)−k+1 − dλ(n)−k

∣∣ .
Consequently, the inequality (9) is true for any 1 ≤ m ≤ λ(n). Consideration of (8) and

(9) gives us

λ(n)∑
m=1

∣∣∣∣∆m

(
Dλ(n) −Dλ(n)−m

m

)∣∣∣∣
≤

λ(n)∑
m=1

1

m (m+ 1)

m∑
k=1

k
∣∣dλ(n)−k+1 − dλ(n)−k

∣∣
≤

λ(n)∑
k=1

k
∣∣dλ(n)−k+1 − dλ(n)−k

∣∣ ∞∑
m=k

1

m (m+ 1)

=

λ(n)−1∑
k=0

|∆dk| = O

(
Dλ(n)

λ(n)

)
.

The last inequality and (7) imply that∥∥∥sλn(f)−Nλ
n (f)

∥∥∥
p(·)

= O
(

(λ(n))−1
)
. (10)
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Using (10) and Lemma 1, for α = 1 we get∥∥∥f −Nλ
n (f)

∥∥∥
p(·)

= O
(

(λ(n))−1
)
.

Next, we consider case (C). First of all we prove that if the condition

λ(n)−1∑
k=1

k |∆pk| = O
(
Pλ(n)

)
satisfies, then the relation

λ(n)∑
m=1

∆m

(
Dλ(n) −Dλ(n)−m

m

)
= O

(
Dλ(n)

λ(n)

)
(11)

holds.
We denote by r the integral part of (λ (n) /2) . Taking the relations (8) and (9) into

account, we obtain

λ(n)∑
m=1

∆m

(
Dλ(n) −Dλ(n)−m

m

)

≤
λ(n)∑
m=1

1

m (m+ 1)

m∑
k=1

k
∣∣∆kdλ(n)−k

∣∣
=

r∑
m=1

1

m (m+ 1)

m∑
k=1

k
∣∣∆kdλ(n)−k

∣∣
+

λ(n)∑
m=r+1

1

m (m+ 1)

m∑
k=1

k
∣∣∆kdλ(n)−k

∣∣
= J1 + J2. (12)

If we use Abel’s transformation and the condition

λ(n)−1∑
k=1

k |∆kdk| = O
(
Dλ(n)

)
(13)

in the case (C), we find that

J1 ≤
r∑

k=1

∣∣∆kdλ(n)−k
∣∣ ≤ λ(n)−1∑

j=r−2
|∆dj | = O

(
Dλ(n)

λ(n)

)
. (14)
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J2 can be written as

J2 =

λ(n)∑
m=r+1

1

m (m+ 1)

[
r∑

k=1

k
∣∣∆dλ(n)−k∣∣+

m∑
k=r

k
∣∣∆dλ(n)−k∣∣

]
: = J21 + J22.

Using the condition (13), we find that

J21 ≤
λ(n)∑
m=r

1

(m+ 1)

λ(n)−1∑
j=r−2

|∆dj | = O

(
Dλ(n)

λ(n)

)
, (15)

J22 ≤
λ(n)∑
m=r

1

(m+ 1)

m∑
k=r

∣∣∆dλ(n)−k∣∣
= O

(
1

λ(n)

)
[|∆d0|+ 2 |∆d1|+ ...+ (r + 1) |∆dr+1|]

= O

(
Dλ(n)

λ(n)

)
. (16)

Now combining (12), (14), (15), and (16), we obtain the relation (11). Consequently, using
(11), (7) and Lemma 1 we reach∥∥∥f −Nλ

n (f)
∥∥∥
p(·)

= O((λ(n))−1).

Thus, the proof of Theorem 1 is complete.
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Жафаров С.З. АЙНЫМАЛЫ КӨРСЕТКIШТI ЛЕБЕГ КЕҢIСТIКТЕРIНДЕГI ФУ-
РЬЕ ҚАТАРЛАРЫ ОРТАШАЛАРЫ АРҚЫЛЫ АППРОКСИМАЦИЯ

Айнымалы көрсеткiштi Лебег кеңiстiктерiндегi орташа тригонометриялық Фурье қа-
тарларының аппроксимациялық қасиеттерi зерттеледi.

Кiлттiк сөздер.
Айнымалы көрсеткiштi Лебег кеңiстiктерi, тригонометриялық полиномдармен ап-

проксимациялау, Фурье қатарлары, Фурье қатарларының орташалары, үзiлiссiздiк мо-
дулi.

Джафаров С.З. АППРОКСИМАЦИЯ СО СРЕДНИМИ РЯДОВ ФУРЬЕ В ПРО-
СТРАНСТВАХ ЛЕБЕГА С ПЕРЕМЕННЫМ ПОКАЗАТЕЛЕМ

Изучаются аппроксимационные свойства средних тригонометрических рядов Фурье
в пространствах Лебега с переменным показателем.

Ключевые слова. Пространства Лебега с переменным показателем, аппроксимация
тригонометрическими полиномами, ряды Фурье, средние рядов Фурье, модуль непре-
рывности.
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Abstract. In this paper, we consider global Morrey-type spaces GMp(·),w(·),θ(Ω) with variable ex-

ponent p(·), where Ω ⊂ Rn is a bounded open set. Conditions for the boundedness of a maximal

operator, fractional maximal operator, and Riesz type potential from the global Morrey-type space

GMp1(·),w1(·),θ(Ω) to the global Morrey space GMp2(·),w2(·),θ(Ω) are obtained for different ratios

between variable indicators p1(x), p2(x) and between functions w1(x, r), w2(x, r). Spanne-type and

Adams-type theorems are proved.

Keywords. Morrey space, global Morrey-type spaces with variable exponent, Riesz potential, maximal

function, fractional maximal operator, boundedness of an operator in spaces.

1 Introduction, definitions and auxiliary results

The classical Morrey space was introduced by Charles Morrey in 1938 [1] in connection
with the study of solutions of quasilinear elliptic differential equations. In recent decades,
the questions of the boundedness of various operators in general spaces of Morrey type have
been actively investigated.

The questions of the boundedness of the maximal operator, the fractional maximal oper-
ator, and the Riesz potential in various function spaces have been well studied. For classical
Lebesgue spaces, they are presented in detail in the monographs [2] - [4]. Then, such results
were extended to general Morrey type spaces. The results of the boundedness of classical
operators of function theory in general Morrey type spaces are presented in detail in the
review articles by V.I. Burenkov [5], [6] and in the Adams’s book [7].
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c© 2020 Kazakh Mathematical Journal. All right reserved.
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In this article, we will consider the questions connected with the boundedness of Hardy-
Littlewood maximal operator, fractional maximal operator, potential type operator on global
Morrey-type spaces with variable exponent GMp(·),w(·),θ.

Let us present the necessary definitions and notations.
Let f ∈ Lloc(Ω), where Ω ⊂ Rn is an open bounded set. We consider the following

operators:
- Hardy-Littlewood maximal operator

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B̃(x,r)

|f(y)|dy,

where B(x, r) is an open ball in Rn centered at the point x ∈ Rn of radius r, and
|B(x, r)| is the volume of this ball, B̃(x, r) = B(x, r) ∩ Ω;

- the fractional maximal operator of variable order α(x)

Mα(x)f(x) = sup
r>0
|B(x, r)|

α(x)
n
−1

∫
B̃(x,r)

|f(y)|dy,

where 0 ≤ α(x) < n;
- Riesz potential type operator with variable order α(x)

Iα(x)f(x) =

∫
Rn

f(y)

|x− y|n−α(x)
dy,

where 0 < α(x) < n.
When α(x) = α = const these operators coincide, respectively, with the classical maxi-

mal fractional operator Mα and Riesz potential Iα.
For λ ∈ R, 0 < p ≤ ∞, Morrey space Mλ

p (Rn) is defined as the set of all functions

f ∈ Llocp (Rn) with finite quasi-norm

||f ||Mλ
p (Rn) = sup

x∈Rn, r>0
r−λ

 ∫
B(x,r)

|f(y)|pdy


1
p

<∞.

If we replace here the power function r−λ by an arbitrary positive function w(x, r) mea-
surable on Ω, then we get the space Mp,w(·)(Ω), called the generalized Morrey space. Such
spaces were considered in [8] – [10].

Global Morrey-type spaces GMp,w(·),θ(Ω), containing the generalized Morrey spaces, were
considered in [11] – [14], in which sufficient and, in the case of some parameters, necessary
conditions for the boundedness of classical operators of function theory in these spaces are
obtained.
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We will consider the global Morrey-type spaces GMp(·),w(·),θ(Ω) with variable exponent
p(·), where Ω ⊂ Rn is a bounded open set.

Let p(x) be a measurable function on the open bounded set Ω ⊂ Rn with values (1,∞).
Suppose

1 < p− ≤ p(x) ≤ p+ <∞, (1)

where p− = p−(Ω) = infx∈Ωp(x), p+ = p+ (Ω) = supx∈Ωp(x).
We denote by P log(Ω) the class of functions defined on Ω satisfying the log-condition

|p(x)− p(y)| ≤ C

− ln |x− y|
, |x− y| ≤ 1

2
, (x, y) ∈ Ω,

where C = C(p) > 0 does not depend on x and y.
Denote by Lp(·)(Ω) the Lebesque space with variable exponent [15] which is defined as

the set of all measurable functions f(x) on Ω such that

Jp(·)(f) =

∫
Ω
|f(x)|p(x) dx <∞,

where the norm is defined as follows

||f ||p(·) = inf

{
η > 0, Jp(·)

(
f

η

)
≤ 1

}
.

The Morrey spaces M
λ(·)
p(·) (Rn) with variable exponents p(·) were introduced and studied

in [16], [17].
Let w(x, r) be positive measurable function on Ω×[0, l], where Ω ⊂ Rn, l = diamΩ, 1 ≤

θ <∞. The generalized Morrey space Mp(·),w(·)(Ω), with variable exponent p(·) is defined
by the norm

||f ||Mp(·),w(Ω) = sup
x∈Ω, r>0

r
− n
p(x)

w(x, r)
||f ||Lp(·)(B(x,r)).

The generalized Morrey spaces Mp(·),w(·)(Ω) with variable exponent p(·), were studied in
[18], [19] and boundedness conditions for the maximal operator, fractional maximal operator,
and Riesz potential in this spaces were obtained.

We will define the global Morrey-type spaces GMp(·),w(·),θ(Ω) with variable exponent
p(·). Throughout this work, we will assume that infx∈Ω, t>0w2(x, t) > 0.

Definition. Let p(·) ∈ P log(Ω), w(x, r) be a positive measurable function on Ω ×
[0, l], where Ω ⊂ Rn, l = diamΩ, 1 ≤ θ ≤ ∞. The global Morrey type spaces
GMp(·),w(·),θ(Ω) with variable exponent p(·) is defined as the set of all functions f ∈
Llogp(·)(R

nΩ) with a finite norm

‖f‖GMp(·),w(·),θ(Ω) = sup
x∈Ω

∥∥∥w−1 (x, r) r
− n
p(x) ||f ||Lp(·)(B(x,r))

∥∥∥
Lθ(0,l)

<∞.
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When w(x, r) = r
λ(x)−n
p(x) the corresponding space is denoted by GM

λ(·)
p(·),θ(Ω) :

GM
λ(·)
p(·),θ(Ω) = GMp(·),w(·),θ(Ω)w(x, r) = r

λ(x)−n
p(x) .

Note that

GMp(·),w(·),θ(Ω) = Mp(·),w(·)(Ω)

at θ =∞.
For p(x) = const we have global Morrey type spaces GMp,w,θ which were considered

by V.I. Burenkov, V.S. Guliyev, A. Gogatishvili, R. Mustafaev and etc. [11] – [14].
In this paper, we obtain boundedness conditions for a maximal operator, fractional

maximal operator, and Riesz potential type operator from one global Morrey-type space
GMp1(·),w1,(·)θ(Ω) with a variable exponent p(·) to another space GMp2(·),w2(·),θ(Ω) at vari-
ous ratios between variables exponents p1(x), p2(x) and between functions w1(x, r), w2(x, r).

We will denote by C and Cα positive constants that depend on the indicated parameters
and, generally speaking, are different in different formulas.

Here are some auxiliary statements.

Theorem A [18]. Let Ω ⊂ Rn be a bounded open set, p(·) ∈ P log(Ω) and satisfy
condition (1).

Then

||Mf ||Lp(·)(B̃(x,t)) < Ct
n
p(x)

∫ l

t
r
− n
p(x)
−1||f ||Lp(·)(B̃(x,r))dr, 0 < t <

l

2
, (2)

where C does not depend on f, x, t.

Theorem B [18]. Let Ω ⊂ Rn be a bounded open set, p(·), α(·) ∈ P log(Ω) satisfy
condition (1) and

inf
x∈Ω

α(x) > 0, sup
x∈Ω

α(x)p(x) < n, (3)

1

q(x)
=

1

p(x)
− α(x)

n
. (4)

Then

||Iα(·)f ||Lq(·)(B̃(x,t)) < Ct
n
q(x)

∫ l

t
r
− n
q(x)
−1||f ||Lp(·)(B̃(x,r))dr, 0 < t <

l

2
,

where C does not depend on f, x, t.

