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Dulat Syzdykbekovich Dzhumabaeuv.
Life and scientific activity (devoted to his memory)

Professor Dulat Syzdykbekovich Dzhumabaev,
Doctor of Physical and Mathematical Sciences, was
a prominent scientist, a well-known specialist in the
field of the qualitative theory of differential and
integro-differential equations, the theory of nonlinear
operator equations, numerical and approximate
methods for solving boundary value problems.

Dzhumabaev D.S. was born in Kantagi,
Turkistan district, South Kazakhstan region,
on April 11, 1954. From 1961 to 1971, he attended
secondary school in Turkistan. In 1971, he entered
Faculty of Mechanics and Mathematics of Kazakh
State University named after S.M. Kirov (now
Al-Farabi Kazakh National University). After

graduating with honors from the Department of Mathematics in 1976, he continued to pursue
postgraduate studies at the Institute of Mathematics and Mechanics of the Academy of
Sciences of the Kazakh SSR. His scientific activity began under the guidance of Academician
Orymbek Akhmetbekovich Zhautykov, an outstanding scientist and mathematician, who
made a huge contribution to the creation and development of the mathematical science in
Kazakhstan. After successful completion of postgraduate studies in 1979, Dzhumabaev D.S.
joined the Laboratory of Ordinary Differential Equations headed by Academician Zhautykov
O.A. He went from being a junior researcher to becoming the head of the Laboratory of
Differential Equations, one of the leading divisions of the Institute of Mathematics. He

chaired the laboratory from 1996 to 2012.
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Dzhumabaev D.S. was a successful scientist and versatile specialist in the field of
mathematics and its applications. He devoted his talent and hard work to the study of
nonlinear operator equations, to the creation and development of qualitative methods in the
theory of boundary value problems for differential equations.

The main research areas and the results obtained by Professor Dzhumabaev can be divided
into several groups. The most significant and important scientific results are presented below
in chronological order.

1. Boundary value problems for ordinary differential equations with a
parameter in a Banach space

During postgraduate studies, his research was focused on nonlinear boundary value
problems with parameter for ordinary differential equations of the following form:

dz
i flt,z, N), z(0) = 20, (1)

z(T) =, (2)

where f :[0,7] x B x B — B is a continuous function satisfying the existence conditions for
the Cauchy problem (1) on [0,7] for all values of a parameter A from some set G C B; here
B is a Banach space.

The problem is to find a pair (A*,z*(t)), where A* € G and z*(t) is a solution to Cauchy
problem (1) with A = \*| satisfying the boundary condition (2).

Let the right-hand part of the differential equation be defined on the set

D ={(t,z,N): 0 <t < T [Jz — D (0)|| < R()p, || = | < p}.

Here A0 € G, 2(9)(¢) is a solution to Cauchy problem (1) with A = A°, R(t) is a positive function
continuously differentiable on [0, T, and p is a nonnegative number. Let M (f) denote a set of
triples (\° € G, R(t) > 0,p > 0) for which the Lipschitz condition ||f(¢, 2, A) — f(t, 2, A)|| <
aft) - (||x — &|| + [|X = A||) is satisfied on the set DO, and the inequality

(a1) exp{/a(T)dT} —1 < R(t)
0

holds («a(t) € C([0,T))).

The set M(f) is non-empty if so is the set G.

For a triple (A, R(t), p), a solution of problem (1), (2) is sought in the set a® = af x ag(t),
where f = {A: [|A = X% < p} and a8, = {() : [l2(t) — 2@ (1)|| < R(t)p}.
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Theorem 1. Problem (1), (2) is solvable if and only if, given some (A°, R(t), p) € M(f),
for any two pairs (X, z(t)) and (\,z(t)) from the set o, there exist an invertible operator
A € L(B, B) and a number 6 > 0 satisfying the inequality

(a) [[A=%- A[/OT{f<t,x<t>,A> — f(t (), N}t || < (1= 0)A= A,

and the following inequality is true

@) glla[[ (0.0t — = a)] || < o1 - ).

T T
where ¢ = @' [exp{f a(t)dt} -1 —fa(t)dt} < 1. Here L(B, B) is a space of linear bounded
0 0

operators mapping B into B.
Under the conditions of Theorem 1, problem (1), (2) is uniquely solvable on the domain
0
a

For the linear boundary value problem

d
= QT+ QA+ (), 2(0) =2, a(D) =2,
the conditions of Theorem 1 are reduced to the bounded invertibility of the operator Q =

T
Osz(t)dt'

The inequality (a3) guarantees the existence and uniqueness of a solution to problem (1),
(2) on the domain .
The proposed approach was applied to semi-explicit differential equations with nonlinear

boundary conditions:

(- O 3)
o[2(T), #(T), | = 0. (4)

Here f : [0,7] x B x B x B — B is a continuous function satisfying the conditions for
the existence of a solution to the Cauchy problem (3) on [0,7] for all A € G; G C B,
®:BxBxB— B.

Analogously, the right-hand side of the differential equation is considered on the set D® =
[(ta,yN) 1 0 <t < Tl — aO @) < R, ly — sO @)l < R(t)p, I — Nl < p}, where
A\ e @, z(9(¢) is a solution to the Cauchy problem (3) with A = A%, R(t) is a positive function
continuously differentiable on [0, 7], and p is a nonnegative number. Let M (f) denote the set
of triples (\° € G, R(t) > 0,p > 0) for which the following inequalities are satisfied:

1f(t a9, A) = F(8, 2§, A < an(t) - ([ =] +[IA = All) + ax(¢) - [ly — 3l
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t

as(t) < 1 &mwecmaTMisz;(ﬁﬁﬁ{/“ﬂm}ﬁR“>(“”:1fiiw)
0

For a triple (\°, R(t), p), the following sets are introduced:
a0y = {2(t) : [la(t) = 2O @) < R(t)p, () — 2O (1)]| < R(t)p},

DUT) = {(u,v,A) : [Ju = 2(D)|| < R(T)p, [0 — & D(T)|| < R(T)p, || = N°|| < p}.

Let the boundary function in (4) satisfy the Lipschitz condition ||®(u, v, \) — ® (@, 7, A)|| <
Oy || — || + Bo||v — 0] + ®5||A — A|| on the set DO(T).

Theorem 2. Problem (3), (4) is solvable if and only if, given some (A2, R(t), p) € M(f),
for any two pairs (A, z(t)) and (X, z(t)) from the set &° = =af xaY 2(r), there exist an invertible
operator A € L(B, B) and a number 6 > 0 satisfying the inequality ||A — X — A{K{[\, z(t)] —
Ki[h 2]} < (1 =0)||A = M|, and the following inequality is true:

1 ~
5HAK1[A07$(0)('5)H| < p(1-9q)

where ¢ = @ . [(I)u . {exp{ofc(t)dt— 1— ;froq(t)dt} +P,- {C(T) exp{fc(t)dt—al(T)}] <1,

~ T
i\ z(t)] = cp[xo +fo(t,x(t),i(t),)\),f(T,x(T),x‘(T), A),A]

Conditions for the continuous dependence of a solution on the initial data and a criterion
for the existence of an isolated solution to problem (3), (4) were established.

Dzhumabaev D.S. justified a new version of the shooting method for nonlinear two-point
boundary value problems of the following form

g[2(0), z(T)] = 0, (6)
where f :]0,7] x B — B is continuous in ¢t and z, g : B x B — B.

Let A denote the value of z(t) at the point ¢ = 0. By the substitution z(t) = z(t) — A,
problem (5), (6) is reduced to the following boundary value problem with parameter

T=ftrN,  #(0)=0, (7
dt
gIA A+ 2(T)] = 0. (8)
Assume that in the closed regions D® = {(t,z,\) : 0 <t < T, |[[z—2© (¢)|| < R(t)p, [|X—=\0|| <
p} and DY = {(\u) « |IA = A < pyfJu = X = 2O(T)|| < [1+ R(T)]p} (here 2(O)(2) is a

KAZAKH MATHEMATICAL JOURNAL, 20:4 (2020) 6-34
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solution to Cauchy problem (7) for A = A%, R(¢) > 0 for t € [0,T], and p > 0), the following
inequalities hold:

1/t 2+ A) = f(&, 2 + M) < al@)(|le = 2]+ |]A = All),

g0 w) = g, @)1 < gallA — All + gullu — ],
t

and exp{ofa(T)dT} — 1 < R(t).

Theorem 3. If for any two pairs (X, z(t)) and (X, z(t)) from the domain o = o 0

= ay X oy
and for some N > 0, there exist an invertible operator A € L(B,B) and a number § > 0
satisfying the inequality ||\ — X — A{K](\})[)\,x(t)] - K](\})[S\,x(t)]}H < (1=0)|A=Al|, and
the following inequality holds

1
AR X 2O 0N < (1 - gy,

T T T

where q](V) = gu - u : [exp{fa(t)dt} —1— [a(t)dt—..— Ni<f (t )dt) ] < 1, then the
0 0 0

boundary value problem (7), (8) has a unique solution in a®.

T TN-3

Here KU\, 2(t)] = g[A, At [F0A+ 4 [ Flrn_a A+ x(TN,Q))dTN,Q)...)dt},
N=0,12,... " "

For different values of IV, various sufficient conditions for the unique solvability to problem
(7), (8) can be derived from Theorem 3. The problem of choosing an initial approximation
and other replacement versions in problems with parameter were also considered.

Dzhumabaev D.S. also studied nonlinear infinite systems of equations

Qj()\la )\2, ...,)\i, ) = bj, 1=12, .. (9)

where A = (A1, Ag,...) and b = (b1, b, ...) are elements of [, (1 < p < 00). It is supposed that
in the domain D’ = {\: [|[A=X°|| < p} C I, for all i(i = 1,2,...), functions Q;(A1, Az, ...) have

o0
continuous partial derivatives with respect to all arguments and 1) >  sup %/\(_A)‘ < k1 < o0

j=1XeD’
o0
2) Z sup 8Q’“ ‘ < kg < 00. Then there exist numbers 6 and 65 satisfying the inequalities
=1AeD’
3) ‘3Q W( > ZPQ W(w 4) ‘3@( > 3 sup |22 ‘+92,forall)\ED’ andi=1,2,.

k#i AeD’
The followmg definition extends the concept of complete regularity to the case of nonlinear

infinite systems in [,,.

Definition 1. An operator Q = (Q1,Q2, ...) is called completely regular in the domain D',
if it satisfies conditions 1)-4) wherein the numbers 01 and 0y are such that 5) ’%101 + %92 =
0> 0.

KAZAKH MATHEMATICAL JOURNAL, 20:4 (2020) 6-34
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Lemma 1. If Q is a completely reqular operator in the domain D' and §||Q(A°) —b|| < p,
then the infinite system of nonlinear equations (9) has a unique solution in D’.

Using Lemma 1, the results obtained for problems (1)-(2), (3)-(4), and (5)-(6) were
concretized for infinite systems of differential equations. Effective conditions were established
for the unique solvability of nonlinear boundary value problems for infinite systems of
differential equations in the space I,,.

The findings described in this Section were published in [1-5] and formed the basis of
his candidate thesis. In 1980, Dzhumabaev D.S. defended his dissertation "Boundary value
problems with a parameter for ordinary differential equations in a Banach space" and earned
a degree of Candidate of Physical and Mathematical Sciences in the specialty 01.01.02 -
Differential Equations.

The methods and results of [1-5] were applied to nonlinear differential equations of various
classes [6-11, 14]. Dzhumabaev’s research was then focused on various problems for nonlinear
operator equations [12-13, 15-17].

2. A linearizer and iterative processes for unbounded non-smooth operators.

Consider the nonlinear operator equation
A(z) =0, (10)

where x € By, A(z) € Bs, and each B; is a Banach space with norm || - ||;, i = 1,2. Let D(A)
and R(A) denote the domain and range of A, respectively.

For a point 2° € D(A), the following sets are constructed: S(z%,r) = {x € By : ||lz—2°||; <
r}, UY = {x € D(A) : [|[A(2)||]2 < ||A(@°)||2 = u"}, and Q@ = S(2°,7) N U°. Assume that
the operator A is closed on 2. As is known, iterative methods, that allow one to find a
solution under some sufficient conditions for its existence, rely on certain linearizations of
the nonlinear operator. Linearization of an unbounded operator naturally leads to unbounded
linear operators.This motivated Dzhumabaev D.S. to introduce the concept of a linearizer of
an operator A at a point & € D(A) that generalizes the Frechet derivative for unbounded
non-smooth operators.

Definition 2. A linear operator C : By — Bs is called a linearizer of an operator A at a
point & € D(A), if D(A) C D(C) and there exist numbers € > 0 and § > 0 such that

|A(z) = A(2) = C(z = 2)[|2 < elfr — 2]y

for all x € D(A) satisfying ||z — &|]1 < 0.

If C € L(Bj, Bs) is the Frechet derivative of A at a point & € D(A), then it is also a
linearizer. However, the definition of a linearizer, unlike that of the Frechet derivative, does
not require: a) the boundedness of the operator C' and 2) the dependence of € on ¢ (€(d) — 0
as 0 — 0 for the Frechet derivative).

KAZAKH MATHEMATICAL JOURNAL, 20:4 (2020) 6-34
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While the Frechet derivative of an operator A is uniquely determined, there can be
infinitely many linearizers of this operator.

Distinctive advantages of linearizers make it possible to extend the domain of application
of iterative methods to solving nonlinear operator equations. Dzhumabaev D.S. proposed
a method for proving the convergence of iterative processes that takes into account the
specificities of unbounded operator equations.

Theorem 4. Suppose that at each point x € Q the operator A has a linearizer C, with
constants €y and dy such that: 1) Cy is a one-to-one mapping of D(C) onto R(C), and
O <7 €75 2) €20, <O < 1; and 3 £ - [A(@)]]2 < K. If 2 - ||A(z)|]2 < r, then
(10) has a solution x* € §2, to which the iteration process

21D _ pn) é L {A@E™)) (11)

converges, here « = max{1, K}, n=0,1,2,....

In the case when for a given § > 0 there exists €(0) independent of z, the following assertion
is true.

Theorem 5. Suppose that at each point x € Q and for each 6 € (0,h) the operator A
has a linearizer Cy with constants § and €(8) > 0 satisfying the following conditions: 1) C;
exists on R(C), and ||C7Y| <, 2) %ig(l] €(0) = 0.

Then (10) has a solution x* € S, if the following inequality holds: 3) v - ||A(z)||2 < 7.

Theorem 5 generalizes the local theorem of Hadamard to unbounded operator equations.
This made it possible to extend the well-known Newton-Kantorovich method to unbounded
nonsmooth operator equations and apply it to nonlinear boundary value problems for
differential equations.

Consider the closed operator equation

A(x) =Cz+ F(x) =0, (12)

where C : X — Y is a closed linear operator, F' : X — Y is a continuous operator, and X
and Y are Banach spaces with respective norms || - ||1 and || - ||2.

Assume that F has a Frechet derivative in some domain containing the ball S(z°,7) =
{x € X :||Jz -2 <7}, 2° € D(C), and R(C + F'(z)) = Y for x € S(z°,7). Then in
D(A) = D(C)N S(zY,r) the operator A has the linearizer C(z) = C' + F'(x), and D(C;) =
D(C)NnX =D(C).

Theorem 6. Assume that the following conditions hold:

(1) For allx € D(A), the linearizer C1(x) has a bounded inverse, and HC’l_l(m)HL(ij) <~;

(2) 1P (@) — F' )|y < L Nl — ylh, 2,y € S0, );

(8) 22+ 52| A@O)l2 3 (bn)* ™1 <1, where bo = §7*uo, uo = [|A(2%)|[2, Bx = 1- g5,

s=0
b = Br-br_1, k= 1,2,...,m, where m is a nonnegative number such that b, < 1 and by,_1 > 1.
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Then the damped Newton-Kantorovich method

1
gD = &) (O 4 F'(a®)) Ok + F(2¥)], k=0,1,2,..., (13)
&7
where ag = 2b, for k=0,...m—1and ap =1 for k =m,m+ 1, ..., converges to a solution

of (12).
Theorem 7. Assume that the following conditions hold:
(1) For allx € D(A), the linearizer C1(x) has a bounded inverse, and HC1_1(55)HL(Y,X) <7
(2) The Frechet derivative F'(x) is uniformly continuous in S(z% r);
(3) 7+ | A@E)]2 < 7.

Then there exist numbers c, > 1, n =0,1,..., such that the iteration process
g(mEstl) — g (mEs) _ [0 F/ (2™ O™ + F(a™®)], s=0,1,2, ...,

converges to an isolated solution x* € D(A) of (12). Furthermore, starting with some k%, we
can take ay, (n > k°) equal to 1, and the convergence rate becomes superlinear.

These results were published in "News of the Academy of Sciences of Kazakh SSR. Series
Physical and Mathematical" , 1984 [12,13], and, at the request of the American Mathematical
Society, were translated and published in "American Mathematical Society Translations",
1989 [16-17], as well as in "Mathematical Notes" [15]. Various aspects of applications of these
results were considered in [18, 20, 22|.

3. The parameterization method for solving boundary value problems

Dzhumabaev D.S. developed the parametrization method for investigation and solving
boundary value problems. The method was originally offered in [21, 23] for solving two-point
boundary value problems for a linear differential equation of the following form

dz n
i A(t)x + f(t), x e R", (14)

Bz(0) + Cx(T) = d, (15)

where A(t) and f(t) are continuous in (0,7], B and C are n X n matrices, d € R".
Consider a partition dividing the interval [0,7") into N equal parts with step size h > 0:

N

[0,T7) = U[(r —1)h,rh). Let x,(t) denote the restriction of the function z(¢) to the r-th
r=1

subinterval, i.e. x,(t), r = 1, N, is a vector function of dimension n defined on [(r — 1)h,rh)

and coinciding there with x(¢). Problem (14), (15) is thus transformed into an equivalent

multipoint boundary-value problem

dx,
dt

= A(t)z, + f(1), tel(r—1)h,rh), r=1,2,...,N, (16)
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Bz1(0)+C lim xn(t) =d, (17)
t—T-0
lim x4(t) = zs11(sh), s=1,2,..,N—1 (18)

t—sh—0

Here (18) are the matching conditions for the solution at the interior points of the partition.

Obviously, if x(t) is a solution of problem (14), (15), then the set of restrictions (z,(t)),
r=1,2,..., N, is a solution of the multipoint problem (16)-(18). Conversely, if a set of vector
functions (z,(t)), r = 1,2,...N, is a solution of problem (16)-(18), then the function z(t)
obtained by piecing together z,(t) is a solution of the original boundary value problem.

On each subinterval [(r — 1)h,rh), the substitution u,(t) = x,(t) — A, is made, where A,
denotes the value of z,(t) at the point ¢ = (r — 1)h. Problem (16)-(18) is then reduced to the
boundary value problem with parameter

du,
CZ = At)ur + AN + f(£), t€[(r—Dh,rh), wllr—1)h] =0, r=1,2,..,N, (19)
B\ +CAy+C lim un(t) =d, (20)
t—1T—-0
As + lm us(t) = As41, s=1,2,..,N —1. (21)
t—sh—0

An advantage of problem (19)-(21) is that it involves the initial conditions u,[(r —1)h] = 0,
so that one can determine u,(t) from the integral equations

t

up(t) = / AUy + AP\ ]dr + / f(r)dr. (22)
(r—1)h

(r—1)h

In (22), replacing u,(7) by the right-hand side of (22) and repeating the process v (v =
1,2,...) times, one obtains a representation of u,(t) by a sum of iterated integrals. Letting
t — rh — 0 and substituting . lir}]Ln Our(t), r =1,2,...,N, into (20) and (21) results in a

—rh—

system of nN algebraic equations in the parameters A.;, r =1,2,.... N, t=1,2,...,n:
Q,(MA=—F,(h) — G,(u,h),  XeRN™ (23)

The basic idea behind the method is to reduce the problem in question to an equivalent
problem with a parameter (19)-(21) whose solution is determined as the limit of a sequence of
systems of pairs consisting of the parameter A and the function u. The parameter is found from
the system of linear equations (23) determined by the matrices of the differential equation
(14) and boundary conditions (15). The functions u, are solutions of Cauchy problems (19) on
the partition subintervals [(r — 1)h,7h), r = 1,2, ..., N, for the found values of the parameter.
The introduction of parameters made it possible to obtain conditions for the convergence of
proposed algorithms and, at the same time, for the existence of a solution, in terms of the

KAZAKH MATHEMATICAL JOURNAL, 20:4 (2020) 6-34



Dulat Syzdykbekovich Dzhumabaev. Life and scientific activity (devoted to his memory) 15

input data. This makes the parameterization method different from the shooting method and
its modifications, where shooting parameters are found from some equations constructed via
general solutions of differential equations, and convergence conditions are also given in terms
of general solutions.

Theorem 8. Suppose that for some h >0 (Nh=T) andv (v =1,2,...) the matric
Qu(h) : RN" — RN s invertible and the following inequalities hold:

(a) [[Qu(R)] | < 7w (h);

(b) qu(h) = v, (h) max(1, b||C|[)[e®" — 1 — ah — ... — @A) < 1 where a = max IIA(®)]].

Then the boundary-value problem (14), (15) has a unique solution x*(t), and the estimate

o) = e 0l) <y max(r il @ e E g e, ey

holds true, where

Vl 1/1
M (h) = 3 ()" mac{1 -+ hljc) Y2 L2 j : j O (], e [1£ (1))
7=0 7=0 )

ah
h
+e® e £

and ) (t) is a piecewise-continuously differentiable function on [0,T], for which AE) () (t)
is the restriction to [(r — l)h,rh), r=1,2,...,N.

It was shown that the conditions of Theorem 8 are also necessary and sufficient for the
unique solvability of problem (14),(15).

The parametrization method was then applied to the study of singular problems for which
the problem of approximation by regular two-point boundary value problems was solved |19,
24-27]. Necessary and sufficient conditions were obtained for the well-posed solvability of the
problem of finding a solution to the system of differential equations (14), that is bounded
on the whole axis R. For systems whose matrices and right-hand sides are constant in
the limit, approximating regular two-point boundary value problems were constructed. The
connection between the well-posed solvability of the original singular problem and that of
an approximating problem was established. In the general case, Lyapunov transformations
possessing certain properties were used to construct regular two-point boundary value
problems as approximations to the problem of determining a solution bounded on the entire
real line. The concept of a solution "in the limit as ¢ — 00" was introduced and the behaviour
of solutions of linear ordinary differential equations as t — oo  was investigated. Necessary
and sufficient conditions were derived under which a singular boundary value problem with
conditions assigned at infinity is uniquely solvable, and an appropriate approximating problem
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was constructed. These results were developed to the system of differential equations on the
real axis:

‘Clli; = f(t,z), =z €eR"™ (24)

In [29, 34] the results of Section 2 were also extended to system (24) with the nonlinear
boundary condition
glx(0), z(T)] = 0. (25)

Results of Sections 2 and 3 were included in the doctoral dissertation.

The doctoral dissertation by Dzhumabaev D.S. titled "Singular boundary value problems
for ordinary differential equations and their approximation" is a fundamental scientific
work that underwent comprehensive approbation in leading scientific centers, such as the
Computing Center of the Russian Academy of Sciences (A.A. Abramov, N.B. Konyukhova),
the Institute of Applied Mathematics of the Russian Academy of Sciences (K.I. Babenko),
Lomonosov Moscow State University (V.M. Millionshchikov, V.A. Kondratiev, N.Kh. Rozov),
Institute of Mathematics NAS of Ukraine (Y.A. Mitropol’skii, A.M. Samoilenko, V.L.
Makarov, V.L. Kulik), Voronezh State University (V.I. Perov), I. Vekua Institute of Applied
Mathematics of Thilisi State University (I.T. Kiguradze), Kiev State University named after
T. Shevchenko (N.I. Perestyuk). Doctoral dissertation was defended at the Specialized Council
of the Institute of Mathematics of the NAS of Ukraine in 1994.

The parameterization method was extended to various linear and nonlinear boundary
value problems for ordinary differential equations on a finite interval and on the whole real
line; necessary and sufficient solvability conditions for those problems were obtained in [28-32,
34, 47, 50-51, 53, 55-56, 62, 65, 70, 74, 77, 83, 85, 92, 96].

4. Nonlocal problems for systems of second-order hyperbolic equations

The results obtained in Sections 2 and 3 provided a basis for solving nonlocal boundary
value problems for systems of second-order hyperbolic equations [33, 36-46, 48, 49, 52, 58, 63,
67, 71, 73, 86].

In the domain 2 = [0, 7] x [0,w], consider the following nonlocal boundary value problem
for the system of hyperbolic equations with two independent variables:

d%u ou ou
iy = A1) 5+ B(t.2) 50+ Ot o)u+ f(t,2), (26)
Py(x) aug; z) L:O—i-Pl (x) 8uf9tt, z) ‘tzo—i-Po (x)u(t, x)|i=o
150 0D @D syt er = o), eelow],  (@27)
u(t,0) =y(t),  tel0,T], (28)
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where u(t,x) = col(ui(t,x),...,u,(t,2)) is an unknown function, the n x n matrices A(t, x),
B(t,z), C(t,x), Pi(z), Si(x), i = 0,2, and the n-vector functions f(t,x), ¢(z) are continuous
on Q and [0, w], respectively; the n-vector function ¢ (t) is continuously differentiable on [0, T'].

Sufficient coefficient conditions for the existence and uniqueness of a classical solution of
problem (26)—(28) were established by a modification of the parametrization method [33, 38,
40, 45, 46|. A relationship with the following family of boundary value problems for ordinary
differential equations was established:

ov
ot

Py(x)v(0,2) + Sa2(x)v(T, z) = ®(x), (30)

= A(t,x)v + F(t,x), z € [0,w], (29)

here n-vector functions F'(t,z) and ®(x) are continuous on € and [0, w], respectively.

For fixed z € [0,w] problem (29), (30) is a linear boundary value problem for the system
of ordinary differential equations. Suppose the variable x is changed on [0, w]; then we obtain
a family of boundary value problems for ordinary differential equations.

Sufficient and necessary conditions for the well-posedness of nonlocal boundary value
problem for the system of hyperbolic equations (28)-(30) were obtained in |44, 52, 63, 67|.

Let C([0,w], R™) be a space of continuous on [0, w] vector functions ¢(z) with the norm

llplloa = max [[e(2)]];
z€[0,w]

)

C1([0,T], R™) be a space of continuously differentiable on [0, 7] vector functions 1 (¢) with
the norn [0 = max s 1600, ma [G(0)]):
C11(Q, R") be a space of functions u(t, x) € C(£, R™) with continuous on 2 partial derivatives

dul(t, ou(t, 02ul(t, 2
uéxx), uétx), 5;59;) with the norm ||ul|; 1 = max<||u]|0, @ ,’ %7: gta’; 0).

Lemma 2. If problem (29), (30) has a solution for arbztmry F(t,z) € C(Q,R") and
®(z) € C([0,w], R™), then this solution is unique.

Definition 3. Problem (29), (30) is called well-posed if for arbitrary F(t,x) € C(2, R")
and ®(z) € C([0,w], R™) it has a unique solution v(t,xz) € C(Q, R™) and for it the estimate
holds

<K F P 1
e [[o(t, )| < K max (mase | F(5 ), |2(2)]]). (31)

where the constant K is independent of F(t,xz) and ®(x), and =z € [0,w].
Lemma 3. If v(t,x) is a solution to problem (29), (30), and the estimate holds

Iollo < & max(||Flo, [[@]]o. ). (32)

where K is a constant independent of the functions F(t,z) and ®(x), then for every x € [0,w]
the inequality (31) is valid.
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Denote by €, = [0,T] x [0,1] and ||u||o, = (tm)a>§2 [lu(t, )|
x)ElLy
Definition 4. Boundary value problem (26)-(28) is called well-posed if for arbitrary

f(t,z) € C(Q, R™) and ¥(t) € CH([0,T], R") and ¢(z) € C([0,w], R") it has a unique classical
solution u(t,z) and this solution satisfies the following estimate

Ou
ot

) < Kmax (|| lo. 19110, ma [lo(@)]).

ou
mas (Jlullos || 52 |,

0,7
where constant K is independent of f(t,x) and ¥(t) and p(z) and n € [0,w].

Theorem 9. The boundary value problem (26)-(28) is well-posed if and only if so is
problem (29), (30).

From Theorem 9 it follows that the well-posedness of problem (26)-(28) are equivalent to
the well-posedness of problem (29), (30).

These results were extended to a nonlocal problem with an integral condition for system
(28) (see [76]).

The problem of finding bounded solutions of system (26) and the families of systems (29)
was solved in [35, 39, 41-43, 46, 48, 49, 58|.

The parametrization method was further developed to nonlinear nonlocal problems for a
system of hyperbolic equations |71, 73, 86, 88|.

5. Boundary value problems for loaded and integro-differential equations

On the basis of the parametrization method, constructive algorithms were developed
for finding solutions to various boundary value problems for integro-differential and loaded
equations [35, 54, 57, 59-61, 68, 69, 91, 94].

In the interval [0, 7], consider the following linear two-point boundary value problem for
an integro-differential equation:

T
‘;i; _ A+ / Kt s)z(s)ds + f(), @ €R", (33)
0
Bz(0) + Cx(T) =d, d e R", (34)

where A(t) and K (¢, s) are continuous matrices on [0,7] and [0, 7] x [0, T, respectively; f(t)
is continuous on [0, T7.

It is well known that the basic techniques for analysis and solving boundary value problems
for integro-differential equations are the Nekrasov method and the Green’s function method.
Nekrasov’s method applies to problem (33), (34), if we assume the unique solvability of the
second-kind Fredholm integral equation

T
() = / Mt s)z(s)ds + F(t),  t€0,T], (35)
0
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with the kernel M (t,s) f X(t T7)K (1, s)dT, where X(t) is the fundamental matrix of

the differential part of equation (33) and F(t) € C(]0,T],R™). The Green’s function method
applies to problem (33), (34) under assumption that the boundary value problem for the
differential part of (33) is uniquely solvable; i.e., this method assumes the unique solvability
of problem (33), (34) with K(¢,s) = 0.

However, the assumptions of neither Nekrasov’s method nor Green’s function method are
necessary conditions for the solvability of problem (33), (34).

In [66], a coefficient criterion for the well-posedness of problem (33), (34) was established
in terms of approximating boundary value problems for the loaded differential equation

=AW+ Y K0e(0) + (), v eR, (35)

subject to condition (34), by the parameterization method.

In [72], Dzhumabaev proposed a method for solving the problem (33), (34) that is based
on the parameterization method and properties of a fundamental matrix of the differential
part of (33). The interval [0, 7] is divided into N equal parts with step size h > 0: [0,T) =

N
U [(r — 1)h,rh). Let z,(t) be the restriction of x(t) to the rth subinterval [(r — 1)h,rh).
r=1
The values of the solution at the left-endpoints of the subintervals are assumed as additional

parameters A, = z,[(r — 1)h]. By the substitution u,(t) = z,(t) — A\, at every rth subinterval,
the problem (33), (34) is reduced to the multi-point boundary value problem for a system of
integro-differential equations with parameters

N Ik

d;tr = A(t)ur + A(t)\, + Z / K(t, s)[uj(s) + Ajlds + f(t), t € [(r—1)h,rh), (37)
I=NG=1)h

up[(r —1)h] =0, r=1,2,...,N, (38)

BXi + CAn + Ctiijrgo un(t) =d, (39)

Ao I up(t) = Apr =0, p=12.,N -1 (40)

The introduction of additional parameters resulted in the emergence of the initial data (38) for
the unknown functions w,.(t), 7 = 1,2, ..., N. For fixed parameter values A € R™V, the system
of functions u[t] = (ui(t),ua(t),...,un(t)) is determined from problem (37), (38), which is a
special Cauchy problem for the system of integro-differential equations. Problem (37), (38) is
equivalent to the system of integral equations

t

/ X~ T)dT A + X (1) / Xl(T)iV: 7 K(1,8)[uj(s) + A\jldsdr

(r—1)h (r=1)h
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+X(¢) / XY1)f(7)dr, te[(r—1)h,rh), r=12,..,N. (41)
(r—=1)h

By solving (41), one can find the representations of u,(t) in terms of A € R™ and f(t).
Substituting them into (39) and (40) yields a system of equations for finding the unknown
parameters. Thus, when applying the parameterization method to problem (33), (34), one has
to solve an auxiliary problem, namely, the special Cauchy problem (37), (38), or the equivalent
system of integral equations (41). However, unlike the auxiliary problem of Nekrasov’s method,
the special Cauchy problem is uniquely solvable for any sufficiently small partition step size
h > 0. Let a number hg > 0 satisfy the inequality

o(hy) = BThee®M < 1, (42)
where = max [|K(t,s)|] and o = max ||A(t)||. It was shown that, for any h €
(t,s)€[0,T]x[0,T7] t€[0,T)

(0,ho] : Nh =T, system (41) is uniquely solvable. This property of the auxiliary problem of
the parameterization method made it possible to establish solvability criteria for the boundary
value problem considered.

Necessary and sufficient conditions for the solvability, including the unique solvability, of
problem (33), (34) were obtained in terms of a matrix Q. «(h) constructed via the fundamental
matrix of the differential part of system (33), the matrices of boundary conditions (34), and
the resolvent of an auxiliary Fredholm integral equation of the second kind.

In [78], a family of algorithms was proposed for solving problem (33), (34). The numerical
parameters of the family are the partition step h > 0 : Nh = T, the number v € R" of iterated
integrals used in the algorithm, and a nonnegative integer m specifying how many terms of
the resolvent of the corresponding Fredholm integral equation of the second kind are used in
the algorithm. The basic condition for the feasibility and convergence of the algorithm is that
the matrix @}'(h) is invertible for chosen numerical parameters. The unknown parameters
are found at the first stage of each step in the algorithm by using the invertibility of this
matrix. The special Cauchy problem (37), (38) with the found parameter values is solved at
the second stage of the algorithm. Necessary and sufficient conditions for the well-posedness of
problem (33), (34) were established in terms of the input data without using the fundamental
matrix or the resolvent.

In [82], the method and results of |72] were generalized to the case of an arbitrary partition.
Let Ay denote a partition of [0,7] into N parts: tgo =0 < t; < ... < ty = T; the case of no
partitioning is denoted by A;. Each partition Ay is associated with a homogeneous Fredholm
integral equation of the second kind. The partition Ay is called regular if the corresponding
equation has only the trivial solution. The regularity of Ay leads to a unique solvability of
the special Cauchy problem mentioned above. The solvability criteria for linear two-point
boundary value problem for Eq. (33) obtained in [82] are applicable for arbitrary regular
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partition Apy. The algorithms of the parameterization method for solving linear boundary
value problems for Fredholm integro-differential equations were offered in [86].

These results were extended to boundary value problems for impulsive integro-differential
equations in [84].

6. New general solutions to linear Fredholm integro-differential equations and
their applications in solving boundary value problems

It is known that Volterra integro-differential equations are solvable for any right-hand side
and have classical general solutions. However, there exist linear loaded differential equations
and Fredholm integro-differential equations that do not admit classical general solutions. The
question arises as to whether it is possible to construct such general solutions that exist
for all differential and integro-differential equations and would allow solving boundary value
problems for these equations.

Dzhumabaev D.S. proposed a novel approach to the concept of the general solution for a
linear ordinary Fredholm integro-differential equation based on the parametrization method
in [97]. The domain interval is partitioned and the values of the solution at the left endpoints
of the subintervals are considered as additional parameters. By introducing new unknown
functions on the partition subintervals, a special Cauchy problem for a system of integro-
differential equations with parameters is obtained. Using the solution of this problem, a new
general solution of the linear Fredholm integro-differential equation was constructed.

Suppose Ay is a partition tg =0 < t; < ... <ty = T. Let z(t) be a function, piecewise
continuous on [0, 7] with the possible points of discontinuity: t = ¢,, p =1,2,..., N — 1. Let
x,(t) be the restriction of x(t) to the rth subinterval [t,_1,t,), i.e. z,(t) = x(t), t € [tr_1,tr),
r=1,2,..., N. For definiteness, assume that z,(t,—1) = lim x.(t),r =1,2,..., N. If 2(t)

t—tr-—_1+0
is piecewise continuously differentiable on (0,7") and satisfies the Fredholm integro-differential
equation (33) for each t € (0,7)\{tp,p = 1,2,...,N — 1}, then the system of its restrictions
x[t] = (z1(t), ..., zn(t)) satisfies the following system of integro-differential equations:

dx,
dt

N Y
= Atz + ) / K(t,7)x;(t)dr + f(t),  t€[tr_1,t,), 7=1,2,..,N.  (43)

]:ltj—l

Let C([0,T], An,R™) denote the space of function systems z[t] = (x1(t), 22(t), ..., xn (1)),

where x, : [t,—1,t,) — R™ is continuous and has the finite left-sided limit . litm o x,(t) for any
—tp—

r=1,2,..., N, with the norm z[A], = max sup ||z (2)]]-
1”:1,2,.‘.7 te[t'r—l,t’r)

A function system z[t] = (z1(t), z2(t), ..., zn(t)) € C([0,T], An,R™V) is called a solution
to the system of integro-differential equations (41) if the functions z,(t), r = 1,2,..., N, are
continuously differentiable on (¢,_1,¢,) and satisfy equations (43).

KAZAKH MATHEMATICAL JOURNAL, 20:4 (2020) 6-34



22

Suppose that the function system x*[t] = (z](t),x5(t), ...,z (t)) is a solution to (43).
Then the function z*(t), defined as z*(t) = x(t) for t € [t,_1,t), » = 1,2,..., N, and
x*(T) = tiiqu . x'y(t), is piecewise continuously differentiable and consistent with Eq. (33)
for t € (0,T)\{tp,p = 1,2,..., N — 1}. The introduction of the parameters A\, = z,(t,_1),
r =1,2,..., N, and substituting new unknown functions w,(t) = z,(t) — A, on each subinterval
[tr—1,t), yields the system of integro-differential equations with parameters

N U

= A(tyur +ABMAY / K (t,m)[uj (1) + A dr+f(t), € [tr_1,ty), 7 =1,.., N, (44)

]zltj_l

du,
dt

subject to the initial conditions
up(tr—1) =0, r=1,2,..,N. (45)

Problem (44), (45) is called a special Cauchy problem for the system of integro-differential
equations with parameters. Without the interval’s partition, problem (44), (45) is the Cauchy
problem with the initial condition at ¢ = 0 for the Fredholm integro-differential equation with
parameter.

A solution to the special Cauchy problem (44), (45) with fixed values of parameters
Al e R", r = 1,...,N, is a function system u[t, \*] = (uq(t, \*), ua(t, \*),...,un(t, \*)) €
C([0,T], Ay, R™™), which satisfies the system of integro-differential equations (44) with
A = A" and initial conditions (45).

Let X, (¢) be a fundamental matrix of the differential equation % = A(t)z on the interval
[tr—1,tr]. Then problem (44),(45) is equivalent to the system of mtegral equations

t t

ur(t) = X (8) [ X7 r)A(T)dmi A + X, (2) Y)Y K (1 m)[uy(r) + Ajldrdn
tr/l tr/l = 1t/
t)/Xrl(n)f(n)dn, teltoity), r=1,2 N (46)

Take an arbitrary partition Ay and consider the corresponding homogeneous Fredholm
integral equation of the second kind

T
/M An,t,7)y(T)dT, te[0,7], (47)
0
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t1
where M(An,t,7) = [ K(t,7)X1(r1)dn X, (1), t €0, T), 7 € [0, 4],

tj
M(AN,t, T) = fK(t,Tl)Xj(Tl)dTlXj_l(T), t e [O,T], T € (tj_l,tj], j = 2,...,N.

Definition 5. A partition Ay is called regular for Eq. (33) if the integral equation (47)
has only the trivial solution.

Let o([0,77]) denote the set of regular partitions of the interval [0, 7]. The set o([0,T]) is
not empty.

Definition 6. The special Cauchy problem (44), (45) is called uniquely solvable if it has
a unique solution for any pair (f(t),\) with f(t) € C([0,T],R") and X € R™V.

Definition 7. Suppose that Ay € o([0,T]), A = (A1, Ay ..., Av) € R™ | and the function
system u[t, \] = (u1(t, N), ua(t,\),...,un(t, X)) is a solution to the special Cauchy problem
for the system of integro-differential equations with parameters (44), (45). Then the function
x(An,t,A) defined by the equalities ©(An,t,\) = \p + up(t,N), t € [tr—1,t,), r=1,2,..., N,
and x(An,T,\) = Ay + t—lgriouN(t’ A) is called the Ay general solution to the integro-

differential equation (33).

Theorem 10. For any Ayn € o([0,T]), there exists a unique Ay general solution to the
linear Fredholm integro-differential equation (33).

In contrast to the classical general solution, the Ay general solution exists for all linear
nonhomogeneous Fredholm integro-differential equations and contains N arbitrary parameters
Ar € R™,

The concept of new general solution, introduced by Dzhumabaev, made it possible to derive
the solvability criteria for the linear Fredholm integro-differential equations and boundary
value problems for this equation. The method proposed consists the construction of Ay
general solutions and solving linear algebraic equations with respect to parameters of those
solutions. The Cauchy problems for ordinary differential equations and problems of evaluation
of the definite integrals on the subintervals are used as auxiliary problems. Depending on the
choice of methods for solving auxiliary problems, either numerical or approximate methods
were obtained in order to solve the linear boundary value problems for Fredholm integro-
differential equations [81, 93, 99].

The new general solution made it possible to propose new numerical and approximate
methods for solving boundary value problems with and without parameter for nonlinear
ordinary differential equations [101, 102, 104, 106, 108, 111]. These methods are based on
the construction and solving a system of algebraic equations for arbitrary vectors of the new
general solution. The coefficients and the right-hand sides of this system are determined using
solutions of the Cauchy problems for ordinary differential equations on the subintervals. Using
the new general solution, solvability criteria were established for boundary value problems for
nonlinear ordinary differential equations.

The results and methods were extended to linear nonlocal boundary value problems for
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systems of loaded hyperbolic equations and Fredholm hyperbolic integro-differential equations
[100].

The new approach to the general solution became the basis of methods for research
and solving nonlinear boundary value problems for loaded differential and integro-differential
equations [103, 105, 107, 109, 110, 112]. The methods are based on the construction and solving
systems of nonlinear algebraic equations for arbitrary vectors of new general solutions. To solve
nonlocal boundary value problems for nonlinear partial differential and integro-differential
equations, a modification of Euler’s broken lines method was developed.

These results were further extended to multipoint problems, periodic problems with
impulse effects, and control problems for various classes of differential, loaded differential,
integro-differential, and partial differential equations [75, 80, 87].

Conclusion

Dzhumabaev D.S. was a highly qualified expert in the theory of differential, integral and
nonlinear operator equations, computer and mathematical modeling of applied problems. He
has published over 300 papers in scientific journals, including authoritative periodicals like
Journal of Mathematical Analysis and Applications, Journal of Computational and Applied
Mathematics, Mathematical Methods in Applied Sciences, Mathematical Notes, Computational
Mathematics and Mathematical Physics, Differential Equations, Ukrainian Mathematical
Journal, Journal of Integral Equations and Applications, Journal of Mathematical Sciences,
Eurasian Mathematical Journal, etc. The list of his major publications is given below.

The research findings were presented and discussed at many international symposia
and conferences. His scientific results were widely recognized in Kazakhstan and at the
international level by experts in the field of differential equations and computational
mathematics. The scientific direction formed by Dzhumabaev D.S. has been further developed
by his students, who successfully work at the Institute of Mathematics and Mathematical
Modeling and leading universities in Kazakhstan.

In 1998, Dzhumabaev D.S. was awarded the title of professor (specialty 01.01.00 -
Mathematics). Under his supervision, two doctoral, twenty candidate dissertations, and one
PhD thesis were defended. He supervised five PhD students. In 2004-2005, Dzhumabaev
D.S. was the chair of the Expert Commission on Mathematics and Computer Science of
the Committee on Supervision and Certification in Education and Science of the Ministry
Education and science of the Republic of Kazakhstan.

Professor Dzhumabaev made a great contribution to academic community. He led
a scientific seminar on the qualitative theory of differential equations at the Institute
of Mathematics and Mathematical Modeling. He was a scientific expert of the State
Expertise of the Ministry of Education and Science of the Republic of Kazakhstan. For
many years, Dzhumabaev D.S. was a member of Dissertation Councils at the Institute of
Mathematics, Al-Farabi Kazakh National University, Abai Kazakh National Pedagogical

KAZAKH MATHEMATICAL JOURNAL, 20:4 (2020) 6-34



Dulat Syzdykbekovich Dzhumabaev. Life and scientific activity (devoted to his memory) 25

University, K.Zhubanov Aktobe Regional State University.

In 2014, at the invitation of the university authorities, Professor Dzhumabaev began to
deliver lectures at the International University of Information Technology. He taught such
courses as "Mathematical Analysis" , "Methods of solving linear and nonlinear boundary value
problems for ordinary differential equations" , "Problems for integro-differential equations of
processes with consequences" , "Boundary value problems, their applications and methods for
solving" . It should be noted that his scientific results of recent years were obtained under
the influence of teaching at the International University of Information Technology. While
giving lectures and conducting practical classes, he realized with great clarity the importance
of developing numerical methods for solving applied problems. Having set himself the goal
of bringing to the final numerical implementation the theoretical results and algorithms of
the parameterization method, he made a breakthrough in the field of mathematical and
computer modeling. Under scientific supervision of Professor Dzhumabaev, master students
and undergraduates of the International University of Information Technology carried out
research in the area of numerical methods for solving boundary value problems for differential
and integro-differential equations.

Professor Dzhumabaev chaired the Mathematics Section of Academic Council of the
Institute of Mathematics and Mathematical Modeling. He was a member of the editorial
board of the scientific journals News of NAS RK. Series: Physics and Mathematics, Kazakh
Mathematical Journal, Bulletin of Karaganda State University. Series: Mathematics.

Dzhumabaev D.S. was awarded the lapel badge "For Contribution to the Development
of Science and Technology" and the Certificate of Merit of the Ministry of Education and
Science of the Republic of Kazakhstan.

Since 2018, Dzhumabaev D.S. headed the Department of Mathematical Physics and
Mathematical Modeling at the Institute of Mathematics and Mathematical Modeling. In
2019, his research team, together with mathematicians from Ukraine, Belarus, Uzbekistan,
Azerbaijan, Germany, and the Czech Republic, received funding from the European
Union’s Horizon 2020 research and innovation programme under EC grant agreement
873071-H2020-MSCA-PISE-2019 (Marie Sklodowska-Curie Research and Innovation Staff
Exchange), project titled "Spectral Optimization: From Mathematics to Physics and
Advanced Technology"(SOMPATY).

The first publication in the framework of this project is devoted to the application of the
parameterization method to multipoint problems for Fredholm integro-differential equations
and was published in Kazakh Mathematical Journal (2020, Vol. 20, No. 1).

At the end of 2019, having applied for the competition from the International University
of Information Technology, Professor Dzhumabaev became the owner of the grant "The
Best University Teacher 2019" of the Ministry of Education and Science of the Republic
of Kazakhstan.

A prominent scientist, an outstanding teacher, and a talented organizer, Dulat
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Syzdykbekovich Dzhumabaev passed away on February 20, 2020. He will be lovingly
remembered by his wife Klara Kabdygalymovna, daughters Dana and Damira, son Anuar,
and three grandchildren. His memory will live in the hearts of his friends, colleagues, as well
as generations of grateful and adoring students. His research, scientific ideas and plans will
be continued and implemented by his students.

THE MAJOR PUBLICATIONS BY DZHUMABAEV D.S.

1 Anbpmyxamberos K.K., Txymabaes JI.C. ObparHast KpaeBast 3aja4a JJis CIeTHON CH-
creMbl T DEPEHITNATBHBIX YPABHEHUH, He pa3pPEeIIeHHbIX OTHOCUTETHLHO TPOU3BO/IHON B IIPO-
crpancrse [, // I3B. AH KasCCP. Cep. dus.-mar. -~ 1977. — No. 5. - C. 7-11.

2 Txxymabaes [1.C. MHOrOUTEpamoHHBI METOT PEIIEHNs IBYXTOYEUHBIX KPAEBBIX 38181
JUIST TIOJTYSIBHBIX ucbdepeHImaibHbIX ypaBHeHui B 6aHaxoBbIX npocrpancTsax // MUss. AH
KazCCP. Cep. ¢puz.-marem. — 1978. — No. 3. — C. 9-15.

3 xxymabaep [1.C. Cpenenne KpaeBbIX 3aJad K 3ajiadaM C IapaMeTpoM U 0OOCHOBaHUe
merona crpensosl // Uss. AH KasCCP. Cep. dus.-marem. — 1978. — No. 5. — C. 34-40.

4 xxymabaes .C. HeobxomuMble 1 0CTATOYHBIE YCJIOBHSI CYIIECTBOBAHUS PEIIEHNI Kpa-
eBbIxX 3a7a4 ¢ mapamerpoM // 3. AH KasCCP. Cep. dus.-marem. — 1979. — No. 3. — C. 5-12.

5 Hxxymabaes [1.C. Kpaesbie 3ajiaau jijist 6eCKOHETHBIX cucTeM UM HEPEHITNATBHBIX yPaB-
nenuit // Mzs. AH KazCCP. Cep. duz.-marem. — 1979. — No. 5. — C. 71-73.

6 Jxymabaes [1.C. O6 oHOM MeTOIE UCCTIEI0BaHUS OOBIKHOBEHHBIX (D DEPEHITNATBHBIX
ypasuenuii // Mzs. AH KazCCP. Cep. dus.-marem. — 1982. — No. 3. — C. 1-5.

7 Hxymabaes .C. O6 orpaHUYeHHOCTH PEIEHNUsI U ero IIPOU3BOIHON Ha Beeil ocu aud de-
PeHIMaIbHOro ypaBHeHus 1nepsoro nopsiika // 1z, AH KazsCCP. Cep. dus.-marem. — 1982.
— No. 5. - C. 4-7.

8 Jlxxymabaes J[.C. O6 orpaHUIeHHOCTH PEIeHUs] U €ro MPOM3BOIHON Ha TOJIYyOCH HEKO-
TOPBIX KPAEBBIX 3a/a4 Jisi OOBIKHOBEHHBIX Juddepenimanbubix ypasuennii // Juddepen-
nuajbHble ypapaerus. — 1982, — T. 18.— No. 11. — C. 2013-2014.

9 IIxymabaes .C. ObocHOBaHIE METOIA JJOMAHBIX JJIsl OQHON KPAEeBOi 3a1aun JIHHEHOTO
napabosmueckoro ypasuenus // Use. AH KazCCP. Cep. dbus.-marem. — 1983. — No. 1. — C.
8-11.

10 ZKayroikos O.A., Txymabaes JI.C. O6 oxHoit 3aja4e /ijisi ypaBHEHUN B 9aCTHBIX [IPO-
u3BojHbIX nepsoro nopsizika // Mss. AH KasCCP. Cep. dus.-marem. — 1983. — No. 3. — C.
31-34.

11 Hxxymabaes [1.C., Memerbekopa P.A. O pazgemumoctu JuHeiiHOTO TuddepeHIaib-
noro ypasuenust // M3s. AH KazCCP. Cep. dwus.-marem. — 1983. — No. 5. — C. 21-26.

12 JIxxymabaes [1.C. O paspelnmuMocTu HeJTMHEHHBIX 3aMKHYTHIX OIIePATOPHBIX YPaBHEHUNI
// Uss. AH KasCCP. Cep. dus.-marem. — 1984. — No. 1. — C. 31-34.

13 Ixymabaes H.C. O cxomumocTu moaucukanuu merona Hpiorona-Kanroposuua, jijist
3aMKHYTBHIX onepaTopubix ypasaenuii // 3. AH KazCCP. Cep. dus.-marem. — 1984. — No.
3. — C. 27-31.
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14 HxywmabaeB [1.C., MenerbekoB M.M. O6 orpannveHHOCTH peIleHUs HEJIUHEHHOIO
00bIKHOBEHHOTO b depeHuaibHOro ypasaenusi sroporo nopsiaka // Mzs. AH KaszCCP.
Cep. dus.-marem. — 1987. — No. 3. — C. 20-23.

15 Dzhumabaev D.S. Convergence of iterative methods for unbounded operator equations
// Mathematical Notes. 1987. Vol. 41. No 5. pp. 356-361. DOI: 10.1007/BF01159858

16 Dzhumabaev D.S. On the solvability of Nonlinear Closed Operator Equations //
American Mathematical Society Translations (2). 1989. Vol.142. pp. 91-94.

17 Dzhumabaev D.S. On the Convergence of a modification of the Newton-Kantorovich
Method for Closed Operator Equations // American Mathematical Society Translations (2).
1989. Vol.142. pp. 95-99.

18 2Kayreikos O.A., I:xymabaes 1.C. Perrenne KpaeBbIX 3821 Ha OCHOBE MOIU(MUKAIII
merona Heiorona-Kanroposuua // Mz, AH KazCCP. Cep. dus.-marem. — 1987. — No. 5. —
C. 19-29.
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No. 12. — C. 2188-2189.
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No. 1. - C. 18-23.
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24-28.
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Mathematical Physics. 1989. Vol. 29. No 1, pp. 34-46. DOI: 10.1016,/0041-5553(89)90038-4
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27 Dzhumabaev D.S. Singular boundary value problems and their approximation for

nonlinear ordinary differential equations // Computational Mathematics and Mathematical
Physics. — 1992. — Vol. 32. — No. 1. - P.10-24. EID: 2-s2.0-44049120854

KAZAKH MATHEMATICAL JOURNAL, 20:4 (2020) 6-34



28 '
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1 Introduction

The construction problem was formulated and solved for systems of ordinary differential
equations on a given integral curve by Yerugin in [1]. Later, this problem was developed by
Galiullin, Mukhametzyanov, Mukharlyamov and others (see [2-24]) to constructing of systems
of differential equations by a given integral manifold, to solving various inverse problems of
the dynamics, and to constructing systems of the program motion. The integral manifold is
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defined as an intersection of hypersurfaces. It should be noted that, the construction of stable
systems developed into an independent theory. The problem of the construction of automatic
control systems for a vector nonlinear function with locally quadratic relations was solved
in [6, 7]. Analysis of works in this direction shows that an essential part of the literature is
devoted to the study of the program manifold of control systems with constant coefficients
(see [3-20]).

At the same time, in mathematical modelling of various physical, chemical, biological and
environmental and other phenomena in most cases it leads to the need of the research of
control systems with variable coefficients. This is the movement of a point of variable mass,
moving objects in which there is a change in mass and momentum over time, in particular,
jet thrust aircraft with variable mass (see [21 - 27]). Linearization of nonlinear equations
of motion of automatic control systems with respect to non-stationary behaviour leads to
the need to study linear systems with variable coefficients. Depending on the functional
features of the control system and the technical means that implement the selected control
scheme, the linearized equations have different specific features. In modern theory, when
constructing stable dynamical systems with feedback for a given program manifold, it is
extremely important to be able to determine the stability of the manifold itself with respect
to some function.

We introduce into consideration the class of continuously-differentiable on time ¢ and
bounded in the norm matrices = and define a program manifold as follows Q (¢) = w(¢, x) = 0,
which is integral for the system

i=f(t,x)— B¢, E=¢(to0), oc=P(tw, tel=][0, ), (1)

where z € R" is a state vector of the object, f € R™ is a vector-function satisfying conditions
of the existence of the solution z(t) = 0; B(t) € Z"*", P(t) € =°*" are continuous matrices,
w € R*(s < n) is a vector, p(t,0) € R" is a vector-function of control on deviation from given
program manifold satisfying conditions of local quadratic connection

P(E0) =0 A T ()OO~ K (E)p(t,0)) > 0, @
K1) < P00 < gy, Q)

[0(t) = diag||61,....0,]|]] € 27", [K(t) = KT(t)] € 27",
[Ki(t) =K' (t) >0, i=1,2] € 27"

Note, that the following estimate

251 251 2
-« < 4
[l . = llll . = [l (4)
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can be obtained from the condition (2), where (1, v1; B2, 2 are the smallest and the largest
eigenvalues of matrices POPT 9K~
In the space R™ we select the domain G (R):

G(R) = {(ta) st e IAw(t,a)] < p < o). (5)
Due to the fact that Q(¢) is the integral manifold for the system (1)-(2), we have

=02 L HT (1) = Flt,a,0),

0
where H = 8—w is the Jacobi matrix and F(t,z,w) is a certain s-dimensional Erugin vector
z
function, satisfying conditions F'(¢,z,0) = 0 [1].
Taking into account that () is the integral manifold for the system (1), and by choosing
the Erugin function as the following

F(t,z,w) = —A(t)w, (6)

where —A(t) € 2%%¢ is Hurwitz matrix and differentiating the manifold Q(t) with respect to
time t along the solutions of system (1), we get [2]:

w=—-Altw - Ht)B(t),, €=¢(t,0), o=P(t)w, (7)
p(t,0) =0 A @T(t,0)0(t)(0 — K~ (t)¢(t,0)) > 0, (8)
K1) < P00 < gy, o

Definition 1. A program manifold Q)(t) of the non-autonomous basic control system is
called absolutely stable with respect to a vector-function w, if it is asymptotically stable on the
whole at all functions w(to, zo) and ¢(t, o) satisfying the conditions (8), (9).

Statement of the problem. 7o get a condition of absolute stability of a program
manifold Q(t) of the non-autonomous basic control systems with non-stationary nonlinearity
with respect to the given vector-function w.

First, we consider the following system with variable coefficients as a linear approximation
of the system (7)-(8) with respect to the vector function w :

w=—-A(t)w, tel=][0,00). (10)

The following theorem is valid [21]:

Theorem 1. Let the Erugin function F'(¢, z,w) have the form (6). Then, for asymptotic
stability in the whole of the program manifold €2(¢) of the linear system (10) with variable
coefficients with respect to the vector function w it is sufficient fulfillment of relations

L(t) = M(t)A7Y(t) >>0AG(t) >>0 tel=][0,00),
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where G(t) is determined by the formula

dL(t)

dA~\ (1))
e -

G(t) = M(t) + MT (1) -

A7HE) — M (1)

Based on the generalized theorem of A.M. Lyapunov (see [6, p.226]), the following theorem
is true:

The Basic Theorem 1. Let the Erugin function F(t,z,w) have the form (6) and there
exist a real, continuously differentiable function V (¢, w) in the domain (5) and positive-definite
and allowing the highest limit in whole such that its derivative

dv

_ﬁ ™ = W(taw)

would be definitely positive for any function ¢(¢,0) satisfying conditions (8), (9), then the
program manifold (t) of basic control system is absolutely stable with respect to vector
functions w(t, z).

2 Absolute stability of program manifold of the basic control system

Theorem 2. Let the Erugin function F(t,z,w) have the form (6) and suppose that there
exist matrices

L(t) = L"(t) > 0, B(t) = diag (B1(t), ..., B:(t)) > 0

and non-linear function p(t,o) satisfies the conditions (8), (9). Then, for the absolute sta-
bility of the program manifold Q (t) of the non-autonomous basic control system with non-
stationary nonlinearity with respect to the vector function w it is sufficient performing of the

following conditions
hwl* <V < blwl]f?, (11)

mlwl* < W < na(flwlf?, (12)

where l1,12,m1,1n2 are positive constants.
Proof. Let there exist matrices

L(t) = LT(t) >> 0, B(t) = diag (B1(1), ..., B,;(t)) >> 0,

then for the system (7) we can construct Lyapunov function of the form

(e

V(w, &) =wl L{t)w + / ol (t,0)B(t)do >> 0. (13)
0

Taking into account the properties (4),(8), (9) and making the substitution
p(t,0) = h(t)o (0 <h(t) < K(1)),
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we obtain the estimate

h(B)llwl® < V(w, o) < b(®)|w]?, (14)

where
L) =1V + M), bt) =1D() + Aa(t);

o

M()|lw]* < /@T(t,o)ﬁ(t)dd < Aa(t) ],

0

Here 1M (t), \1(t); 1) (t), Aa(t) are the smallest and the largest eigenvalues of the matrices
L,A: A= AP(t)B(t)PT(t). The diagonal elements of the matrix A are divided by 2. On the
basis of properties (4),(8), (9) the derivative of the function (13) takes the form

—V =wTGt)w + 20T G1 ()€ + T Ga(8)€ >> 0, (15)
where

G(t) = —L(t) + AT (t)L(t) + L(t)A(t) + P(t) [N1(t) + Na(t) — N3(t)] PT(t);

Gi(t) = AT (OP()B() + LOHOB) + 550 PT (1)
Ga(t) = BOPT (O H(HA(L);

o g g

T g
[ 2Dty < [ o Katys(e)io = [ o ai(0)do

0 0 0

+/O’TM2(t)dO' =ol [N1(t) + Na(t)] o
0

[

[ Mtydo = aTNa(t)s Ma(6) = PR (POPT0) (AT OPT() - (0 Ka(0) 5

0

Ma(t) = RS LPT 0B My(0) = hit) 2.
Due to the fact that —V >> 0 the following estimates hold
@) (lwl® + IE17) < z"Q(1)z < ga(t) (lw[* + [1€]1%), (16)
where
=] & &0l =]

KAZAKH MATHEMATICAL JOURNAL, 20:4 (2020) 35-46



40 Sailaubay S. Zhumatov

q1(t), g2(t) are the smallest and the largest eigenvalues of matrix Q(¢). Taking into account
the estimates (4) from (16), we get

m@)lwl* < ~V(w,0) < ma(t) o], (17)

where

Bi(t)
vo(t)

Ba(t) ) '

); na(t) = QQ(t)<1 +

If we assume that
m = infn () Az = SUp n2(t), (18)

1 = iItlf 1 (t) A ly = sup lz(t), (19)
t

we receive estimates (11), (12).

Based on Theorem 1 and the Basic Theorem 1, we conclude: when the nonlinearity (¢, o)
satisfies the conditions (4), (8), (9), from estimates (14) and (17) it follows that conditions
of Theorem 2 hold, in case (18) and (19), then the program manifold €(¢) of the basic
control system with non-stationary nonlinearities is absolutely stable with respect to the
vector function w. Therefore, the proof is complete.

3 Absolute stability of program manifold of the indirect control system

In the class of continuously-differentiable on time ¢ and bounded in the norm matrices =
we consider the program manifold €2 (t) = w(t, ) = 0, which is integral for the system

r=f (tvx) - Bl(t)fa g = @(tva) y 0= PT(t)w - Q(t)fv tel= [Ov OO) ) (20)

provided Q(t) >> 0, where x € R™ is a state vector of the object, f € R™ is a vector-function
satisfying conditions of the existence of the solution z(t) = 0, B1(t) € Z"*", P(t) € E5*" are
continuous matrices, w € R*(s < n) is a vector, ¢(t,0) € R" is a vector-function of control
on deviation from given program manifold satisfying conditions of local quadratic connection

o(t,00=0 A 0<alp(t,o) <ol K(t)o, (21)
ki) < 220 < o), 22)

[Ki(t) = K] (t) >0, i=1,2] e 27",
K(t) = diag [|k1(t), ..., k:(t)] . K(t) >>0.

Taking into account that €(¢) is the integral manifold for the system (20), and by choosing
the Erugin function in the form (6) and differentiating the manifold (t) with respect to time
t along the solutions of system (20), we get [2]:
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{ w = _A(t)w - B(t)£7 B((t) = H(t)Bl(t)7 (23)

E=p(to), o=P(thw-Qt)¢ ’
©(t,0) =0 A 0< ol p(t,o) <ol K(t)o (24)
Ki(t) < d‘”gg") < Ks(t). (25)

Definition 2. A program manifold Q(t) of the indirect control system is called absolutely
stable with respect to a wvector-function w, if it is asymptotically stable on the whole at all
functions w(to, zo) and o(t, o) satisfying the conditions (24), (25).

Statement of the problem. To get the condition of absolute stability of a program man-
ifold Q(t) of the non-autonomous indirect control systems with non-stationary nonlinearity
(24), (25) with respect to the given vector-function w.

Based on the generalized theorem of A.M. Lyapunov (see [6, p.226]), the following theorem
is true:

The Basic Theorem 2. Let the Erugin function F(t,x,w) have the form (6) and there
be a real, continuous differentiable function of V (t,w) in the domain (5) and positive-definite
and allowing the highest limit in whole such that its derivative

av

_E (23) - W(t7w)

would be definitely positive for any function p(t, o) satisfying conditions (24), (25), then the
program manifold Q(t) of non-autonomous indirect control system is absolutely stable with
respect to vector functions w(t,x).