Theorem C [18]. Let Ω ⊂ Rn be a bounded open set, p(x) ∈ P log(Ω) and satisfy
condition (1), the function α(x) satisfy condition (3).
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Then

|Iα(·)f(x)| < Ctα(x)Mf(x) + C

∫ l

t
r
α(x)− n

p(x)
−1||f ||Lp(B(x,r))dr, 0 < t ≤ l

2
, (5)

where the constant C does not depend on f, x, t.

2 The main results

In the following statements we give the conditions for boundedness of the maximal oper-
ator, the fractional maximal operator, and the potential Riesz potential type operator from
space GMp1(·),w1(·),θ(Ω) to space GMp2(·),w2(·),θ(Ω).

Theorem 1. Let Ω ⊂ Rn be a bounded open set, p(·) ∈ P log(Ω) and satisfy condition
(1), 1 < θ < ∞, 1

θ + 1
θ′

= 1, positive measurable functions w1(x, r), w2(x, r) satisfy the
condition

Aθ = sup
x∈Ω

∫ l

0

1

wθ2(x, t)

{∫ l

t

(
r−1w1(x, r)

)θ′
dr

} θ

θ
′

dt <∞. (6)

Then the maximal operator M is bounded from GMp(·),w1(·),θ(Ω) to GMp(·),w2(·),θ(Ω).

Proof. According to Theorem A, we have

||Mf ||GMp(·),w2(·),θ(Ω) = sup
x∈Ω

∥∥∥w−1
2 (x, t)r

− n
p(x) ||Mf ||Lp(·)(B(x,r))

∥∥∥
Lθ(0,l)

< C sup
x∈Ω

∥∥∥∥w−1
2 (x, t)

∫ l

t
r
− n
p(x)
−1||f ||Lp(·)(B(x,r))

∥∥∥∥
Lθ(0,l)

= C sup
x∈Ω


∫ l

0

[
w−1

2 (x, t)

∫ l

t
r−1w1(x, r)

r
− n
p(x)

w1(x, r)
||f ||Lp(·)(B(x,r))dr

]θ
dt


1
θ

= sup
x∈Ω


∫ l

0

1

w2(x, t)

[∫ l

t

(
r−1w1(x, r)

)θ′
dr

] θ

θ
′
∫ l

t

(
r
− n
p(x)

w1(x, r)
||f ||Lp(·)(B(x,r))

)θ
dr

 1
θ

dt


≤ ||f ||GMp(·),w1,θ

(Ω) ·A.

This implies the boundedness of the operator M from GMp(·),w1(·),θ(Ω) to GMp(·),w2(·),θ(Ω).

Theorem 1 is proved.

Consequence. Let Ω ⊂ Rn be a bounded open set,

λ(x) ≥ 0, 1 < θ <∞, λ(x)− µ(x) > θ
′
p(x).
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Then the operator M is bounded from GM
λ(·)
p(·),θ(Ω) to GM

µ(·)
p(·),θ(Ω).

Theorem 2. Let Ω ⊂ Rn be a bounded open set, p(·) ∈ P log(Ω) and satisfy condition
(1), 1 < θ < ∞, 1

θ + 1
θ′

= 1, α(x), q(x) satisfy conditions (3) and (4), and the functions
w1(x, r), w2(x, r) satisfy the condition

B = sup
x∈Ω

∥∥∥∥w−1
2 (x, t)

∥∥∥rα(x)−1w1(x, r)
∥∥∥
L
θ
′ (t,l)

∥∥∥∥
Lθ(0,l)

< +∞, (7)

where C does not depend on x and t.
Then the operators Mα(·), Iα(·) are bounded from GMp(·),w1(·),θ(Ω) to GMq(·),w2(·),θ(Ω).
Proof. Let f ∈ GMp(·),w1,θ(Ω). Estimate the norm

||Iα(·)f ||GMq(·),w2(·),θ(Ω) = sup
x∈Ω

∥∥∥w−1
2 (x, t)t

− n
q(x) ||Iα(·)f ||Lq(·)(B̃(x,r))

∥∥∥
Lθ(0,l)

.

For this, it is enough to consider the values t ∈ (0, l2) due to condition infx∈Ω, t>0w2(x, t) >
0.

By using Theorem B and Holder’s inequality, we have

||Iα(·)||GMq(·),w2(·),θ(Ω) ≤ C sup
x∈Ω

∥∥∥∥w−1
2 (x, t)

∫ l

t
r
− n
q(x)
−1||f ||Lq(·)(B̃(x,r))dr

∥∥∥∥
Lθ(0,l)

= C sup
x∈Ω

∥∥∥∥w−1
2 (x, t)

∫ l

t
r
−n

(
1

p(x)
− 1
q(x)
−1

)
w1(x, r)w−1

1 (x, r)r
− n
p(x) ||f ||Lq(·)(B̃(x,r))dr

∥∥∥∥
Lθ(0,l)

≤ C sup
x∈Ω

∥∥∥∥w−1
2 (x, t)

∥∥∥rα(x)−1w1(x, r)
∥∥∥
L
θ
′ (t,l)
·
∥∥∥w−1

1 (x, r)r
− n
p(x) ||f ||Lq(·)(B̃(x,r))

∥∥∥
Lθ(t,l)

∥∥∥∥
Lθ(0,l)

≤ C||f ||GMp(·),w1(·),θ(Ω) sup
x∈Ω

∥∥∥∥w−1
2 (x, t)

∥∥∥rα(x)−1w1(x, r)
∥∥∥
L
θ
′ (t,l)

∥∥∥∥
Lθ(0,l)

.

From this and condition (5) it follows that

||Iα(·)||GMq(·),w2(·),θ(Ω) < C1||f ||GMp(·),w1(·),θ(Ω),

that is, the operator Iα(·) is bounded from GMp(·),w1(·),θ(Ω) to GMq(·),w2(·),θ(Ω).

The boundedness of fractional maximal operator Mα(·) in these spaces follows from the
following estimate

Mα(·)f(x) ≤ cIα(·)|f |(x), 0 < α(x) < n,

where c does not depend on f and x. This estimate is known for α(x) = α = const.
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For variable α(x) we put

c = sup
x∈Ω

(
n

|Sn−1|

)1−α(x)
n

<∞,

where Sn−1 is a unit sphere Rn−1. It is clear that |B(x, r)| = |Sn−1|
n rn.

Therefore

Mα(·)f(x) =
1

|B(x, r)|1−
α(x)
n

∫
(B̃(x,r))

|f(y)|dy

≤
(

n

|Sn−1|

)1−α(x)
n
∫

(B̃(x,r))

|f(y)|
|x− y|n−α(x)

dy ≤ cIα(·)|f |(x).

Theorem 2 is proved.

Theorem 3. Let Ω ⊂ Rn be a bounded open set, p(·) ∈ P log(Ω) and satisfy condition
(1), α(x) satisfy condition (3), 1 < θ < ∞, 1

θ + 1
θ′

= 1 and the functions w1(x, t)

and w2(x, t), where w2(x, t) = (w1(x, t))
p(·)
q(·) , satisfy the conditions

sup
x∈Ω

∫ l

0

1

wθ2(x, t)

{∫ l

t

(
r−1w1(x, r)

)θ′
dr

} θ

θ
′

dt <∞, (8)

{∫ l

t

(
rα(x)−1w1(x, r)

)θ′
dr

} θ

θ
′

dt ≤ Cr−
α(x)p(x)
q(x)−p(x) . (9)

Then the operators Mα(·) and Iα(·) are bounded from GMp(·),w1(·),θ(Ω) to
GMq(·),w2(·),θ(Ω).

Proof. Let f ∈ GMp(·),w1(·)θ(Ω). We will estimate the following norm

‖Iαf‖GMp(·),w2(·)(Ω),θ
= sup

x∈Ω

∥∥∥∥∥ t
− n
q(x)

w2(x, t)
||Iα(·)fχ(B(x,t))||Lq(·)(Ω)

∥∥∥∥∥
Lθ(0,l)

.

According to Theorem C∣∣∣Iα(·)f(x)
∣∣∣ < Ctα(x)Mf(x) + C

∫ l

t
r
α(x)− n

p(x)
−1||f ||Lp(·)(B(x,r))

dr = L1(x) + L2(x),

where 0 < t < l
2 . By applying Holder’s inequality and condition (8), we get

L2(x) =

∫ l

t
r
α(x)− n

p(x)
−1||f ||Lp(·)(B(x,r))dr =

∫ l

t
rα(x)−1w1(x, r)

r
− n
p(x)

w1(x, r)
||f ||Lp(·)(B(x,r))dr
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≤


∫ l

t

(
r
− n
p(x)

w1(x, r)
||f ||Lp(·)(B(x,r))

)θ
dr


1
θ

·

{∫ l

t

(
rα(x)−1w1(x, r)

)θ′
dr

} 1

θ
′

≤ ||f ||GMp(·),w1(·),θ(Ω) · r
− α(x)p(x)
p(x)−q(x) .

Therefore ∣∣∣Iα(·)f(x)
∣∣∣ < Crα(x)Mf(x) + ||f ||GMp(·),w1(·),θ(Ω) · r

− α(x)p(x)
p(x)−q(x) .

Here we choose r, so that

r =

(
||f ||GMp(·),w1(·),θ(Ω)

Mf(x)

)− q(x)−p(x)
α(x)p(x)

.

Then ∣∣∣Iα(·)f(x)
∣∣∣ < C(Mf(x))

p(x)
q(x) · ||f ||

1− p(x)
q(x)

GMp(·),w1(·),θ(Ω).

Therefore ∣∣∣Iα(·)f(x)
∣∣∣q(x)

< C(Mf(x))p(x) · ||f ||q(x)−p(x)
GMp(·),w1(·),θ(Ω).

Then we have

||Iα(·)f ||Lq(·)(B̃(x,t)) ≤ C||Mf ||Lp(·)(B̃(x,t)).

Hence,∥∥∥∥∥ r
− n
q(x)

w2(x, r)
||Iα(·)f ||Lq(·)(B̃(x,t))

∥∥∥∥∥
Lθ(0,∞)

≤ C

∥∥∥∥∥∥ r
− n
q(x)

(w1(x, r))
p(x)
q(x)

||Mf ||Lp(·)(B̃(x,t))

∥∥∥∥∥∥
Lθ(0,∞)

.

Hence, in view of the boundedness of the maximal operator by Theorem 1, we obtain

||Iα(·)f ||GMq(·),w2(·),θ(Ω) ≤ C1||Mf ||GMp(·),w1(·),θ.

Hence, under the condition of the theorem, it follows that the operator Iα is bounded
from GMp(·),w1(·),θ(Ω) to GMp(·),w2(·),θ(Ω).

Theorem 3 is proved.

Theorem 2 is a Spanne type result and Theorem 3 is an Adams type result. The similar
theorems for the generalized Morrey spaces Mp(·),w(·)(Ω) with variable exponent p(·) were
proved in [18].
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Адилханов А.Н., Бокаев Н.А., Онербек Ж.М. МАКСИМАЛДЫ ОПЕРАТОРЛАР
МЕН РИСС ТИПТЕС ПОТЕНЦИАЛДЫҢ ШЕНЕЛГЕН ОБЛЫСТАРДА АНЫК-
ТАЛҒАН АЙНЫМАЛЫ КӨРСЕТКIШТI МОРРИ ТИПТЕС ГЛОБАЛДЫ КЕҢIСТIК-
ТЕРДЕ ШЕНЕЛГЕНДIГI ТУРАЛЫ

Бұл жұмыста айнымалы p(·) көрсеткiштi Морри типтес кеңiстiктер GMp(·),w(·),θ(Ω)
қарастырылған, мұндағы Ω ⊂ Rn – шенелген ашық жиын. Айнымалы p1(x), p2(x)
көрсеткiштердiң және w1(x, r), w2(x, r) функцияларының өзара сәйкес қатынастарын-
да максималды оператордың, бөлшек-максималды оператордың және Рисс типтес по-
тенциалдың Морри типтес GMp1(·),w1(·),θ(Ω) глобалды кеңiстiгiнен Морри типтес
GMp2(·),w2(·),θ(Ω) глобалды кеңicтiгiне шенелгендiгiнiң шарттары алынған. Спейн және
Адамс типтес теоремалар дәлелденген.

Кiлттiк сөздер. Морри кеңiстiгi, айнымалы көрсеткiштi Морри типтес глобалды
кеңiстiктер, Рисс потенциалы, максималды функция, бөлшек-максималды оператор, опе-
ратордың кеңiстiктерде шенелгендiгi.