Theorem 3. Let the Erugin function F(t,x,w) have the form (6), Q(t) >> 0 and suppose
that there exist matrices

L(t) = L™(t) > 0, B(t) = diag (B1(¢), ..., B-(t)) > 0

and non-linear function ¢(t,o) satisfies the conditions (24), (25). Then, for the absolute
stability of the program manifold € (t) with respect to the vector function w it is sufficient
fulfillment of the following conditions

L(llwl® + 11El1%) < V < ba(llwl® + 11€]1%), (26)

gl +[1€17) < W < ga([lwl? + [1€117), (27)

where 11,12, g1, g2 are positive constants.
Proof. Let there exist matrices

L(t) = L' (t) > 0, B(t) = diag (B1(t), ... B () > O,
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then for the system (23) we can construct a Lyapunov function of the form

g

V(w, €) =wl L{t)w + /«pT(t,a)ﬁ(t)da > 0. (28)
0
T
The second term in (28) is equal to J = g hg(t)a
K(t).
For this case we have estimates:

in the case p(t,0) = h(t)o, h(t) <

L()zl* < V(w, &) < b(@)]2]?, (29)
here 11(t),l2(t) are real, positive, continuous, smallest and largest roots of the characteristic

equation det ||A(t) — I(t)E|| =0

| L) L
A@‘Hém Ly(t)

7

£

Ly(t) = L(t) + P()Ko()PT(t): - La(t) = P(t)Ko(t)Q(t);
Ls(t) = QT (t) Ko(H)Q(1);

w
) <z =

o Kalt)o = [ o030 (D) < K
0

(k) /2 . Ky

KQ (k)2

The derivative on time ¢ of this function in view of the system (23) will take the following
form

Ko(t) =

—V(w, &) =Wl Gt)w + 20T G ()€ + £7GaE >> 0, (30)
where
G(t) = AT()L(t) + L) A(t) + F(t);  Gi(t) = L(t)B(t) + 1/2F1(t);  Ga(t) = Fa(t);
F(t) = =D(t)=Ho(t)=P(t)N1(t) P"(t)—L;  Fi(t) = —=D1(t)—Hy(t)+P(t) (N () +N]) Q(t);
(

Fy(t) = =Da(t) — Ha(t) — QT () N1(t)Q(t);
D(t) = P(t)K(t)B(t)PT(t) — AT (t)P(t)Ka(t) P (1);
Di(t) = —P(t) K> (t)B(t)Q(t) — P(t)B(t) K2 (t)Q(t) — P(t)B(t) Ko (t) PT (t)B(t)
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+AT () P(O) K (1) B(H)Q(1) — P(t) (N2(t) + Ny ) Q(8);
Da(t) = Q(t)K2()B(1)Q(t) + B (t) P(t) Ka(£) B(1)Q(1) — QT (1) N2(1)Q(1);

g

/ LALIT / ol Ks(t)B(t)do = wD(t)w" +w! Di(t)€ + & Da(1)é;
0

ot
0

[

/JTM(2) (t)do = 0T N?(t)o; /UTM(l)(t)da = ol Ny (t)o;
0

[e=]

M) = h(H)QT (M) Ka()B(t);  MD(t) = ht) agit) ;

—(PT(t) = PL()A®)BHRHQ) + PORHQT ()BHR(HQ);
Ha(t) = QKB PT (1) B(t) + QT (HA(H)AHQ(E) — QT (HA(HBHQMAHQ(D).
Based on inequality (30), the following estimates are valid
a1 < =V < ga(B)lI2]I?, (31)

here g1 (t), g2(t) are real, positive, continuous, smallest and largest roots of the characteristic
equation
= = G(t)  Gi(t) H
det |G(t) — g(O)E| =0, G(t) = .
IG(t) — 9] 0=\ ay ot
If we assume that
g1 =infg(t) A g2 = sup ga(t), (32)

l1 = iIilf ll(t) Aly = sup lg(t), (33)
t

we receive estimates (26), (27).
Based on Theorem 1 and the Basic Theorem 2, we conclude: when the nonlinearity ¢(o)
satisfies the conditions (24), (25), from estimates (29) and (31) it follows that conditions of
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Theorem 2 hold, in case (32) and (33), then the program manifold 2(¢) of the non-autonomous
indirect control system with non-stationary nonlinearities is absolutely stable with respect to
the vector function w. Therefore, the proof is complete.
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YKymatos C.C. CTAIIMOHAP EMEC CBI3BIKCBI3/IBIKTAPEHI BAP ABTOHOM/IBI
EMEC BACKAPY YKYWEJIEPIHIH BATJIAPTIAMAJIBIK KOIIBEITHECIHIH, OPHBI-
KTBLIBIFBL

Crarmonap eMec ChI3BIKCHI3JBIKTapbl 0ap aBTOHOMJILI eMec backapy Kyiesepinis Oar-
JlapJjaMaJiblK, KerbeiiHeciHiH, abCOIOT OPHBIKTBLIBIFBI KAPACTBIPHLIAIbl. ANHBIMAJIBI KO3(]-
durmenTTi 6acKapy KyieJepiHiH OpPHBIKTBHLILIK, ITapTTapbl Oepijren Oarmap/iaMajblK, Kell-
OeitHe MaHaiibIHIa 3epTTE/ . CBI3BIKCBI3IBIKTAD JOKAJJIBI KBAPATTHIK, Oall/IaHbIC IIapTTa-
PBIH KaHaFaTTAHIBIPAILI YKoHe ojIap OapJblK affHbIMAJILLIApEl OOMbIHIIA auddepeHuaiia-
HaJibl. Bepinren BekTOp-QyHKIMAFA KATHICTHI OaFaapiaMaliblK, KenbeiiHeHiH abCcoI0OT OpHBI-
KTBLIBIFBIHBIH, YKETKITIKTI MapTTapbl "KBaJpaTThIK, (POpMa KOCY ChI3BIKCHI3IBIKTAH aJIbIHFAH
naTerpaa" Typiageri JIsamyHoB OyHKIMUSCHIH TYPFBI3Y apKbLIbI aJdbIHIbL. JISIyHOB dyHKIM-
SICHIHBIH, MHTEI'PAJIIBIK OOJINiHIH Oarajayiapbl ChI3BIKCHI3IBIKTEl ChI3BIKTHI (opMa TYpPiHIe
KeHlinrey apKbLIbl AJILIHIbI.

Kinrrixk cesngep. BarmapimaMasiblK KerOeiiHe, abCOIOT OPHBIKTBLIBIK, CTAIMOHAD eMec

CBIBBIKCBI3/IbIK, AaBTOHOMJIBI eMec DacKapy Kyiiesnepi, JIsamyHoB GyHKIUIAPEI, JJOKAJIB KBAI-
pPaTTHIK, OailJIaHBIC.

Kymaros C.C. YCTONYNBOCTD ITPOI'PAMMHOI'O MHOI'OOBPA3HA HEAB-
TOHOMHBIX CUCTEM VYIIPABJIEHUI C HECTAIIMOHAPHBLIMI HEJWHENHO-
CTAMU

PaccmarpuBaercs abcomioTHas yCTOMIUBOCTDL MPOIPAMMHOIO MHOTOODPa3us HEaBTOHOM-
HBIX CHCTEM YIIPABJIEHUN C HECTAIIMOHAPHBIMU HEJTUHEHHOCTSIMU. YCJIOBUSI YCTONIUBOCTU CH-
CTeM yIPaBJIEHHH ¢ TepeMEHHBIMU KO3 DUIIMEeHTAME UCCACIOBAHBI B OKPECTHOCTHU 33 aHHOTO
[IPOrPaMMHOI0 MHOTrooOpa3usi. HeJlmHeHOCTH YJIOBJIETBOPSIOT yCJIOBUSIM JIOKAJBHON KBaJI-
paTUYIHOM CBsi3UM U OHU JudDEpeHITmpPyeMbl 110 BceM IepeMeHHbIM. JlocTaTodHbie yCaOBUS
abCOJIIOTHON YCTOWYIMBOCTH MTPOTPAMMHOTO MHOT'000Pa3usi, OTHOCUTEIBHO 3a/IAHHON BEKTOP-
BYHKIMH [TOJTyIeHbI ¢ TTOMOIIBIO TOCTpoeHust pyHKuu JIsmynoBa Tumna "kBajaparudrast pop-
Ma IUTIOC mHTerpas oT mejwHednoctn". OmeHkn wHTerpaabHol dactu dyukimu JlsmyHnosa
ITOJTyI€HBI C IOMOIIBIO ITPECTABIEHNUs] HEJIMHEIHOCTU B JTUHEWHON dpopMme.

Krouesnre cioBa. llporpammuoe MHOroobpasme, abCOJIOTHAS YCTOWIHMBOCTD, HECTAIIO-
HapHasl HEeJIMHEHHOCTb, HEaBTOHOMHBIE CHCTEMBI yIIpaBjeHuit, dpyHkmun JIsamyHosa, JTOKa/Ib-
Hasd KBaJpaTUIHasd CBA3b.
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Abstract. A linear multi-point boundary value problem for essentially loaded ordinary differential equa-
tions is investigated. Using the properties of essentially loaded ordinary differential equation and assum-
ing the invertibility of the matrix compiled through the coefficients at the values of the derivative of
the desired function at load points, we reduce the considering problem to a multi-point boundary value
problem for ordinary loaded differential equations. The method of parameterization is used for solving

this problem. Numerical method for finding solution of the considering problem is suggested.
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1 Introduction

Loaded differential equations are used in solving the problems of long-term forecasting and
regulation of the level of groundwater and soil moisture [1]-[3]. Many phenomena in complex
evolutionary systems with memory substantially depend on the background of this system.
These phenomena are usually described by loaded differential equations. Note that loaded
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differential equations in the literature are also called boundary differential equations [4]. Also,
a loaded differential equation was called a differential equation that includes the values of
the desired function and its derivatives at fixed points in the domain [5]. In [6], [7], loaded
differential equations are interpreted as perturbations of differential equations. It is worth
paying attention to the works [8]-[11], where a numerical method for solving the problem of
optimal control of a system of linear, phase-variable, loaded ordinary differential equations
of the first order with the Cauchy condition and with undivided multipoint conditions is
proposed. In [12], [13], a class of loaded ordinary differential equations with non-local integral
boundary conditions is studied in terms of an abstract operator equation. In [14] numerical
solution of systems of loaded ordinary differential equations with multipoint conditions is
investigated.

When studying a moving observation point in feedback devices, essentially loaded differ-
ential equations often appear, where the order of the derivative in the loaded term is equal
to or higher than the order of the differential part of the equation. In contrast to the pre-
viously studied loaded differential equations, the loaded term in the equation will not be
a certain perturbation of its differential part [4]. Various types of problems for essentially
loaded parabolic equations and loaded equations of hyperbolic type of the first order were in-
vestigated in [4], [15]-[17]. In these works, new properties are obtained for loaded differential
equations, containing as loaded terms the values of derivatives, the order of which is equal to
the order of the differential part.

In the present paper, a linear multi-point boundary value problem for essentially loaded
ordinary differential equations is investigated. The significance is that the loading members of
the equation appear in the form of derivatives of solutions at loaded points of the interval i.e.,
the order of the loaded term is equal to the order of the differential part of the equation. The
presence of derivatives of solutions in loaded points has a strong influence on the properties
of equations.

We consider a linear multi-point boundary value problem for essentially loaded ordinary
differential equations

N
= Aoty + D 450400 + 10 t€ 0.1 (1)
N+1
> Cix(0;)=d, deR", zeR" (2)
=0

where (n x n)-matries A;(t), (i = 0, N), and n-vector-function f(¢) are continuous on [0, T,
C; (i=0,N + 1) are constant (n x n)-matrices, and 0 =0y < ;1 < s < ... <On_1 <Oy <
Ont1=T; |z| = max |z;|.

i=1n
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Let C([0,T], R™) denote the space of continuous on [0, 7] functions z(¢) with norm ||z||; =

t)|l.
i (1)

A solution to problem (1), (2) is a continuously differentiable on (0,7") function z(t) €
C([0,T7], R™) satisfying the essentially loaded differential equations (1) and multi-point con-
dition (2).

We can find the values of derivatives at the loading points t = 6;, j = 1, N, from the
system of differential equations (1). Using the system (1), we consequentially define @(6;),
j=1N:

N
(6),) — Z Aj(0r)E(0;) = Ao(Or)z(0%) + f(OK), k=T,N. (3)

Jj=1

We can rewrite (3) in the following form

G(O)n = R(9). (4)

Here G(§) = (Gp,k(e)), pk=T.N,ie.

Gp,k(e) = _Ak(ep)a p 7é k: b, k= 17 Na Gp,p(e) =I- Ap(ep)7

where [ is the identity matrix of dimension n,

’ /

= (z(el),gs(eQ),...,gb(eN)) , R(O) = (R1(0),R2(0),'~7RN(9)> ,

Rk(e) = AO(Qk’)x(Qk’) + f(ek)a k=1,N.

We assume that the matrix G(6) is invertible. Denote by S(6) the inverse matrix G(6),
ie. S(0) = [G(O)]7L, where S(0) = s,x(0), p,k = 1, N. Then from (4) we can uniquely
determine p: = [G(6)] " R(0) = S(O)R(6).

Thus, the components of the vector p allow us to find the values of the derivative z(t) at
the points t = 6;, j = 1, N.

We consider a linear multi-point boundary value problem for loaded differential equations

N
X = (i) + 3. Bi0e(t) + FO). te(0T) (5)
N+1
> Ciz(0;)=d, deR", zeR" (6)
=0
N
where Bj(t) = Zl Ap(t)spd'(e)Ao(ej), ] = 1, N,
=
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N N
F(t) = 22 > Ap(t)spr(0)f(0r) + f (D).

p=1k=1
We use the approach offered in [18]-[24] to solve the boundary value problem (5), (6).
This approach is based on the algorithms of the parameterization method [25] and numerical
methods for solving Cauchy problems.

2 Scheme of parametrization method

The interval [0,77] is divided into subintervals load points:
N+1

[O,T) = U [97’—1707")‘
r=1
Define  the space  C([0,T],0n, R*™+D)  of system functions  x[t] =
(z1(t), x2(t),...,xNn4+1(t)), where z,: [0p-1,0,) — R"™ are continuous on [0,_1,6,)
and have finite left-sided limits , ligmoxr(t) for all » = 1,N+1, with the norm
—0,—
lz[]lle = max  sup ||z, (t)]].

r=1,N+1te[0,_1,0r)
The restriction of the function z(t) to the r-th interval [0,_1,60,) is denoted by (1),
ie. z.(t) = z(t) for t € [6,-1,0,), » = 1,N +1. Then we reduce problem (5), (6) to the
equivalent multi-point boundary value problem

N
dz, -
CZ = Aoz, + Y Bj(aja(0;) + F(t), te€(6-1,6,), r=LN+1, (7)
j=1
N
Z Ciziy1(60;) + Cnyr lim xny(t) =d, (8)
“—o t—T—-0

=

, 9)

t—139r;l—0 xp(t) = xp-f-l(ap)v p=1,
where (9) are conditions for matching the solution at the interior points of partition.

The solution of problem (7)-(9) is a system of functions z*[t] =
(z1(t), 25(t), ..., w7, () € C([0,T],0n, R*"W+D) where functions z*(t), r = 1, N + 1, are
continuously differentiable on [0,_1, 6, ), satisfy system (7) and conditions (8), (9).

Problems (5), (6) and (7)—(9) are equivalent. If a system of functions Z[t] =
(T1(t), Za(t), ..., Tn41(t)) € C([0,T),0n, R*NHD) s a solution of problem (7)-(9), then
the function z(t) defined by the equalities Z(t) = z,(¢t), t € [0p—1,6,), 7 = 1,N +1,
z(T) = Hli%llo Zn+1(t), is a solution of the original problem (5), (6). Conversely, if z(¢) is a

solution of problem (5), (6), then the system of functions x[t] = (x1(t),za(t),...,rNn+1(t)),
where x,(t) = z(t), t € [0,-1,0,), r = 1, N + 1, and , 1171,11095N+1(t) = x(T), is a solution of
ST

problem (7)—(9).

KAZAKH MATHEMATICAL JOURNAL, 20:4 (2020) 47-57



Numerical solution of multi-point boundary value problems for essentially ... 51

We introduce additional parameters A, = x,(0,_1), r = 1, N + 1. Making the substitution
zr(t) = ur(t) + \r on every r-th interval [0,_1,60,), r = 1, N + 1, we obtain multi-point
boundary value problem with parameters

N
du,
= Ao()(ur + Ar) + > Bi(tAjp1 + F(t), t€[0-1,0,), (10)
j=1
ur(0r—1) =0, r=1,N+1, (11)
N
Z Cidit1 + OnyiAN+1 + Cngr Im un4q(t) =d, (12)
=0 t—T-0
Ap+ Hm uy(t) = Apya, p=1,N. (13)
t—60,—0
A pair  (u*[t],\*), with elements w*[t] = (uj(t),u5(t),....uf,(t) €

C([0,7),0n, R"VFD) A = (AL A5, ..., Avyq) € RMPFY s said to be a solution to
problem (10)—(13) if the functions w’(t), » = 1, N + 1, are continuously differentiable on
[0r—1,6;) and satisfy (10) and additional conditions (12), (13) with \; = A5, J=1N+1,
and initial conditions (11).

Problems (5), (6) and (10)—(13) are equivalent. If the x*(¢) is a solution of problem (5), (6),

then the pair (u*[t], \*), where u [t] = (a:*(t) —x*(6p), z*(t) — x*(01),...,2*(t) — x*(HN)),
and \* = (1‘*(00) *(01), ) is a solution to problem (10)—(13). Conversely, if

the pair (ﬂ[t],ﬁ):) with elements u[t] (@1 (t), ua(t), ..., un41(t)) € C([0,T7], 0, RPN+,
X= (A2, .., Ang1) € R+ g a solution to problem (10)—(13), then the function Z(t)
defined by the equalities Z(t) = Uy (£) + Ars t € [6r—1,6,), 7 = 1, N + 1, will be the solution of
the original problem (5), (6).

d
Let X,(t) be a fundamental matrix to the differential equation d—f = A(t)x on [0,_1,06,],
r=1N+1.

Then the unique solution to the Cauchy problem for the system of ordinary differential
equations (10), (11) at the fixed values A = (A1, A2, ..., An+1), has the following form

¢ N
/ XY (1) Ao(m)dr A, + Xo( / (7)Y Bj(r)drAj11
97"—1 ]:1
t) / X, Y (7)F(r)dr, te€[0.1,0,), r=1,N+1. (14)
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Substituting the corresponding right-hand sides of (14) into the conditions (12), (13), we ob-
tain a system of linear algebraic equations with respect to the parameters A, r=1,N 4 1:

Z Cidiv1 + Cny1iANy1 + O 1 X1 (T /XN+1 7)Ao (T)dT AN 11

1=0 On

T
N
+CN+1XN+1(T)/XX/+1 )Y Bi(r)drAjr
7=1

N
=d—Cny1XNn4+1(T) /XXIL(T)F(T)dTa (15)
N
0, N
Ap + X / X, T)dr A, + X,(6,) / X, 7)) Bj(r)drAin
j=1
—Apt1 = / X, T)dT, p=1,N (16)

We denote the matrix corresponding to the left-hand side of the system of equations (15),
(16) by Q.«(0) and write the system in the form

Q.(O)\ = F.(0), Xe R"W+D), (17)

T 01
where  F.(6) = (d - XNH(T)ef Xyh (7 F()dr, — X1 (61) f X7 Y(r)F(r)dr,

L —Xn(0N) f XM r)F(r)dr) .
On—1
The solution of the system (17) is a vector A* = (A], A3, ..., Ay, ) € RN+ consists of
the values of the solutions of the original problem (5), (6) in the initial points of submtervals
ie. Xi=2a2*(0,_1), r=1,N+1
Further we consider the Cauchy problems for ordinary differential equations on subinter-

vals

% = Atz + P(t), 2(0,_1)=0, telh_1,6,], r=L N1, (18)
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where P(t) is either (n x n)-matrix, or n-vector, both continuous on [6,_1,60,],7 = 1, N + 1.
Consequently, solution to problem (18) is a square matrix or a vector of dimension n. Denote
by a(P,t) the solution to the Cauchy problem (18). Obviously,

t
a(P,t) = X, (t) / X;I(T)P(T)d’r, telfp-1,0,], r=1,N+1,
97‘—1

where X, (t) is a fundamental matrix of differential equation (18) on the rth interval.

3 Numerical implementation

We offer the following numerical implementation of algorithm based on the Runge-Kutta
method of the 4-th order.

1. Suppose we have a partition: 0 = 0y < 61 < ... < Oy < Oy4+1 = T. Divide each
r-th interval [0,_1,6,], r = 1, N + 1, into N, parts with step h, = (6, — 0,—1)/N,. Assume
on each interval [9}:_1, 0], r=1,N+1, the variable 0 takes its discrete values: 6 = 0,_1,
0=0,_1+hy, ... 0 =0,_1+ (N, — 1)h,, 0 = 0,, and denote by {0,_1,0,}, r =1, N + 1, the
set of such points.

2. Solving the following Cauchy problems for ordinary differential equations

% = Ao(t)z + Ao(t), 2(9,_1) =0, te [01_1,97«], r=1N+1,
dz o
P = Ao(t)z + Bj(lf), z2(0,-1) =0, te0-1,0;], j=1,N,

Z = Az +F(t),  20,-1)=0, te€[b1,6], r=1N+1L,

by using the Runge-Kutta method of the 4-th order, we find the values of (n x n)-matrices

~ ~ ~

ar(Ao, ), ar(Bj,0), j =1,N, and n-vector a,(F,0) on {6,_1,0.}, =1, N + 1.
3. Construct the system of linear algebraic equations with respect to parameters

Q" (0)A = F'(6), X e RMNHD. (19)

Solving the system (19), we find M. As noted above, the elements of A* = (A, \B/ . )\’]{[_H)
are the values of approximate solution to problem (5), (6) in the starting points of subintervals:
2 (0,_) =\ r=1,N +1.

4. To define the values of approximate solution at the remaining points of the set
{0,-1,0,}, r =1, N + 1, we solve the Cauchy problems
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2(O1) =N, telb_1,6], r=1,N+1.

And the solutions to Cauchy problems are found by the Runge-Kutta method of the 4-th
order. Thus, the algorithm allows us to find the numerical solution to the problem (5), (6).
We can see that the solution of boundary value problem (5), (6) is also a solution of boundary
value problem (1), (2), when the matrix G(0) is invertible.

To illustrate the proposed approach for the numerical solving linear multi-point boundary
value problem for essentially loaded differential equations (1), (2) on the basis of parameter-
ization method, let us consider the following example.

4 Example

We consider a linear multi-point boundary value problem for essentially loaded differential
equations

3
&= () + 3 A06) + 1), 1€ (0. (20)
4
Y Cix(6;)=d, deR? =zcR. (21)
=0

wo=(5 M) aw=(y 1) =5 ).

(0 t41 (2 —4 (31 (4 -6

A?’(t)_(t?’ 5t>’ CO_<6 —1)’ Cl_(o —3>’ C2_<9 3)’
2 1 -6 2 3e 4 4e? + 23 — 6t — B

C3_<5 —3)’ C4_<8 3)’ d‘( 9e2+5e3+864+%’18 ’

£(t) = det! — Bt — de — 4te? 4 3% — 3t3 — 5t — tPet
—\5t? —8e'lt — 8e — 12te? — 59t — 613 — 4133 — 2 )

We use the proposed numerical implementation of algorithm for solving (20), (21). Accuracy
of solution depends on the accuracy of solving the Cauchy problem on subintervals. We pro-
vide the results of the numerical implementation of algorithm by partitioning the subintervals
[0,0.25], [0.25,0.5], [0.5,0.75], [0.75, 1] with step h = 0.025.

The results of calculations of numerical solutions at the partition points are presented in

Table 1.
. - ett + 5t
The exact solution of the problem (20), (21) is z*(¢) = 2y )
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For the difference of the corresponding values of the exact and constructed solutions of
the problem the following estimate is true:

Table 1. Results received by using MathCad15.

max [2*(t;) — #(;)]| < 0.0002.

§=0,40

t 71 (t) Za(t) t 71 (t) Ta(t)
0 1.000053121 0.000016266 0.5 9.889091935 -0.249985381
0.025 1.230222697 -0.024353848 0.525 10.791205222 -0.249364093
0.05 1.471453221 -0.047474822 0.55 11.775048257 -0.247493163
0.075 1.724907995 -0.069346569 0.575 12.849216621 -0.244372621
0.1 1.99187266  -0.089969009 0.6 14.023209899 -0.240002504
0.125 2.273768066 -0.109342072 0.625 15.307526754 -0.234382854
0.15  2.572164491 -0.127465695 0.65 16.713770002 -0.227513725
0.175 2.888797358 -0.144339823 0.675 18.254762737 -0.219395173
0.2 3.225584605 -0.159964406 0.7 19.944676666 -0.210027267
0.225 3.584645878 -0.174339402 0.725 21.799173942 -0.199410088
0.25 3.968323749 -0.187464777 0.75  23.835563921 -0.187543725
0.275 4.379207157 -0.199340499 0.775 26.072976392 -0.174428284
0.3 4.820157324 -0.209966545 0.8 28.532553035 -0.160063889
0.325 5.294336387 -0.219342897 0.825 31.237659013 -0.144450679
0.35 5.80523905 -0.22746954 0.85 34.214116814 -0.127588821
0.375 6.356727557 -0.234346466 0.875 < 37.49046469 -0.109478506
0.4 6.953070347 -0.239973672 0.9 41.098242268 -0.090119958
0.425 7.598984775 -0.244351158 0.925 45.072306212 -0.069513439
0.45 8.299684327 -0.247478931 0.95 49.451179069 -0.047659257
0.475 9.060930792 -0.249357 0.975 54.277434806 -0.024557777
0.5 9.889091935 -0.249985381 1 59.598124901 -0.000209426
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Kapip6acsa K. M., Kapakenosa C.I. EJTEVJII TYPJIE *KYKTEJITEH KOl TUODE-
PEHIIMAJIIBIK TEHEVJ/IEP YIITH KO HYKTEJI IIETTIK ECENTIH CAHIBIK
IIEIIIMI

Eneyni Typae )xykrenren xkoii auddepeHnuaIblK, TeHIeyIep YIIiH ChI3bIKTHIK, KOII HYK-
Tesli MeTTIK ecen 3eprTenei. 2KyKTeareH kot nuddepeHnnalablK TeHIeyIiH KacueTTepin
Mmaii1ajafa OTBIPBIN KOHE KYKTEy HYKTeJepireri izmesmingl yHKIUSIHBIH TYbIHIBICHIHBIH
MOHIEePiHiH Ko3dduinenTTepi OOMBIHINA KYPACTBIPBLIFAH MAaTPUIIAHBIH, KAWTHIM/IBLIBIFBIH €C-
Kepe OTBIPLII, KAPACTHIPBIIT OTBIPFAaH €CEITi KYKTEJTeH XKoil auddepeHnuaiaplK, TeHIeyaep
VIITiH KOIT HYKTeJ IMeTTIK ecenTKe KeTipemis. Byt ecerrti ety yImiH mapaMeTpJey 91ici KoJ-
JaHbLIa bl KapacThIpBUIBIT OTBIPFAH €CEITIiH IMeriMiH TaOyIblH, CAHIbIK O/1iCi YChIHBLIFaH.

Kinrrix ceznep. Eneymi Typae »xykrenared auddepeHInaIabK TeHIeY, KOl HyKTel IapT,
mapaMeTpJey 9Iici, aJIrOPUTM.

Kamup6aesa 7K. M., Kapaxenosa C.I'. YICJIEHHOE PEHIEHUE MHOI'OTOYEYHOI
KPAEBON 3AJJAYN [1J151 CYHIECTBEHHO HAT'PY2KEHHBIX OBBIKHOBEHHBIX
JNOOEPEHINAJIBHBIX YPABHEHUI

Uccrenyercst inHeiiHAsST MHOTOTOUETHAST KpaeBasl 3a/1a4da, JJIsl CYIIeCTBeHHO HATPY KEHHBIX
OOBIKHOBEHHBIX I PepeHInaIbHBIX ypaBHeHud. Vcomb3yst ¢cBOMCTBA CYIIECTBEHHO Harpy-
JKEHHOT'0 OOBIKHOBEHHOTO JnbdepeHInaaIbHOr0 ypaBHeHU U JOIMYCKas 00paTUMOCTb MaTpPHU-
IIbI, COCTABJIEHHOW MO KO3(MUIMEeHTaM MIPU 3HAYEHUAX ITPOU3BOIHON MCKOMOH (PYHKIUU B
TOYKAX HAUPY3KH, MbI CBOJIMM PaCCMATPUBAEMYIO 3aJla9y K MHOINOTOYEYHON KpaeBoil 3ajia-
e JJTsT Harpy»KeHHOT'0 OOBIKHOBEHHOTO AudPEepeHITNAILHOTO YpaBHeHus. s perenus 3Toit
IpOOJIEMBI UCIIOJIB3YeTCsT MeTOJ, apamMerpusanuu. [IpeioxKen 9uc/IeHHbI METO] HAXO0XK/1e-
HUSI PENIeHns PacCMaTPUBAEMON 38 atM.

Kurouespie cioBa. CyinecTBeHHO HarpykeHHoe nuddepeHInajibHoe ypaBHEeHIe, MHOTOTO-
YeqgHOe YCJIOBUE, METOJI, MapaMeTPU3aIlnN, aJITOPUTM.
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Abstract. In this paper, we consider a boundary value problem with essentially nonlinear two-point
boundary conditions for a system of linear differential equations with a delay argument. To study
this problem, we use the parametrization method of D.S. Dzhumabaev with a modified algorithm.
The application of the parametrization method leads to a nonlinear operator equation, which is solved
using the amplification of the sharper version of the local Hadamard theorem. A theorem on sufficient

conditions for the existence of an isolated solution of the problem is proved.
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1. Introduction

Due to applications in physics, biology, epidemiology, and so on, much of the literature on
lagged differential equations has focused on the existence of a periodic solution, oscillation,
and so on. In [1], using the parametrization method [2], necessary and sufficient conditions
for the existence of an isolated solution of a periodic boundary value problem for a system of
nonlinear differential equations with a delay argument are established in terms of the initial

2010 Mathematics Subject Classification: 34B15; 34K06; 34K10.

Funding: This research is funded by the Science Committee of the Ministry of Education and Science of
the Republic of Kazakhstan (Grant No. AP08956612).

© 2020 Kazakh Mathematical Journal. All right reserved.



On conditions of solvability of a nonlinear boundary value problem... 59

data. In recent years, there has been a growing interest in boundary value problems for
differential equations with delay, see, for example, [3-11].

The importance and variety of applications served to increase interest in the theory of
boundary value problems for differential equations with a delay argument, and the develop-
ment of computer technology and its comprehensive application in applied problems presented
new requirements for the developed methods, paying special attention to their constructabil-
ity and feasibility.

One of the constructive methods widely used for the study of boundary value problems
for differential equations is the parametrization method. In this paper, on the basis of one
modification of the parametrization method algorithms, sufficient conditions are obtained
for the existence of an isolated solution of a boundary value problem for a system of linear
differential equations with a delay argument that satisfies essentially nonlinear boundary
conditions.

2. Material and methods

We consider a nonlinear boundary value problem for a system of differential equations
with delay argument

dx

i A(t)z(t) + B(t)x(t — )+ f(t), z€R", te(0,N7), 7>0, (1)
z(t) = diag[z(0)] - (t), ¢ € [-7,0], (2)
9(x(0),2(N1)) = 0, 3)

where (n x n)-matrices A(t), B(t) and the function f(¢) are continuous on [0, N7|, ¢ :
[-7,0] — R™ is a continuously differentiable function such that ¢;(0) = 1,47 =1 :n, 7
is a constant delay, ||A(t)]| < «, ||B(t)|| < 8, where «, [ are constant.

The solution of the boundary value problem (1)-(3) is a continuous on [—7, N7|, con-
tinuously differentiable on [—7,0) |J(0, N7] vector function z(t) that satisfies the differential
equation (1) and has values z(0), x(NT), for which equalities (2), (3) are valid.

Introduce notation:

N
A is a partition of interval [—7, NT) = U [tr—1,t,) by points ts = s7, s = —1, N;
r=0
C([-7,N7], R™) is a space of continuous on [—7, N7] functions z : [-7, N7] — R"™ with
the norm ||z|; = max |jz(¢)|];
te[—7,N7]

C([0,N7],7, R™) is a space of function systems z[t] = (z1(t), z2(t),...,zx(t)), where
the functions x,(t) € C[t,—1,t,) have a finite limit . litm OxT(t) for all r = 1: (N —1) with
—tp—
the norm ||z[]|]2 = max  sup |z, (t)];
r=1:N te[trfl,tr)
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C([-7,N7],7,R*"™+D) i a  space of function systems  x[t] =
(xo(t),z1(t), z2(t),...,on(t)), where the functions z.(t) € C[t,—1,t,) have a finite

limit lim x,(t) for all » = 0 : N with the norm ||z[]||]s = max sup |z.(¢)|;
t—t,-—0 r=0:N

LE(tr—1,tr
C([-7,(N — 1)7],7,R™)) is a space of function systems z[t] = (zo(t — 7),z1(t —
7). xN—1(t — 7)), where the functions z,(t) € Clt,_1,t,) have a finite limit . litm Omr(t)
—tp—

for all » =0: (N — 1) with the norm ||z[]||l4 = max sup |z_i14,(t — 7).
r=1:N tE[tT71,tr)
We denote the restriction of function x(t) to [t,—1,t.) by z.(t), r = 0: N, and reduce

problem (1) - (3) to the equivalent multipoint boundary value problem

d"";t(t) — AWz (1) + Bl t—rpr(t =)+ f(D), tE€[brt), r=1:N,  (4)
volt) = diagler (0)] - (1), ¢ € [t1,to], )

g (1000, i on(0) =0, (©

Jim 5 () = 2 ), s=1: (N 1), 7)

where (7) are the conditions for matching the solution at the interior points of partition of
interval [—7, N7].
Solution to problem (4)-(7) is a function system

' [t] = (@§(t), @1 (8), 23(1), ... 2N (t)) € C([=7, N7, 7, R"NFD),

with continuously differentiable on [t,_1, ¢,) functions 2 (t), r = 0 : N, that satisfy the system
of differential equations with delay argument (4) and conditions (5)-(7).

Boundary value problem (4)-(7) is equivalent to the multipoint boundary value problem
with parameters

W) _ AW+ O BOOrsrbuoas (=TS0, L€ t), T=1:N, (§)
up(tr—1) =0, r=1:N, (9)

Ao + uo(t) = (I)(t) “A, tE€ [tfl, to], UO(tfl) =0, (10)

g(A, An41) =0, (11)

)\T—i-t_l)itm_our(t) =M1, T7=1:N, (12)

where A\, = z,(t,—1), r = 0: N, Ayy1 = lim xn(t), vy (t) = x.(t) — A\ at ¢ € [t,—1,t,),

t—tny—0

r=0:N, ®(t) = diag[p(t)], t € [t_1,t0)].

KAZAKH MATHEMATICAL JOURNAL, 20:4 (2020) 58-73



On conditions of solvability of a nonlinear boundary value problem... 61

Let us introduce into consideration the linear operator [12, p. 145]

t 0 t T1 Tj—1
X (t)y=1+ /t A(ry)dm + Z/t A(Tl)/t A(mo) .. / A(rj)drj ... dradr,
r—1 j:2 r—1 r—1

tr—1
telt,_1,t,), r=1:N,
where [ is the identity matrix of dimension (n x n). Operator X, (t) satisfies the problem

X,
dt

ADX,,  Xo(tr1) =1, teltr_1,t,), r=1:N.

It is easy to check that X !(t) exists and

= X YA, XMt =1, te€t_i,t,), r=1:N.

For fixed values of parameter A, using the notation
! 1
ar(Pyt) = Xi (1) X, (§)P(&)de,

tr—1

br(uflJrr(')’ T, t) = XT(t) Xr_l(g)B(g)uflJrr(g - T)d§>

tr—1

we write down the unique solution to the Cauchy problem (8), (9) as
Ur(t) = ar(Aat)/\r+ar(B7t))\—1+r+br(u—1+r(')77—a t)+ar(fa t)7 te [tr—lat'f)a r=1:N, (13>

and compose a system of functions v[t] = (ug(t),u1(t),ua(t),...,un(t)).
From (13) we define . litmour(t), r = 1: N. Based on (10)-(12), we write down the
—tr—

system of nonlinear equations with respect to unknown parameters
Qun, (1,0) =0, 1= (N0, A, A2, AN, Avg) € RPVF2D 0 X = (A, Mg, ..., An) € R,
where the operator Q. a, (1, v) has the form:

T- (7)\0 + (I>(t_1) . )\1)
7+ g (A, An41)
Q ( 1}) o a1(B,t1)Xo + (I +a1(A,t1) 1 — A2 + b1 (uo ("), 7, t1) + a1 (f, t1)
# A V)= as(B,t2)M1 + (I + as(A, t2)) A2 — A + bo(us (-), 7 ta) + az(f, ta)

an(B,tn)An—1+ (I + an (A tN)AN — An41 + v (un—1(), 7 tN) + an(f, tN)
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Condition A;. Suppose that
(1) system of nonlinear equations Q. A, (¢, 0) = 0 has solution

,U,(O) — ()\(00)’/\(0) ) )\(0) ) e Rn(N-i—Q);

1 27 AN+1

(i) v (1) = A + o) - A0 e [ty 1),
(7i7) the Cauchy problem

du,(t)
dt

— ABANO +u, (1) + BOA), + f(1), te[trit), r=1:N,

ur(tr_l) :()7 r=1 :N,

has solution !’ ( )= (A t)AﬁO) + ar(B,t))\EO%H +a,(f,t),t € [tr_1,t,), r=1:N;
(i) VO] = (ul (0), ut” (1), 0 (), ..., uly (1)) € C([~7, N7],7, RPNVHD),
By () = ()\((]0) \O A§3)+1) € RN+ an

vO[t] = (u((]o)( t),u 0) t),. ull )( t)) € C([-7,N7), T, R™WN+1)) we define the piecewise con-
tionuous on [—7, N T] nctlon

2O () = A @4 at tefto1t,), r=0:N,
/\58)+1 at t=tn.

Choosing the numbers py > 0, p, > 0, p, > 0, we compose the sets:

S, pa) = {p= (Ao, M, Angr) € RV || — O = oo ||)‘ =2Vl < pat

SO, pu) = {v(t) € C([=7, N7], 7, R* V) o | (0 = oD)[]||5 < pu},
S(@ (1), p) = {(t) € C([=7, N7, R") : ||z — 2Ol < p.},
Golpx, p) = {(wi,wz) € R [[wy =2 @(0)]| < i, [lwz — &P (NT)|| < po}.
Condition B. Suppose that function g(w;,ws) is continuous in Go(px, pz) , and has

uniformly continuous partial derivatives g;, (w1, ws2), g, (w1, w2) and inequalities

sup 190, (w1, wa)|| < L1, sup |9, (w1, wa)|| < Lo,
(w1,w2)€Go(px,Pz) (w1,w2)E€Go(px,Pz)

where L1, Lo are constant, hold.

Let us assume that condition A, is satisfied. By pu(®) = ()\(()0)’ )\go)’ e ,)\5\%1) e RUN+2)
and v(O[t] = (uéo) (t),ugo) (t),... ,ug\?) (1)) € C([-7, N7],7, R*™+1)), we define the sequence
(u®) v ®)[t]), k =1,2,..., according to the following algorithm:
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Step 1.
a) From equation Q. A, (11,v(?) = 0 we find

1 1 1 n
pO = A A e RTVH)

i

b1) evaluate u(()l)(t) = —)\(()1) + o(1) - )\gl), tet_q,tol;
by) from the Cauchy problem

du,(t)
dt

= A OD +u () + BN L+ u =)+ f(B), € [trmistr),  uptir) =0,

we find function u” (t),r=1:N;
bs) compose the function systems

U(l)[t] = (U(()l)(t),u(ll)(t), e ,ug\lf)(t)) e C([-7, N1, 7, Rn(N+1))’

uD[H] = (Wt =), alV (= 7), .l (=) € O, (N = Dr], 7, R™).

Step 2.
(a) From equation Q. A, (1,vV)) = 0 we find

N(2) = ()‘62)7 )‘52)7 SRR) )‘g\Qf)Jrl) S Rn(N+2)

b1) evaluate u'2) () = —AP + ®(t) - M2 ¢ € [t_y, to];
by) from the Cauchy problem

du,(t)

i = AOCD +u @)+ BOOA  Aul ()0, tE [fort), ur(te) =0,

we find the function u'” (t),r=1:N;
bs) compose the function systems

1)(2) [t] = (u(()2)(t)7u§2) (t), o 7u§3) (t)) c C([—T, NT],T, Rn(N+1))7

w1 = (WPt —7), Pt =7),. WD (= 7)) € O([—7, (N = D7), 7, R*™M).

And so on.
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3. Main results

The sufficient conditions for the feasibility and convergence of the proposed algorithm,
which simultaneously ensure the existence of an isolated solution to the multipoint boundary
value problem with parameters for the system of differential equations with delay argument
(8)-(12), are established by

Theorem 1. Suppose that under partition A and some numbers py > 0, p, > 0, py > 0, the

aQ*’gT (1, 0) : RUNH2) o RUNT2) s inwertible
w
for all (u,v[t]) (e S, py), v[t] € S@Ot], p,) and the following inequalities are valid:

(P biy o,

2) Q*(AT) = ’Y*(AT)BTQCW max {Lt max ] H(I)(t)Hv 1/'7*(AT),604T — 1,57-80”—} <1,

[t—1,to

Y« (A7) BTe”
3 SN
) ~ (87
_2\2r) 0.
1) TR O <,
5) px+ pu < pa-

Then the sequence (), v®[t]), k € N, with ) € S(u®, p)) and v*) € SWO[t], p,),
determined by the algorithm, converges to (u*,v*[t]), the isolated solution to problem (8)-(12),
where p* € S(u®, py), v*[t] € S(WO[t], pu) and the following estimates are valid:

(Ar)

conditions A,, B are satisfied, Jacobi matriz

[ la < px,

I(v* =" N[5 < %H(u(k) — a4, (14)
I — p®)| < 1— = V(A )f)T;TemH(“(k) — u D)l (15)

Proof. By the partition A;, we pass from problem (1)-(3) to the equivalent mul-
tipoint boundary value problem with parameters (8)-(12). We take any (u,v][t]), where
pe Su®, py) and v[t] € S(Ot], py), then

A = A () = O < A = A2+ () = wO @) < pa+ pu < o

teftr1,tr), r=0:N.
The solution to problem (8)-(12) will be sought according to the proposed algorithm.
Suppose the condition A, holds. Let us set (¥, v(O)[t]) as the initial approximation to
the solution of problem (8)-(12). The next approximation by parameter is found from the
equation
Qua, (o) =0, pe RMNT2),
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By the conditions of the theorem, the operator Q. . (11,09 in S(1(9), py) satisfies all the
assumptions of Theorem 1 [13]. Choosing the number gy > 0 satisfying the inequalities

7 (A7)

1
- 0) ,(0)

507*(AT) <

0Q.a, (11, 0)

B\ in S(u?, py), we find

and using the uniform continuity of the Jacobi matrix
do € (0,0.5p,] such that

HaQ*,AT (1, 0)  0Qu, (f1,01)

o ou H < €0

for any 1, i € S(u(, pr) at [lu — a| < do.

Choosing a1 > ap = max{1,7.(A.)]|Qua, (1, v)|/8}, we construct an iterative
process:

u10) = 40,

m m 9Qu,a, (1 )\ 71 m (16)
pmaD = g )—a%( Dz )) Qun, (™ O) i =0,1,2,....

o

According to Theorem 1 [13], the iterative process (16) converges to u) € S(u(®, py), the
isolated solution to equation Q. A (i, v(0) =0 and

1D = 1O < (A Qe (1, 0 O] < 7u(Ar) mae (), (), 7,1,

< % (An)Bre® max  sup  [Jul)L (¢ — )| = 1 (A0)BreeT [u@ ]y < pa.
T—IZN te[trfl,tr)

(17)

Note that the components of the function system v(O)[t] = (u(()o) (1), ugo) (t),... ,ug\?) (t)) satisfy
the inequalities

@1 < MO+ 8@ - MDY, ¢ e [t to),

Hu&o)(t)H < max {e®” — 1, 87e®7} |uO| + 1™ sup ||f(t)|, t€ [tr_1,t;), 7=1:N.
te[tr—htr)

Under our assumptions, the Cauchy problem

du,(t)

22 = AOAY +ur (0) + BOO, + a0 =0) 4 f(0), teltrait), r=1:N,

ur(trfl) :0, r=1 :N,
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ar(AONY + an(B O 4 el ()7 0) + an(11),

has the unique solution ur =
(t) = )\(1) + O(t) - >\§ Vatt e [t_1,t0]. Taking into account

(1
t€tr—1,t), r=1: N, and y;
(17), we establish that

)
(1)

lu” (8) — ul @)1 < A = AN+ @) - (1A — AL

SmaX{l, max H‘P()H}Ilu el

tE[tfl,t()]

Smax{l, max ch(>r}w(AT)ﬁTe“Hu@)LHu, Le o),

te[t 1,t0]
ulD (t) = u@ @) < lar(A, )] - XD = 2O + [lap(B, )| - AL, = Al
b (%, (), 7, 1) < max {eT — 1, Bre®T} - ) — pO)]

0)
+/7e” max  sup Hu(_ (t—1)
r=1: Nte[tr—latv“) s

< B7e® max {1, v, (A,) max {e®” — 1, B7e7 1} [[uO[] ||
< 7 (A BT max {1/7.(A), e — 1, Bre® H[uO[|l4, t€ [tr_1,tr), r=1:N. (18)

Thus, for the difference between function systems v(M[t] = (u(()l)(t),ugl)(t), . ,u%) (t)) and
vO[t] = (u(() )( t), (0)( t),... ,ug\?)(t)), we have the estimate:

@) — O] < ma; ma; u(l) t) — u(o ma; su uﬁl) t —uﬁo) t
I s < masc{ e 467 (®) = uf” @) . sup () =l 01}

< (A [ [lla < pu,

ie. v[t] € SWOt], py).
It follows from the structure of the operator Q.a, (p,v) and the equality
Q. (1M, 0®) =0 that

Y (A )HQ* A (p @ U U)H = 7«(A T)”Q*,AT (N(l)av(l)) - Q*,AT(N(I)aU(O))H
< (A7) max [or(ul), —u) ()7 0]

< Y (A7)BTe*” max  sup Hu(_liJrr(t —7)— u(_ohr(t — 1)
T=LN telt, 4 t,)

< (A Bre|[(ut) — ul)[ 4,

where uV[t] € C([—7, (N — 1)7], 7, R™™)).
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If € S(uM, p1), where p1 = (AN Qu.a, (), M)][, then by virtue of inequalities 2),
3) of the theorem and (17), (18), we get the estimate

i = 1O < e = O+ 1D = O < 7 (D) [Qut, (1D, D) 4+ D = ]

Y« (A7) BT

0.
1— Q*(AT) H'LL HH4 < Px,

< (A7) BTe (4 (A7) + Dl lla <

ie. S(u®,p1) € S(u©, py).
The operator Q. a. (1, v™) in S\, p1) satisfies all the conditions of Theorem 1 [13].
Therefore, the iterative process

p20 = M,
80, (Q,m)y (1) -1
pemt) - — pem) 1 (02nacGERE0) T o (w2, 0W), m=0,1,2,..,
converges to u? = ()\(()2), )\52), )\9), . )\5\2,), /\§\2,)+1) e S(uM, p1), the isolated solution of the

equation Q, A, (11,v") = 0, and

1@ = 1O < (AN Qu,a, (1M, 0 M)

This and (19) imply the inequalities
112 = O] < (A BreT || (ul) = wl )[4,
0 — o5 < oA @D ~u®)Ta < g AN o) s < G2(A)JuO s
[0 — oy < o ~ oDl + o ~ o

gx(Ar)

O)1.
Ay s < o

< (@2 (A7) + (A [[u ]l <

ie. v@[t] € S(Ot], pu).
Assuming that (u*=1 v#=D[#]) is determined here p*=Y ¢ S(u®, py), v* D[] €
C([-7,(N —1)7],7, R™)), and the following estimates are set:

”,U(k_l) - N(k_z)” < 'Y*(AT)ﬁTeaTH(u(k_m - u(k—3))[_]”47 (20)

o0 = o2y < g (A D — u )] )

The k-th approximation in the parameter A(*) is found from the equation Qun, (1, v(k_l)) = 0.
Using (20), (21) and equality Q. a, (u*~D, v =2)) = 0, similarly to (18), we establish the
inequalities

Yo (AIQu,a, (D, D) | < (A7) Bre T (D — w4 (22)
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Let us take pp_1 = Y(Ar)[Quna, (u* D 0| and show that S(u*~1, p._1) C
S(19, py). Indeed, in view of (20)-(22) and condition 3) of the theorem, we have:

T R e e e I e T R [ A

< prm1 + (7(A0) Bre ) 2 — 1O 4 (1 (A7) Bre®) 2 —n O 4 6D = 1)
< (((AR)BTE T 4 (1 (A7) Bre®™) 2 (1 (A7) Bre) 3 4L+ 1|t — O

< V5 (A7) BTeT ||u(0) [la < Vs (A7) BTe”

< 22U 1O 14 < pa.
T (A)Bre Toqa, e
Since Qi a, (1, v* D) in S(u*~1), p;_1) satisfies all the conditions of Theorem 1 [13], then
there exists u¥) € S(u*=1 pp_1), the solution of the equation Q. a, (11, v*~Y) = 0, and the
estimate

1% = 1D < (A Qe (71 0D (23)
holds.
The Cauchy problem
derlt) _ A1y 0® L, () + BOOE) i £), t€[tr,t =1:N
== AOE 4 (1) + BOOS,, + T )+ 10, b€t r=1:N,
ur(tr_l):() 7":1:]\7,
has a unique solution u(k)( t) = ar(A, )\ ™ 4 ar(B, t))\(kl)M + b,«(u(_kljrlg('),ﬁ t) + a-(f,1),
t € [trorty), T = 1 . N, and ug>() = —)\()+<I>() AF at e [t to]. I pp =
Yo (AP || QA (,u(k ®)|| = 0, then Q.a, (u*,v*) = 0. From this we obtain the equal-
1t1es

A+ a6y = o) AP, re gt

o0 AE,) =0,

k
)\ﬁk)+t_l>1glou(k)(t):)\£+)l, r=1:N,
i.e. (u® v®)[t]) is the solution to problem (8)-(12).
Using (22) and (23), we establish the estimates:
1% = N < (D) BreT(| (@ — w2y, (24)

o — o EDly < gAY = w2l < g (A [ED o ED) s, (25)
o) = v@lls < o® — oEDlfg 4.+ oD —

< (@A) + oo+ (A Ol < %uuww <pu, VO[] € SO pu)-
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It follows from inequalities (24), (25) and ¢.(A;) < 1 that the sequence of pairs
(), v ®)[t]) converges to (u*,v*[t]), the solution of problem (8)-(12), as k — oo. More-
over, by virtue of inequalities 3), 4) of the theorem, p®) e S(u(o),p)\), k € N, and
v®[t], v*[t] € S(Dt], pu). In inequalities

(A7) BreoT -
a7 = %w<1X§A£$;WTﬂ—hﬂAﬂ&#ﬂ%WM“—uw”MN%

q(Ar)
< m(l (AN (@™ —u®=D) |4,

passing to the limit as p — oo, we obtain estimates (14), (15).

Let us show that the solution is isolated. Let (z,v[t]) be a solution to problem (8)-(12),
where 11 u € S(p ©), py), O[t] € S( O], pu). Then there are numbers §; > 0, d2 > 0 such that
17— 1O +61 < pa, [T — 0O ]lls + 62 < o 1F 1 € SG51), vlt] € S@[H], 52), then by
virtue of the inequalities

”(U(k+p) _ U(k))[.]

e — O < e = Bl + 17— 2O <81+ 17— 1 < ppy

(v — v ) lls < [0 = B)[lls + 1@ = v ) [lls < 82 + 1T — v ) [lls < pu,
pe S(u®, py), vft] € SO, pu), ie. S, 61) € S, py), S@[t],d2) € SO, pu).
Take a number € > 0 such that

* AT ar 1- * AT
%max{l, max ||<I>(t)|],$

e (A7) < 1,
7(A) teft—1,to] Y (Ar)

,eT — 1,6‘”57‘} <1
aQ*7AT (M’ /U)
- N On I
for all p € S(,01), v[t] € S(ﬂ[t],&z). Therefore, there exists 6 € (0, min{dy, d2}], for which

H 0Q, A V) 0Qua,
au

Note that if (jz, v[t]) is a solution to problem (8)-(12), then the equality Q. A (fz,v) = 0 holds.
Let (f1,0[t]) be another solution to problem (8)-(12), where i € S(f1,0), v[t] € S(v[t],9).
Since Q«.a, (11,7) = 0 and Q4 A, (I, V) = 0, then from the equalities

~ ~ 0 * ~;~ -1 ~ o~ ~ ~ 0 * .,-~;~ -1 PPN
uzu—(W) Qx,a, (1, ), uzu—(W) Qx4 (11,0)

The condition B and structure of the Jacobi matrix imply its uniform continuity

H <& weS@Gio), ot € S@E,0).

it follows that

=)

1 -
<8Q*A 10/<5Q*A (B +0(p — 1), v) aQ*%;L(“’U)>d9 (7 — 1)
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8Q*7Ar(ﬁ35) -1 - .
_<T) (Qua, (1,7) = Qu . (11,0)),

from where A
~ ~ ")/* r o R
_ < 77 _

Y4 (A7) " R
< - A N —
= T em(A,) rmiN {”b?"(“*“ Ui, T tr)ll}

V(Ar)Bre™ o Y (Ar)BTe”
< WH(U —a)[][ls < m”(v —0)[ls- (26)
Since the components of function systems v[t] = (up(t),ui(t),...,un(t)) and v[t] =

(up(t), ui(t),...,un(t)) satisfy the equalities

Uo(t) = —Xo+®(t)- A, tE[t1,to], TUo(t_1)=0,

dﬂ;t(t) = A + (1) + BOY Aty + Uorir(t — 7)) + f(t), t€ [ty tr), r=1:N,
ar(tr—l) - 0, r=1: N, (27)
and ~ -

Uo(t) = —No+ ®(t) - A1, t€t_1,tg], Tolt_1) =0,
dac;t(t) = AWM + 0 (1)) + BO A1 + Gt (t — 7))+ f(1), tE [tr_1,t), 7=1:N,

we get:

() = @o ()| < Ao = ol + max @) - A — M| < maX{la max H‘P(t)H} [ — ul
tet—1,to] te

—1,t0]

« AT aT _ N
SZ&XmeM%%%ﬁﬂWW%W—MW&tGMMd (20)

It follows from the Cauchy problems (27) and (28) that

) =0l < [ oI =M+ 130 ~ Tl de

t ~ ~
[ (IR = ool i€ = 7) = B (€ - D)6t froastr)r = 15N,

tr—1
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whence, by the Gronwall-Bellman lemma, we have the inequality

I (&) = @ ()l + 1% = Xl < (1% = 3

T (T U N T S ) 5 R

tr—1

t € tr—1,t;), r=1:N,ie.
() — (@) < (€27 = 1) A = Al + €27 BrAtr — Aoir

+e°”57t s [t (t = 7) = U1gr(t = 7)|
Eltr—1,tr

< max{e®” — 1, fr}||p — pll + 7B (u —w)[ 4

< max(e" - 1,677} EDTEL G~ D)1 + 7T - D)l
Mma}( 1= en(Ar) e —1,eBr o ||[(v—0)[
< PO i [T e g e G- ol o0)

t € tr—1,t,), Tr=1:N.

From the fact that ||(v—2)[]||ls = max sup |u,(t) —u,(t)]|, and inequalities (29) and
r=0:N tE€[tr_1,tr)
(30) hold, the next estimate

1@ =0)[lls

/Y*(AT)BTBQT 1-— 67*(A7’) aT aT ~ o~
ST Ay 1 o), ——=2—T7 1 N
B 5'7*(AT) max 7t€r[?fai(f«0} H ( )H’ ’Y*(AT) ¢ €T BT H(U 1))[ ]H?)

follows. From the last relation, by virtue of the choice of £ > 0, it follows that v[t] = v[t].
Then (26) implies g = fi. Theorem 1 is proved.

By using pf) = ()\ék), /\gk), ce )\y\ﬂrl) e RMN+2) and
v®[t] = (uék)(t),ugk)(t),...,ugl\;)(t)) e SO, pu) (k = 1,2,...) we define a piecewise
continuous on [—7, N7| function

k)

®) A 4+ uP (@) at telt_1,t), r=0:N,
I (t) = (
A at =ty

In view of the equivalence of problems (1)-(3) and (8)-(12) Theorem 1 implies
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Theorem 2. Suppose that under partition A and some numbers py > 0, p, > 0, py > 0, the

0
conditions A, B are satisfied, Jacobi matriz Q*%T(,u,v) : RMNH2) y RUNA2) s inwertible

W
for all (u,v[t]) (€ S, py), v[t] € S@WO[t], pu) and inequalities 1)-5) of Theorem 1
take place. Then the sequence of functions (zF)(t)), k € N, is contained in S(zO(t), ps),
converges to z*(t) € S(x(O(t), p.), the isolated solution of problem (1)-(3), and the next
inequality holds:

204 (A;) B
(1) — 2R (|| < ZB\BT) (k) (k=1
tg(%]!\x (t)—= (t)”\l—q*(AT)H(U o) s-
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JINOOEPEHIIMAJIABIK TEHIEVJIEP »KYNECI YIIIIH CHI3BIKTH EMEC HIETTIK
ECEIITIH HIEMIJIIMAIIIK HTAPTTAPHI TYPAJIBL

By xxyMbIcTa Kennirysii apryMeHTi 6ap ChI3BIKTHIK, M depeHITnaIbIK, TeHIeyIep Kyiteci
VIITiH eJ1eyJIi ChI3BIKTBIK, eMeC €Ki HyKTeJl MIeTTIK MapTTapbl 6ap IMIEeTTIK ecell KapacThIPhLIa-
bl Byst ecenTi 3eprrey yinie mogudukarnusiianrad ajgropurmi 6ap [1.C. JlkymabaeBTbIH
mapamMeTpJiey 9ici Koamanblaaabl. [lapaMerpiiey o/iciH KOIMaHy CHI3BIKTBIK, €MeC OIepaTop-
JIBIK, TEHJIEYTe OKeJIei, 01 AjaMap TeopeMaChIHbIH, JIOKAJIIbI HYCKACBIHBIH KYIIEHTLIyl apKbI-
Jibl mrentiyieni. Ecernriy okimayanras mernrimMi 6ap O0IyBbIHBIH KETKUTKTI MTapTTaphbl TYPAJIbI
TeopeMa JRJIJIIEH .

Kinrrix ceznep. lerTik ecentep, Kemirysi apryMeHnTi 6ap TeHJey, OKIIayJaHFaH IIeITiM.

Nckakosa H.B., Tememesa C.M., Abuibaaesa A.Jl. OB YCJIOBUAX PASPEIINMOC-
T HEJINHENHON KPAEBOU 3AIAYN J1J19 CUCTEMBI IN®PEPEHIINAJIBHBIX
YPABHEHU C 3AITA3JIBIBAIOIIINM APT'YMEHTOM

B nmamnoit pabore paccMaTpuBaeTCs KpaeBas 3aJlada ¢ CYIIECTBEHHO HEJUHEHHBIMU JIBYX-
TOYEUYHBIMU I'PAHUYHBIMU YCJIOBUSIMU JIJIT CUCTEMBbI JIMHEHHBIX MuddepeHnnajibHbIX ypaBHe-
HUU C 3ala3/IbIBAIOIUM apryMeHToM. Jjisi uccieoBaHusi 9TON 3a/1a9l UCIOJIB3YETCS METO.,
mapamerpusaruu .C. TxxymabaeBa ¢ MoaudUIMpPOBaHHBIM ajroput™MoM. [Ipuvenenne mero-
Jla TTapaMeTPU3aIliy IPUBOIUT K HEJIMHEHHOMY OIIePATOPHOMY YPaBHEHUIO, KOTOPOE PEIIAeTCst
C TIOMOITBIO yCuIeHus 60Jiee PE3KOro BapuaHTa JOKaIbHON TeopeMbl A mamapa. Jlokazana Teo-
peMa O JIOCTATOYHBIX YCJIOBUAX CYIIECTBOBAHUS M30JIMPOBAHHOIO PEIIEHUS 3a/Ia9H.

Kirouesrle ciioBa. KpaeBbIe 3alavdu, YypaBHEHUE C 3alla3IblBalOIM apryMEHTOM, U30JIN-
POBaHHOE pEHIeHMrE.
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1 Introduction

On [0,T] consider boundary value problem with non-separated multipoint and integral
conditions for higher order ordinary differential equations

d™u a1y d" 2y d" 3y du
= P Ty - t+ .. _1(t)— 1
air ay(t) e + as(t) o + as(t) Ty Tt an 1(t) b7 Fan(Bu+ f(), (1)
SR ST TR = N Cs W ;
- Z j,S dt] ‘t:ts—i_ / C](T) dTJ T = dg, — 1, ,...,n, ( )
j=0 s=0 H J=0
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where u(t) is unknown function, the functions a;(t), ¢ = 1,n, and f(t) are continuous on
[0, T7; b;‘?’ < are constants, the functions c;?(t) are continuous on [0, T, dj are constants, where

k=1n,7j=0n—-1,s=0m; 0=ty <t1 <..<tpo1<tym=T.
Let C([0,T],R) be the space of continuous functions u : [0,7] — R with norm

u|lo = max |u(t)|.
[[ullo = masc Ju(®)]
A solution to problem (1), (2) is a function u(t) € C(]0,T],R) with derivatives dl;;ﬁ“ €
C([0,T],R), I =1,n, it satisfies the differential equation (1) for all ¢ € [0, 7] and multipoint-
integral conditions (2).

Mathematical modeling of many processes of the theory of oscillations, the theory of
impulse systems, and the theory of multi-support beams lead to problems with multipoint-
integral conditions for differential equations of various orders [1-19]. Until recently, problems
with multipoint-integral conditions for systems of differential equations still remained less
explored, since intermediate points of boundary conditions pose a number of serious difficul-
ties, such as violation of the smoothness of the Green’s function, the absence of a conjugate
problem, etc. [1-19]. Therefore, the development of effective methods for solving the problem
with multipoint and integral conditions for systems of differential equations without using
the fundamental matrix and Green’s function is of particular importance.

In [20], Professor D. S. Dzhumabaev proposed a parameterization method for solving
the two-point boundary value problems for systems of ordinary differential equations. This
method, in addition to proving the unique solvability of the problem under study, also offers
an algorithm for constructing an approximate solution that converges to its exact solution.
Moreover, the solvability criteria for boundary value problems for systems of differential
equations are formulated in terms of the initial data, without using a fundamental matrix. In
[21, 22], the parameterization method was developed for multipoint boundary value problems
for systems of ordinary differential equations. The coeflicient criteria for the well-posedness
of a linear multipoint problem for a system of ordinary differential equations are obtained.
These results were extended to nonlinear multipoint boundary value problems [23], and were
also applied to the Cauchy-Nicoletti problem [24], to multipoint problems for second-order
differential equations [25], to the Valle-Poussin [26] and the multipoint-integral problem for
third-order differential equations [27]. Based on the equivalence of the well-posedness of the
multipoint problem for systems of hyperbolic equations with mixed derivatives and families
of multipoint problems for systems of ordinary differential equations, criteria for the well-
posedness of the original problem are established [28]. The results are extended to quasilinear
systems [29].

The goal of the present paper is to develop the parameterization method for investigating
and solving the problem with non-separated multipoint and integral conditions for higher
order ordinary differential equations (1), (2). Algorithms of the parameterization method are
constructed for finding solutions to this problem and their convergence is proved. Conditions
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for the unique solvability of problems with non-separated multipoint-integral conditions for
higher order ordinary differential equations are established in terms of initial data.
Let’s give a scheme of method without partitioning of interval [0, T7].

2 Scheme of the parameterization method

Introduce the following notations:

du(t) d?ul(t) d"tu(t)
0)=2A\ = — = — =\,
u(0) b dt li=o 7% a2 =0 ¥ ’ dtn—1 li=0
where A, are unknown parameters, r = 1,2,...,n
And make the substitution
. du(t)  du(t) d*u(t)  d*u(t) d"tu(t)  d la(t)

t) =u(t) + A = A = A3y e = An,
u(t) =)+ A, = i Y e a2 T g a
where u(t) is new unknown function.

Then, problem (1), (2) is reduced to the following problem with parameters:
TR d” U
i = Z din—i + Zaz Ant1—i + f(1), (3)
=1 =1
_ du(t) d?u(t) d"1(t)
— AL ( — o, ‘ g, L, MOy g
u(0) ! dt li=o 7? dtz =0 dtn=1 li=0 )
n—1 m ~ n—1 m T dJu 7_)
k
BPBLALINNES B) SURVNENY B B IGK Y
j=0 s=1 j=0 s=0 o J=0

n—1 T
+Z/ TVdrAj =dy,  k=1,2,..,n. (5)

Jj=0 0

So, we obtain boundary value problem with parameters for higher order differential equation
(3)-(5)-

A solution to problem (3)-(5) is a pair (u(t), ), where the function u(t) € C([0,T],R)
with derivatives dlz(lt) € C([0,T],R), I = 1,n, parameter A = (A1, Ag,..., \,)’, that satisfies
the higher order differential equation with parameters (3) for all ¢ € [0, 77, initial conditions
(4) and multipoint-integral conditions (5).