Адилханов А.Н., Бокаев Н.А., Онербек Ж.М. ОБ ОГРАНИЧЕННОСТИ МАКСИ-
МАЛЬНЫХОПЕРАТОРОВИПОТЕНЦИАЛА ТИПА РИССА В ГЛОБАЛЬНЫХПРО-
СТРАНСТВАХ ТИПА МОРРИ С ПЕРЕМЕННЫМ ПОКАЗАТЕЛЕМ НА ОГРАНИ-
ЧЕННЫХ ОБЛАСТЯХ

В данной работе рассмотрены глобальные пространства типа Морри GMp(·),w(·),θ(Ω) с
переменным показателем p(·), где Ω ⊂ Rn – ограниченное открытое множество. Получе-
ны условия ограниченности максимального оператора, дробно-максимального оператора
и потенциала типа Рисса из глобального пространства типа Морри GMp1(·),w1(·),θ(Ω) в
глобальное пространство типа Морри GMp2(·),w2(·),θ(Ω) при соответствующих со-
отношениях между переменными показателями p1(x), p2(x) и между функциями
w1(x, r), w2(x, r). Доказаны теоремы типа Спейна и Адамса.

Ключевые слова. пространство Морри, глобальные пространства типа Морри с пере-
менным показателем, потенциал Рисса, максимальная функция, дробно-максимальный
оператор, ограниченность оператора в пространствах.
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Abstract. In the present paper, we study a linear boundary value problem for a system of integro-

differential equations with weakly singular kernels. Conditions for the solvability of the considered prob-

lem are established using a method based on splitting the interval and introducing additional parameters.

Necessary and sufficient conditions for the solvability of the two-point problem for the integro-differential

equations with weakly singular kernels are received.

Keywords. Linear boundary value problem, integro-differential equations, kernel with weakly singularity,

parameterization method, solvability.

1 Introduction

We consider a linear two-point boundary value problem for the system of Fredholm
integro-differential equations with weakly singular kernels on [0, T ]:

dx

dt
= A(t)x+

T∫
0

K(t, s)x(s)ds+ f(t), x ∈ Rn, (1)

Bx(0) + Cx(T ) = d, d ∈ Rn, (2)

where (n× n) matrix A(t) and n vector f(t) are continuous on [0, T ], (n× n) matrix K(t, s)
has the form K(t, s) = 1

|t−s|αH(t, s), and (n×n) matrix H(t, s) is continuous on [0, T ]× [0, T ],

0 < α < 1, ‖x‖ = max
i=1,n

|xi|.
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A solution to problem (1), (2) is a continuous on [0, T ] and continuously differentiable
on (0, T ) vector function x(t) satisfying the Fredholm integro-differential equation (1) and
boundary condition (2).

Integro-differential equations and different problems for them are used as mathematical
models of various physical processes [1]. Linear boundary value problems for the Fredholm
integro-differential equations are investigated in [2-7] for the cases of smooth kernels. Two-
point boundary value problems for linear Fredholm integro-differential equations with weakly
singular or other non-smooth kernels are studied by the Galerkin and collocation methods in
[8-18].

In present paper, based on the parameterization method [19] we investigate the existence
and uniqueness of solution to problem (1), (2). Dividing the interval [0, T ] into N parts,
we introduce additional parameters. While applying the method to problem (1), (2), an
intermediate problem, special Cauchy problem for the system of integro-differential equations
with parameters, arises. Note, the problem is always uniquely solvable for sufficiently small
partition step. This property of the intermediate problem in [2] allowed us to establish
necessary and sufficient conditions for solvability and unique solvability of problem (1), (2) in
the case of smooth kernels. In [3-6], the smallness of interval’s partition step is also required
for solving the linear boundary value problems for Fredholm integro-differential equations.
In [7], the arbitrary partitions of the interval are considered.

Hereby we expand the results of paper [2] to a linear two-point boundary value problem for
a system of Fredholm integro-differential equations with weakly singular kernels. Algorithms
of parameterization method are based on the smallness of interval’s partition and solving
the system of algebraic equations with respect to the additional parameters introduced. If a
fundamental matrix of differential part of Eq.(1) is known and the erasing definite integrals
can be evaluated, then the algorithm gives a solution to the linear two-point boundary value
problem for the Fredholm integro-differential equations in the explicit form.

Let C([0, T ], Rn) denote the space of continuous functions x : [0, T ]→ Rn with the norm
||x||1 = max

t∈[0,T ]
||x(t)||.

2 Scheme of the method

Given a step h > 0 : Nh = T we introduce the partition [0, T ) =
N⋃
r=1

[(r − 1)h, rh) and

restrict x(t) to the rth interval [(r− 1)h, rh), which is denoted by xr(t), i.e., xr(t) = x(t) for
t ∈ [(r − 1)h, rh).

Problem (1), (2) is then reduced to the equivalent multi-point boundary value problem

dxr
dt

= A(t)xr +
N∑
j=1

jh∫
(j−1)h

K(t, s)xj(s)ds+ f(t), t ∈ [(r − 1)h, rh), r = 1, N, (5)
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Bx1(0) + C lim
t→T−0

xN (t) = d, (6)

lim
t→ph−0

xp(t) = xp+1(ph), p = 1, N − 1, (7)

where (7) are conditions for matching the solution at the interior points of the partition of
[0, T ).

Let C([0, T ], h,RnN ) denote the space of systems of functions x[t] = (x1(t), x2(t), ...,
xN (t)), where xr : [(r − 1)h, rh)→ Rn are continuous and have finite left limits lim

t→rh−0
xr(t)

for all r = 1, N , with the norm ||x[·]||2 = max
r=1,N

sup
t∈[(r−1)h,rh)

||xr(t)||.

Obviously, C([0, T ], h,RnN ) is a complete space.

Introducing the parameters λr=̂xr[(r−1)h] and making the substitution ur(t) = xr(t)−λr
at every rth interval, we obtain the parametric boundary value problem

dur
dt

= A(t)(ur + λr) +

N∑
j=1

jh∫
(j−1)h

K(t, s)[uj(s) + λj ]ds+ f(t), t ∈ [(r − 1)h, rh), (8)

ur[(r − 1)h] = 0, r = 1, N, (9)

Bλ1 + CλN + C lim
t→T−0

uN (t) = d, (10)

λp + lim
t→ph−0

up(t)− λp+1 = 0, p = 1, N − 1. (11)

The solution of problem (8)–(11) is a pair (λ∗, u∗[t]) with elements λ∗ = (λ∗1, λ
∗
2, ..., λ

∗
N ) ∈ RnN

and u∗[t] = (u∗1(t), u
∗
2(t), ..., u

∗
N (t)) ∈ C([0, T ], h,RnN ). If (λ∗, u∗[t]) is a solution to problem

(8)–(11), then x∗(t), defined by the relations: x∗(t) = λ∗r + u∗r(t) for
t ∈ [(r − 1)h, rh) and r = 1, N , and x∗(T ) = λ∗N + lim

t→T−0
u∗N (t), solves problem (1), (2).

Conversely, if x̃(t) is a solution to problem (1), (2), then the pair (λ̃, ũ[t]) with elements
λ̃ = (λ̃1, λ̃2, ..., λ̃N ) ∈ RnN , and ũ[t] = (ũ1(t), ũ2(t), ..., ũN (t)) ∈ C([0, T ], h,RnN ), where
λ̃r = x̃[(r − 1)h], ũr(t) is the restriction of x̃(t) − x̃[(r − 1)h] to [(r − 1)h, rh) for r = 1, N ,
solves problem (8)–(11). By introducing additional parameters, we obtain initial data (9)
for the unknown functions ur(t), r = 1, N . For fixed parameter values λ ∈ RnN the system
of functions u[t] is determined from problem (8), (9), which is a special Cauchy problem
for systems of integro-differential equations. Problem (8), (9) is equivalent to the system of
integral equations

ur(t) = X(t)

t∫
(r−1)h

X−1(τ1)A(τ1)dτ1λr

Kazakh Mathematical Journal, 20:3 (2020) 79–91



82 Anar T. Assanova, Shattyk N. Nurmukanbet

+X(t)

t∫
(r−1)h

X−1(τ1)

N∑
j=1

jh∫
(j−1)h

K(τ1, s)[uj(s) + λj ]dsdτ1

+X(t)

t∫
(r−1)h

X−1(τ1)f(τ1)dτ1, t ∈ [(r − 1)h, rh), r = 1, N. (12)

Solving (12), we find a representation of ur(t) in terms of λ ∈ RnN , r = 1, N , and f(t).
Substituting them into (10) and (11) yields a system of equations for finding the unknown
parameters. Thus, if the parametrization method is applied to problem (1), (2), we also
have to solve an intermediate problem, namely, the special Cauchy problem (8), (9) or the
equivalent system of integral equations (12). However, in contrast to the above methods, the
partition step h > 0 : Nh = T can always be chosen so that problem (8), (9) is uniquely
solvable.

Consider h0 > 0 satisfying the inequality

σ(h0) ≡ βT
1

1− α
h1−α0 eα0h0 < 1, (13)

where α0 = max
t∈[0,T ]

||A(t)|| and β = max
(t,s)∈[0,T ]×[0,T ]

||H(t, s)||. Let us show that, for any h ∈

(0, h0] : Nh = T system (12) is uniquely solvable.
We use the equality

X(t)

t∫
a

X−1(τ1)F (τ1)dτ1 =

t∫
a

F (τ1)dτ1 +

t∫
a

A(τ1)

τ1∫
a

F (τ2)dτ2dτ1

+

t∫
a

A(τ1)

τ1∫
a

A(τ2)

τ2∫
a

F (τ3)dτ3dτ2dτ1 + ..., a, t ∈ [0, T ], (14)

which holds for any function F (t) that is continuous on [0, T ]. Indeed, the functional series
on the right-hand side of (14) converges uniformly on [0, T ] and, like the left-hand side of
(14), solves the Cauchy problem

dx

dt
= A(t)x+ F (t), x(a) = 0, t ∈ [0, T ]. (15)

Since problem (15) is uniquely solvable, we have (14). By using (14), we obtain the estimates

∣∣∣∣∣∣X(t)

t∫
(r−1)h

X−1(τ1)
N∑
j=1

jh∫
(j−1)h

K(τ1, s)uj(s)dsdτ1

∣∣∣∣∣∣
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=
∣∣∣∣∣∣X(t)

t∫
(r−1)h

X−1(τ1)

N∑
j=1

jh∫
(j−1)h

1

|τ1 − s|α
H(τ1, s)uj(s)dsdτ1

∣∣∣∣∣∣

≤ βeα0h

rh∫
(r−1)h

N∑
j=1

jh∫
(j−1)h

1

|τ1 − s|α
dsdτ1 · ||u[·]||2

≤ βeα0h

rh∫
(r−1)h

N∑
j=1

{ τ1∫
(j−1)h

1

(τ1 − s)α
ds+

jh∫
τ1

1

(s− τ1)α
ds

}
dτ1 · ||u[·]||2

= βeα0h

t∫
(r−1)h

N∑
j=1

1

1− α

{
(jh− τ1)1−α − (τ1 − (j − 1)h)1−α

}
dτ1 · ||u[·]||2

≤ βeα0h

t∫
(r−1)h

N∑
j=1

1

1− α
(τ1 − jh− (τ1 − (j − 1)h))1−αdτ1 · ||u[·]||2

= βeα0h

t∫
(r−1)h

N∑
j=1

1

1− α
h1−αdτ1 · ||u[·]||2 ≤ βeα0hT

1

1− α
h1−α · ||u[·]||2

= σ(h0) · ||u[·]||2, t ∈ [(r − 1)h, rh), r = 1, N. (16)

Using (16) and the inequality σ(h0) < 1 and applying the contraction mapping principle,
we prove the unique solvability of systems (12) for any h ∈ (0, h0] : Nh = T .

Setting t = τ in (12) and multiplying both sides by K(t, τ), we integrate the result with
respect to τ on the interval [(r− 1)h, rh] and sum up the left- and right-hand sides over r to
obtain

N∑
r=1

rh∫
(r−1)h

K(t, τ)ur(τ)dτ =
N∑
r=1

rh∫
(r−1)h

K(t, τ)X(τ)

τ∫
(r−1)h

X−1(τ1)

×
N∑
j=1

jh∫
(j−1)h

K(τ1, s)uj(s)dsdτ1dτ +

N∑
r=1

rh∫
(r−1)h

K(t, τ)X(τ)

τ∫
(r−1)h

X−1(τ1)
{
A(τ1)λr

+
N∑
j=1

jh∫
(j−1)h

K(τ1, s)dsλj + f(τ1)
}
dτ1dτ, t ∈ [0, T ]. (17)
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After introducing the notation

Φh(t) =

N∑
j=1

jh∫
(j−1)h

K(t, s)uj(s)ds,

Mr(h, t) =

rh∫
(r−1)h

K(t, τ)X(τ)

τ∫
(r−1)h

X−1(τ1)A(τ1)dτ1dτ

+

N∑
j=1

jh∫
(j−1)h

K(t, τ)X(τ)

τ∫
(j−1)h

X−1(τ1)

rh∫
(r−1)h

K(τ1, s)dsdτ1dτ,

F (h, t) =
N∑
j=1

jh∫
(j−1)h

K(t, τ)X(τ)

τ∫
(j−1)h

X−1(τ1)f(τ1)dτ1dτ,

Eq. (17) can be written as

Φh(t) =

N∑
j=1

jh∫
(j−1)h

K(t, τ)X(τ)

τ∫
(j−1)h

X−1(τ1)Φh(τ1)dτ1dτ

+

N∑
r=1

Mr(h, t)λr + F (h, t), t ∈ [0, T ]. (18)

Once again using estimates (16), we conclude that Eq. (18) is uniquely solvable for
h ∈ (0, h0] : Nh = T .