At fixed values of parameters A, r = 1,2, ..., n, the problem (3), (4) is a Cauchy problem
for higher order ordinary differential equation. For determining unknown parameters A,
r=1,2,...,n, we have equalities (5) consisting of multipoint-integral conditions.
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The problems (1), (2) and (3)-(5) are equivalent in the following sense. If the function
u(t) is the solution of the problem (1), (2), then the pair (u(t), \), where

du(t)  du(t) du(t) d?ut)  d*u(t)  d*u(t)

alt) = u(t) — - - _
u(t) = u(t) —u(0),  — dt dt )t:()’ a2 i a2 ‘t:O’ ’

d"u(t)  du(t) dn ()
-1 T g1 gt ‘t:07 € 0.7}
B _du(t) ~dPu(?) _d ()
AL = U(O), Ao = dt o’ Az = dt2 L:O’ o An = W‘tZd

will be a solution to problem (3)-(5).
Conversely, if the pair (u(t),\), where A = (A1, A2,..., \,)" is the solution to problem
(3)-(5), then the function u(t) defined by the equalities:

du(t) _ du(t ) o, d*u(t)  d*u(t) d"tu(t)  d"la(t)

t)=u(t)+ A = A3y .. = A
u(t) = a(t) + A, = dt a2 a2 T g a1 T m
will be a solution of original problem (1), (2).
Let’s consider the Cauchy problem (3), (4).
"u
Assume T as unknown function and put
d"u
U _ o),  telo,T 6
o () 0.7 (©
Taking into account initial conditions (4), we get
~ ! n—1 tn—2 t
u( '/ s)ds + n _1)!>\n+ (n_2)!)\n71+...+ﬂ)\2+)\1. (7)
0
Differentiating it [ times by ¢, we obtain
dl~() ¢ n—I[—1 n—I[—2
u(t - t
= (t—s)""""tp(s)d A Attt A1, (8
! n—l—l'/ ) et et gy e e T A ()
0

1=1,2,...,n—1.
Substituting obtained expressions in (3), we get Volterra integral equation of second kind
for o(t):

/K (s)ds+ f(t) + F(t,)),  te 0], )
0
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where the kernel K(t, s) and function F'(¢, \) are defined by expressions

— s — s 2 — s n—1
K(t,s) = ai(t) + az(t) (¢ T ) + as(t) (t 51 ) +... + an(t)(t(n—)l)!’ t,s €10, 7], (10)
n-1 gn—i-1 gn—1-2 n
F(t,A) =Y ani(t) [(n ot g e ] + D @i, (1)
1=0 ’ ' i=1

t € [0, T1], respectively.
The function F(t,\) is continuous on [0, 7], also depends on the coefficients of equation
(3) and given unknown parameters A\, r = 1,2,....,n
Substituting the corresponding values of the function u(t) and its derivatives from the
expressions (7), (8) when t = t5, s = 1,m, t = 7, into (5), we get the following system of n
equations with respect to unknown parameters A;:

n—1 m n—j—1 n—j—2 n—1 m
St e i DD
7,8 a1\ s _ 9" J 7,87%
o =g =) (n—j—2)! parpear
T Fn—j—1 Fn—j—2 n-1 1
+ C’?(T){ — A+ i A +A+1 dr—l— F(r)drAj4a
7 (n—j = 1) (n—j—2) ’ ’
o =0 =0
n—1 m ts
=dj — Z = 1) /(ts — 55)" T p(s1)dsy
7=0 s=1 0
Tn—l n
— ch(T); (t— 8)"_l_1 (s)dsdr k=1,2,...n (12)
25—y plydodr, k=12
0 J= 0

Grouping the coefficients corresponding to the same parameters A., r = 1,2,...,n, in the
left-hand sides of the algebraic equations (12), we shall compile (n x n) matrix Q(7") and
write down the system of algebraic equations (12) in the following form

QM)A =d— (e, T), (13)

where A = (A1, A2, ..y An)', @(0,T) = (1(p, T), P20, 1), ..o, P (0, T)),

n—1 m ts
Z Z TL j— 1) /(ts - Ss)n_j_l(,D(Sl)dsl
=0 s= 5
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T n—1 1 T

k —i—1
+/ Cj (T)m /(T — S)n @(S)deT, k = 1, 2, L, n.

0o =0 0
The system of equations (13) allows us to define an unknown vector whose components are
the parameters A\, r = 1,2, ..., n, through the integrals of the function . At fixed  necessary
and sufficient condition for existing unique solution to system of algebraic equations (13) is
the invertibility of the matrix Q(T).

Let’s suppose that the matrix Q(T') is invertible. Then the vector A is determined from
the system of algebraic equations (13) as follows:

A= QD)) Hd — (e, T)}-

An existence of the invertible matrix [Q(T)]~! ensures compatibility of conditions (4) and
(5).

This allows us to consider the problem (3), (4), (5) as a problem with initial and non-
separated multipoint-integral conditions for the high-order ordinary differential equation,
containing additional parameters.

3 Algorithm and conditions for its convergence

If the parameters are known A, 7 = 1,2, ..., n, from Volterra integral equation (9) we get
the function ¢(t) for all ¢ € [0,7]. Then, substituting of the parameters A, r = 1,2,...,n,
and found function ¢(t) in the representations (7) and (8), we define the function u(¢) and
its derivatives for all ¢ € [0, T]. Further, taking into account the following equalities

u(t) = () + A1, dl;(:) = dz(:) + o,

du(t)  d*u(t)
a2 de?

d"tu(t)  d"ta()
dtn=1 qgnl

+ A3, .oy

+ A,

we find the solution of original problem (1), (2).

If a function ¢(¢) is known, from the system of algebraic equations (13) we define the
parameters \,, r = 1,2,...,n. Then, substituting the function ¢(¢) and founded parameters
Ar, 7 = 1,2,..,n, into (7), (8), we determine the function u(t) and its derivatives for all
t € [0,T]. So, summing up

du(t)  du(t)
dt  dt

u(t)  d*u(t)
a2 dt?

d"tu(t)  d"ta()
dtn=1 qgnl

u(t) :17(t)+)\1, + A2, + Az, .y + A,
we get the solution of original problem (1), (2).

Since, functions ¢(t), u(t) and parameters ), are unknown, we use an iterative process for
finding solution of problem (3)-(5). The sequential approximations of the pairs (a® (t), \(?))
and P (t) are defined from the following algorithm.

Step 0. 1) Solving the system of algebraic equations (13) for ¢(t) = f(t), we get an initial
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approximation A(0) = ()\go), )\go), s )\%0))’ . 2) Solving the integral equation (9) for A\, = A&O),
r=1,2,..,n, we find p((t) for all t € [0,T]. 3) In (7) and (8) substituting ©(°)(¢) and A0
instead of ¢(t) and A\, r = 1,2,...,n, respectively, we determine the initial approximation

4O (t) and its derivatives < “dt;(t) 1=1,2,...,n—1, for all t € [0, T].

Step 1. 1) Solving the system of algebraic equations (13) for @(t) = @O (t), we get a first

approximation A(1) = ()\gl), /\gl), e )\,(11))’. 2) Solving the integral equation (9) for A\, = )\,(ﬂl),
r=1,2,...,n, we find oM (t) for all t € [0,7]. 3) In (7) and (8) substituting ¢ (¢) and
)\gl) instead of ¢(t) and A, r =1,2,...,n, respectively, we determine the first approximation

M (t) and its derivatives udt;(t) 1=1,2,...,n—1, for all t € [0,T).

And so on.

Step p. 1) Solving the system of algebraic equations (13) for ¢(t) = P~ (t), we get pth
approximation A(?) = (/\gp), /\gp), s /\%p))’. 2) Solving the integral equation (9) for A, = A&”),
r=1,2,...,n, we find ©P)(t) for all t € [0,T]. 3) In (7) and (8) substituting ¢ (¢) and
)\q(np ) instead of p(t) and A\, 7 = 1,2, ..., n, respectively, we determine the pth approximation

LaPW | =1,2,...,n—1 for all ¢ € [0, T].

The condition for realizability of the algorithm is invertibility of matrix Q(7"). Now, it is
important to find out the conditions of convergence of the proposed algorithm, which ensure
uniform convergence sequence of pairs (7® (t), (")) (and functions ©®)(t)) to pair (7*(t), \*)
is a solution of problem (3)-(5) (and ¢*(t) is a solution of integral equation (9) for A, = A¥)
as p — oo for all t € [0,T]. Here p=1,2,....

Consider problems (1), (2) and (3)-(5).

Let o= K(t.s), BF= = 0m=T k=Tm.
o (it,s)ei(l)l,gill“i(x[o,T]| (&)l B max LGN n n

The following statement gives the conditions for convergence of algorithm proposed above,
which at the same time guarantee the existence of a unique solution to problem (3)-(5).

u®)(t) and its derivatives

Theorem 1. Let

1) the functions a;(t), f(t) and c?(t) be continuous on [0,T], where i,k = 1,n,
j=0,n—1,s=0,m;

2) the (n x n) matriz Q(T') be invertible and the following equalities are valid:
a) ||[Q(T)] Y| < y(T), where ¥(T) is a positive constant;

ats n—j—1
b) o) = 7(7) - (x5S 58 0 by et =1 = = =
k T . . . (aT)nfjfl
+;11?};T]§05 [ T =l-al — .. = D <1

Then, the sequential approzimations u® (t), \P) and ©P)(t), determined by the algorithm,
converge uniformly to u*(t), \* and ¢*(t), respectively, as p — oo for allt € [0,T]. Moreover,
the pair (u*(t), \*) is a unique solution to problem (3)-(5).
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Proof of Theorem 1 is carried out according to the above algorithm.
From the equivalence of problems (3)-(5) and (1), (2) it follows that the function

u*(t) = u*(t) + A7, te0,7)
will be a solution of problem (1), (2).

Theorem 2. Let
1) the functions a;(t), f(t) and c;?(t) are continuous on [0,T], where i,k = 1,n,

j=0n-1,s=0m;

2) the (n x n) matriz Q(T) be invertible and the inequalities a), b) of Theorem 1. hold.
Then the function u*(t), defined as the sum of functions u*(t) + Xi for all t € [0,T] is a
unique solution to problem (1), (2).

4 Main results

Consider problem (3)-(5) again. Let’s put
Ki(t,s) = K(t,s), Ky(t,s) = /K(t,n)Kp_l(n, s)dn, p=2,3,...

The function K,(t,s) is called mth iteration of the kernel K (t,s). If we denote by M the
norm of function |K (¢, s)| on [0,T] x [0,T], then the following estimate is true:

[t — s|P~1

|Kp(t,s)| < MW’ (t,s)

€ [0,7] x [0,T].

oo

Then the series I'(t, s) = > K,(t, s) converges uniformly on [0, 7] x [0, 7] and integral equa-
p=1

tion (9) has a unique solution in the following form

/Fts{f )+ F(s, )¥ds + f(1) + F(t,\),  te[0,T]. (14)
0

Here I'(t, s) is a resolvent of integral equation (9).
Substituting the expression (14) instead of ¢(t) into (7), we get a representation of desired
function u(t) in the following form

S

y t
ut |/t_3 / (8781)f(81)d51ds+ '/ ) 1f
0 0
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n t n—1
1 . Snflfl
+ 4 ai(sl))\n+1_i}d$1d8 + (n — 1)! /(t — 8) {Z an—l(s) [m)\n
=1 0 =0
Snfle n
: =1
L S e W WY 15
T T ) T L TR (15)

Similarly, let’s define its derivatives by t:

t t
A (t) - 1 n—l—
o O/ - / (s, ) (o1 )dsads + O/ (t = 5" f(s)ds

¢ i n—1 57117171 S?ffl72
I / (t—s) /F(s,sl){Zanl(sl)[(n_l_1)!)\n+(n_l_2)!)\n_1+...+)\l+1
0

n

¢ n—1 Sn—l—l
+ 1 ai(Sl))\n+1—i}d51d8 + e _1 01 /(t - s)"‘l‘l{z an—1(8) [m)‘”
0

=
n—I[—2

s n
‘f‘m)\n—l + ...+ )\l-i—l} + Z ai(s))\n+1—i}d«9
) i=1

tn_l_l tn—l—2

+ An +
n—1—11""" (n—1-2)!
Thus, the desired function u(¢) and its derivatives are clearly expressed through the entered
unknown parameters A, r = 1,2, ..., n. Substituting the corresponding values of the function
u(t) and its derivatives from the expressions (15), (16), when t = t5, s = 1,m, t = 7, into
(5), we obtain the following system of n equations with respect to unknown parameters \,:

Q.(T)A = E.(f,T). (17)

Lemma 1. Let the functions a;(t), f(t) and cg‘?(t) be continuous on [0,T], where i,k =1,n
j=0,n—-1,5=0,m.
Then the following assertions hold:

An—1+ oo + Nt l=1,n—-1. (16)

)
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(1) the vector \* = (A7, A5, ..., \r), consisting of the values of the solution u*(t) and its

dllé;(t), l=1,n—1, to problem (1), (2) at the point t = 0:

derivatives

. dPur(t) _dv (i) . dhur()

- 7 * R [ S
dt =02 a2 =L dtn=2  |4=0" " dtn=1  li=0’

satisfies system (17);

(ii) the function w**(t) and its derivatives dl“;;(t), l=1,n—1, defined by the equalities:
- du**(t) du**(t) d?u(t) d?ur(t)
dn_Qu**(t) dn—Qa**(t) dn—lu**(t) dn_lﬂ**(t)
cee —_— ** —_— —_— A** —_— t T
T gt 1t g din—1 I T <.,

where X** = (AT, A5, .., A5) solves system (17) and the function u**(t) solves the Cauchy
problem (3), (4) for Ay = N, and r = 1,n, is a solution to problem (1), (2).

The existence of invertible matrix [Q«(7)]~! ensures compatibility of conditions (4) and

(5). It allows us to consider problem (3)-(5) as problem with non-separated multipoint-
integral conditions for high-order ordinary differential equation, containing additional pa-
rameters. By substituting the components A, » = 1,2, ...,n, of obtained vector A\ into the
expression (2), we get representation of the desired solution of the problem (1), (2). From the
above statement, it follows the next statement, which is setting sufficient conditions for the
existence of a unique solution of problem with non-separated multipoint-integral conditions
for high-order ordinary differential equation (1), (2).

Theorem 3. Let

1) the functions a;(t), f(t) and c;?(t) be continuous on [0,T], where i,k = 1,n,
j=0n—-1,5s=0,m;

2) the (n x n) matriz Q.(T) be invertible.
Then the problem with non-separated multipoint-integral conditions for high-order ordinary
differential equation (1), (2) has a unique solution.

Thus, the conditions for the unique solvability of problem (1), (2) are given in the terms
of the matrix Q.(T"), which is constructed by using of a resolvent I'(¢, s) of Volterra integral
equation of second kind (9). The kernel and right-hand side of the integral equation (9) are
defined by the coefficients of the differential equation (1) and the non-separated multipoint-
integral condition (2). It allows us to state that conditions for the solvability of the problem
(1), (2) are set in the terms of the initial data. The solution of the integral equation (9) is an
important issue and the construction of its approximate solutions relies on the calculation of
iterative kernel K(t,s).
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Umananes A.E., Epmex A.A. YKOFAPHI PETTI JUOPEPEHIIMAJILIK TEH-
JIEYJIEP YIIIH BOJIHBEIEH KOIMHYKTEJIL-NHTEIPAJIIBIK [IIAPTTAPHI BAP
ECEITEP/I IIEIITY/IIH TAPAMETP/IEY OJIICI

2Korapsr perTi quddepeHnnaabk TeHAeyaep YImin 6e1iH0ereH KOMHYKTe/ i-NHTerPAJIIBIK,
mapTTapbl 6ap ecern KapacThIPbLIILL. [lapamerpiey oficinin, ajaropuTMaepi KypbUIIbl KOHE
OJIAPBIH KUHAKTBLIBIFEL JOJIEJIAEH 1. 3ePTTEIII OTHIPFaH €CeNTiH OIpMOHII MIeTiTiM I Tiri HiH
KETKIJIKTI MmapTTapbl OpHATHLIIHL.

Kinrrix ceznep. Beninberen KOMHYKTeTi-UHTErPAJIIBIK, ITAPTTADP, YKOFaphl peTTi audde-
PEHITUAJIBIK, TEHEYJIEP, TapaMeTpJiey dJIici, aJropuTM, e IiMIiTiK.

Umannes A.E., Epmex A.A. METO/I TTAPAMETPU3AIINY PEIIEHNS 3AIAY C
HEPA3/IEJIEHHBIMI MHOTOTOYEYHO-MHTEIPAJILHBIMUA YCJIOBUSAMUI 17141
NOOEPEHIINAILHBIX YPABHEHNI BEICOKOT'O TOPSIJIKA

PaccMmorpena 3amada ¢ Hepas/ieJleHHBIMUA MHOIMOTOYEYHO-UHTETIPAJIbHBIMU YCIOBUSAMU IS
JuddepeHIuaIbHbIX yPABHEHN BBICOKOTO MOPsiiKa. [locTpoeHbl aJirOpUTMBl METOJIA, ITapa-
METPHU3AINN U JOKA3aHA UX CXOIUMOCTH. YCTAHOBJIEHBI JIOCTATOYHBIE YCJIOBUS OJHO3HATHOM
Pa3peNnmMOCTH UCCIIeIyeMO 3 1a4u.

KiroueBbre ciioBa. HepasnemeHHbIe MHOIOTOUETHO-UHTEPAJIbHBIE YCA0BUA, auddepeHIm-
aJIbHBbIE YPaBHEHUSI BBICOKOTO TOPSIIKA, METOJ TTapaMeTPU3aIlii, aJrOPUTM, Pa3pPermMOCThb.
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On [0, T'] consider two-point boundary value problem for second order differential equation
with piecewise-constant argument of generalized type

&= ar(t)a(t) + ag(O)x(t) + az ()i ((1)) + aa(t)z(v(1)) + £ (D), (1)

blli(O) + bzlﬂf( ) + 611$(T) + 02156( =dy, (2)

b123:(0) + baow(0) + c122(T) + 02256( = dy, (3)

where z(t) is unknown function, the functions a;(t), ¢ = 1,4, and f(t) are continuous on

[0,T); v(t) =¢; if t€[0j,0i41), j=0,N—-1; 0;< Cj <4 forall j=0,1,..,N -1,

0 =100 <0 <..<0On_1 <On =T, bsp, cgp and ds are constants, where s,p = 1,2;
2]l = max .

A function z(t) is a solution to problem (1)-(3) if:

(i) z(t) is continuously differentiable on [0, 7T7;

(ii) the second derivative #(t) exists at each point ¢ € [0, 7] with the possible exception of
the points 6;, j = 0, N — 1, where the one-sided derivatives exist; (iii) equation (1) is satisfied
for z(t) on each interval (9], 0j1), 5= 0, N — 1, and it holds for the right second derivative
of x(t) at the points 6, j =0, N —1;

(iv) boundary conditions (2), (3) are satisfied for x(¢) and #(t) at the points t =0, ¢t =T

Differential equations with piecewise-constant argument of generalized type (DEPCAG)
are introduced in the works [1-3].

Examples of the applications of these equations to the various problems have been under
intensive investigation for the last decades.

Along with the study of various properties of differential equations with piecewise-constant
argument, a number of authors investigated the questions of solvability and construction of
solutions to boundary value problems for these equations on a finite interval. Particular
attention was paid to periodic and multipoint boundary value problems for second order dif-
ferential equations with piecewise-constant argument due to their wide application in natural
sciences and engineering [4-15].

The aim of the present paper is to develop a constructive method for investigating and
solving the boundary value problem, including an algorithm for finding a solution to problem
(1), (2), (3) as well.

To this end, we use a new concept of general solution and parametrization’s method
[16]. This concept of general solution has been introduced for the linear Fredholm integro-
differential equation in [17] and for the linear loaded differential equation and a family of
such equations in [18, 19]. New general solutions are also introduced to ordinary differential
equations and their properties are established in [20]. Results are developed to nonlinear
Fredholm integro-differential equations [21]. Based on the general solution methods for solv-
ing boundary value problems are proposed.

The paper is organized as follows.
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The interval [0,7] is divided into N parts according to the partition Ay : 0y = 0 <
01 < 0y < .. <6y =T, and the Ay general solution to a linear second order differential
equation with piecewise-constant argument of generalized type is introduced. The A general
solution, denoted by x(Ap,t,\), contains an arbitrary vectors A = (A1, Aa, ..., Ay) € R2V,
Using z(Ap,t,A), we establish solvability criteria of considered problem and propose an
algorithm for finding its solution.

At first, we reduce the problem for second order ordinary differential equation with
piecewise-constant argument of generalized type (1)-(3) to a problem for system of two dif-
ferential equations with piecewise-constant argument of generalized type.

For this we introduce a new functions w)(t) = z(t), wo)(t) = &(t), t € [0,T], and
rewrite problem (1)-(3) in the following form

% = A(tu(t) + Ag(Hu(v() + g(t),  t€0,T], (4)
Bu(0) + Cu(T) = d, (5)

where u(t) = col(u)(t), ue)(t)) is unknown 2 dimensional vector function,

w0=(ly ) w0=(0 ) w-( )

ba1 bn Co1 c11 > < dy )
B= . C= Cd= .
< baa  b12 ) < Co2 €12 da

A vector function u(t) = col(u(1)(t), ue)(t)) is a solution to problem (4), (5) if:

(i) u(t) is continuous on [0, T7;

(i) the derivative (t) exists at each point ¢ € [0,7] with the possible exception of the
points 0;, j = 0, N — 1, where the one-sided derivatives exist;

(iii) equation (4) is satisfied for u(t) on each interval (6;,6;+1), j =0, N — 1, and it holds
for the right derivative of u(t) at the points 6;, j =0, N — 1;

(iv) boundary condition (5) is satisfied for u(t) at the points t =0, t =T

2 Scheme of the method and properties of new general solution

Denote by Ay a partition of the interval [0,T):

N
0,7) = (J[0r-1,6,) by lines t=0;, j=1,N—1.
r=1
Let
C([0,T],R?) be the space of continuous functions z : [0, 7] — R? with norm
Il = masc [|2(#)]] = menc max |z(¢)];

C([0,T], Ay, R?Y) be the space of functions systems z[t] = (z1(t), 22(t), ..., zn(t))’, where
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2 ¢ [6,-1,0,) — R? are continuous and have finite left-hand side limits . liem Ozr(t) for all
—0r—

r=1,N with norm ||z[-]|]2 = max sup |z-(t)].
T:LN te[g’l‘—170’l‘)

Denote by u,(t) a restriction of function w(t) on r-th interval [0,_1,0,), i.e.

ur(t) = u(t) for te€[0,-1,0,), m=1,N.

Then the function system u[t] = (ui(t),uz2(t),...,un(t)) belongs to C([0,T], An,R?V),
and its elements u,(t), r = 1, N, satisfy the following system of two ordinary differential
equations with piecewise-constant argument of generalized type

du,
dt

= A(t)u,(t) + Ao(t)ur (Cr1) + g(t), tef-1,0,), r=1,N. (6)

In (6) we take into account that v(t) = ¢; if ¢e€0;,0;41), j=0,N—1

Introduce an additional parameters A\, = u,((-—1) for all r = 1, N. Making the
substitution z,(t) = u,(t) — A\, on every r-th interval [0,_1,6,), we obtain the system of two
ordinary differential equations with parameters

dz,
dt

= A@)(z () + Ar) + Ao(D)Ar +9(t),  te€(fp,0:), r=1LN, (7)

and initial conditions

2 (Gr—1) =0, r=1,N. (8)

Problems (7), (8) are Cauchy problems for system of two ordinary differential equations
with parameters on the intervals [0,_1,6,), r = 1,N. For any fixed A\, € R? and r, the
Cauchy problem (7), (8) has a unique solution z(¢, A,), and the function system z[t, \] =
(z1(t, A1), 22(t, A2), . - ., 2n (t, Ay)) belongs to C([0,T], Ay, R?N).

The function system z[t,\] is referred to as a solution to the Cauchy problems with
parameters (7), (8). If a function system uf[t] = (u1(t),u2(t), ...,un(t)) belongs to
C([0,T), Ay, R?Y), and the functions w,(t), r = 1, N, satisfy equations (6), then the func-
tion system z[t, A] = (21(t, A1), z2(t, A2), ..o, 25 (£, Ay)) with the elements z.(£, A,) = U (t) —
Xr, XT = ur(G-1), r = 1,N, is a solution to the Cauchy problems with parameters
(7), (8) for A, = A, 7 = 1, N. Conversely, if a function system z[t, \*] = (z1(t, AY), za(t, A3),
...,2n(t,A})) is a solution to problems (7), (8) for A\, = A%, » = 1, N, then the function
system w*[t] = (uf(t),us(t),...,ul(t)) with wi(t) = A\: + z.(t, \5), r = 1, N, belongs to
C([0,T), Ay, R?Y), and the functions u?(t), r = 1, N, satisfy equations (6).

Let us now introduce a new general solution to the system of two ordinary differential
equations with piecewise-constant argument of generalized type (4).

Definition 1.  Let z[t,A\] = (z1(t, A1), 22(t, A2), ..., 2n(t, AN)) be the solution to the
Cauchy problems (7), (8) for the parameters A = (A1, A2, ..., Ay) € R*V. Then the function
u(An,t,\), given by the equalities
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(AN, t,A) = N + 20 (E, Ay), for t € [0,-1,0,), 7=1,N, and
U(AN7T7 >\) = >\N +t II%HOZN(t, )‘N)a
ﬁ —

is called the An general solution to equation (4).

As follows from Definition 1, the Ay general solution depends on NN arbitrary vectors
A\ € R? and satisfies equation (4) for all t € (0,7)\{0,,p=1,N — 1}.

Note that the first component of function u(Ap,t, A): function u1)(An,t, A) equals to
x(Apn,t,A). And function z(Ap,t,A) is a Ay general solution to equation (1) and depends
on 2N arbitrary constants A1) ,, A2, € R, where A, = ()\(1)’74, A@),r) € R2, r=1,N.

Take X, (), a fundamental matrix of the ordinary differential equation

dz,
dt

— Az (), telf,_1.6], r=1,N,

and write down the solutions to the Cauchy problems with parameters (7), (8) in the form:

t t
2.(t) = X, (t) / X YD) [A(T) + Ag(T)]dT A + X, (2) / XY (r)g(r)dr,
Gr—1

C'rfl
t e [07“—1797’)7 r=1,N.
Consider the Cauchy problems on the subintervals
du R
o A(t)u + P(t), u(Gr—1) =0, t € [0r-1,0,], r=1,N, 9)

where P(t) is a square matrix or a vector of dimension 2, continuous on [0,77], 6,1 < (1
<@, forall r=12 .. N. Denoteby A,(P,t)a unique solution to the Cauchy problem
(9) on each r-th interval. The uniqueness of the solution to the Cauchy problem for linear
ordinary differential equations yields

t
Ar(Pt) = X (1) / X, () P(r)dr, t € [Or—1,0,], r=1,N.
Cr—1

Therefore, we can represent the Ay general solution to equation (4) in the form:
wW(AN,t,A) = Ay + Ap(A+ Ao, t)\p + Ay(g, 1), tebp-1,0p), p=1,N—-1, (10)

U(AN,t, A) :)\N+AN(A+A0,t))\N+AN(g,t), t e [QN—MHN]' (11)

The following statement justifies the function u(Axy,t, A) as a ”general solution”.
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Theorem 1. Let a piecewise continuous on [0,T] function u(t) with the possible discon-
tinuity points t = 0,, p = 1, N — 1, be given, and u(An,t,\) be the Ay general solution to
equation (4). Suppose that the function u(t) has a continuous derivative and satisfies equation
(4) for allt € (0, T)\{0,,p = 1, N — 1}. Then there exists a unique X = (A1, A2, ..., \y) € RN
such that the equality u(AN,t,X) = u(t) holds for all t € [0,T].

We omit the proof of this theorem which is quite straightforward.

Corollary 1. Let u*(t) be a solution to equation (4) and u(Apn,t,\) be the Ay general
solution to equation (4). Then there exists a unique \* = (N}, A5, ..., \y) € R?Y such that
the equality u(An,t,\*) = u*(t) holds for all t € [0,T).

If u(t) is a solution to equation (4), and u[t] = (u1(t), ua(t), ...,un(t)) is a function system
composed of its restrictions to the subintervals [6,_1,6,), r = 1, N, then the equations

Hm  uy(t) = upt1(6p), p=1,N—1, (12)
t—0,—0
hold. These equations are the continuity conditions for the solution and its first derivative
to equation (4) at the interior points of the partition Ay.

Theorem 2. Let a function system ul[t] = (ui(t),uz(t),...,un(t)) belong to
C([0,T), An,R?N). Assume that the functions u,(t), r = 1, N, satisfy equations (6) and
continuity conditions (12). Then the function u*(t), given by the equalities
u*(t) = uy(t) for t € [0,-1,0,), 1 =1,N, and u*(T) = )Hli%nouN(t), is continuous on

[0,T], continuously differentiable on (0,T) and satisfies equation (4).
Proof. Equations (12), the equality u*(T') = . li%nouN(t), and belonging of u[t] =
ﬁ. J—

(u1(t), ua(t), ...,un(t)) to C([0,T], Ay, R?N) provide continuity of the function u*(¢) on the
interval [0, T'|. Since the functions u,(t), r = 1, N, satisfy equations (6), the function u*(¢) has
continuous derivative and satisfies equation (4) for all ¢ € [0, T]\{6p,p = 1, N — 1}. The exis-
tence and continuity of the derivative of the function u*(¢) at the points t = 6,, p=1,N — 1,
follow from the relations:
i () = AG0) + Ao(Ou"(Grr) +9(0) = i @), p=TNT

Hence the function u*(t) satisfies equation (4) at the interior points of the partition Ay as
well. Theorem 2 is proved.

3 Main results

The Ap general solution allows us to reduce the solvability of a boundary value problem
to the solvability of a system of linear algebraic equations with respect to arbitrary vectors
A\ €R%Z r=1,N.
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Substituting the suitable expressions of Ay general solution (10), (11) into the bound-
ary condition (5) and continuity conditions (12), we obtain the system of linear algebraic
equations

B\ +BA1(A+A0, 90))\1 +CAN +CAN(A+A0, T))\N = d—BAl(g, 90) — CAN(g,T), (13)

Ap + Ap(A,0p) Ay — App1 — Apri(A+ Ao, 0p) A pi1 = —A,(9,6p) + Apii(9,0,), p=1,N—1.

(14)
Denote by Q.(An) 2N x 2N matrix corresponding to the left-hand side of system (12), (13)
and write the system as

Q.(AN)N = —F.(Ay), A e R, (15)

where F,(Ay) = (—d + BAi(g,00) + CAN(9,T),A1(g,01) — Aa(g,61), A2(g,02) +
A3(g,02), ..., AN—1(9,0n-1) + An(g,On_1)) € R?N.

For any partition Ay, Theorems 1 and 2 provide the validity of the following statement.

Lemma 1. If u*(t) is a solution to problem (4), (5) and X: = u*((—1), 7 =
1,N, then the vector \* = (M, A5,..., %) € R2N s a solution to system (15). Con-
versely, if A = (A, A2,...,An) € RN s a solution to system (15) and z[t, 5\] =
(z1(t, A1), z2(t, A2), . ..., 25 (t, AN)) is the solution to Cauchy problems (7), (8) for the parame-
ter A € R2N | then the function (t) given by the equalities (t) = A+ 2,.(t, \r), t € [0,—_1,6,),
r=1,N, and @(T) = Ay + tiiqrgo Zn(t, AN), is a solution to problem (4), (5).

Definition 2. The boundary value problem (4), (5) is called uniquely solvable if for any
pair (g(t),d), with g(t) € C([0,T],R?) and d € R?, it has a unique solution.
Lemma 1 and well known theorems of linear algebra imply the following two assertions.

Theorem 3. The boundary value problem (4), (5) is solvable if and only if the vector
F.(Ay) is orthogonal to the kernel of the transposed matriz (Q.(Ay)), i.e. iff the equality

(F*(AN)vn) =0

is valid for alln € Ker(Q.(An))', where (-,-) is the inner product in R?N.

Theorem 4. The boundary value problem (4), (5) is uniquely solvable if and only if
2N x 2N matriz Q.(Ay) is invertible.

Based on the results of Section 2, we propose the following algorithm for finding a solution
to the linear boundary value problem (4), (5).
Step 1. Solve the Cauchy problems on the subintervals

LA AW A, G =0 teff1,0]
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% AWz +g(),  2(Go1) =0,  te (B0,
and find A.(A + Ap,0,) and A.(g,6,), r = 1,N. Here 0,_1 < (-1 < 0, foral r =
1,2,...N.

Step 2. Using found matrices and vectors compose the system of linear algebraic equa-
tions (15).

Step 3. Solve the composed system and find \* = (A}, A3, ..., A\y) € R2N . Note that the
elements of A* are the values of the solution to problem (4), (5) at the interior points of the
subintervals: \* = u*((—1), 7 =1, N.

Step 4. Solve the Cauchy problems

% = A(t)z +g(t), Z(Crfl) = )‘:7 te [97“71,01")’
and define the values of the solution u*(t) at the remaining points of the subintervals.

First component of the function u*(t): function u’("l)(t) equals to z*(t) and is a solution
to original problem (1)-(3).

As it follows from Lemma 1, any solution to system (15) determines the values of the
solution to problem (4), (5) at the beginning points of the subintervals.