Defining sequences of matrices and vectors depending on t ∈ [0, T ] by the relations

M (0)
r (h, t) = Mr(h, t), M (k)

r (h, t) =

N∑
j=1

jh∫
(j−1)h

K(t, τ)X(τ)

τ∫
(r−1)h

X−1(τ1)M
(k−1)
r (h, τ1)dτ1dτ,

F (0)(h, t) = F (h, t), F (k)(h, t) =

N∑
j=1

jh∫
(j−1)h

K(t, τ)X(τ)

τ∫
(j−1)h

X−1(τ1)F
(k−1)(h, τ1)dτ1dτ,
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k = 1, 2, ..., and applying the method of successive approximations, we find the solution of
Eq. (18) in the form

Φh(t) =
N∑
r=1

Dr(h, t)λr + Fh(t), t ∈ [0, T ], (19)

where Dr(h, t) =
∞∑
k=0

M
(k)
r (h, t), Fh(t) =

∞∑
k=0

F (k)(h, t).

Note that for h ∈ (0, h0] : Nh = T the functional series converge uniformly and Dr(h, t),
r = 1, N , and Fh(t) are continuous on [0, T ]. Substituting (19) into the right-hand side of
(12), we express ur(t) in terms of λr and f(t):

ur(t) = X(t)

t∫
(r−1)h

X−1(τ)A(τ)dτλr

+
N∑
j=1

X(t)

t∫
(r−1)h

X−1(τ)

[
Dj(h, τ) +

jh∫
(j−1)h

K(τ, s)ds

]
dτλj

+X(t)

t∫
(r−1)h

X−1(τ)[f(τ) + Fh(τ)]dτ, t ∈ [(r − 1)h, rh), r = 1, N. (20)

Finding lim
t→T−0

uN (t) and lim
t→ph−0

up(t), p = 1, N − 1, substituting them into conditions (10)

and (11), and multiplying both sides of (10) by h > 0, we obtain a linear system of equations
for λr, r = 1, N :

h

{
B + CX(T )

T∫
T−h

X−1(τ)
[
D1(h, τ) +

h∫
0

K(τ, s)ds
]
dτ

}
λ1

+hC

N−1∑
j=2

X(T )

T∫
T−h

X−1(τ)
[
Dj(h, τ) +

jh∫
(j−1)h

K(τ, s)ds
]
dτλj

+hC

{
I +X(T )

T∫
T−h

X−1(τ)
[
A(τ) +DN (h, τ) +

T∫
T−h

K(τ, s)ds
]
dτ

}
λN
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= hd− hCX(T )

T∫
T−h

X−1(τ)[f(τ) + Fh(τ)]dτ, (21)

p−1∑
j=1

X(ph)

ph∫
(p−1)h

X−1(τ)
[
Dj(h, τ) +

jh∫
(j−1)h

K(τ, s)ds
]
dτλj +

{
I +X(ph)

ph∫
(p−1)h

X−1(τ)
[
A(τ)

+Dp(h, τ) +

ph∫
(p−1)h

K(τ, s)ds
]
dτ

}
λp −

{
I −X(ph)

ph∫
(p−1)h

X−1(τ)
[
Dp+1(h, τ)

+

(p+1)h∫
ph

K(τ, s)ds
]
dτ

}
λp+1 +

N∑
j=p+2

X(ph)

ph∫
(p−1)h

X−1(τ)
[
Dj(h, τ) +

jh∫
(j−1)h

K(τ, s)ds
]
dτλj

= −X(ph)

ph∫
(p−1)h

X−1(τ)[f(τ) + Fh(τ)]dτ, p = 1, N − 1. (22)

By denoting nN ×nN matrix corresponding to the left-hand side of system (21), (22) by
Q∗,∗(h), this system can be written as

Q∗,∗(h)λ = −F∗,∗(h), λ ∈ RnN , (23)

where F∗,∗(h) =

(
−hd+hCX(T )

T∫
T−h

X−1(τ)[f(τ)+Fh(τ)]dτ,X(h)
h∫
0

X−1(τ)[f(τ)+Fh(τ)]dτ,

X(2h)
2h∫
h

X−1(τ)[f(τ) + Fh(τ)]dτ, ..., X[(N − 1)h]
(N−1)h∫
(N−2)h

X−1(τ)[f(τ) + Fh(τ)]dτ

)
.

3 Main results

System (23) with h ∈ (0, h0] : Nh = T has the following property.

Lemma 1. Let h ∈ (0, h0] : Nh = T . Then the following assertions hold:

(a) The vector λ∗ = (λ∗1, λ
∗
2, ..., λ

∗
N ) ∈ RnN , consisting of the values of the solution x∗(t)

to problem (1), (2) at the partition points λ∗r = x∗[(r − 1)h], r = 1, N , satisfies system (23);

(b) The function x̃(t), defined by the equalities: x̃(t) = λ̃r + ũr(t), t ∈ [(r − 1)h, rh),
r = 1, N , and x̃(T ) = λ̃N + lim

t→T−0
ũN (t), where λ̃ = (λ̃1, λ̃2, ..., λ̃N ) ∈ RnN solves system (23)

and the system of functions ũ[t] = (ũ1(t), ũ2(t), ..., ũN (t)) solves the special Cauchy problem
(8), (9) for λr = λ̃r, and r = 1, N , and is the solution to problem (1), (2).
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Proof. (a) Let x∗(t) be a solution to problem (1), (2). Then the pair [(λ∗1, λ
∗
2, ..., λ

∗
N ),

(u∗1(t), u
∗
2(t), ..., u

∗
N (t))] with elements λ∗r = x∗[(r − 1)h], and u∗r(t) = x∗(t) − x∗[(r − 1)h],

t ∈ [(r − 1)h, rh), r = 1, N , is a solution to the equivalent parametric boundary value
problem (8)-(11). Taking into account the assumption h ∈ (0, h0] : Nh = T and repeating
the above reasoning, we see that λ∗ = (λ∗1, λ

∗
2, ..., λ

∗
N ) ∈ RnN satisfies system (23).

(b) Let λ̃ = (λ̃1, λ̃2, ..., λ̃N ) ∈ RnN be a solution to systems (23). Since h ∈ (0, h0] : Nh =
T , the special Cauchy problem (8), (9) has a unique solution for any λ = (λ1, λ2, ..., λN ) ∈
RnN . Its solution for λ = λ̃ = (λ̃1, λ̃2, ..., λ̃N ) ) is denoted by ũ[t] = (ũ1(t), ũ2(t), ..., ũN (t)).
Let us show that the pair (λ̃, ũ[t]) solves problem (8)–(11). Indeed, (8) and (9) hold by virtue
of the choice of ũ[t] from λ̃. If λ̃ = (λ̃1, λ̃2, ..., λ̃N ) satisfies (23), then it satisfies (21) as well;
i.e.,

Bλ̃1 + Cλ̃N + C

{
X(T )

T∫
T−h

X−1(τ1)A(τ1)dτ1λ̃N +
N∑
j=1

X(T )

T∫
T−h

X−1(τ1)
[
Dj(h, τ1)

+

jh∫
(j−1)h

K(τ1, s)ds
]
dτ1λ̃j +X(T )

T∫
T−h

X−1(τ1)[f(τ1) + Fh(τ1)]dτ1

}
= d. (24)

The pair (λ̃, ũ[t]) satisfies (20). Therefore, the expression in curly brackets on the left-hand
side of (24) is equal to lim

t→T−0
ũN (t) and boundary condition (10) is fulfilled. Similarly, using

(20) and (22), we show that (11) holds. Then the function x̃(t), constructed using the pair
[(λ̃1, λ̃2, ..., λ̃N ), (ũ1(t), ũ2(t), ..., ũN (t))] is a solution to problem (1), (2). Lemma 1 is proved.

Theorem 1. If the matrix Q∗,∗(h) : RnN → RnN is invertible for some h ∈ (0, h0] : Nh = T ,
then problem (1), (2) has the unique solution x∗(t) satisfying the estimate

||x∗||1 ≤
eα0h

1− σ(h)

[
1 + γ∗,∗(h) max

(
1 + h||C|| eα0h

1− σ(h)
,

eα0h

1− σ(h)

)]
h ·max(||f ||1, ||d||), (25)

where γ∗,∗(h) = ||[Q∗,∗(h)]−1|| and σ(h) = βT 1
1−αh

1−α
0 eα0h0.

Proof. For given f(t), d, h ∈ (0, h0] : Nh = T , we construct system (23) and, using the
invertibility of Q∗,∗(h), find its unique solution

λ∗ = −[Q∗,∗(h)]−1F∗,∗(h), λ∗ = (λ∗1, λ
∗
2, ..., λ

∗
N ) ∈ RnN .

Taking into account that h ∈ (0, h0] : Nh = T we solve Cauchy problem (8), (9) with
the found parameter values to obtain a system of functions u∗[t] = (u∗1(t), u

∗
2(t), ..., u

∗
N (t)).

Then, according to Lemma 1, the function x∗(t), defined by the equalities x∗(t) = λ∗r +u∗r(t),
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t ∈ [(r − 1)h, rh), r = 1, N , and x∗(T ) = λ∗N + lim
t→T−0

u∗N (t), solves problem (1), (2). Let

us show that the solution is unique. Assume that, in addition to x∗(t) problem (1), (2) has
another solution x̃(t). Then problem (8)–(11), in addition to (λ∗, u∗[t]) has another solution
(λ̃, ũ[t]). According to Lemma 1, system (23) is satisfied by both λ∗ and λ̃; i.e.,

Q∗,∗(h)λ∗ = −F∗,∗(h), Q∗,∗(h)λ̃ = −F∗,∗(h).

Since Q∗,∗(h) is invertible, these relations imply λ∗ = λ̃. Since the special Cauchy problem
(8), (9) has a unique solution, we have u∗r(t) = ũr(t), t ∈ [(r − 1)h, rh), r = 1, N , and

lim
t→T−0

u∗N (t) = lim
t→T−0

ũN (t), whence x∗(t) = x̃(t) for all t ∈ [0, T ]. Let us prove estimate (25).

Since σ(h) ≤ σ(h0) < 1 for h ∈ (0, h0] : Nh = T , it holds that

||Fh||1 ≤
1

1− σ(h)
max
t∈[0,T ]

||F (h, t)||.

Based on (14), we obtain

∣∣∣∣∣∣∣∣X(rh)

rh∫
(r−1)h

X−1(τ)[f(τ) + Fh(τ)]dτ

∣∣∣∣∣∣∣∣
≤ eα0h

rh∫
(r−1)h

||f(τ)||dτ + eα0h h

1− σ(h)
max
t∈[0,T ]

||F (h, t)||

≤ eα0h · h
[
||f ||1 + σ(h)

1

1− σ(h)
||f ||1

]
= eα0h · h 1

1− σ(h)
||f ||1, r = 1, N,

which implies the estimate

||λ∗|| ≤ γ∗,∗(h)||F∗,∗(h)|| ≤ γ∗,∗(h) max

(
h||d||+ h||C||

×
∣∣∣∣∣∣X(T )

T∫
T−h

X−1(τ)[f(τ) + Fh(τ)]dτ
∣∣∣∣∣∣, max

p=1,N−1

∣∣∣∣∣∣X(ph)

ph∫
(p−1)h

X−1(τ)[f(τ) + Fh(τ)]dτ
∣∣∣∣∣∣)

≤ γ∗,∗(h) ·max
(

1 + h||C|| eα0h

1− σ(h)
,

eα0h

1− σ(h)

)
hmax(||f ||1, ||d||). (26)

Since

||Dj(h, t)|| =
∣∣∣∣∣∣ ∞∑
k=0

M
(k)
j (h, t)

∣∣∣∣∣∣ ≤ 1

1− σ(h)
max
r=1,N

max
t∈[0,T ]

||Mr(h, t)|| ≤
βh

1− σ(h)
[eα0h−1+σ(h)],
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it follows from (20) and (26) that

||u∗[·]||2 ≤
[
eα0h − 1 + Teα0h max

j=1,N
max
t∈[0,T ]

||Dj(h, t)||+ σ(h)
]
||λ∗||

+
eα0h

1− σ(h)
· h · ||f ||1 ≤

[
eα0h − 1 + σ(h)

1− σ(h)
γ∗,∗(h) max

(
1 + h||C|| eα0h

1− σ(h)
,

eα0h

1− σ(h)

)
+

eα0h

1− σ(h)

]
· hmax(||f ||1, ||d||). (27)

Using (26), (27) and relation ||x∗||1 ≤ ||λ∗||+ ||u∗[·]||2, we have (25). Theorem 1 is proved.

Definition 1. Problem (1), (2) is called uniquely solvable if for any pair (f(t), d), where
f(t) ∈ C([0, T ], Rn) and d ∈ Rn, it has a unique solution.

Theorem 2. If problem (1), (2) is uniquely solvable, then the matrix Q∗,∗(h) is invertible
for all h ∈ (0, h0] : Nh = T .

Proof. Assume the opposite, i.e., there exists h̃ ∈ (0, h0] : Ñ h̃ = T such that Q∗,∗(h̃) is
not invertible. Then the homogeneous system of equations

Q∗,∗(h̃)λ = 0 (28)

has a nontrivial solution λ̃ = (λ̃1, λ̃2, ..., λ̃N ) ∈ RnÑ .

In the case of a homogeneous boundary value problem for an integro-differential equation,
i.e., for problem (1), (2) with f(t) = 0 and d = 0, system (23) becomes (28). Therefore, by

Lemma 1, the function defined by the relations x̃(t) = λ̃r + ũr(t), t ∈ [(r− 1)h, rh), r = 1, Ñ
and x̃(T ) = λ̃

Ñ
+ lim

t→T−0
ũ
Ñ

(t), where the system of functions ũ[t] = (ũ1(t), ũ2(t), ..., ũÑ (t))

solves problem (8), (9) with λr = λ̃r, r = 1, Ñ and f(t) = 0, is the nontrivial solution of the
homogeneous boundary value problem. This contradicts the unique solvability of problem
(1), (2), since, when f(t) = 0, d = 0 it has, in addition to the trivial solution, the nontrivial
one x̃(t). Theorem 2 is proved.
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Асанова А.Т., Нұрмұқанбет Ш.Н. ӘЛСIЗ ЕРЕКШЕЛIКТI ӨЗЕГI БАР
ИНТЕГРАЛДЫҚ-ДИФФЕРЕНЦИАЛДЫҚ ТЕҢДЕУ ҮШIН ЕСЕП

Әлсiз ерекшелiктi өзегi бар интегралдық-дифференциалдық теңдеулер жүйесi үшiн
сызықты шеттiк есеп қарастырылады. Қарастырылатын есептiң шешiлiмдiлiк шарттары
аралықты бөлу мен қосымша параметрлер енгiзуге негiзделген әдис көмегiмен орнаты-
лады. Зерттелiп отырған есептiң шешiлiмдiлiгiнiң қажеттi және жеткiлiктi шарттары
алынды.

Кiлттiк сөздер. Сызықты шеттiк есеп, интегралдық-дифференциалдық теңдеулер,
әлсiз ерекшелiгi бар өзек, параметрлеу әдiсi, шешiлiмдiлiк.

Асанова А.Т., Нурмуканбет Ш.Н. ЗАДАЧА ДЛЯ ИНТЕГРО-
ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ СО СЛАБОЙ ОСОБЕННОСТЬЮ

Рассматривается линейная краевая задача для системы интегро-дифференциальных
уравнений с ядром со слабой особенностью. Установлены условия разрешимости рассмат-
риваемой задачи с помощью метода, основанного на разбиении интервала и введении
дополнительных параметров. Получены необходимые и достаточные условия разреши-
мости исследуемой задачи.

Ключевые слова. Линейная краевая задача, интегро-дифференциальные уравнения,
ядро со слабой особенностью, метод параметризации, разрешимость.
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Abstract. We study the question of the existence of special extensions of a set A, which are characterized

by the fact that the type over A of any tuple in the extension satisfies a condition C, where C is some

property of types; C can mean either that any type under consideration is definable, or that any type

is locally isolated, or that any type is non-definable, etc. In particular, we study the question of the

existence of a conservative extension of a model.

Keywords. Conservative extension, definability of types.

1 Introduction

Here we describe a method for constructing models using the Tarski-Vaught criterion and
the theory of non-orthogonality of 1-types for constructing a conservative extension.

Theorem 1 (Tarski-Vaught). Let A be a subset of a model M of a complete theory T . For the
set A to be an elementary submodel of the model M, it is necessary and sufficient that for any
formula of the form ∃xϕ(x, ā), where ā ∈ A, the following condition holds: M |= ∃xϕ(x, ā)
implies that there exists b ∈ A such that M |= ϕ(b, ā).

Throughout the paper, N is a saturated model of the theory T of large cardinality and
the cardinality of all models and sets under consideration are less than the cardinality of the
model N . Assume we are going to construct an elementary submodel M of N such that the
types of tuples of elements from M \ A have some property C (C-types), which we define
later. We can divide properties of types of elements or tuples of elements from M \ A into
the following kinds:
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1. isolated over finite subsets from the family of finite subsets of A,

2. isolated over A,

3. not isolated but locally isolated over A,

4. not locally isolated, non-isolated and not belonging to a fixed family of non-isolated
(non) definable types over A.

The case of isolated types over a finite set from the family of finite subsets A is considered
as a rule in small theories over a countable set A.

A condition C on a type over A defines a special extension B: A ⊂c B.

Definition 1. We say that B is a C-extension of A and write A ⊂C B for this if the type
tp(ᾱ/A) satisfies the condition C for any tuple ᾱ ∈ B \A.

Definition 2. We say that a condition C satisfies the transitivity property if the following
holds for any three sets:

A ⊂C B ∧B ⊂C D ⇒ A ⊂C D.

In any case, the following four conditions are necessary for constructing a model which is
a C-extension of a set A:

U0C . For any sets A ⊆ B and any C-type p ∈ S1(A) there exists a C-type q ∈ S1(B)
which extends p (the extension property).

U1C . For any tuple ᾱ ∈ N \ A whose type satisfies the condition C, for any formula
ϕ(x, ᾱ, ā), where ā ∈ A and N |= ∃x(ϕ(x, ᾱ, ā)), there exists a type p(x) ∈ S1(Aᾱ) such
that ϕ(x, ᾱ, ā) ∈ p and for any β ∈ N with β |= p(x), we obtain that tp(βᾱ/A) satisfies the
condition C.

U2C . For the theory T , the condition C has the transitivity property.
U3C . The theory T has the restriction property for C-types, that is if tp(ᾱ/A) is a C-type,

then tp(β̄/A) is a C-type for any β̄ ⊆ ᾱ.
Failure to meet at least one of these four conditions prevents the constructing a model with

the property C. In the case when we build a model over finite subsets of A, condition U2C
is bypassed by simultaneously constructing a countable family of countable models nested
into each other, in a countable number of steps, in this case, the choice of a new element
at each final step is carried out (to satisfy the Tarski-Vaught condition) so that the new
element together with the already selected one forms a tuple of elements whose type over A
is a C-type.

Definition 3. We say that a model M, which is a C-extension of a set A, is a C-ω-saturated
extension of A if q is realized in M whenever q is a C-type from S1(A∪ᾱ) for some ᾱ ∈ M \A.

The existence of a C-ω-saturated extension of a set A is due to the joint extension property
for C-1-types.
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Definition 4. We say a complete theory T has the joint extension property for C-1-types
if for any set A ⊂ N , where N |= T is sufficiently saturated, for any ᾱ, β, γ ∈ N \ A the
following is true: if the types q := tp(β/A ∪ ᾱ), p := tp(γ/A ∪ ᾱ), tp(ᾱ/A) are C-types over
A, then the type tp(γβ/Aᾱ) is a C-type.

U4C . The theory T has the joint extension property for C-1-types.

Theorem 2. Let T be a complete theory, then the following is true:
1) For any set A, there is a model M with (A ⊂ M ≼ N) which is constructed using

Tarski-Vaught test.
2) If the theory T satisfies the conditions U0C , U1C , U2C , and U3C , then for any set A

there exists a model M ≼ N such that A ⊆C M .
3) If the theory T satisfies the conditions U0C , U1C , U2C , U3C , and U4C , then for any

set A there exists a model M ≼ N such that A ⊆C M and M is a C-ω-saturated extension
of A.

Proof. 1) This is well-known, nevertheless we remind the proof of this statement. To build
models over any set and without conditions on types (general case), there is no need to satisfy
any of UnC . The construction of the model is as follows.

Step 1. Consider the set of all formulas with one variable and constants from A:
F1(x,A) := {ϕ(x, ā) | ā ∈ A, N |= ∃xϕ(x, ā)}. The set A1 contains all elements of real-
izations of formulas from F1(x,A). Obviously, A ⊆ A1.

Step n + 1(n < ω). We have Fn+1
1 (x,An) := {ϕ(x, ā) | ā ∈ An, N |= ∃xϕ(x, ā)}. The

set An+1 contains all elements of realizations of formulas from Fn+1
1 (x,An). Construction is

carried out by sequential implementation of formulas from Fn+1
1 (x,An) := {ϕ(x, ā)|ā ∈ An}

with a fixed enumeration. Clearly, An ⊆ An+1.
The model M is defined as the union M =

∪
n<ω An. Then by construction A ⊆ M .

Tarski-Vaught criterion implies that M ≼ N .
2) The condition U1C provides the possibility of applying the Tarski-Vaught criterion for

choosing a C-type, which contains ϕk+1(x, ā) ∈ Fn+1
1 (x,An) and realizes this type by some

element αk+1, whose type over An ∪{α0, . . . , αn} is a C-type. The transitivity property U2C
provides the possibility to move from An to An+1 (on the limit steps). We show below this
process in details.

We put A0 = A.
Step 1. Consider the set of all formulas with one variable and constants from A0:

F1(x,A
0) := {ϕi(x, āi) | ā ∈ A0, N |= ∃xϕi(x, āi), i < λ}.

We consider ϕ0(x, ā0). By U1C there is a C-type p(x) ∈ S1(A) which contains ϕ0(x, ā0).
Let α0 realize p and A0

0 = A0 ∪ {α0}. Now we assume that we have realized ϕi(x, āi) and
constructed A0

i . We consider ϕi+1(x, āi+1). By U1C there is a C-type pi+1(x) ∈ S1(A
0) which

contains ϕi+1(x, āi+1). By the extension property U0C there is an extension qi+1(x) ∈ S1(A
0
i )

of pi+1 which is a C-type. Now we realize qi+1 by some αi+1 and put A0
i+1 = A0

i ∪{αi+1}. By
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construction, tp(α0, α1, . . . , αi+1/A) is a C-type. By the restriction property U3C the type
of any subtuple of (α0, α1, . . . , αi+1) is a C-type, that is why A0

i+1 is a C-extension of A0
µ,

where µ = 0 if i + 1 is a natural number or µ is the largest limit ordinal which is less that
i + 1. By the transitivity property U2C the set A0

i+1 is a C-extension of A0 = A, provided
that A0

µ is a C-extension of A0. We show the later below.
If µ is a limit ordinal we put A0

µ =
∪

i<µA
0
i . We show that A0

µ is the C-extension of

A0. Let ν = 0 if µ = ω0, otherwise ν is the largest limit ordinal which is less than µ. By
the induction hypothesis A0

ν is the C-extension of A0. So, in order to show that A0
µ is the

C-extension of A0 it is sufficient by transitivity to show that A0
µ is the C-extension of A0

ν .
Let β̄ ∈ A0

µ \ A0
ν . Then β̄ ∈ A0

ν+k for some finite k. Since A0
ν+k is the C-extension of A0

ν , so
tp(β̄/A0

ν) is the C-type by the restriction property U3C .
We put A1 = A0

λ. It is the C-extension of A0. The set A1 contains all elements of
realizations of formulas from F1(x,A

0).
Step n + 1(n < ω). We put Fn+1

1 (x,An) := {ϕi(x, āi) | ā ∈ An, N |= ∃xϕ(x, ā), i < λ}.
Up to changing the superscript 0 with n we repeat Step 1 in order to construct An+1. Clearly,
An ⊆C An+1.

We define M as the union M =
∪

n<ω An. Then by construction A ⊆C M . Tarski-Vaught
criterion implies that M ≼ N .

3) Let M1 be a C-extension of A constructed the way which we have described in the
previous item of this theorem. Assume that we have constructed Mn, which is the C-
extension of A. We enumerate all tuples ᾱ from Mn \A and all C-types p ∈ S1(Aᾱ) as pi for
i < κ. Let

Bn+1 = {βi : βi |= pi and pi is not reallized in Mn, i < κ}.

The joint extension property U4C guarantees that Bn+1 is the C-extension of A. By the pre-
vious item of this theorem there exists the C-extension Mn+1 of Bn+1 which is an elementary
submodel of N . By the transitivity property Mn+1 is the C-extension of A.

We put M =
∪

n<ω Mn. Obviously, M is a C-ω-saturated extension of A and an ele-
mentary submodel of N . The theorem is proved.

2 Conditions for constructing a conservative extension with a given property
of models

Let a D-property of a type over a set A be that this type is definable over the set A, that
is, p ∈ S(A) is definable, in this case we will say and write that p is a D-type.

Definition 5. For sets A ⊂ B, we say that B is a D-extension (conservative) of A (A ⊂D B)
if tp(ᾱ/A) is a D-type for any ᾱ ∈ B \A.

An important condition for constructing a conservative extension is the transitivity prop-
erty U2C , and for our situation, U2D.

The following is well-known.
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Theorem 3. Any complete theory satisfies the transitivity property U2D and the restriction
property U3D.

Thus, taking into account this theorem for D-extensions, we can formulate the following.