The accuracy of the algorithm proposed depends on the accuracy of computing the coef-
ficients and right-hand sides of system (15).

The Cauchy problem for ordinary differential equation is the main auxiliary problem in
the algorithm proposed. By choosing an approximate method for solving that problem, we
get an approximate method for solving the boundary value problem (4), (5). Solving the
Cauchy problems by numerical methods leads to the numerical methods for solving problem

(4), (5).
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Acanosa A.T. JKAJITIBLIAHFAH TYP/IET'T BOJIIKTI-TYPAKTHI APTYMEHTI BAP
EKIHIII PKTTI INPPEPEHIIMAIIBK TEHIEV/IIH YKAHA YKAJIIBI IIEIIIMI
YKOHE OHBIH HIETTIK ECENTEPII IIEIIVTE KOJIIAHBICHI

ZKasmpuranras TypJeri 0esmiKTi-TypakThl aprymeHTi 6ap ekinini perrti guddepennmal-
JIBIK TEHJEY KapacThipbLiaabl. Apasbik [N OeJrikke OeJiiHe i, MeniMHIH iKiapaIbIKTapIbH,
1K1 HyKTeJIepiHieri MoHAepl KOChIMITIA IapaMeTpiep peTiHe KapacThIPbLIa b, aJl KaJIIbl-
JIAHFAH TypJeri OeJIKTI-TypakThl aprymenTti 6ap xkoft puddepeHnnaibK TeHIeY imKiapa-
JIBIKTapIarbl mapamMerpsepi 6ap eKiim peTTi ChI3BIKTEI ArddepeHnaaablK TeHIeyaep YIIiH
Kommmu ecenrepune kenripineni. Ocbl ecenrepiid, memnmiMaepid naiijgagana OTBIPHIIT KaJIIIbI-
JIaHFAH Typjeri OeJiKTi-TypaKThbl apryMeHTi Oap ekiumi perTi muddepeHnnaiiblK TeHIe-
VJAEPIiH YKaHa >KaJIlbl MENMIepi eHri3iae/1i XKoHe oJIapAblH KaCHeTTEPU OpHAThLIa bI. 2K aJ-
Bl TN MHIH, IIeKapaJIbIK, MIapTTHIH KOHe IIENTIMHIH 1Kl 6oy HyKTesepiraeri yaimiccizmik
[ApTTAPBIHBIH, HET13iHJie apaMeTpJiepre KAThICTBI ChI3bIKTHI aJirebpaJibiK, TeHIeyIep Kyiec
KypacToipbuiaabl. 2Kyitenin koadduimenTrepi MeH OH KaKTapbl iIMIKiapa/bIKTapa ChI3bI-
KThI ol nuddepeHuaiblK, TeHeyiep yimu Koru ecenrepin merny apKbLibl TaObLIAIbL.
[MTerTik ecenTepmiy, MEMIIMILIT KypacThIPbLIFaH XKYHeHIH menmiaiMaiTirine napa-nap exemi
kepceriti. Ocbl Kyliesiepi Kypyra »KoHe IIIellyre Heri3fiejireH MEeTTIK eCcenTepl eIy,
9JIicTepl YCHIHBLIA]IbI.

Kirrrix ceznep. 2Kanmbrianran Typeri 6ok Ti-TypakThl aprymenTi 6ap auddepenuasi-
JIBIK, TeHeyIep, AN KAJIbI IeliM, KOCHYKTE MEeTTIK ecell, MeNiIiMIUNIK KpuTepuiiiepi,
ImapaMeTpJiey 9JICIHIH aJropuTMIepi.

Acanosa A.'T. HOBOE OBIIEE PEITEHUE JUOOPEPEHIINAJIBHOT'O YPABHE-
HUA BTOPOI'O ITOPAILKA C KYVCOYHO-IIOCTOAHHBIM APT'YMEHTOM OBOB-
MEHHOI'O TUITA U ET'O ITPUJIO?KEHUWE K PEINEHNIO KPAEBBIX 3ATAY

KAZAKH MATHEMATICAL JOURNAL, 20:4 (2020) 87-97



New general solution of second order differential equation with piecewise-constant argument ...97

PaccmarpuBaercs  guddepennuaibioe ypaBHEHHE BTOPOIO IOPHAJIKA € KYCOYHO-
IIOCTOSTHHBIM apryMeHToM obobimennoro tuna. Murepsan pazdusaercs Ha [N dacTeil, 3HATCHUS
pelleHnd BO BHYTPEHHUX TOYKaX IIOJIbIHTEPBAJIOB PACCMaTPUBAIOTCH KaK JIONOJHUTEIbHbIE
mapaMerphbl, a 0ObBIKHOBeHHOE MuddepeHInalibHOe YPABHEHNE ¢ KYCOUHO-ITOCTOSTHHBIM apry-
MEHTOM OOOOIIEHHOrO THIIa CBOAMTCA K 3ajadaM Koimm Ha MofabIHTepBaax JJjis JIUHEHHBIX
b depeHInaIbHbIX yPABHEHUIT BTOPOTo MOPsiIKa ¢ mapaMerpamMu. VICrob3ys pelennst 3STux
3aJa4, BBOJATCS HOBBIE oOIue pentenus auddepeHIna bHbIX YPpaBHEHUN BTOPOTO MOPSIKA
¢ KYCOYHO-TIOCTOSIHHBIM apr'yMEHTOM ODOOIIEHHOIO THUIA W YCTAHABJIUBAIOTCS UX CBOWCTBA.
Ha ocnose o61mero perienusi, TpaHUYIHOTIO YCJIOBUS U yCJIOBHUSI HEIIPEPBLIBHOCTHU PEIIEHUS BO
BHYTPEHHUX TOYKAX PA3OUEHUsi COCTABJSETCA CUCTEMA JIMHEHHDBIX ajaredOpanvecKux ypaBHe-
HUSI OTHOCUTEILHO TapaMeTpoB. KoadbduimenTs u npaBble YaCTU CUCTEMbI HAXOIATCS IIyTEM
pemenus 3aja41 Kommm s JuHeHHBIX OOBIKHOBEHHBIX IuM@EPEHITUAIBHBIX YPABHEHUN Ha
noAbiHTepBaiax. [lokazano, 4To pa3penmMoCTh KPaeBbIX 33/lad PABHOCUJIbLHA Pa3PEITUMO-
CTU COCTaBJIEHHBIX cucTeM. [Ipejiararorcss MeTOIbI peleHnsi KpaeBbIX 3a/[a4, OCHOBAHHDIE HA
IIOCTPOEHUN U PENIEHUM ITUX CUCTEM.

Krouesnre cioBa. [uddepennuaibabie ypaBHEHUsI ¢ KyCOYHO-TIOCTOSHHBIM apTyMEHTOM
06001eHHOro TUa, Ay obllee pelleHne, IBYXTOUYedHasl KpaeBas 3ajlada, KpUTepUU pa3pe-
MIAMOCTH, aJTOPUTMbI METOJ[Aa TapaMeTPU3aIiH.
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1 Introduction

The paper deals with a linear boundary value problem with a parameter

d
S = ADT+BOu+ 1), te (1), weR', peR", o
CoM + C’lx(()) + C2$(T) =d, de Rm—l—n’ (2)
where n x n matrix A(t), n x m matrix B(t) and n—dimensional vector f(t¢) are continuous on
[0, T]; (n+m)xm matrix Cy and (n+m) xn matrices C and Cy are constant; ||x|| = max |z;|.
i=1,n

By a solution of problem (1), (2) we mean a pair (u*,z*(t)), where pu* € R™ and x*(t) is
a function that is continuous on [0, 7] and continuously differentiable on (0,7") and satisfies
(1) and (2) with g = p*.
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Boundary value problems with parameters for various classes of differential equations have
been extensively studied by many authors (see [1-11] and references cited therein).

When a fundamental matrix ®(¢) of the differential equation % = A(t)x is known, the
general solution to Eq.(1) can be written as
t
ot ) = B(t)e-+ 0(0) [ @B+ F(r))ar Q)
0

where c is a n-dimensional constant vector. Substituting (3) into the boundary condition (2),
we obtain the following equation for determining unknown parameters ¢ € R™ and u € R™:

T T
[Co + Co®(T /<I> Y T)dr]p 4 [C1P(0) + Co®@(T)]c = d — C2®(T) / (1) f(r)dr
0 0

Hence, the existence of a unique solution to the boundary value problem (1),(2) is equivalent
to the invertibility of the (n +m) x (n 4+ m) matrix

T
:(co+c2q>(T)/<1>—1(T)B(T)dr, C10(0) + Co®(T)).
0

In fact, it is usually impossible to explicitly find ®(¢), and hence the general solution,
for a linear differential equation with variable coefficients. In this paper, we use a different
approach to the concept of the general solution proposed by D.S.Dzhumabaev on the basis
of the parametrization method [12]. He originally introduced new general solutions for linear
Fredholm integro-differential equations [13] and later extended this concept to linear loaded
differential equations and families of such equations [14], [15], nonlinear ordinary differential
equations [16], and nonlinear Fredholm integro-differential equations [17]. The introduction
of the new general solution provides a basis for new numerical and approximate methods for
solving various classes of boundary value problems.

The aim of this paper is to apply the concept of the new general solution to Eq.(1) and
develop a numerical algorithm for solving the boundary value problem with a parameter

(1),(2).
2 The Apy-general solution to a linear ordinary differential equation with a

parameter

Let Ay be a partition of [0,7] into N subintervals by points tg = 0 < t; < ... <
tn_1 < ty = T. We will denote by C([0,7], An, R™) the space of function systems z[t] =
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(x1(t), z2(t),...,zNn(t)), where functions z,(t) : [t,_1,t,) — R"™ are continuous and have
left-hand limits lim x,(t) for all » = 1, N, with the norm ||z[]|| = max sup |z, (t)].
t—t,—0 T:LN tE[tr—ht'r)

Suppose that a pair (p, z(t)) is a solution to Eq.(1) and z,(t) is the restriction of z(t) to
the rth subinterval of Ay; that is, x,(t) = z(t), t € [t,—1,t;), 7 = 1, N. Then the functions
x,(t) satisfy the following system of equations:

dz,
dt
A solution to Eqgs.(4) is a pair (&, Z[t]) with i € R™ and Z[t] = (Z1(t), Z2(t), ..., 2N (1)) €
C([0,T), An, R™) satisfying Egs. (4)
If (u,2z(t)) is a solution to Eq.(1) and z[t] = (x1(t), z2(t),...,xN(t)) is the system of the
restrictions of x(t) to the partition subintervals, then the components of this system must
satisfy the continuity conditions at the interior points of Ay:

= A(t)x, + B(t)u+ f(t), te€[tr_1,t,), r=1,N. (4)

li t) = t =1,N—-1.
i o (0) = apia(t). p=T 5)
By introducing additional parameters A\, = z,(t,—1), r = 1, N, and by substituting u,(t) =
x,(t)— M\, on every subinterval [t,_1,t,), from (4) we obtain the system of differential equations
with parameters p and A,

du,
dt

subject to the initial conditions

=At)(ur + N\) + B(t)p + f(t), tetr—1,t,), 7=1,N, (6)

ur(tr—1) =0, r=1,N. (7)

For fixed r, A, and pu, each of Cauchy problems (6),(7) has a unique solution u,(t, u, A).
Let A denote the vector of additional parameters Aq: A = (A1, A,..., Ay) € R™ Tt is easily
seen that the function system w[t, u, A\| = (ui(t, p, A1), ua(t, g, Aa), ..., un(t, 1, An)) belongs
to C([0,T], Ay, R™™). We will refer to ult, 1, \] as a solution to the Cauchy problem with
parameters (6),(7).

If a pair (fi, Z[t]) is a solution to Eq.(4), then the function system w[t, fi, \] with elements
ur(t, i, 5\7") = Z,(t) — A, t € [tr—1,tr), A\ = Z.(t,_1), r = 1, N, is a solution to the Cauchy
problem with parameters (6),(7). Conversely, if a function system wu[t, u*, \*] is a solution
to the Cauchy problem (6),(7), then the pair (p*,z*[t]) with z*[t] composed of z}(t) =
NE A+ up(t, ¥, N5, t € [tr—1,tr), =1, N, is a solution to Eq.(4).

Definition 1. Let a function system ult,u, \] be a solution to the Cauchy problem (6),(7)
for some € R™ and A\ € R™™. Then the function x(An,t, 1, \) defined as

'r(ANata,UJa)‘) :)‘T+ur(t>:u7)‘7’)7 te [trflatT% r=1,N,
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:E(ANa T7 , )\) = )\N + lim UN(t, , A1\7)7
t—T-0
is called the An-general solution to Eq.(1).

It follows from the definition that the A j-general solution depends on m +nN arbitrary
constants and satisfies Eq.(1) for all t € (0,7) \ {t,,p=1,N —1}.
The following statement justifies the fact that the function x(Axy, t, u, A) can be considered

as a general solution to Eq.(1).

Theorem 1. Suppose a function Z(t) satisfies the following conditions:

(a) Z(t) is piecewise continuous on [0,T] with possible discontinuities at the interior points
t=t,, p=1,N —1, of the partition Ay;

(b) for allt € (0,T)\ {tp,p =1, N — 1}, the function Z(t) is continuously differentiable and
satisfies Eq.(1) with some p = i € R™.

Then there exists a unique A = (A1, Mo, ..., Ax) € R™Y such that equality Z(t) = (AN, t, i, )
holds for all t € [0,T].

Proof. Let z(t) satisfy the conditions of theorem and its restrictions to the subintervals of
A constitute the function system Z[t] = (Z1,Z2,...,2n). Then the pair (ji, Z[t]) is a solution
to Eq.(4). Setting A, = Z,(t,—1), r = 1, N, and solving the Cauchy problems (6),(7) with

w = f and A\, = A\, we get the functions wu,(t, fi, \,). Taking into account the relationship
between the solutions to Egs.(4) and those to the Cauchy problems (6),(7), we obtain

-%(t) :jr(t) :Xr"f_ur(ta/]aj\r) :x(ANatvlaa 5\)7 te [trflvtr)7 r= 1,N,
i(T) = S\N + lim uN(t,ﬂ, S\N) = I‘(AN,T,[J,, 5\)
t—T-0

In order to prove the uniqueness of /~\, assume that there is another parameter \* =
(A, AS, .. A%) € R™ such that #(t) = x(An,t,u*,\*) for all t € [0,7]. Hence, by
Definition 1, Z(t) = Z,(t) = \f + u.(t,u*, Af) for t € [t,_1,t,), r = 1,N, and Z(T) =
A}‘V+t_l)ijgrio un (¢, p*, XNy ), where u,.(t, u*, Ay) are the solutions to the Cauchy problems (6),(7)
with g = p* and A = \*. Then, taking into account the initial conditions (7), we conclude
that

A = Zp(tr1) = Ar +up(t, ", A) = A5, r=1,N.
Theorem 1 is proved.

Corollary 1. Let a pair (u*,z*(t)) be a solution to Eq.(1) and x(Apn,t,u,\) be the An-
general solution to Eq.(1). Then there exists a unique \* € R™ such that the equality
x*(t) = 2(An, t, u*, X\*) holds for all t € [0,T].
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Let ®,(t) be a fundamental matrix of the differential equation

%:A(t)x, t € [tr—1,t,), r=1,N.

Then we can represent the solutions to the Cauchy problems (6),(7) in the form

(1, A :@r(t)/CI)Tl(T){A(T)/\,»—i—B(T)u—l—f(T)}dT, teltity), r=T,N. (8)

23

Let us introduce the auxiliary Cauchy problems
dz
dt

where P(t) is a square matrix or a vector continuous on [0, 7]. Each of these problems has a
unique solution a,(P,t) which can be written using ®,(¢) as follows:

A)z + P(t), 2(t,1) =0, teltrit], r=1LN, 9)

ar(P,t) = (I)r(t)/(prl(T)P(T)dT, t € [ty_1,t;], r=1,N. (10)

28

Thus the Ap-general solution to Eq.(1) can be represented in terms of solutions to aux-
iliary Cauchy problems in the following way:

(ANt N) = N+ ar(A )N 4+ ar (B, )+ ar(f,t), te[tr—1,t,), r=1,N, (11)

(AN, T, 1, \) = AN + an(A, T)AN + an(B, T)p + an(f, T). (12)

Let us now turn to the boundary value problem with a parameter (1),(2) and make use
of the Ap-general solution to Eq.(1) in solving this problem. As mentioned above, the Ay-
general solution depends on m+nN arbitrary constants that are components of vector-valued
parameters i € R™ and A € R™Y. Substituting x(A,t, 1, \) into the boundary conditions (2)
and the continuity conditions (5), we obtain the following system of linear algebraic equations
in unknown parameters p and A:

[C() + CgaN(B,T)]M + Ci)\ + [CQ + CgaN(A, T)])\N =d— CgaN(f, T), (13)

ap(B,tp) i+ Ap + ap(A,tp)Ap — Apy1 = —ap(fi1p), p=1,N -1 (14)

Let Q*(Apn) denote the square matrix of order m + nN corresponding to the left-hand
side of system (13),(14). Setting & = (u, A), we rewrite system (13),(14) in the matrix form

Q" (An)E = —F*(Ay), &eR™MY, (15)

where F*(AN) = (_d+ CQCLN(f7 T)val(f7t1)>a2(f> t2)> s 7aN—1(f7 tN—l)) € Rm+nN-
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Theorem 2. The boundary value problem (1),(2) is uniquely solvable if and only if the matriz
Q*(Ay) is invertible.

3 An algorithm for solving problem (1),(2) and its numerical implementation

Using the results obtained in the previous section, we propose the following algorithm for
finding a solution to the linear boundary value problem with a parameter (1),(2).

1. Choose a partition Ay of the interval [0,7] and construct the An-general solution
(11),(12).

2. Construct the system of linear algebraic equations (15) by substituting the A y-general
solution into the boundary conditions (2) and continuity conditions (5). Find the solution
£ € RN of system (15).

3. Substitute the components p* € R™ and \* € R™V of ¢* into the A y-general solution
to get the solution (u*,z*(t)) to problem (1),(2).

The algorithm proposed relies on the A y-general solution whose components, being so-
lutions to Cauchy problems, are determined via fundamental matrices ®,(t). As we have
mentioned above, for linear systems with variable coefficients there is no general way of get-
ting a fundamental matrix. We therefore present a numerical version of the algorithm that
involves numerical solution of Cauchy problems.

Step 1. Choose a partition Ay of the interval [0, T]. Solve the auxiliary Cauchy problems
on the partition subintervals:

d
d;z = A(t)z + A(t), 2(tr_1) =0, t€[t_1,t),
dz
% - A(t)Z + B(t)7 z<t7“—1) =0, te [tT—latT)7
dz
=AW+ O, 1) =0, tE[tort),

and find a,.(A,t,), a.(B,t,), and a,(f,t.), =1, N.
Step 2. Construct the system of linear algebraic equations (15) and find its solution
¢ € RN Note that the first component of £* = (u*, \1,.. ., Ay) is the value of the
parameter p of problem (1),(2). The rest components are the values of the solution to
problem (1),(2) at the left endpoints of the partition subintervals: \* = z*(t,_1), r = 1, N.
Step 3. Solve the Cauchy problems
dx

E :A(t)l‘—l-f(t), $(t7«_1) :A?, le [tr—latv")7 r=1N,

and determine the values of the solution z*(¢) to problem (1),(2) at the remaining points of
the partition Ap.
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4 A numerical example
On the interval [0, 4], we consider the following boundary value problem with a parameter

d
dit” = A(t)z + B()u+ f(t), z€R3, peR? (16)
z(0) = col(1,-3,2), x1(T)=1, zo(T) =13, (17)
where
1 t sin 0.57t 2t 3—t
Aty=(t* 1-t¢ 0 , Bty=1 1 2,
0 t3 cos 0.5t t—1 241

0.257 cos 0.257t — sin 0.257t — 2sin 0.57t cos 0.257¢ — 3 — 15¢ — 13
—t?sin 0.25mt + 3 — 612 —t — 8
—0.57sin 0.257t — 2 cos 0.57t cos 0.25mt — t° + 33 — 442 — 11t + 7
To solve problem (16),(17), we used the proposed numerical algorithm with the Aj par-

tition of the interval [0,4] into 5 subintervals.
By solving the system of linear equations (15), we obtained the following values of the

parameters p and \., 7 = 1,5.

0.9999 1.5878 1.9511
M= [-2.9999 | , Ao = | —2.3600 | , A5 = [ —0.4399 | ,
2.0000 1.6180 0.6180
1.9511 1.5878
M= 27600 | A5 =| 7.2400 | ,pu= <14069090909> .
—0.6180 —1.6180 '

The exact solution to problem (16),(17) is the pair (u*,z*(¢)) with

1+ sin0.257t

ut = <141> and z*(t) = t2 -3 , t €]0,4].
2 cos 0.257t

The maximum approximation error for obtained p and A, r = 1,5, is 5-107Y.
The differences between the exact and approximate solutions to problem (16), (17) are

provided in the following table:
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Table 1. Absolute errors of the numerical solution

ERORERIO]

EROEETI0]

ENOEERI0]

0.1221245-10~14

0.1332267-10~ 14

0

0.4

0.0221004-10~%

0.1224830-10~8

0.1617531-10~%

0.8

0.1587150-10~9

0.0750204-1077

0.1350530-10~Y

1.2

0.0548728-10~ 7

0.0563190-10~ 7

0.1163317-10~ "7

1.6

0.1903193-107?

0.2443955-10

0.3542951-10~Y

2.0

0.0611203-10~°

0.0950316-10~°

0.3560913-10~°

24

0.0993818-10~8

0.1380603-10~%

0.3227025-10~8

2.8

0.0440663-10~°

0.0964392-10°

0.1947860-10~°

3.2

0.4853852-10~%

0.2599317-10~8

0.1151605-10~8

3.6

0.0885035-10~°

0.1912879-10~°

0.5995351-10~°

0.0143556-10~*

0.0456637-10~%

0.1030083-10~*
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Vremosa P.E., Mypcamues II.E. TAPAMETPI BAP CbhI3bIKTHI IIIETTIK ECEIITI
LIEOTYIIH CAHABIK AJITOPUTMI

Kait mudpdepennmaaablk TeHaey YIIiH napaMeTpi 6ap ChI3BIKTHI IMIETTIK €Cell KapacTbl-
peutagnl. 2KymabaeB mapamerpsiey oIici Herisinie ecenTi IIerryIiH CaHIbIK aJTOPUTMI YChI-
HBLIAIHI.

Kinrrix cezaep. Ilapamerpi 6ap mieTTiK ecen, CaHIbIK AJTOPUTM, XKAJIbI IIENTiM, mapa-
METPJIEY OJIiCI.

VYremosa P.E., Mypcanues JI.E. YACJIEHHBIN AJITOPUTM PEHIEHUS JIMHEN-
HOI1 KPAEBOI 3AJIAYH C ITAPAMETPOM

PaccmarpuBaercs nHeltHas KpaeBas 3a/1a4a ¢ MapaMeTPoOM I OOBIKHOBEHHOTO Judde-
peHImaIbHOrO ypaBHeHus . [Ipesiaraercs YUCIEHHBIN aJITOPUTM PEIIEHNsT PACCMATPUBAEMOI
3aja4qn Ha OCHOBE MeToja mapamerpusanun Jlxymabaesa.

Kimrouesnbre ciioBa. KpaeBasi 3aj1a1a ¢ mapaMeTpoM, YUCJIEHHBIH aaropuTsM, obIee perienne,
METOJ TTapaMeTPU3AIIH.
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Abstract. A multipoint boundary value problem for the loaded differential and Fredholm integro-
differential equations is considered. This problem is investigated by parameterization method. The
interval is divided into parts, values of desired function at the initial points of subintervals are consid-
ered as additional parameters and the original equation is reduced to a system of integro-differential
equations with parameters, where unknown functions satisfy the initial conditions on the subintervals.
At the fixed values of parameters we get the special Cauchy problem for the system of linear integro-
differential equations. The solution of the special Cauchy problem is constructed using the fundamental
matrix of the differential equation. The system of linear algebraic equations with respect to the param-
eters are composed by substituting the values of the corresponding points in the boundary condition
and the continuity conditions. Numerical method for solving the problem is suggested, based on the
solution of the constructed system and the Bulirsch-Stoer method for solving the Cauchy problem on

the subintervals.

Keywords. Loaded differential equation, integro-differential equation, multipoint problem, algorithm,
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1 Introduction

Loaded differential equations are often used in applied mathematics. In particular, in [1,
2] these equations are used in solving the problems of long-term forecasting and regulating
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the level of groundwater and soil moisture. Note that the loaded differential equations in
the literature are also called boundary differential equations [3]. Various problems for loaded
differential equations and methods for finding their solutions are considered in [4-7]. Replac-
ing the integral term of integro-differential equation by the quadrature formula, we obtain
the loaded differential equation. Therefore, numerical and approximate methods for solving
the boundary value problems for loaded differential equations are also used in solving the
boundary value problems for integro-differential equations.

Integro-differential equations are often encountered in applications as mathematical mod-
els of various processes in natural sciences. Their role in the study of processes with after
effects was noted in the monograph [8], and the overview of early works devoted to the initial
and boundary value problems for integro-differential equations was provided as well. The
solvability of various problems for the Fredholm integro-differential equations and approxi-
mate methods for finding their solutions are studied by many authors [9-21].

Statement of problem.  Consider multipoint boundary value problems for the loaded
differential and Fredholm integro-differential equations

dx

m T N
i Ap (t) z + Z/O ok () Yir(s)x(s)ds + ZAi(t)x @)+ f@), te(0,T), (1)
k=1 i=1

N
Y Byr(6y)=d, deR", xR (2)
p=0

where the matrises A; (t), 7 = 0, N, ¢ (t) and ¥, (1), k = 1,m, and the vector f(t) are
continuous on [0,T]; B, p =0, N, are constant matrices.
Let C([0,T], R"™) denote the space of continuous on [0, 7] functions x(¢) with the norm
Jally = masyeo 2Bl
Solution to problem (1), (2) is a continuously differentiable on (0,7") function z (t) €
C([0,T], R"™) satisfying the system of the loaded differential and Fredholm integro-differential
equations (1) and multipoint boundary condition (2).

2 Scheme of parametrization method

The interval [0,T") is divided into N + 1 parts by the points §y =0 < 0; < --- < Oy <
On41 =T and partition [0,7) = UN [6,_1, 6,) is denoted by Ay.

r=1
C([0,T], An, R"NFD) is the space of function systems z[t] = (z1(t),z2(t),...,
xN+1(t)), where z, : [0,_1, 0,) — R™ are continuous on [0,_1, 6,) and have finite left-sided
limits lim x,(t) for all r =1, N + 1 with the norm ||z[]||, = max sup |z ().
t—0,—0 r=1,N+1t€[f,_1, ;)

The restriction of the function z(¢) to the r-th interval [#,_;, 6,) is denoted by z,(t),
ie. z,(t) = z(t) for t € [#,_1, 6;), r = 1, N + 1. Then we introduce additional parameters
A =z (6,—1), r=1,N +1, and make the substitution z, (t) = u, (t) + A, on each r-th
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interval (0,1, 6,), r=1,N+ 1, we obtain the multipoint boundary value problem with
parameters

du N+1 m

7 = Ao(t) [ur + A\/] +]z:1;/ ()i (s) [uj + Al ds—i—ZA Xiv1+ f(t),  (3)

te [07"—17 97‘)7 r= 17N+ 17

ur(0r—1) =0, r=1,N+1, (4)
N—-1
BpAp+1 + BNANy1 + By llmouN+1(t) d, (5)
p=0
As + Hm us(t) = Mgy, s=1,N, (6)
t—05—0

where (6) are conditions for matching the solution at the interior points of the partition Ay .
Problems (1), (2) and (3)-(6) are equivalent. If 2*(¢) is a solution to multipoint problem

(1), (2), then the pair (u*[t], A*), where u*[t] = (z*(t) — x*(0p), x*(t) — x*(61),...,x*(t) —
x*(0n)), and A* = (2*(0y),z*(01),...,2*(0n)), is a solution to the problem ( )-(6).
Conversely, if a pair (ﬂ [t], X) with elements @[t] = (a1 (t),a2(t),...,un+1(t)) €
C([0,T), Ay, RMN+D), A= (Xl,XQ,...,XN+1) e RPN+ g a solution to problem (3)

(6), then the function Z () defined by the equalities Z (t) = @, (t) + ey t € [0,—1, 6))
r=1,N+1,z(T) = . lijrp OfLNH (t) +An+1, 1is a solution to the original problem (1), (2).
ST

9

For fixed \; problem (3), (4) is a special Cauchy problem for the system of Fredholm
integro-differential equations. We have N + 1 Cauchy problems on the intervals [0,_1, 6,),
r =1, N + 1, and the system of integro-differential equations includes the sum of integrals of
all N + 1 functions u, () with degenerate kernels on the segments [0,_1, 0,].

If X,(t) is a fundamental matrix of the differential equation dsl”tr = A(t)z, on [0,_1, 6],
then the special Cauchy problem for the system of integro-differential equations with param-

eters (3), (4) is reduced to the equivalent system of integral equations

N
/ XN Ao(T)dr Ay + X / X, Hr) Y Ai(t)Aisadr
0r—1 0r—1 =1

t N+1 m )
0 mEy / a5l (s) + Ay ldsdr

t) /t X, N f(r)dr, t€(0-1,0,), r=1,N+1 (7)
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Let pg, = Z;V:Jil f;jj_l Yr(s)u;(s)ds, k=1, m, and rewrite (7) in the following form

H=3 X.(1) /9 X7 (7)o () drpae

k=1 r—1
N
/ X1 (7)Ao (r)dr Ay + X / X4 r) ST A hirdr
0r_1 Or—1 =1
N+1
/ X Z/ Yi(s)\jdsdr
t)/ X-U(r) f(r)dr, te[hr,0), r=T,NFL (8)

Multiplying both sides of (8) by ,(t), integrating on the interval [0, _,, 6,] and sum-
ming up with respect to r, we get the following system of linear algebraic equations in
p= (1, 12, ) € R™™:

m N+1
o= Gpr(An)ur+ Y Vor (An) Ar +ZW,] (AN)Njs1+9p (F, ), p=T,m, (9)
k=1 r=1 j=1

with the (n x n) matrices

N+1

G (B = 3 / %@ [ X @) endsir, k=T
67‘71

0, N+1 m
Vor (AN) _/0 Py (T / X, (s) Ag (s) dsdr + ) Z/ Py (T
r—1 7‘ 1

7=1 k=1
T 0,
T)/ Xj_l (11) pr (11) dmidT Y (s)ds, r=1,N+1,
9'71 97'71
N+1 -
Wy (Bn) = Z / X, () / X, 1(s) Aj(s)dsdr,  j=TN,
07“71
and vectors of dimension n
N+1
(f AN / wp / X )deTa p = 17m7
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Using the matrices Gy, (AN), Vpr (AN), Wy (AN), we construct matrices
G(AN) = (GPJC (AN)) , pyk=1,m, and V(AN) = (V;J,T (AN)) y,p=1m,r=1,N+1, and
W (AN) = (Wp; (AN)), p=1,m, j=1,N. Then, system (9) can be rewritten in the form

I =G(ANp=V(AN)A+W(AN)E+9(f,AN), (10)

where [ is the identity matrix of dimension nm, and

g(f,AN):(gl(f,AN),QQ(f,AN),---,gm(f,AN)) € R"™.

Definition 1. Partition Ay is called regular if the matriz I — G (AN) is invertible.
Let o (m, [0,T]) denote the set of regular partitions Ay of [0, 7] for the equation (1).

Definition 2. The special Cauchy problem (3), (4) is called uniquely solvable, if for any
A e RMNFDf(t) € C([0,T], R™) it has a unique solution.

The special Cauchy problem (3), (4) is equivalent to the system of integral equations
(7). This system by virtue of the kernel degeneracy is equivalent to the system of algebraic
equations (9) with respect to pu = (u1, p2, ..., um) € R™". Therefore, the special Cauchy
problem is uniquely solvable if and only if the partition Ay, generating this problem, is
regular.

Since the special Cauchy problem is uniquely solvable for sufficiently small partition step
h > 0, the set o (m,[0,T]) is not empty.