Theorem 4. If a complete theory T satisfies the conditions U0D and U1D, then for any set
A there exists a D-extension (conservative extension) of A.

It is well-known, that the extension property does not hold in general. Indeed, we consider
M = (N, <) and N = (N ∪ Z′, <), where each n′ ∈ Z′ is bigger than any k ∈ N. Let s stand
for the successor function, which is definable in this structures. Let A = N∪{0′}, B = N∪Z′,
and let

p = {n < x : x ∈ N} ∪ {sm(x) < 0′ : m < ω}.

Clearly, that p defines a unique complete type over A, which is definable. Moreover, p
defines a unique complete type over B, but this type is not definable.

The joint extension property U4D in general does not hold.
Theorem 5 [1].There is an o-minimal theory T such that for A ⊂ N |= T and p, q ∈ S1(A)
the following holds:

1. q is weakly orthogonal to p;

2. both q and p are locally isolated types and hence are D-types;

3. the unique 2-type p(x) ∪ q(y) ∈ S2(A) is not definable.

In this [1] example, A is just a subset. This example can be modified so that A contains
an elementary submodel. But we obtain a weakly o-minimal theory.

Let Σ = {=, <,R4, E} and T be the theory of the signature Σ which consists of the
following axioms.

1. < is a dense linear order without endpoints;

2. E is an equivalence relation with convex infinite classes and the order induced on E-
classes is a dense linear order without endpoints;

3. R(x, y, z, t) implies that y, z, t ∈ [x]E ;

4. for each x, y, z there is a unique t with R(x, y, z, t);

5. for each fixed z the restriction of R to [z]E is an ordered Abelian divisible group, where
the addition x+y = t is defined as R(x, y, z, t). For example, if some E-class is (Q, <,+)
then R(x, y, z, t) is equivalent to x+ y = z + t.
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If we consider Q copies of (Q, <,+), where each copy is an E-class, we obtain a prime
model of T . Thus, T is complete. Let us fix a finite set A = {a1 < a2 < . . . an} in a model
M of T . We consider b1 and b2 such that each of them belongs to neither of [ai] and either
b1, b2 < a1, or ai < b1, b2 < ai+1 for some i < n, or an < b1, b2, then obviously there exists an
automorphism which fixes A pointwise and moves b1 to b2. Now we consider φ(x, ā). Clearly,
φ(M, ā) ∩ [ai] is a finite union of intervals and points because the restriction of M to ai is
o-minimal. Also we can state that each convex set of the form (ai, ai+1) \ ([ai]∪ [ai+1]) either
belongs to φ(M, ā) or has an empty intersection with φ(M, ā). That is why this theory is
weakly o-minimal.

Now we proceed as in [1]. We consider an elementary extension of M and consider
α ̸∈ M such that [α] ∩ M = ∅. Let ⟨an : n < ω⟩ be an increasing sequence of rational
numbers, converging to

√
2, and let ⟨bn : n < ω⟩ be a decreasing sequence of rational numbers,

converging to
√
2. Let A = M ∪ {an · α, bn · α : n < ω}. Let β =

√
2 · α, γ = π · α and

δ = (π −
√
2)α. Repeating reasoning form [1], we can prove that the types tp(γ/A) and

tp(δ/A) are locally isolated and weakly orthogonal to each other, but their union defines a
complete type, which contains tp(β/A) and this type is not definable.

Taking into account the last theorem we will restrict ourselves mainly to considering the
definability of the union of two weakly orthogonal 1-types over the union of a model and a
definable finite set, and in the case of a positive answer, it becomes possible to construct a
D-ω-extension.

We consider a proof that generalizes the consideration of similar questions for the partic-
ular case of weakly o-minimal theories [1].

Definition 6. We say that a D-extension B of a set A is an ω-saturated D-extension if for
any tuple ᾱ ∈ M \A each D-1-type from S1(A ∪ ᾱ) is realized in B. We write A ⊂D,ω B for
this.

Now we can reformulate Theorem 2.

Theorem 5. 1) Let a complete theory T satisfy the conditions U0D and U1D. Then for any
set A there is a model M, which is a D-extension of A and M ≼ N .

2) Let a complete theory T satisfy the conditions U0D, U1D, and U4D. Then for any set
A there is a model Mω, which is an ω-saturated D-extension of A and Mω ≼ N .

It is well-known that if A is a model, then the extension property U0D holds. Then we
obtain another corollary of Theorem 2.

Theorem 6. 1) Let a complete theory T satisfy the condition U1D. Then for any model A
there is a model M, which is a D-extension of A and M ≼ N . Note that if A is a model, it
is not necessary that M is a proper extension of A, by construction A = M may happen.

2) Let a complete theory T satisfy the condition U1D and U4D. Then for any model A
there is a model Mω, which is an ω-saturated D-extension of A and Mω ≼ N .
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3 Classes of complete theories for which the existence of a definable 1-type
ensures the existence of an elementary conservative extension

Let M be a model of a complete theory T . Let S1(M) contain a definable non-isolated
1-type. From the construction in Theorems 2 and 6 we know that in order to construct a
conservative extension, it is necessary to select a subclass of D-types such that they provide
construction steps, that is, U1D.

Theorem 7. Let T be a complete theory. Assume that for any infinite formula ϕ(x, ā) with
ā ∈ A, there exists a definable 1-type p ∈ S1(A) such that ϕ(x, ā) ∈ p. Then for any model of
this theory there is a proper conservative extension.

Recall the following definition.

Definition 7. Let A be an arbitrary set in a saturated model N of a complete theory and
p, q ∈ S(A). We say that p is not almost orthogonal to q if there exists ϕ(x̄, ᾱ, ā) such that
ϕ(N , ᾱ, ā) ⊂ q(N ), where ᾱ |= p.

Proposition 1. Let A be an arbitrary set in a saturated model of a complete theory. Let p
and q ∈ S(A) be such that p is not almost orthogonal to q. If p is definable, then so is q.

Proof. Let p, q ∈ S(A) be such that p is not almost orthogonal to q. This means that there
exists ϕ(x̄, ᾱ, ā) such that ϕ(N , ᾱ, ā) ⊂ q(N ), where ᾱ |= p. Since q(N ) =

∩
H∈q H(N , c̄),

so ϕ(N , ᾱ, ā) ⊂ H(N , c̄). Let KH(ᾱ, c̄, ā) = ∀x̄(ϕ(x̄, ᾱ, ā) → H(x̄, c̄)). Hence, KH(z̄, c̄, ā) ∈
p. Conversely, if KH(z̄, c̄, ā) ∈ p, then H(x̄, c̄) ∈ q. Thus, KH(z̄, c̄, ā) ∈ p if and only if
H(x̄, c̄) ∈ q. Let p be definable. We show that q is also definable. Suppose there exists
an A-formula Θ(x, ȳ) such that the set BΘ,q := {b̄ ∈ A | Θ(x, b̄) ∈ q} is infinite. The
definability of the type q means that the set BΘ,q is definable over A for each Θ. Now we
define BKΘ,p := {b̄ ∈ A | KΘ(z, b̄, ā) ∈ p}. Since the type p is definable, the set BKΘ,p is
definable, too. It follows from definition that BKΘ,p = BΘ,q. The proposition is proved.

Proposition 1 can be strengthened for the class of weakly o-minimal theories, as it has
been shown in [2] and [3]. The first author proved that if two one-types p and q over a set
A of a model of a weakly o-minimal theory are not weakly orthogonal, that is their union
p(x)∪q(y) has at least two completions over A, then p is definable if and only if q is definable.
It would be interesting to investigate the question for which theories the this property holds:
if two types are not weakly orthogonal, then definability of one of these two types implies
definability of the other type.

The condition for existence of a definable type over an arbitrary set A containing a formula
with parameters from the set A for constructing a D-extension can be weakened in the case
of the existence of a conservative extension of a model. The following holds.

Theorem 8. Let T be a complete theory and M ≺ N |= T . For the existence of a conservative
elementary extension M1 with M ≺ M1 ≺ N it is necessary and sufficient that for any tuple
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of elements ᾱ ∈ N \M such that tp(ᾱ/M) is definable, for any (Mᾱ)-formula ϕ(x, α, ā) such
that N |= ∃xϕ(x, ᾱ, ā) the following holds: if ϕ(N , ᾱ, ā) ∩ M = ∅, then there is a definable
1-type q ∈ S1(Mᾱ) with ϕ(x, ᾱ, ā) ∈ q.

Thus, the condition for the existence of at least one definable 1-type must be accompanied
by the condition for the existence of at least one definable 1-type for a set that is the union
of the universe of a model and a tuple of elements, whose type over the model is definable.
The question of the existence of a saturated conservative elementary expansion requires the
condition of joint expansion, but for the model.

The existence of a conservative extension of the model provided that at least one definable
1-type exists is provided by such a condition as the condition of the existence of a simple
model over a set. In this case, in the proof of the theorem, we need facts about isolated types
and orthogonality of types.

Theorem 9. Let T be a complete theory such that there is a prime model over any set.
Then for any model that has at least one definable non-isolated 1-type there is a conservative
extension.

Proof. Let M |= T and p ∈ S1(M) be definable and non-isolated. Let α |= p and N be
a prime model over Mα. Then p is not almost orthogonal to any type q ∈ S(M) which is
realized in N . By Proposition 1 the type q is definable. The theorem is proved.

4 Classes of complete theories for models of which there is a conservative
extension

The class of o-minimal theories contains a complete theory in which no model has a
conservative extensions, due to the fact that there are no definable 1-types over any model
of this theory. Nevertheless, over an arbitrary model M of an o-minimal theory, if there is
at least one definable 1-type p ∈ S1(M), then for an arbitrary realization α ∈ p(N ) in a
large saturated model N , one can take a prime model over M ∪ {ᾱ}, which exists by Pillay-
Steinhorn theorem [4]. Then a simple model (M, α) is a conservative extension of M. This
is explained by the fact that any tuple of elements from β̄ ∈ (M, ᾱ)/M of the type tp(β̄/Mα)
is isolated and, therefore, is definable over (M ∪ {α}). Then, since the type of α over M is
definable, it follows that the type tp(β̄/M) is definable, too.

In [1] B. Baizhanov proved that the class of weakly o-minimal theories satisfies the con-
ditions of Theorem 2 and, therefore, any model of a weakly o-minimal theory with a dense
order has a conservative extension. Moreover, for any model of the weakly o-minimal theory,
the existence of at least one 1-definable 1-type over the model implies the existence of the
conservative extension.

The class of o-stable theories contains its proper subclass of weakly o-minimal theories,
which in turn contains its proper subclass of o-minimal theories. Therefore, we consider
the class of o-stable and not weakly o-minimal theories. The question of the existence of a
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conservative extension of the model of o-stable theories is reduced to proving the condition
in Theorem 5.

An interesting question is to investigate the existence of conservative extension for the
class of o-stable theories [5], [6].

References

[1] Baizhanov B. Konservativnye rasshireniya modeley slabo o-minimalnykh teoriy, Vestnik NGU,
Ser. math., mech., inform., 7:3 (2007), 13-44.

[2] Baizhanov B.S. Expansion of a model of a weakly o-minimal theory by a family of unary pre-
dicates, The Journal of Symbolic Logic, 66 (2001), 1382-1414. https://doi.org/10.2307/2695114.

[3] BaizhanovB. Definability of 1-Types in Weakly o-Minimal Theories, Siberian Advances in Math-
ematics, 16:2 (2006), 1-33.

[4] Pillay A., Steinhorn C. Definable Sets in Ordered Structures I, Transactions of the American
Mathematical Society, 295:2 (1986), 565-592.

[5] Baizhanov B., Verbovskiy V. O-stable theories, Algebra and Logic, 50:3 (2011), 211-225.

[6] Verbovskiy V. O-stable ordered groups, Siberian Advances in Mathematics, 22 (2012), 50-74.

Байжанов Б., Орынбасаров Д., Вербовский В. ТИПТIҢ АНЫҚТАЛЫМДЫҒЫ МЕН
КОНСЕРВАТИВТI КЕҢЕЙТУЛЕР ТУРАЛЫ КЕЙБIР ЕСКЕРТПЕЛЕР

A жиынының ерекше кеңейтулерiнiң бар болуын зерттеймiз, олар осы кеңейтудегi
кез келген кортеж A-ның үстiндегi тип C шартын қанағаттандыруымен сипатталады,
мұнда C — типке қойылған қандай да бiр шарт; C – кез келген, қарастырылып жатқан
тип локалды оқшауланған, немесе анықталымды, немесе анықталымды емес, және т.т.
болатын шарт болуы мүмкiн. Атап айтқанда, моделдiң консервативтi кеңейтуi бар болуы
мәселесiн зерттеймiз.

Түйiндi сөздер. Консервативтi кеңейтулер, типтердiң анықталымдығы.

Байжанов Б., Орынбасаров Д., Вербовский В. НЕКОТОРЫЕ ЗАМЕЧАНИЯ ОБ
ОПРЕДЕЛИМОСТИ ТИПОВ И КОНСЕРВАТИВНЫХ РАСШИРЕНИЯХ

Мы изучаем вопрос существования особых расширения множества A, которые харак-
теризуются тем, что тип над A любого кортежа из данного расширения удовлетворяет
условию C, где C — некоторое условие на типы; C может быть тем условием, что любой
рассматриваемый тип локально изолированный, или определимый, или неопределимый,
и так далее. В частности, мы изучаем вопрос существования консервативного расшире-
ния модели.

Ключевые слова. Консервативные расширения, определимость типов.
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Abstract. In the paper, we establish estimates exact in order for error of optimal cubature formulas

on the Nikol’skii – Besov and Lizorkin –Triebel type spaces, Bs m
p q(T

m) and Ls mp q(T
m), respectively, for

a number of relations between parameters s, p, q, m (s = (s1, . . . , sn) ∈ Rn+, 1 ≤ p, q ≤ ∞, m =

(m1, . . . ,mn) ∈ Nn,m = m1 + · · ·+ mn).

Keywords. Numerical integration, optimal cubature formula, lattice, Frolov’s cubature formula,
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1 Introduction

Let Ω be a compactum in Rm (m ≥ 2) (with nonempty interior), F a set (class) of
complex–valued continuous functions with domain Ω. In numerical integration, for the ap-
proximation of the integral w

Ω

f(x)dx, f ∈ F,

expressions of the form (cubature formulas)

Q(f, CN ,ΛN ) :=

N∑
k=1

c(k)f(λ(k)), (1)

are used; here CN := (c(1), . . . , c(N)) ∈ CN are weights and ΛN := (λ(1), . . . , λ(N)) ⊂ ΩN is
grid of nodes of the cubature formula, and

R(f,Ω, CN ,ΛN ) :=
w

Ω

f(x)dx−Q(f, CN ,ΛN )
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102 Dauren B. Bazarkhanov

is its error on a function f . Denote

R(F,Ω, CN ,ΛN ) := sup{|R(f,Ω, CN ,ΛN )| | f ∈ F}.

The problem of optimal numerical integration under consideration here consists in deter-
mining the exact (in N) order of the quantity

RN (F,Ω) := inf{R(F,Ω, CN ,ΛN ) |CN ,ΛN} (2)

(which is (N -th) optimal error of numerical integration) and constructing a sequence
(C∗N ,Λ

∗
N | N ∈ N) of weights and nodes such that the errors R(F,Ω, C∗N ,Λ

∗
N ) of the cubature

formulas (1) realize the order of the optimal error (2). Cubature formulas Q(f, C∗N ,Λ
∗
N ) are

called optimal (in order).
A lot of works are devoted to the study of different formulations of problems of optimal

numerical integration for various classes of smooth functions in several variables, see, for
example, monographs [1], [3, ch.6] and surveys [2], [4, ch.8] and the bibliography therein.
The construction and study of optimal (or, at least, ”good”) cubature formulas for certain
classes of (periodic) functions of mixed smoothness originates in the well-known works of N.M.
Korobov [5], N.S. Bakhvalov [6], and E. Hlawka [7]. Comprehensive survey [4], monograph [3],
papers [8], [9], [10] show that interest in the problem of optimal numerical integration we will
study here is unabated; there is also a fairly detailed history of the issue and an extensive
bibliography.

In this section, we give exact (in the sense of the order) estimates for the quantity (2) in
the case when Ω = Tm is m-diensional torus, F is the function class Bs m

p q(T
m) of Nikol’skii –

Besov type or Ls mp q(T
m) of Lizorkin – Triebel type, for a number of relations between the

parameters of these classes.
Let us introduce the notation that we will use throughout this article. Let k ∈ N,

zk = {1, . . . , k}, N0 = N ∪ {0}, R+ = (0,+∞). For x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ Rk,
put xy = x1y1 + . . .+ xkyk, |x| = |x1|+ . . .+ |xk|, |x|∞ = max(|xκ| : κ ∈ zk); x ≤ y (x < y)
⇔ xκ ≤ yκ (xκ < yκ) for all κ ∈ zk. When x < y we denote by [x, y], [x, y), (x, y) closed,
half-open and open parallelepipeds with ”lower left corner” x and ”upper right corner” y in
Rk, respectively. For α = (α1, . . . , αk) ∈ Nk

0, as usual, xα = xα1
1 · · ·x

αk
k , ∂α := ∂α1

1 · · · ∂
αk
k ,

where ∂κ is partial derivative with respect to κ-th variable.
Let S := S(k) := S(Rk) and S ′ = S ′(Rk) be the Schwartz spaces of test functions and

tempered distributions, respectively; f̂ ≡ Fk(f) and F−1
k (f) be direct and inverse Fourier

transforms of f ∈ S ′(Rk); in particular, for ϕ ∈ S(k),

ϕ̂(ξ) = Fk(ϕ)(ξ) =
w

Rk

ϕ(x)e−2πi ξxdx, F−1
k (ϕ)(ξ) =

w

Rk

ϕ(x)e2πi ξxdx, ξ ∈ Rk.

Let Tk = (R/Z)k be k-dimensional torus; we denote by S̃ ′ ≡ S ′(Tk) the space of all
distributions f from S ′ 1-periodic in each variable (i.e. such that 〈f, ϕ(·+ y)〉 = 〈f, ϕ〉 for all
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Optimal numerical integration on classes of smooth functions ... 103

ϕ ∈ S(k) and for any y ∈ Zk) and by S̃ := S̃(k) := S(Tk) the space of all infinitely differen-
tiable functions on Tk endowed with the topology of uniform convergence of all derivatives.
Then the space S ′(Tk) is naturally identified with the space topologically dual to S(Tk). It
is well known that f ∈ S̃ ′ if and only if supp f̂ ⊂ Zk, i.e. distribution f̂ vanishes on the open
set Rk\Zk.

Let f : Rk → C be an arbitrary function, its periodization f̃ : Tk → C is defined as
(formal) sum of the series

∑
ξ∈Zk

f(x+ ξ).

First we choose the function η0 := η
(k)
0 ∈ S(k) such that

0 ≤ η̂0(ξ) ≤ 1, ξ ∈ Rk; η̂0(ξ) = 1, |ξ|∞ ≤ 1; supp η̂0 = {ξ ∈ Rk | |ξ|∞ ≤ 2}.

Put η̂(ξ) := η̂(k)(ξ) = η̂0(2−1ξ)− η̂0(ξ), η̂j(ξ) := η̂j(ξ) = η̂(21−jξ), j ∈ N. Then∑
j∈N0

η̂j(ξ) ≡ 1, ξ ∈ Rk,

i.e. {η̂j(ξ) | j ∈ N0} is smoth partition of unity (corresponding to ”corridors”) on Rk. It is
clear that

η(x) := η(k)(x) = 2kη0(2x)− η0(x), ηj(x) := η
(k)
j (x) = 2(j−1)kη(2j−1x), j ∈ N. (3)

Denote

H(k)(x) := {η(k)
j (x) | j ∈ N0}(x ∈ Rk), H̃(k)(x) = {η̃(k)

j (x) | j ∈ N0}(x ∈ Tk). (4)

Let m,n ∈ N, m ≥ 2, 0 < p, q ≤ ∞;
Lp(I

m) be the space of measurable functions f : Im → C, which are Lebesgue integrable
in p-th power (essentially bounded when p =∞) over Im, endowed with standard quasi-norm
(norm if p ≥ 1)

‖ f |Lp(Im) ‖ =
( w

Im

| f(x) |pdx
) 1
p

(p <∞), ‖ f |L∞(Im) ‖ = ess sup(| f(x) | : x ∈ Im);

here I is R or T; Lp := Lp(R
m), L̃p := Lp(T

m); sometimes we will identify Tm with cube
[0,1) in Rm (we write a = (a, . . . , a) ∈ Rm for a ∈ R);

`q := `
(n)
q := `q(N

n
0 ) be the space of (multiple complex) number sequences (ck) = (ck :

k ∈ Nn
0 ) with finite standard quasi-norm (norm if q ≥ 1) ‖(ck) | `q‖;

`q(Lp(I
m)) (respectively, Lp(I

m; `q)) be the space of function sequences (gk(x)) = (gk(x) :
k ∈ Nn

0 ) (x ∈ Im) with finite standard quasi-norm (norm if p, q ≥ 1)

‖ (gk(x)) | `q(Lp(Im)) ‖ = ‖ ( ‖ gk |Lp(Im)‖) | `q ‖
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104 Dauren B. Bazarkhanov

(respectively, ‖ (gk(x)) |Lp(Im; `q) ‖ = ‖ ‖ (gk(·)) | `q ‖ |Lp(Im)‖);
`q(Lp) := `q(Lp(R

m)), `q(L̃p) := `q(Lp(T
m)), Lp(`q) = Lp(R

m; `q), L̃p(`q) = Lp(T
m; `q).

Let n ≤ m. We fix multi-index m = (m1, ...,mn) ∈ Nn such that |m| = m along with
representation Rm = Rm1 × . . .×Rmn and corresponding representation x = (x1, . . . , xm) ∈
Rm of the form x = (x1, . . . , xn), where xν ∈ Rmν (m = m if n = 1 and m = 1 if n = m).

We choose systems H(mν)(xν) and H̃(mν)(xν) as in (4) (ν ∈ zn) and define (m-fold) systems
H(m)(x) and H̃(m)(x) as follows:

H(m)(x) := ⊗ν∈znH(mν)(xν) ≡ {η(m)
k (x) :=

∏
ν∈zn

η
(mν)
kν

(xν) | k = (k1, . . . , kn) ∈ Nn
0}(x ∈ Rm),

H̃(m)(x) := ⊗ν∈znH̃(mν)(xν) ≡ {η̃(m)
k (x) :=

∏
ν∈zn

η̃
(mν)
kν

(xν) | k = (k1, . . . , kn) ∈ Nn
0}(x ∈ Tm).

Next we define operators ∆η
k = ∆η,r

k on S ′ and ∆̃η
k = ∆η,t

k on S̃ ′ (k ∈ Nn0 ) as follows: for

f ∈ S ′ and g ∈ S̃ ′

∆η
k(f, x) = ∆η,r

k (f, x) = f ∗ η(m)
k (x) = 〈f, η(m)

k (x− ·)〉, (5)

∆̃η
k(g, x) = ∆η,t

k (g, x) = g ∗ η̃(m)
k (x) = 〈g, η̃(m)

k (x− ·)〉 =
∑
ξ∈Zm

η̂k(ξ)ĝ(ξ)e2πi ξx. (6)

Definition 1. Let s = (s1, . . . , sn) ∈ Rn, 0 < p, q ≤ ∞; (i, I) ∈ {(t,T), (r,R)}.
I. The Nikol’skii – Besov type space Bs m

p q(I
m) consists of all distributions f ∈ S ′(Im), for

which the quasi-norm

‖ f |Bsm
p q (Im) ‖ = ‖(2sk∆η,i

k (f, x)) | `q(Lp(Im))‖

is finite.
II. The Lizorkin – Triebel type space Ls mp q(I

m) (p < ∞) consists of all distributions f ∈
S ′(Im), for which the quasi-norm

‖ f |Ls mp q(Im) ‖ = ‖(2sk∆η,i
k (f, x)) |Lp(Im; `q)‖

is finite.
We will call the unit balls Bs m

p q(I
m) and Ls mp q(I

m) of those spaces the Nikol’skii-Besov and
Lizorkin-Triebel classes, respectively.

In what follows, for brevity, we will often use the notation F s mp q = F s mp q (Rm), F̃ s mp q =
F s mp q (Tm), here F ∈ {B,L,B,L}.

Remark 1 Comments and bibliography on spaces Bs m
p q(I

m) and Ls mp q(I
m) can be found

in [17]. Here we note only the following. When n = m (⇒ m = 1), B̃s1
p q and L̃s1p q are
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spaces of (”pure”) mixed smoothness; in particular, for s ∈ Rm+ , MW̃ s
p = L̃s1p 2 is the space of

functions with dominating mixed derivative bounded in L̃p (if 1 < p <∞) and MH̃s
p ≡ B̃s1

p∞
is the space of functions with dominating mixed difference bounded in L̃p (if 1 ≤ p ≤ ∞).

When n = 1(⇒ m = m), B̃s
p q ≡ B̃sm

p q and L̃sp q ≡ L̃smp q are the isotropic Nikol’skii-Besov

and Lizorkin-Triebel spaces, respectively; in particular, when 1 < p < ∞ W̃ s
p ≡ L̃sp 2 is the

isotropic Sobolev space and H̃s
p ≡ B̃s

p∞(1 ≤ p ≤ ∞) is the isotropic Nikol’skii space.