Take Ay € o (m, [0,T]) and present [I — G (Ay)]™" in the form

[Iﬁ G(AN)]il = (Mk,p (AN))ak;)p =1,m,

where My, ,, (An) are the square matrices of dimension n.
Then taking into account (10), we can determine elements of the vector yp € R™ from
the equalities

N+1 m N m
o=y (Z Mk,p(AN)Vp,j(AN) A+ <Z MkvP(AN)WpJ(AN)))‘jH
=1 p=1 J=1  p=1
+ZMk,p(AN)gp(fa A]\7)7]{:: 17m7 (11>

p=1
In (8), substituting the right-hand side of (11) instead of uy, we get the representation of
functions u,(t) through A\;, j=1,N+1:

N+1 m t m
u ()= Y X, (t)/ X () o (1) dT Yy~ My (AN) Vog (AN) ¢ A
j=1 (k=1 Or—1 p=1
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S {Exn [ xtoane [ el

'r ]

N m t m
+> {ZXr (t)/e X, () pr (1) dr Y My (An) Wy (AN)} Aj+1
j=1 | k=1 r—1

p=1

7, r=1,N+1. (12)

t
t)/ X!
07"—1

Introduce the notations:

m 0, m
Dj(An) =) X, (Hr)/g X, () en (1) dr {ZMM (AN) Vpj (AN)

(1S Miy (B gy (. 2) + 1 (7

k: p=1

t N
+Xr(t)/9 XY (1) Ao (7) dr A+ X, ( / X Z ) Xig1dT

/ wk ] j;ér’ T‘,jzl,N-{—l,
] 1

> My (AN) Vor (An)
p=1

Dr,r (AN) - ZXT (97") 0 Xr ( )(pk (T) dr

0y
+ X, (6;) XT_I(T)A()(T)(ZT,T‘:LN—I—I,
07‘71

Bry (B) = 3% 0 / X1 (1) o (7 dr S My (An) Wy (B)

=1 p=1

X, (6,) / " X7U(r) A, (t)dr, j=T.N,
67‘—1

m 0, m
=> X, (6,) X1 (7) |:@k(T)ZMk,p(AN)gp(faAN)+f(7—)
=1

‘97“71 p:l

Then from (12) we get

N+1 N
m o (t) = ; Dy (AN) >\j+; Eyj (AN) Ajrit+Fr (AN) - (13)
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Substituting the right-hand side of (13) into condition (5) and conditions of matching solution
(6), we have the following system of linear algebraic equations with respect to parameters A,
r=1,N+1:

N-1 N
[Bo+ BNDna11 (AN M+ D Bpdpra+ Y ByDyij (An) A
p=1 j=2
N
+By [I + DN+1,N+1 (AN)] >\N+1 + ZBNENJ,-LJ' (AN) >\j+1 =d~— BNFN—H (AN) ’ (14)
j=1

[I + Ds,s (AN)] )\s - [I - Ds,s—f—l (AN)] As—|—1

N
+ZDSJ‘ (AN>)\J'+1:—FS (AN), S:LN. (15)
j=1
Denoting by Q. (Ax) the matrix corresponding to the left-hand side of the system of equa-
tions (14), (15), we get

Qi (AN)AN=—F,(Ay), e RN+ (16)

where F, (AN) = (*d + BNFn4a (AN) , I (AN) sy (AN)) .

It is not difficult to establish that the solvability of the boundary value problem (6), (7)
is equivalent to the solvability of the system (16). The solution of the system (16) is a vector
A= (AL A5, Avy) € RMN+1) consisting of the values of the solutions of the original
problem (6), (7) in the initial points of subintervals, i.e. \f = 2*(0,_1), r=1,N + 1.

Further we consider the Cauchy problems for ordinary differential equations on subinter-

vals

d [

ch —A{t)z+P(t), 2(6,.1)=0, telf_1, 6], r=LN+I, (17)
where P (t) is (n X n) matrix or n vector that is continuous on [0,_1, 6,], r=1,N+1.

Consequently, the solution to problem (17) is a square matrix or a vector of dimension n.
Let a (P,t) denote a solution to the Cauchy problem (17). Clearly,

a(P,t):Xr(t)/; XY ()P (r)dr, te[b._1, 6],

where X, (¢) is a fundamental matrix of differential equation (17) on the r-th interval.

3 Numerical implementation of the parametrization method

We offer the following numerical implementation of the parametrization method. The
algorithm is based on the Bulirsch-Stoer method to solve the Cauchy problems for ordinary
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differential equations and it is based on Simpson’s method for the estimation of definite
integrals.

1. We divide [0,7] into N + 1 parts by the points 0 =0y < 0; < --- < Oy < Oni1 =T,
involved in the multipoint condition. Divide each r-th interval [0,_1, 6,], r =1, N + 1, into
N, parts with step h, = (6, — 0,_1)/N,. Assume that on each interval [#,_;, 6,] the variable
0 takes its discrete values: § = 0-_1, 0 = Or—1+ hpy ..., = 01+ (N, —1)h,, = 0,
and denote by {6,_,, 6,} the set of such points.

2. Using the Bulirsch-Stoer method, we find numerical solutions to Cauchy problems (17)
and define values of (n x n) matrices a/" (gok, 5) on theset {6,_,, 6,}, r=1,N+1, k=
1,m.

3. Using the values of (n x n) matrices ¥, (s) and a’" (gok, 5) on{f,_,, 0,} and Simpson’s

method, we calculate the (n x n) matrices

0y [
b (o) = / oy ()" (o, 7)dr,  pk=T,m, r=TLN+L
9'r—1

Sunlming up the mzitrices 12{}; (pr) over r, we find (n x n) matrices ng (AN) =
Zi\gl Z},‘; (¢r), where h = (hy,hg,...,An+1) € R™ Using them, we compose the
nm x nm matrix G (An) = <G’2k (AN)) , p,k = 1,m. Check the invertibility of matrix

- Gh (AN)] LN
~ —1 ~

If this matrix is invertible, we find [I - Gh (AN)} = (M;fk (AN)) , pk=1,m. If

it has no the inverse, then we take a new partition. In particular, each subinterval can be

divided into two.
4. Solving the Cauchy problems for ordinary differential equations

d
d’j = Aot 2+ Ai(t), z(6_1)=0, te[b_q, 6], i=0,N,
dz .
E:Ao(t)z—l-f(t), Z(ar_l)zo, tc [Hr—h 07»], r=1,N+1,

by using again the Bulirsch-Stoer method, we find the values of (n x n) matrices a, (A(], é\),

ay (Ai,g), i=1, N, and n vector a, (f, 5) on{f,_,, 6.}, r=1,N+1.
5. Applying Simpson’s method on the set {6, _;, 6,}, we evaluate the definite integrals

0r N Or
Z} = ; Py (s)ds, 1/1}};} (4;) = , Py (T) aﬁT (Aj,7)dr, i=0,N,
r—1 r—1
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/ wp f7 ) T, p:17m7 T:m.

1" 1

By the equalities

- . N+1 m -
Vit (D) = g (Ao) + 3 D 0% (wn) - g r = LN +1,
j=1 k=1
. N+l 3 N+1
Wi (As, An) = Y (A),i =T N, gp (f, Ax) = D dp (f)p = Tm,
r=1 r=1

we define the (n x n) matrices ngr (An),r=1,N +1, ng (A;, An), 1 =1, N, and n vectors
gg (f, AnN), respectively, p =1, m.
6. Construct the system of linear algebraic equations with respect to parameters

Q" (An) A= —F(Ax), Ae RMNHD, (18)

The elements of the matrix Qi‘ (Any) and the  vector Ff (AN) =
(—d +CFl  (AN), F' (AN),..., Fk (AN)) are defined by the equalities

m s
Dyj(An)=>_al (¢r,0 ZMM (AN) VI (AN) + 0]
k=1

Jj#r rj=LN+1,

m

Ms

S(AN) =) al (k.0 ZM,QP (AN)VE(AN) + P8 | +al (A0,6,),
k=1
Eﬁ,] (AN) = Za " (Pky ZMkp AN) Wg?,] (AN> +a7}}T (Ajaer)a J=1N,
k=1 p=1
F;L(AN):ZGT Pk, 0 ZMkp AN)gp(AN) T(f70r)ar:17N+1'
k=1
Solving the system (18), we find AR, As noted above, the elements of
Ah= (/\?,/\g,.. , AR, ,) are the values of the approximate solution to problem (1), (2) in

the initial points of subintervals: z" (6,_1) )\f,

r=1,N+1.
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7. To define the values of approximate solution at the remaining points of set {6, _,, 6.},
we first find

~ N+1 m ~ ~
pi = Z Z Ml?,p (AnN) Vh )\ + Z Z Mkp (AN)W, (AN) )‘?—H
=1 \p=1

+Y MY, (AN) gy (f,AN), k=Tm,
p=1

and then solve the Cauchy problems

dx
dt

where F* (t) = S0y on(t) | + SN dp N+ S A () My + (1)
And the solutions to Cauchy problems are found by the Bulirsch-Stoer method. Thus,
the algorithm allows us to find the numerical solution to the problem (1), (2).

— AW e+ F (1), 2(01) =X, t€lb1, 6], r=[,N+1,
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Bakuposa 9.A., Munrmmbaesa B.B., Kaceimosa A.B. 2KYKTEJIT'EH JINGOEPEHIIU-
AJTIBIK 2KOHE ©OPEJATIOJIbBM MHTETPAJIABIK-ANOOEPEHIIMAJIABIK TEH/IE-
VJIEPI YIITH KOIT HYKTEJII ITETTIK ECEITI INENTYAIH AJITOPUTMI

Kyxkrenren jauddepenimaiibk kKoHe PpearojibM HHTETPAIbIK-THMOMEPEHITNATIHIK,
TeHJIeyJIepi YIITiH KOIl HYKTEJIi MIeTTIK ecell KAapacThIpbLIaabl. By ecen mapamerpJiey oficiMen
zeprreseni. Apanblk 6esiKkTepre OeJIiHil, IKi apaabIKThIH OacTalKbl HyKTeaepinaeri 6epi-
reH (PYHKIUSHBIH MOHJEPI KOCBIMIINA IMTapaMeTpJjep PeTiHle KAPaCThIPBLIAIbI, aj O0acTAIIKE
Tenyiey Oesriciz dyHKIMAIAD iMTK]I apaJibIKTarbl OaCTAIKBL MAPTTAP/Ibl KAHATATTAHIHIPATHIH
rapameTpJepi bap mHTerpaabK-1uddepeHnnaiibK TeHaeyaep Kylecine kenripineni. [a-
pamMeTpepIiH OeKiTiareH MoHIEP] VIIIH CBI3BIKTHIK, MHTErPAJIILIK-T1(MOEPEHITNAIIBIK, TEHIe-
yiep Kyiieci yimn#a apHaiibl Kommn ecebin asmambris. Komumain apHaiibl ecebinis, mermiMi aud-
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depeHnmaIbK TeHIEeYIiH ipreji MaTpPUIAChIHBIH, KOMETriMeH KypbLiaaael. [lapamerpiepre Ka-
TBICTBHI CBI3BIKTHIK, aJareOpaJsiblK TeHJeysaep »Kyiteci coifkec MOHIEPIH IMIETTIK MIapTKa >KOHE
Y3ULIiCCI3mMiK MmapThiHa KOO apKbLIbl KypbLIaabl. Kypblran KyiteHi mernyre »KoHe ki apa-
JbIKTapaarsl Komm ecebin memynin Bynupm-IIToep amiciHe HerizmeareH caHIblK 9JIici yCbI-
HBILJIFAH.

Kinrrik cesJep. Kyxkrenren muddepeHnnaIIbK TEHJIEY, WHTErPaJIIbIK-
muddepeHnuaIIbIK TeHIEY, KO HYKTeJ ecell, aJI'OPUTM, IapaMeTpJliey dJIici

Bakuposa 9.A., Munrimbaesa B.B., Kaceimosa A.B. AJITOPUTM HAXOXKJIEHUA
PEHIEHNA MHOTOTOUYEYHON KPAEBOU 3AJJIAYN /1 HATPYKEHHBIX JT®-
OEPEHIMAJIBHBEIX 1 MHTEI'PO-TUOOEPEHIINAJILHBIX YPABHEHUN OPE/-
IroJIbMA

PaccmaTrpuBaercs Muororodednasi KpaeBas 3ajada i HArPYKEHHBIX nuddepeHiimaib-
HBIX U WHTErpo-auddepennnaabibix ypapaennit @pearosbma. Jra 3a1a9a UCCIELYETCT Me-
TomOM Tapamerpusaiuu. VHTepBaa pa3zdbuBaeTcss Ha YaCTH, 3HAUEHUS MCKOMON (DYHKIUU B
HaJaJIbHBIX TOYKAX MOJUHTEPBAJIOB PACCMATPUBAIOTCS KaK JIOMOJHATEIbHBIE [TapaMETPhI, a
HCXOJIHOE ypaBHEHUE CBOJUTCS K CHCTeMe MHTerpo-anddepeHImaabHblX YPaBHEHU ¢ rmapa-
MeTpaMu, IJe HeHM3BEeCTHBbIe (DYHKIINK YAOBICTBOPSAIOT HAYAIBLHBIM YCJIOBHUSM Ha IIOIUHTEP-
Bayiax. IIpn puKCHpPOBAHHBIX 3HAYEHHUSIX [TAPAMETPOB IIOJIyYaeM CIEIUAJIbHYIO 3a1a4y Ko
JIJIsI CHCTEMBI JIMHEHHBIX HHTerPo-TuddepeHInaj bHbIX ypaBHeHuii. Perenne creruabHOI 3a-
naun Ko crpourcest ¢ ucnoib3oBanueM GyHIAMEHTAILHON MaTpUIbl JuddepeHInalbHOro
ypapHerust. CucremMa JIMTHEHHBIX aJIreOpanvdecKuX YpPaBHEHUI OTHOCHUTEJIBHO ITapaMeTpOoB CO-
CTaBJIIETCS MyTEM IIOJCTAHOBKHU COOTBETCTBYIOIINX 3HAYEHUM B KPaeBOE YCJIOBUE U YCJIOBUS
HempepbIBHOCTH. [Ipetaraercst YnCIeHHBIN METOI PEITeHNsT 381X, OCHOBAHHBIN Ha, PEITeHIN
ITOCTPOEHHOI cucTeMbl u MeTose Bysmmpia-1lToepa pemenust 3amaan Ko Ha moguHTepBa-
Jrax

Kirouespre  cioBa.  Harpyxxkennoe — auddepeHImasbHoe — ypaBHEHHWE,  HHTEIPO-
muddepennraabHOe ypaBHEHNE, MHONOTOYeYHAs 3a0a4a, aJIlOPUTM, METOJ, IIapaMeTPU3AIII
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1 Introduction

On Q = [0,w] x [0,7T] the boundary value problem is considered

Pu O*u Ou Ou — n
M:f<x,t,u7ax2,&v,at>7 ($,t)€Q, UGR y (].)
u(z,0) = u(z,T), z € [0,w], (2)
u(0,t) = @(t), te€][0,T], (3)
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ou(0,t)
ox

where f : Q x R" x R® — R" is continuous, n-vector function ¢(t), ¥ (t) is continuously
differentiable by [0, 7] and satisfies the condition 9 (0) = ¥(T).

Nonlocal problems for third-order partial differential equations have been studied by
many authors [1-4]. A certain interest in the study of these problems is caused in con-
nection with their applied values. Such problems include highly porous media with complex
topologies, and first of all, soil and ground. Also, such equations can describe long waves in
dispersed systems. To solve this problem, we introduce new functions and apply the method
of parametrization [5]. Then the nonlinear semi-periodic boundary value problem for a third-
order pseudoparabolic equation is reduced to a periodic boundary value problem for a family
of systems of ordinary differential equations [6-19].

Function u(z,t) € C(2, R™), having partial derivatives

= ¢(t)’ te [OvT]v (4)

ou(z,t)
ox

€ C(Q, R"), a“gi’t) € C(Q, RY),

0u(z,t)
Ox?

PBu(z,t)

e C(L, R"), 5201

€ C(Q,R"),
is called a classical solution to problem (1)-(4) if it satisfies system (1) for all (z,t) € Q, and
boundary conditions (2)-(4).

To find a solution, we introduce the functions z(z,t) = aua(i’t), w(z,t) =
problem (1)-(4) can be written as

Qu(z,t)
ot and

2
88:68275 = <m,t,u, (%gg;t),z(ﬂ:,t),w(x,t)), (x,t) €Q, u€R", (5)
2(2,0) = 2(z,T), w€[0,w], (6)
20,0) = %(t), teloT], (7)
. i 0z(&,t

wiant) = 90+ [ e 0

0
u(w,t) = pl0) + [ 2(¢.0)de. )

0
For fixed u(z,t) and w(z,t) problem (5)-(7) is a semi-periodic boundary value problem for a
system of second-order hyperbolic equations. Reintroduce the notation v(x,t) = az(gi’t), and

problem (5)-(9) is reduced to a family of periodic boundary value problems for a system of
ordinary differential equations of the form

v

5= f<a:,t,u,v(x,t),z(x,t),w(ac,t)), (z,t) € Q,
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v(z,0) =v(x,T), z€][0,w],
functional relationships

T

z(x,t) = (t) + /v(ﬁ,t)d{, (z,t) € Q,

0

and (8), (9).

Thus we have reduced a semiperiodic boundary value problem for a system of hyperbolic
equations to a family of periodic boundary value problems for ordinary differential equations
and functional relations.

At the step h > 0: Nh =T we perform the partition

N
0,7) = | JI(r = )h,rh), N=1,2,....
r=1

Then the domain (2 is divided into N parts. By v, (z,t), u,(x,t), w,(z,t) denote, respectively,
the restriction of the functions v(x,t), u(x,t), w(z,t) to Q. = [0,w] x [(r — 1)h,rh),

= 1,N. We introduce the notation A.(z) = v,(z,(r — 1)h) and make a replacement
Or(z,t) = vp(2,t) — A\p(x), r = 1, N. We obtain an equivalent boundary value problem with
unknown functions A, (z):

agtr = f(z,t,ur(z,t),0p + N\ (2), 20 (2, 8), W (2, 1)), (2,1) € Qp, (10)
Up(x,(r—1)h) =0, z€0,w], r=1,N, (11)
A(x) — An(z) — t_l}ijgl_O'ﬁN(x,t) =0, z€][0,w], (12)
As(x) +t hr}?,oﬁs(x’t) —Ast1(2) =0, z€[0,w], s=1,N—1. (13)
zr(z, )+ [ v(&,t)dE + (&)de,  (z,t) €y, r=1 N, (14)
s [ricames [
z £

wr(az,t):gb(t)—kz/}(t)az%—//aw 08 jevde, (w)eQ,, r=T.N, (15
0

z & z &
up(1,8) = () + (t) + / / B (€1, 1) dérde + / / A (62)dé1dE, (2,1) € Q. r = TN, (16)
0

0
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where (13) is the condition for the continuity of the solution in the inner lines of the partition.

Problem (10),(16) for fixed A.(z), z,(z,t), wy(z,t), ur(z,t), is a one-parameter family of
Cauchy problems for systems of ordinary differential equations, where z € [0,w]|, and is
equivalent to the nonlinear integral equation

t
Up(z,t) = / fla,myup(z, 1), 0p (2, 7) + A (2), 20 (2, 7), Wy (2, 7)) )dT. (17)
(r—1)h
Instead of v,(z,7) substitute the corresponding right-hand side of (17) and repeat this

process v times (v =1,2,...) as soon as we get

t T1
= [ f(x,n,w(w,ﬁ), / f(a:,m,w,m),...

(r—1)h (r—=1)h

Tv—1

/ f(x, Ty ur (2, 7)), O (2, 7)) + A (2), 20 (2, 7)), wr (2, TV))dTl,—l-

(r—=1)h
+.ooo M (2), 20 (2, T2), Wi (2 T2)>d7'2 + Ae(2), 20 (2, 11), Wi (2, Tl)> dry. (18)

Hence, defining . 11%1 OﬁT(az,t), substituting them into (12), (13), we obtain a system of
—rh—

nonlinear equations for A, (z) :

Nh 1

M(z) — An(z) — / f<l’,7’1,uN(ZE,7'1), / f(m,Tg,uN(a:,Tg),...
(N=1)h (N=1h
Ty—1
flz,m,un(z, 1), on(x, 7)) + An(2), 28 (2, 7)), wN (2, 7'1,)) dr, + ...
(N—1h

et )\N(IL‘),ZN(I',TQ),wN(fE,TQ))dTQ + )\N(l’),ZN(ZE,Tl),wN(l‘,Tl))dTl =0, x € [0,w],

sh 1

As(z) + / f(ar,n,us(m,n), / f(m,Tg,us(x,Tg),...

(s—Dh (s—1)h
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Tv—1

/ f<$, Ty us(x, 7)), Us(2, ) + As(X), 25(2, 7)), we (2, Tl,))dT,, 4+ ...
(s—=1)h

vt As(@), z5(x, 2), ws(, 7'2)> dro + As(x), zs(x, Tl),ws(x,n))dn — As+1(x) =0,

re0,w], s=1,N—-1.

which we write in the form

Qun(x, N0, z,w,u) = 0. (19)
In the absence of partition (N = 1, h = T') the system of equations (19) has the form

ial Tv—1

T
f<:v,71,u(:c,ﬁ), f(:E,TQ,u(CC,TQ),... f<x,7y,u(:v,7,,),5(x,7y)
/ / /

+A(2), 2(z, 1), w(x, Ty)> dry + ...+ XMz), z(z, 72), w(z, 7'2)) dTo

—I—)\(:L’),z(:L‘,Tl),w(x,Tl)>d7'1 =0, z€][0,w]

To find a system of functions {\.(z), v,(z,1), z-(z,t), w.(x,1t), ur(x,t)}, r = 1, N, we have a
closed system consisting of equations (19), (18), (14), (15) and (16), defined in terms of the
function f, the partition step h > 0 and the number of substitutions v.

Let us choose a step h >0: Nh=T (N =1,2,...), vector function

A0 () = A @), AP @), ..., AP (@) € c(o,w), RN™),

and assume that problem (10)-(16) for A.(x) = ALY (x),r =1, N, has a solution 7 (x,t) €
C(Q, &), 2V, t) € C(Q,, B"), w!(x,t) € C(Qy, RY), W' (2,t) € C(Q,,R"), r = T, N.
Many such A (z) € C([0,w], R™) denote Go(f,x,h), and the corresponding (V) (z) have
the system of solutions to problems (10)—(16) in terms of

7O (2, [t]) = @ (2, 6), 03 (2, 1), - .., 5 (2, 1))
20, 1)) = (A0, 1), 20 @, 1), .., 20, 1)),
w®(z, [1]) = W (@, 1), w0 (2,1), ..., 0 (z,1)),

uO(z, [1]) = @ (@, t), vl (@, 1), ..., ul (@, 1))
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By taking A0 (z) € Go(f, z, h), 0O (z, [t]), u (z, [t]), 2O (z, [t]), w® (z, [t]), continuous func-
tions on [0,w] p(x) > 0, 6(x) > 0, ¢(x) > 0 build sets:

SO (@), p(z)) = {(M(2), Aa(z),..., An(2)) €  C([0,w], R"™N)

A (@) = A0 (@)|| < p(x),r =T, N},
S@O (2, [t]),0(x)) = { (@1 (2, 1), 0o (, 1), ..., On (2, ), T (2, 1) € C(Qy, R :

max  swp 5o, t) ~ 50, B < 0(a),r = T},
r=1,N te[(r—1)h,rh)

SOz, [1]), (@) = {(21(2, 1), 22(x, 1), . .., 2y (2, 1)), 2 (1) € C(Qy, R™) :

2 (2, ) = 289 (2, 1)|| < ¢(x), (x,t) € Qp,r =T, N},
SO (z, [t]), (x)) = {(wi(z,t), wa(,1),..., wn(z,1)) , we(x,t) € C(Q, R") :

[wr(2,t) = w (2, 1)]| < (), (x,1) € Qp,r = T, N},

SO (z, [t]), d(x)) = {(ur(a, t), ua(z, 1), ..., un(z, 1)), up(z,t) € C(Qr, R") :
lur(2,) = ul (2, 1)]| < $(x), (x,1) € Qp,r =T, N},
GY(p(x),0(x), $(x)) = {(x,t,0,2,w,u) = (z,1) € Q,

v = A0 (@) =5 (@, )| < pla) +0(z), (x,t) €Q,, r=T1,N,

Oy o 5500
o= AQ(@) — Tim 3 (@ 1)) < plw) + 0(x),

T,

|z — 20z, 8)|| < ¢(z), (2,8)€Q,, r=1,N

3 0
Iz = Jim 2Ot < dlz), t=T,

lw —w(z,t)| < d(x), (2,8) €Q, r=1N
o~ Jim w0 <o)t =T, Ju—u® )] < o)

)

(z,t) € Q,r=1,N,
: 0
”u - t_}]lVI}ll_ougv)(JLt)” < ¢(x)7 t = T}

By Uo(f, Li(x), La(z), L3(x), La(x), z, h) we denote the collection
A (@), 7Oz, [t]), 2Oz, [t]), w (, [1]), 'V (2, [1]), pl), O(), $(x))

for which the function f(z,t,v,w,u)in  GY(p(x), 8(z), #(x)) has continuous partial deriva-
tives fl(x,t,v, z,w,u), fl(x,t,v,z,w,u), fl(z,t,0,z,w,u), fl(x,t v, 2w, ,u) and

||fé(x,t,v,z,w,u)|| < Ll(l‘), ||f;($7t7va Z,U),U)H < LQ(x)a
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Hf{u(xvtavvszvu)H < Lg(l‘), ||f;(x,t,v,z,w,u)|| < L4(I).
By system {\.(x),0,(x,t), zr(z,t), wp(x,t),ur(z,t)},7 = 1, N, let us make the top five
{A(x), o(x, [t]), 2(x, [t]), w(z, [t]), u(z, [t])}, where A(z) = (A1(z), Ao (), ..., An (7)),
o(z, [t]) = (V1(z,t), 02(m,t), ..., ON(z,1)),

Z(.CC, [t]) = (Zl(x7t) ( ) "7ZN(x7t))/7
w(z, [t]) = (wiz,t), wa(2,1), ..., wn(2,1)),
u(z, [t]) = (u1(z, 1), uz(2,t), ... un(,1))"

Assuming the existence of A(° ( ) € Go(f,x,h), for the initial approximation of problem (10)-
(16) we take the functions {\ ) (z), () (z, [ D), 2z, [t]),w® (z,[t]), O (z,[t])}, r=T1,N,
and successive approximations are built according to the following algorithm:

Step 1. A) Assuming that

2 t) = 202, 1), we(z,t) = w(x,t), ur(z,t) =u(z,t),r=1,N,

r

we find first approximations of A.(x), v,(x,t) by solving problem (10)—(13). Taking
A (@) = AO (@), T (2, 8) = 50 (2, 1),
we find the system of couples {)\511)(3:), Eﬁl)(x,t)}, r = 1, N, the limit of the sequence
AL (z), otbm) (z,t), determined by the following algorithm:
Step 1.1. a) Substituting iﬁl’o)(x,t),r = 1,N, in (19), from the system of functional
equations

Qun(z, )\7’5(170)7 2(0)7 w(O), u(o)) =0

define )\7(«1’1)(1:), r=1,N.

b) In the right-hand side of (18), substituting instead of v,(z,t), A\.(x), respectively,
ﬂﬁl’o)(x,t), /\gl’l)(m), r =1, N, define {T)ﬁl’l)(m,t)}, r=1,N.

Step 1.2. a) Substituting §£171)(w,t),r = 1, N, in (19), from the system of functional
equations

Qun(z, )\,’5(171)7 2(0)7 w(O)7 U(O)) =0

define A2 (), r=1,N.

b) In the right-hand side of (18), substituting instead of v,(z,t), A\.(x), respectively,
ﬁl’l)(a:,t), )\gm)(x), r = 1, N, define {ﬁﬁl’Q)(x,t)}, r = 1,N. On (1,m)-th step we get a
system of pairs {Agl’m) (x), ebm (x,t)}, r = 1, N. Assume that a sequence of systems of
couples {/\ﬁl’m) (), ebm) (z,t)} at m — oo converges to {/\9) (x), Eq(nl)(:n,t)}, r=1,N.
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(1)

B) Functions u, ' (x,t), 27(«1)(93, t), wr(,l)(x, t),r =1, N, are determined from the relations

2O t) = (t) + / T e+ [ AD(©)de, (@) ey, r=TN,
0

Ot~

z £ (1
wwaw=¢m+¢wx+//ﬁ“ C0D g de, (,1) € Qy.r = TN,
0

z & T

3
u£1>(x,t>:sa<t>+w(t>x+ W&, tydade + [ | AV (&)derde, (x,t) € Qp,r =1, N.

Step 2. A) Assuming that
ar(@t) = 20, 0), welest) = wD(w,t), wlw,t) = uD(ab), r=T,N,
we find second approximations of A.(z),v,(z,t) by solving problem (10)—(13). Taking
A0 () = AV (z), 320 (z,t) = oM (x, 1),

we find the system of couples {)\9)(:6), o2

A @),
Step 2.1. a) Substituting '177(,2’0)(:5,0,7” = 1,N, in (19), from the system of functional

equations

(z,t)},r = 1, N, as the limit of the sequence
x,t), determined by the following algorithm:

Quan, A, 530,20 0@ W) = 0

define \{*Y (r),r=1,N.
b) In the right-hand side of (18), substituting instead of v,.(z,t), A.(x), respectively,
'17,(,2’0)(3;,75), AgQ’l)(x), r =1, N, define {'ﬁﬁz’l)(x,t)}, r=1,N.
Step 2.2. a) Substituting '177E2’1)(x,t),r = 1, N, in (19), from the system of functional
equations
Qunlz, A, 73D 2 M Wy =

define \{*? (r), r=1,N.

b) In the right-hand side of (18), substituting instead of v,(x,t), Ar(z), respectively,
'17,(,2’1)(36,75), )\7(?’2)(:6) r =1, N, define {0(2 2) (x,t)}, r =1, N. At the (2, m)-th step we obtain
a system of couples {)\7(~2 m) (x), oeEm (x,t)}, 7 =1,N. Assume that a sequence of systems

of couples {)\TQ’m) (x), oezm) (x,t)} at m — oo converges to {)\q(nz) (x), e (x,t)}, r=1,N.

KAZAKH MATHEMATICAL JOURNAL, 19:1 (2019) 119-132



On a solution of a nonlinear semi-periodic boundary value problem... 127

B) Functions u'? (z,t), 2 (x,t), w? (z,t),r =1, N, are determined from the relations
2 (@, 1) = P(t) +/5£2)($1, t)dzy +/)\( N@1)der, (z,t)€Q, r=TN,
0 0

. g 85}«2) (:UQ t)
w® (2,t) = p(t) + P(t)x —i—//at’dacgd:cl, (x,t) € Q,r =1, N,

u7(02)(;1:,t) = l‘—l—// (9,1 dxgdazl—l—//)\( x9)dxedry, (z,t) € Qp,r =1, N.
0 0

Continuing the process, at the k—th step we obtain the system
W (@), 50 (2, 1), 2 (2, 1), w® (2, 1), ul®) (2, 1)}, r=T,N.

Sufficient conditions for the feasibility, convergence of the algorithm and the existence
of a solution to a multi-characteristic boundary value problem with functional parameters
(10)—(16) are established by

Theorem 1. Suppose that there ish >0: Nh=T,(N =1,2,...), ve N, (A\O(z),
7O, [t]), 2Oz, [t]), wO(z, [t]), WOz, [t]), p(2), 8(x), 6(x)) € Uo(f,L1(x), L2 (), Ls (),
Ly(x),x,h), for which the Jacobi matriz 0Qun 2. g’;’ 2w, u) is reversible for all (z, \(z),
5@, [1), 22 [1), w(e, [1)), u(z, [1), where = € [0,6], (A(z), 3z, [1]), 2(z, 1), w(a, [, u(z, )

€ SAO(@),p(x)) x S@(z,[t]),0(x)) x 5(27(0)(% (1), d(x)) x S(wO(x,[t]), d(x)) x
S(uO)(z, [t]), p(z)) and the following inequalities hold:

1) ‘ |:6Q,/7h(33, )\a ’177 Z, W, U):| -

<
a)\ —’YV(x7h)7

2 ot = U oy Y B <y

V! 4!

j=1
T

13
9) leo(x) + eale)La(x) + La(x) + La(z)] [ ele exp(fc@l)da)

0
><jmax{l,L1(§1)}[CO(§1)C1(§1)—i—co(§1) + v (61, W) |Qup (61, A, 50 20 4p(© 4,(0))||dgy de
Feo()m 1) Qo D (2), 50, 20w O] < (z),
1) fealw)es(a) - eo(a) et Bl + i)+ Lao)] [ el€ean( [ ey ) [t 1a€o)
x[eo(€1)e1(61) + co(€1) + Uy (€n, D)1 Qup (€1, A, 50, 200 0@ 4 (0)) || de; de
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+[CO(‘T)01 33) + 1]71/(‘7:7 h)”Qv,h(xv A(0)75(0)7 Z(O)’w(0)7u(0))H < p(l‘),

5) c(w) ljl,( / C(§)d£>j

Jj=0 0

S

~

x / max{1, L1 (£)}eo(€)e1 (€) + co(€) + Uy (& 1) |Qun (€ AP, 5@, 2O 0® 40y dg

0
+max{1, L1 (z)[co(x)c1(x) + co(z) + 1}y (2, h)|Qun (2, X0, 7O 200 @) O < ¢(2),
where ¢(r) = max {[co(x)cl () + 2¢co(z) + 2]ea(z), L1 (x)[co(x)er(x) + 2¢0(x) 4 2]ea(z) + 1}

2 (@) 4 25l + B, o) = 7 S U 1) = et iy

1—gq, = 4! V!