2 Optimal error of numerical integration on classes B̃s m
p q and L̃s mp q

In this section, we formulate and discuss the main result on estimates exact in order for
optimal errors of numerical integration on the Nikol’skii – Besov and Lizorkin – Triebel classes
Bs m
p q(T

m) and Ls mp q(T
m) for a number of relations between parameters s, p, q, m (s ∈ Rn+, 1 ≤

p, q ≤ ∞, m = (m1, . . . ,mn) ∈ Nn, m = m1 + · · ·+mn).
For given s = (s1, ..., sn) ∈ Rn+, m = (m1, ..,mn) ∈ Nn, we put ςν = sν

mν
(ν ∈ zn); without

loss of generality, we will assume that

ς ≡ min { ςν | ν ∈ zn } = ς1 = . . . = ςι < ςν , ν ∈ zn \ zι

(with some ι ∈ zn).
In what follows, we will use the signs � and � of the ordinal inequality and equality:

for functions F : R+ → R+ and H : R+ → R+, we write F (u) � H(u) as u → ∞, if
there exists a constant C = C(F,H) > 0 such that the inequality F (u) ≤ CH(u) holds for
u ≥ u0 > 0; F (u) � H(u), if F (u)� H(u) H(u)� F (u) simultaneously.

In what follows, log ≡ log2. When Ω = Tm or [0,1] we will often write simply RN (F)
instead of RN (F,Ω).

Theorem 1. Let 1 ≤ p, q ≤ ∞, s = (s1, . . . , sn) ∈ Rn+. Then
I. for ς > 1/p, the relation

RN (B̃s m
p q,T

m) � N−ς(logN)(ι−1)(1−1/q)

holds;
II. for p <∞ and ς > max(1/p, 1/q), the relation

RN (L̃s mp q,T
m) � N−ς(logN)(ι−1)(1−1/q)

holds.

Remark 2. By theorem C from [18] the condition ς > 1
p provides the embedding F̃ s mp q

↪→ C(Tm), which is necessary in problems of numerical integration (F ∈ {B,L}).

Remark 3. As noted above, there is an extensive literature devoted to optimal cubature
formulas for classes of functions of several variables. Here we discuss results directly related
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106 Dauren B. Bazarkhanov

to Theorem 1, namely, results on function classes on the torus included in the Nikol’skii –
Besov and Lizorkin – Triebel scales from definition 1. But here we do not touch on the case of
low smoothness (p > q, 1/p < ς ≤ 1/q) of the Lizorkin – Triebel classes; for this, see Remark
4 below.

The estimates of RN (F) exact in order of the isotropic Sobolev and Nikol’skii classes are
given in [3, ch.3] (in fact, the anisotropic case is considered there).

For RN (MW̃s
p), the right (in order) upper bounds were proved by N.S. Bakhvalov [2] (the

case p = m = 2, s1 = s2 ∈ N; there Fibonacci’s cubature formulas were used for the first
time), V.N. Temlyakov (1989) (the general case p = m = 2, 1/2 < s1 = s2 ∈ R+; see [3]), K.K.
Frolov [12] (the case p = 2, s = s11, s1 ∈ N, m ≥ 2 is arbitrary; a new construction of cubature
formulas was invented), further, V.A. Bykovskii (1985) (p = 2,m ≥ 2, s = s11, s1 ∈ R, s1 ≥
1), then V.N. Temlyakov [13] (p ≥ 2,m ≥ 2, s ∈ Rm+ : 1/2 < s1 = sι, sν > s1(1 + 1/bs1c)),
M.M. Skriganov [15] (1 < p ≤ ∞,m ≥ 2, s = s11, s1 ∈ N), and the right (in order) lower
bounds were established by V.A. Bykovskii (1985) (the case p = 2,m ≥ 2, s = s11, s1 > 1/2)
and V.N. Temlyakov [13] (the general case 1 ≤ p <∞,m ≥ 2, s = s11, s1 > 1/p).

For RN (MH̃s
p), the right (in order) lower bounds were established by N.S. Bakhvalov [11]

in the general case, the right (in order) upper bounds were proved by N.S. Bakhvalov [2, 6]
(the case m = 2, s1 = s2; Fibonacci’s cubature formulas) and V.V. Dubinin [14] (the general
case, Frolov’s cubature formulas). Exact order of the quantity RN (B̃s1

p q) was found by V.V.

Dubinin [16]. Finally, exact order of the quantity RN (L̃s1p q) in the case s1 = . . . = sm was
obtained by V.K. Nguyen, M. Ullrich, T. Ullrich [9].

3 Estimates from below

There are two main methods for obtaining lower bounds of RN (F,Ω). The first one was
proposed by N.S. Bakhvalov [11]. His idea is for a given N and any cubature formula (1)
to construct a ”bad” function gΛN , ‖gΛN |F‖ = 1, vanishing at its nodes, in the form of a
sum with equal positive coefficients of special shifts of contractions of a suitable fixed smooth
bump function for which

R(gΛN ,Ω, CN ,ΛN ) =
w

Ω

gΛN (x)dx = ‖gΛN | L̃1‖

has the required order. In the second one, proposed by V.N. Temlyakov [13] for Ω = Tm, the
function gΛN with those properties is sought among trigonometric polynomials with spectrum
in the ”hyperbolic layer” depending on N . The existence of such a polynomial is established
using deep estimates for the volumes of the sets of Fourier coefficients of such polynomials.
Lower bounds in Theorem 1 is proved by Bakhvalov’s method.

Denote by #Γ the number of elements of a finite set Γ (Γ = ∅ ⇔ #Γ = 0) and by |P |
the volume of a parallelepiped P .

Let Rm ≡ Rmr be the collection of all half-open dyadic parallelepipeds from Rm of the

Kazakh Mathematical Journal, 20:3 (2020) 101-110



Optimal numerical integration on classes of smooth functions ... 107

form P = P m
kξ = {x ∈ Rm : 2k · x− ξ ∈ [0,1) } (k ∈ Nn

0 , ξ ∈ Zm),

R̃m ≡ Rmt = {P ∈ Rm |P ⊂ [0,1)} = {P m
kξ | k ∈ Nn

0 , ξ ∈ Zm : 0 ≤ ξ < 2k · 1},

here az = (az1 , . . . , azn), z · x = (z1x
1, . . . , znx

n) for a ∈ R, z ∈ Rn, x ∈ Rm. Below
xP := 2−k · ξ, k(P ) := k, if P = P m

kξ. It is clear that

{P ∈ R̃m | k(P ) = k} = {P m
kξ | ξ ∈ Zm : 0 ≤ ξ < 2k · 1},

is the partition of the torus [0,1), #{P ∈ R̃m | k(P ) = k} = 2km, |P | = 2−k(P )m.
Key ingredient in the estimating from below is atomic characterization of the Nikol’skii –

Besov and Lizorkin – Triebel spaces from proposition 1.

Under hypotheses of Theorem 1, we call a collection of functions (A
(r)
P ) ≡ (AP : P ∈

Rm) ⊂ S(Rm) a family of atoms for F s mp q , if for each P ∈ Rm the conditions

supp AP ⊂ 3P, |∂αAP (x)| ≤ |P |−1/22|k(P )·α|, x ∈ Rm, α ≤ K · 1 (7)

are fulfilled, and a collection (A
(t)
P ) ≡ (BP : P ∈ R̃m) ⊂ S(Tm) a family of atoms for F̃ s mp q , if

for each P ∈ R̃m BP is periodization of a function AP ∈ S(Rm) (i.e. BP = ÃP ) satisfying
the conditions (7) (here 3P is the dilation of P with the same center).

For a sequence (c
(i)
P ) ≡ (c

(i)
P : P ∈ Rmi) ⊂ C, we put

‖(c(i)
P ) | Bs mip q ‖ := ‖(2sk

∑
P∈Rmi:k(P )=k

cP |P |−1/2χP (·)) | `q(Lp(I)m)‖,

‖(c(i)
P ) | Ls mip q ‖ := ‖(2sk

∑
P∈Rmi:k(P )=k

cP |P |−1/2χP (·)) |Lp((I)m; `q)‖

(χP is the indicator of P ).

Proposition 1. Let (i, I) ∈ {(r,R), (t,T)}, (F, F) ∈ {(B, B)(L, L)}. Then, under hy-

potheses of Theorem 1, f ∈ F s mp q (Im), if and only if there exist a family of atoms (A
(i)
P ) for

F s mp q (Im) and a sequence (c
(i)
P ) ∈ Ls mip q such that

f =
∑
P∈Rmi

c
(i)
P A

(i)
P (convergence in Lp(I)

m), (8)

moreover,

‖ f |F s mp q (Im)‖ � inf ‖(c(i)
P ) | Fs mip q ‖, (9)

where inf is taken over all representations (8).
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4 Estimates from above

Under hypotheses of definition 1( F ∈ {B,L}, u, v ∈ R, u < v), we consider the space

Ḟ s mp q ([u,v]) := {g ∈ F s mp q (Rm) : supp g ⊂ [u,v]}.

and its unit ball (class) Ḟs mp q([u,v]).

Scheme for proving upper bounds of RN (F,Ω) when Ω = [0,1] or Tm, m ≥ 2, for classes of
functions with mixed smoothness was proposed by K.K. Frolov [12]. The scheme is as follows:
i) by a suitable smooth change of variables, the class F is mapped to the class G = G([0, 1]m)
of functions vanishing on the cube boundary, ii) the inequality RN (F,Ω) � RN (G, [0,1])
is established, iii) a special lattice Λ is chosen such that the number of its nodes falling
into an arbitrary parallelepiped with sides parallel to the coordinate axes is proportional
to its volume, iv) a cubature formula with equal weights equal to 1

N and a grid of nodes

Λ◦N := (N det(Λ))−1/mΛ ∩ (0,1) (Frolov’s cubature formula) has the number of nodes of
order N and the required order of error for G, v) and the cubature formula induced by it
gives the same order of error for F on Ω. This approach has been applied and developed
in [13], [14], [15], [16]. In [8], [9], the minimal smoothness conditions for the change of
variables are substantiated; the scheme was simplified (using the characterizations of the
spaces Bs m

p q(R
m) and Ls mp q(R

m) by so-called local means); for Ω = Tm a simple way of passing
from F to G is proposed using a smooth periodic partition of unity instead of changing
variables.

When proving upper bounds, we adhere to Frolov’s scheme with modifications and sim-
plifications from [8], [9].

5 Estimates from above for Lizorkin – Triebel classes in the case of small
smoothness

Here we consider upper estimates for error of optimal numerical integration for classes
L̇s mp q([0,1]) in the case of small smoothness: p > q and 1/p < ς ≤ 1/q.

Theorem 2. Let 1 ≤ q < p <∞, s = (s1, . . . , sn) ∈ Rn+. Then

I. for 1/p < ς < 1/q, the relation

RN (L̇s mp q([0,1]), [0,1])� N−ς(logN)(ι−1)(1−ς)

holds;

II. for ς = 1/q, the relation

RN (L̇s mp q([0,1]), [0,1])� N−ς(logN)(ι−1)(1−ς)(log logN)1−ς

holds.
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Remark 4. V.N. Temlyakov [19, 20] was the first to discover and fully investigate the
phenomenon of ”small smoothness” in problems of optimal numerical integration for the
classes MW̃s

p of functions of two variables with a bounded mixed derivative for the case of
2 < p ≤ ∞ and 1/p < s1 ≤ 1/2. Note that the Fibonacci cubature formulas again turned out
to be optimal in this case. Theorem 2 is a generalization to the case of the Lizokin – Triebel
classes L̇s mp q([0,1]) of the recent result of M. Ullrich and T. Ullrich [8] for classes L̇s1p q([0,1]).
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Базарханов Д.Б. КӨП АЙНЫМАЛЫЛЫ ТЕГIС ФУНКЦИЯЛАР КЛАСТАРЫНДА
ЕҢ ТИIМДI ИНТЕГРАЛДЫ ЖУЫҚТАУ

Бұл жұмыста s, p, q, m (s = (s1, . . . , sn) ∈ Rn+, 1 ≤ p, q ≤ ∞, m = (m1, . . . ,mn) ∈
Nn,m = m1 + · · · + mn) параметрлерi арасындағы бiрқатар қатынастары үшiн
Никольский–Бесов Bs m

p q(T
m) және Лизоркин–Трибель Ls mp q(Tm) кеңiстiктерi үшiн ең тиiм-

дi кубатуралық формуланың қателiгiнiң ретi бойынша нақты бағалауы алынған.
Кiлттiк сөздер. Интегралды жуықтау, ең тиiмдi кубатуралық формула, тор, Фроло-

втың кубатуралық формуласы, Никольский–Бесов/Лизоркин–Трибель кеңiстiгi/класы,
аралас тегiстiгi.

Базарханов Д.Б. ОПТИМАЛЬНОЕ ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ НА КЛАС-
САХ ГЛАДКИХ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

В предлагаемой работе установлены точные в смысле порядка оценки погрешности
оптимальных кубатурных формул для пространств типа Никольского–Бесова Bs m

p q(T
m)

и Лизоркина – Трибеля Ls mp q(T
m) для ряда соотношений между параметрами s, p, q, m

(s = (s1, . . . , sn) ∈ Rn+, 1 ≤ p, q ≤ ∞, m = (m1, . . . ,mn) ∈ Nn,m = m1 + · · ·+mn).
Ключевые слова. Численное интегрирование, оптимальная кубатурная фор-

мула, решётка, кубатурная формула Фролова, пространство/класс Никольского–
Бесова/Лизоркина–Трибеля, смешанная гладкость, многомерный тор.
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