1 ~ (L1(2)h)!
co(z) = g h.
1—qu(x,h) jz:;) J!

Then the sequence of functions determined by the algorithm (A (x), %) (z, [t]),
Bz 1), w® (1), u®(z,[t]), & = 1,2,..., contained in S\ (z),p(zx)) x
5(5(0)(967 1),6(2)) x S0 (2, [£]), 6(2))  S(w O (z, ), 6()) x S(uO(z, []), 6(x)), converges

to (N (x),v*(x, [t]), 2" (z, [t]), w* (x, [t]), u* (x, [t])) which is the solution of problem (10)-(16)
and the following estimates are valid:

a) max{ max [Ni(z) — AP (@) + max  sup  [[F(x,t) — 0 (2, 8)]),

r=1,N r=1,N te[(r—1)h,rh)

H aur(x,t) O (x,1)

max sup ;
r=L,N te[(r—1)h,rh) ot ot
max N6~ AP@de + [ max  swp 56 - 79(E, t)Hds}
r=1,N 0 r=1,N te[(r—1)h,rh)

T

ez (k=1) . z
< 2 ([etoa) ™ [t i@)a©er(©) + ) + 1
0 0

XYy (&, 1)]|Qun (6, N0, 5O 20 (@ 14,0,

b) max{ max sup  ||z¥(z,t) — zﬁk)(:r t)]|, max sup  ||wi(x,t) — (k)(x B,

r=1,N te[(r—1)h,rh) r=1,N te[(r—1)h,rh)

max sup fur(e,t) — ol 6))}
r=1,N te[(r—1)h,rh)
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xT

<[] max 220 - NI+ max s 60 - 76 O

5 r=1, r=1,N te[(r—1)h,rh)

max sup ’
r=1,N te[(r—1)h,rh)

o (&, 1) au(e,t)
o Ot H

)

£
max [[A5(&) — AP (&)|de + [ max  sup Hﬂ:(gl,t)—%’“(&J)Hd&}d@

, r=1,N ) r=1,N te[(r—1)h,rh)

Furthermore any solution (A(x),v(z, [t]), z(z, [t]), w(x, [t]), u(z, [t])) to problems (10)-(16) in
SAO (), px))x  S@O(x, [t]),0(z)) x SOz, [t]),¢(z)) x SwO(x,[t]),6(z)) x
S(uO (z,[t]), p(x)) is isolated.

The proof is given on the basis of the above algorithm, similar to the scheme of the proof
of Theorem 1 of [14].

Functions U,Ek) (x,t),2 (k) (x,t),w (k) (x,t),u,(nk) (z,t), k=1,2,..., are defined by equalities:

" AP () + 3% (2, 1), at (z,t) €y, r=1,N,
v (@) = )\gl\;)(l') +, li%noﬂj(\l,ﬁ)(x,t), at t = Nh,
m

T

2 (2, 1) = (t) + / v (€, 1)de,
(k)( ) (t) () ]jav(k)(fl t)
w® (x,t) = G(t) +D(t) + T deyde,
0 0

z £
uP (@,t) = p(t) + vtz + | [ v (&, t)dérde
/1

and by G(ul?) (z, [t]), ¢(x)) denote lots of piecewise-continuously differentiable to z, t functions
u : Q — R", satisfying the inequalities ||v(x t) — A (z) =3O (z, 1) < o(x), |v(z,T) -
AO(2) - 00, T)]| < 6(a), [(x,t) — (w )l < ¢@), ll2(z,T) = 2V(2,T)| < é(x),
ho(z,t) — 0O, 8)] < 6(a), [z, T) - w( (@, T)| < ¢(x), [u(z,t) — uO(z, )] < ¢(x),
lu(z, T) = u© (2, T)|| < ¢(x), where v(w, t) = LmED 2(p,¢) = 24U (1) = 24ed),

In view of the equivalence of problems (1)-(4) and (10)-(16), Theorem 1 implies
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130 Nurgul T. Orumbayeva

Theorem 2. If the conditions of Theorem 1 are satisfied, then the sequence of functions
{u®)(x, 1)}, k =1,2,..., contained in G(ul®(z,[t]), ¢(x)), converges to u*(x,t) which is the
solution to problem (1)-(4) in G(u®(z,[t]), d(z)) and this inequality is valid

(2. 8) = u® (]| < / e) > ‘71'</5 %ma)j
0

3
x / max{1, L1 (&) Heo(&1)er(€1) +co(€1) + 17 (1, B)|Qun (€1, AO, 5O, 2O (@ (0| ag, de,
0

(z,t) € Q. Moreover, any solution to problem (1)-(4) in G(u®(z, [t]), ¢(x)) is isolated.
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Opywmbaesa H.T., Kennmubexosa A.B. YIIIHIII PETTI IICEBJOITAPABOJIAJIBIK
TEHJEY YHIIH BENCHI3BIKTHI 2KAPTBLJIAN ITEPMOTHI HIETTIK ECEIITIH BIP
HIEIIIMI YJKAWBIHIA

IIceBmonapaboIMKaIbIK, TUIITE 3BOIIONUSIBIK TEHAEY VIIiH OEChI3BIKTHI YKapThLIail 11e-
PHOTHI MIETTIK ecerl 3epTTenye. 2Kana aliHbIMAIBLIAP/IBI €HI13y apKBLIbI OChI YIHII peTTi
JKapThLIail MEPUOATHI ecell KapalaibiM OIpiHIm perTi mepuoarsbl auddepeHuaIablK, TeHIe-
yJiep XKyiieci yiiipine »koHe GyHKIIMOHAJIBIK KAThIHACTAPFA KeJITipijei. 3epTTe/eTiH ecemTiy,
JKYBIK, MIEMIMIH Taby aJropuTMI YCHIHBLIFAH.

Kinrrix ceznep. HIuddepenmaiabik TeHaeyaep, 6eiChbI3bIKThI eCell, VIIHIIN PeTTi TeHIey,
IIETTIK €CeIl, aJITOPUTM.
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Opywmbaesa H.T., Kenpan6exosa A.B. OB OJJTHOM PEHIEHNN HEJIMHENHOMN I10-
JIYIIEPOINYECKO KPAEBOI 3AJAYN 17151 IICEBJIOIIAPABOJIMYECKOI'O
YPABHEHIS TPETBEI'O ITOPSIIKA

Uccnemyercs HemuHeHast MOJIyIIEPUOINIECKas KpaeBasi 3a1a49a, 171 9BOJIIOIIMOHHOTO YPaB-
HEHMS IICEBI0NAPabOIMIeCKOro Tulia. BBo/Is HOBbIE IepeMeHHbIe JTaHHAST TOJIYIIEPHOINIeCKAST
3a/1a49a TPETHEro MOPAIKA CBOJAUTCA K IIEPUOANIECCKON KPAeBOI 3aj1a9e JJIsd CEMENCTBa CUCTEM
OOBIKHOBEHHBIX (b depeHITnaIbHbIX YPAaBHEHNN IEPBOro MOPSAKa U (DYHKINOHAJIBLHBIM CO-
otnoreHusM. [Ipeoxken ajropuTm HAXO0XKJIEHUS MPUOJIMKEHHOTO PEIIEeHUsT UCCTIeyeMOi
3a1a49U.

Kirrouesbre cioBa. [luddepennnababie ypaBHeHNs, HeJIMHEHAs 3a/1a49a, ypaBHEHNE Tpe-
Thero IIOpsJiKa, KpaeBad 3a/a4a, aJrOPUTM.
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Abstract. An approximate method for solving quasilinear boundary value problem for Fredholm integro-
differentiated equation is proposed. The method is based on approximation of the integral term by
Simpson’s formula and reduction of the initial problem to a quasilinear boundary value problem for a
system of loaded differential equations. An algorithm for finding a numerical solution and a method for

constructing approximate solution of approximating boundary value problem are proposed.
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1 Introduction

In the present paper we consider the quasilinear boundary value problem (BVP) for
Fredholm integro-differential equation (IDE)

m T
CC% = A(t)x + Zgok(t) /wk(T):U(T)dT + folt) +ef(t,x), te(0,T), zeR", (1)
k=1 0
Bz(0) 4+ Cx(T)=d, deR", 2)
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where € > 0, the n x n matrices A(t), pi(t), ¥r(7), k = 1,m, and the n vector fy(t) are

continuous on [0,7], f: [0,7] x R™ — R" is continuous; ||z| = max |z;|.
1=1n

Denote by C([0,7], R") the space of continuous functions  : [0, 7] — R™ with the norm
||| = I%LX |z(t)||. A solution to problem (1), (2) is a continuously differentiable on (0,7T)
te

function z(t) € C([0,7T], R™), which satisfies equation (1) and boundary condition (2).

The aim of the paper is to develop an approximate method for solving quasilinear BVP
(1), (2). For this purpose, Dzhumabaev’s parametrization method [1] and an approximation
of integro—differential equation by a loaded differential equation are used.

BVPs for Fredholm IDEs are studied by many authors [2-8]. In finding approximate
solutions to IDEs, loaded differential equations (LDESs) arise, which are obtained by replacing
the integral terms of IDEs with a quadrature formula [9-12]. Loaded differential equations
and problems for these equations are considered in [13-15].

2 Scheme of the method
We divide the interval [0,7T) into 2N, N € N, parts:

2N T
[OyT) = LJl[trlatr)v tr=rh, h= ﬁ)
r—=

and replace the integral term in equation (1) with the Simpson’s formula

T

JEGECUS

0

. [¢k<0>z<0> +Uu(T)a(T)

N-1 N
2> ilta))w(tey) +4>  trlty—1)z(tzj1) |- (3)

j=1 j=1
Then we get LDE of the form:

N-1

rR ULES PIY [wkw)w(m + D)D) 42 1 dultnatn)

N
+4Z¢k(t2j—1)x(t2j—1)

j=1

Let x,(t) be the restriction of the function z(t) to the rth subinterval, i.e. z,(t) = x(t)
fort € [t,_1,t,), r = 1,2N. Then, problem (4), (2) is reduced to the multipoint BVP for the

+ fo(t) +ef(t,z), te(0,7), xe€R" (4)
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system of the LDEs:

dg = A(t)z, + g i pr(t) lwk(o)fﬂl(O) + r(T)2(T) + 2 Ni; Pr(taj) w1 (ta;)
- =
N
+4;zpk(t2j_1)x2j(t2j_1) + fot) +ef(t,x,), t€[tr_1,t,), r=1,2N, (5)
Bu1(0) + Cx(tan) = d, (6)
Jim 2p(t) = zpa(tp), p= 12N -1, (7)
im oy (t) = 2(tan), (8)

where (7), (8) are continuity conditions of the solution at the interior points of partition and
at the point ¢t =T

We consider the value of functions x,(t) at the beginning points of the subintervals as
additional parameters: A\, = x,(t,_1), and make the substitution u,(t) = x,(t)—\,, 7 = 1,2N,
on each rth interval we get BVP with parameters

m N-—1
du, h
P A(t)[ur + Ar] + 3 ; or(t) [W(O)/\l + Yr(T) Aan41 + 2 ; i (t25) Aojs1
N
4D r(tyj ) Aas | + folt) +ef(tup + Ar), tE [tro1,ty), 7=12N, (9)
j=1
up(ty—1) =0, r=1,2N, (10)
BX + Chan41 =4, (11)
)\P + t—1>itIpn—0 up(t) - )‘PJFI = 05 b= 1> 2N. (12)

Let C([O,T],AQN,RQ”N ) denote the space of function systems w[t] =

(u1 (t),ua(t),. .. ,ugN(t)), where u, : [t,_1,t,) — R™ is continuous and has the finite left-sided
limit . litm 0u,n(t) for any r = 1,2N, with the norm Hu[]||2 = max_ sup |u.(t)].
—ty—

r=12N te[t,_1,t)
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A solution to problem (9)-(12) is a pair (A*,u*[t]) with \* = (A[,A5,..., Ajn1q) €
RM2NHD) and w*[t] = (u}‘(t),u;(t), . ,uzN(t)) € C([O,T],AQN,RQTLN), whose components
ur(t), r = 1,2N, satisfy equations (9), (11), continuity conditions (12) for A\, = AJ,
r =1,2N + 1, and initial conditions (10).

We will use the limit values of the solution to problem (9), (10) later on, when we turn
to problem (4), (2). It is therefore reasonable to consider the following Cauchy problem on

the closed subintervals:

m N-1
dv, h
e A(t)[vr + ] + 3 > en(t) [1/%(0))\1 + Up(T)Aang1 +2 D ilta;)Agjn
k=1 j=1
N
4 Wrltyj 1) | + folt) +ef(tve + ), tE[tro1,ty], r=12N,  (13)
j=1
vp(tr—1) =0, r=1,2N. (14)
Denote by 6’([0, T], Aon, RZ"N) the space of function systems v[t] = (vl(t), va(t),

...,’UQN(t)), where v, : [t,_1,t;] — R™ is continuous for any r = 1,2N, with the norm

v|]|ls = max max _||v.(f)].
[0l ][4 r:l,the[tr_l,tT]” r(B)l]
It is clear that if function systems u[t, \*] and v[t, \*] are the solutions to problems (9),

(10) and (13), (14), respectively, then

ur(t,A) = vp(t, ), t€[tr_1,t,), r=1,2N,

lim wu,(t,\) =vr(tr,A), r=1,2N.

t—t,—0

3 Algorithm for finding approximate solution
Denote by PC(]0, T, Aan, R™) the space of piecewise continuous functions z : [0,7] — R"
with the possible discontinuity points of the first kind: ¢t = ¢;, j = 1,2N, with the norm

[z]l4 = sup |lz(t)].
t€[0,T

Let us choose a vector A(0) = ()\go), )\20)’ cee )\S\),H) e R"2N+1)  Agsume that the Cauchy

problems (13), (14) with A = A have the solutions e (t), = 1,2N, and the function
system v(O[t] = (vgo)(t),véo) (t),... ,vé%(t)) € 5’([0, T), Aoy, R?"Y). Compose the piecewise
continuous function z(t) on [0,7] by the equalities zo(t) = A9 4 O (), t € [tr—1,tr),
r=12N, zo(T) = Ag}\)u-l'
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Given some positive numbers p, py, and p,, we introduce the following sets:

S\, py) = {A = (A A2, dewgr) € ROV AO) = max A - A7) < m},
j=12N+1

SO, p,) = {v[t] € C([0,T), Mgy, B™) « [|u[-] — v O[5 < pv},

S(2()(t), p) = {fﬂ(t) € PC([0,T], Aoy, R") = |2 (t) — 2y (1) |4 < p}-

CONDITION A. Suppose that the Cauchy problems (13), (14) have unique solutions
ve(t,\), r = 1,2N, for all A € S()\(O),p,\). Moreover, the function system v[t, \] = (v1(t, A),
va(t, A),...,van(t, N)) € 6’([0,T],A2N,R2"N), and ||v[-, ] — v(o)[-]H3 < py.

Further we assume that Condition A is met and the inequality p, + py < p holds.

Substituting v, (¢, ) into continuity conditions (12) and taking into account equation (11),
we get the system of n(2N + 1) nonlinear algebraic equation in parameters A € RN+,

BX + Chani1 =d, (15)

Ap + 0p(tpy A) = App1 =0, p=T1,2N. (16)

Rewrite this system in the form:
Q.(Aon, \) =0, Xe RGN+, (17)

If equation (17) has a solution A* = ( {,A;,...,A;NH> S S(A(O),pA), then the pair
(/\*,v[t, )\*]) is a solution to the problem (11)-(14). Therefore, the function x*(t) given by
the equality x*(t) = A\ + v (t, \), for t € [t,_1,t,), r = 1,2N, and 2*(T) = A3, will be a
solution to the problem (4), (2).

Thus, in order to solve BVP (4), (2) it is enough to find a solution to the system of

algebraic equations (17) and solve the Cauchy problem (13), (14) for finding the values of
parameters.

To solve system (17), we use Newton’s method. The explicit form of Q.(Aay, X) can be
found only in exceptional cases. However, if vlt, X] is the solution to problem (13), (14) for
A=xe SO, py) then

B + C/)\\QN—H —d

~ /)\\1+U1(t1,3\\)—}\\2
Q+(Aan; N = ) (18)

Xon + van (tan, A) — Aan41
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ConDITION B. The function f(¢,x) has the uniformly continuous partial derivatives
falt,x) in G%(p) = {(t,2) : t € [0,T], |z — 20y (t) ]| < p}-
av,é()t\;)\)’ r = 1,2N, i = 1,2N + 1, we consider problem (13), (14).
Differentiating both sides of equation (13) and initial condition (14) with respect to \;, we
get

In order to find

% (W) = Alt) [83(;”) + o] + g kg on ()Y (0)on + Bi(T)oan 414

Ov(t, A)

a)\z + O-M':| 5 t e [tTfla t?‘]v

+205,(t25) 02541, + Wi (t2j—1)0254) + efu(t, vr + Ar) [

vy (t, )
O\

where j # N, j € N,

=0, r=1,2N, i=12N11,
t=tr—1

{I , 4=1, I is the identity matrix of dimension n,
gl =

O, i#1l, O isn xn zero matrix .

(%T(t, )\1, e ,)\2N+1)
O\ ’

r = 1,2N, i = 1,2N + 1, then the function z.;(t,)) is a solution to the linear matrix

Cauchy problem

Hence, if we denote by z;(t, A1,..., Aan+1) the partial derivative

dzpi h —
el A(t) [zri + o] + 3 Z o (t) [Yr(0)o1; + Yr(T)oon 41, + 20k (te;) 0241
k=1
+ 4 (t2j—1)025] + efu(t,vr + Ap) [20i + 0], € [tr1,tr], (19)
2iltio1) =0, r=1,2N, i=1,2N + 1. (20)

o~

It is clear that by virtue of Condition B, the vector Q. (Aan, A) of the dimension n(2N +1)

has uniformly continuous Jacobi matrix n S(A9, py). The Jacobi matrix has

o\
the form:
B 0] ... @) C
I+ zu(t, A) —I+z212(t,A) - 212N (t1, A) z12N41(t1,A)
221 (t2, A) I+ z09(t2, ) ... 220N (t2, A) 29 aN+1(t2, ) . (21)
ZQN,I(LLZN’}\\) ZQN,Q(LLZN’}\\) o T+ ZzN,zN(tQN,X) —I + zonan+1(tan, )
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We solve BVP (4), (2) by the following Algorithm.

STEP 0. Solving the Cauchy problems (13), (14) for A = A\(9) we find functions v, (t, \(?)),
r =1,2N. By the equalities

2O (t) = A0 4 v (t, XN, t € [t,_1,t,), r = 1,2N, and z(O(T) = )\5%4*17
we define the piecewise continuous on [0, 7] function () (t).

STEP 1. A) Using formula (18), we compose vector

BN v oy, —d
0 0
Qu(Aan; N = )‘g ) oy (t1, M@ — )\g )

A + van (tan, A) — /\g;\)url

B) Solve the matrix Cauchy problems (19), (20) for v, = v,.(t, AD), X\ = X\ and find
functions z,;(t, AO) r =1,2N, i = 1,2N + 1. Using formula (21), we compose the Jacobi
matrix

9Qu(Aan, A)

O\
B (0] e (0] C
I+Z11(t1,)\(0)) 7[4’2}12(151,)\(0)) Z1,2N(t1,A(O)) 2172N+1(t1,A(0))
== 221(t2, )\(0)) 1 + 222 (tz, )\(0)) N 2272N(t2, A(O)) 22,2N+1(t2, )\(O))
zon1(tan, NO)  zona(tan, A?) .. T4+ zonoan(tan, AO) =T+ zonon i1 (tan, AO)

C) Solving the system of linear algebraic equations

0Q+(Agn, A1)
oA\

AN = _lQ*(AQNv)\(O))a « Z 07
(67

we find AN9. Now, the vector A1) is defined as follows: A() = X\(©) 1 AX©O),
D) Solving the Cauchy problems (13), (14) for A = A(M| we find functions v, (¢, A(1)),
r = 1,2N. By the equalities

2D = A0 40,0, AVD), tetor,t), r=12N, and «O(T)=r

we define the piecewise continuous on [0, 7] function z()(t).
Continuing the process, in the kth step of the algorithm, we obtain A¥) € RM2N+1) anq
functions vﬁk) (t, )\(k)), r = 1,2N. By the equalities

W) = AP 4o (,A),  tefto,t), r=1,2N, and =®(T)=a
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we define the piecewise continuous on [0, 7] function z(¥)(t). It is easily seen that

IA® X <710 (B A, .

where \* is the solution to equation (17). Estimate (22) allows us to measure the proximity
between the approximate and exact solutions in the kth step of the algorithm.

ExaMPLE. Solve the quasilinear BVP for Fredholm IDEs

T
dx t -1 1t T 0
w8 )T e 1 g2)@(7)dr
0

t* 3 32 | 73t 27 2

—i5 22— %+ 35+ 5 x

10 12 T 20 c 1 te(0,T
+(H%+)+ (n¥): teom

1
where e = —, T =1.

2 _
The exact solution to this problem is z*(t) = <tt . 12> .

Let us solve the problem by the proposed algorithm. We divide the interval [0, 7] into 4
equal parts. Below, in Figures 1-3, we give the obtained results.

-0.5 T

2 T T T T

| f/
1 =0

(0)
— (1)

JR—)] 1k
Xn 1
(0)
=% (0)

(@ ©

X 13 (8) — Xiz3(0)
()

1l;1¥4(t)

Xy (B -15F

)
—x(m(t)

kg g

Figure 1 — Graphs of exact solution and initial approximation to the solution of the problem
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-05 r : T T
-1f 2
— (1) — (1)
E0) ()
) —)
o) x&‘z(t)
—_— ) .
Taa(®) 0
pa—; )] a— (1)
x((m(t) Lz ®
Vabion® t PR, 0 |
w0 | | i
A 1 Il L 1 il Il 1 1 1
0 02 04 06 08 0 02 04 06 08

Figure 2 — Graphs of exact solution and the first approximation to the solution of the problem
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Figure 3 — Graphs of exact solution and the fourth approximation to the solution of the problem

For the difference of the exact and corresponding approximate solutions to the problem,
the following estimates are true:

sup ||z*(t) — 2O ()] < 0.2859,
t€[0,T)

max sup ||z*(t) —2M(t)| < 4.4897 - 1073,
t€[0,T]

max sup ||z*(t) —zM(#)] < 6.3318 - 1071,
te[0,T
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The offered algorithm is effective and allows us to obtain the approximate solution to the
quasilinear BVP for the Fredholm IDE of higher order accuracy.
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Mpembaesa C.T. @PEJI'OJIBM MHTEI'PAJIIBIK-TINOOEPEHIIMAJIIBIK TEH/IE-
VI YHITH KBASUCBISBIKTHI HIETTIK ECEIITIH 2KYBIK HIEITIMI

®peIrobM THTErpaIbIK-1nddepeHITnaIIbIK, TeH Iy YIITiH KBa3UCHI3bIKTHI MIETTIK eCell-
Ti MIENTy i H *KYBIK 9/1iCi YChIHBLIFaH. Byt o1ic marerpasiablk Mynreni CuMIIcon popMyaacbiMeH
JKYBIKTayFa YKoHe OacTallKbl ecenTi XKyKTesreH nuddepeHmaniblk TeHaeyiep Kyiieci yiriu
KBa3UCHI3BIKTHI MIETTIK ecelke KeaTipyre Herizenred. 2KybIKTaybl METTIK eCENTiH, CaHIbIK,
mIeIiMia Taby aJaropuTMi KoHE XKYBIK, MIEIMIIMIH KYypY 9/1iCi YChIHBIIFaH.

Kinrrix ceznep. kBa3ucb3blkThl PpenrosbM HHTErPAJILIK- 1M MepeHITnAIIbIK, TeHIeY],
Ilxxymabaes napamerpiiey oiici, Hetoron omici, Cumriicorn dpopmystacsr.

Mpmbaesa C.T. TIPUBJINZKEHHOE PEIIEHUE KBA3SWJIMHENHON KPAEBOW
BAJAYN )11 UHTEIPO-AN®OEPEHIINAJIBHOTIO YPABHEHI ST ®PEITIOJIBMA

[Ipennoxxen npubOJMKEHHBIII METOJl pelleHns KBa3WJINHEHNHOW KpPaeBOW 3alaqdu JjIst
nnrerpo-auddepeniupoBannoro ypasuenusi Openrosbma. MeTos ocHOBaH Ha AIMIPOKCHMA-
MU WHTErpaJbHOro djaeHa (opmysoit CUMIICOHA U CBEJIEHUU MCXOIHON 3a7a9i K KBa3WJIH-
HEMHOI KpaeBoil 3aj1a4e JjIsi CUCTEMbI HAIPY2KEeHHBIX quddepeHnuaibabIX ypaBaennii. [Ipe-
JIO2KECH aJITOPUTM HaXOXKJICHHNA YUCJICHHOI'O pEelIeHHdA W METOJ IIOCTPOCHUA HpI/I6.HI/I)KeHHOFO
pelleHns allllpOKCUMUPYIOIIell KpaeBoil 3a1a4u.

Kurouesnie cioBa. kBazunuHeitHoe nHTerpo-uddepeninaibuoe ypasaenue Opeirosibma,
MeTros, mapaMmerpusaiuu J>kymabaeBa, merosn Heiorona, dpopmyna Cumiicona.
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Abstract. In this paper we investigate a linear two-point boundary value problem for systems of loaded
differential equations with singularity. To study the task, we use the parameterization method proposed
by Professor D. Dzhumabaev, that is, we introduce new parameters and, based on these parameters,
we change variables. When passing to new variables, we obtain initial conditions. Using the so-called
fundamental matrix of the main part and substituting the obtained solutions into the boundary value
conditions, we get a system of equations for the entered parameters. According to invertibility of the
matrix of this system, necessary conditions for existence of a solution to the considered problem are
established.

Keywords. System of loaded differential equations, parametrization method, boundary value conditions,

conformable derivative, unique solvability.
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1 Introduction

In [1-10], definitions and basic properties of the conformable derivative were introduced.

Definition 1. Let a function f : [0,00) — R. Then for all t > 0 the conformable
derivative from the function f is defined in the form:

To(f)(t) = g S+ = f(t)’

e—0 IS
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where o € (0,1). If f is differentiable up to order a on (0,a), a > 0, and liI[I)lJrf(a) (t) ewists,
e—
(@) (0)= lim (@

then fl%(0) g_}(l)Iff (t).

Definition 2.  The conformable integral of the order o € (0,1] from a function f is
defined by the equality:

t
OO = [ (@

a

Lemma 1. Let fort > 0 functions f and g be differentiable up to order o € (0,1). Then
1) To(af +bg) = aToy(f) + bTa(g), for all a,b € R.

2) To(c) =0, for all f(t) = const.

3) Ta(fg) = fToc(f) + Ta(f).g'

0T (§) = et

5) If f is differentiable, then To(f)(t) = tlfa%(t).

Lemma 2. Let o € (0,1] and a function f be continuous when t > a, then

Tolo(F)(E) = f(1).

In this paper, on the interval [0,7T], we consider the two-point boundary value problem
for systems of loaded differential equations with conformable derivative

m—+1
To(z)(t) = A(t)x + Z K;(t)x (6;-1) + f(t), te]0,17], (1)
7=1

0=0p< b <..<0,=T,
Bxz(0) + Cx(T) =d,d € R", (2)

where (nxn)- matrices t*~LA(t), K;(t) and n- dimensional vector function f(t) are continuous
on [0,7]. Boundary value problem (1)-(2) is investigated by the parametrization method
proposed by Professor D.S. Dzhumabaev [11-15].

2 Scheme of the method and the main assertion

We break the segment [0,7): [0,T) = |J";[0r—1,0:), and denote restriction of the func-
tion x(t) on the r—th interval [0,_1,6,), r = 1,m, by z,(t). Then the origin two-point
boundary value problem for systems of loaded differential equations is reduced to the equiv-

alent multi-point boundary value problem
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To (xr) (1) t)xr + Z K ( 0j-1) + Km+1(t)tiijrgowm+l (t) + f(0), (3)
te€0r_1,0,), r=1,m,
Bz(0) + C’t_lgjgio:pm(t) =d, (4)
lim z4(t) = zs41(05), s=1m—1. (5)
t—05—0

Here (5) are conditions for gluing at inner points of the partition ¢t = jh, j=1,N — 1.

If a function x(t) is a solution of the problem (1)-(2), then a system of its restriction
z[t] = (z1(t), x2(t), ..., xm(t)) will be a solution of the multipoint boundary value problem
(3)-(5). And in inverse, if system of vector functions Z[t] = (Z1(¢),Z2(t), ..., Zm(t))" is a
solution of the problem (3)-(5), then the function Z(t), defined by the equalities

z(t) = 2,(t), telbr—1,6,), r=1m, Z(T)= lm Zp(t),

t—T-0
will be a solution of the original boundary value problem (1)-(2).

By A, we denote a value of the function z,(t) at the point t = 6,_; and on each interval
[0r-1,0,), we change the variable z,(t) = u,.(t) + \s, 7 = 1,m. Introduce the additional
parameter A\, 11 = t_lj:];rl Oxm(t), then the boundary value problem (3)-(5) is reduced to the

equivalent multi-point boundary value problem with parameters:

m—+1
To(ur)(t) = A®)ur + A+ > Kj(6)X; + f(2), (6)
j=1
Uy (6,—1) =0, te0r-1,0,), r=1,m, (7)
B\ + C)\m+1 =d, (8)
As + lim wus(t) = Ast1, s=1,m. 9)

t—sh—0

The problems (3)-(5) and (6)-(9) are equivalent in the sense, that if the system of functions
z[t] = (z1(t),z2(t), ..., zm(t)) is a solution of the problem (3)-(5), then the pair (A, ult]),
where A = (A1, A2y ooy Ay A1)’y wft] = (ui(t), ua(t), ..., um(t)), defined by the equalities:
A= (0p—1), T=1,m, Apy1= 11%11 Oxm(t) and u,(t) = 2, (t) — z,(0,—1), r =1,m,

will be a solution of the problem (6)-(9 ) And in inverse, if the pair (A, @[t]), where
A= (AL A2, Ang1), alt] = (@ 1(t), 2(t), ..., U (t))" is a solution of the problem (6)-(9),
then the system of functions Z[t] = (A + @1 (t), A + A (), ooy A + T (1)), E(T) = Apy1 will
be a solution of the problem (3)-(5).

Appearance of the initial conditions (7) makes it possible to solve the Cauchy problem
(6), (7). We use Definition 2 and results of Lemma 2, then
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m+1

ur(t):/e U [ A [u(r) + M dr + 3 K(0) + £(7) | dr, (10)
r—1 j=1
tc [Hr_l,ﬁ,_), r=1,m.

From (10) defining . lilgl Ous(t), s = 1,m, and putting their corresponding expressions into
—sh—

the conditions (8) and (9), we get the system of linear equations concerning to the unknown
parameters A, r =1,m+1:

BA +CApy1 =d, (11)

m+1

0s
)\s+/ T A(r )\dr+2/ INAT — Aot
65 1

0s 0s
= —/ T L A(T)u(r)dr — / 7L (7)dr, (12)
0571 6371
combining the same parameters
BA1 + Chpy1 = d, (13)
05 05 m+1
<I+/ T A(T) NodT + Kq(t d7'> As + Z / T)IAjAT — Ast1
0571 05 1
J 7& s
0s 0s
= —/ TailA(T)U(T)dT — / Tailf(T)dT. (14)
95_1 as—l

A matrix of the dimension n(m + 1) x n(m + 1), corresponding to the left-hand side of the
systems of linear equations (13), (14) is denoted by Q(#). Then the system of linear equations
(13), (14) is written in the form

Q0N = —F(0) — G(u,0),\ € R"V, (15)

F(0) = {d, /061 Ta—lf(f)df,...,/TT_emlra—lf(f)dr},

Glu, 0) = {0, /0 " e Ay /T :M Ta—lA(T)u(T)dT}.
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Thus, to find unknown pairs (A, u[t]), solutions to the problem (6)-(9), we have a closed system
of equations (10), (15). We find the solution of the multipoint boundary value problem (6)-
(9) as a limit of the sequence of pairs ()\’(k),u(k) [t]), k =0,1,2, ..., determined by the following
algorithm.

Step 0. a) Assuming, that the matrix Q(h) is invertible, from the equation Q(h)A =
—F(h) we define initial approximation by the parameter \(9) = ()\go), )\go), s )\58)) € R™WY:
A0 = —[Q(n)] ' F(h).

b) Putting the found )\7@, r = 1, N, into the right-hand side of the system of integro-
differential equations (6) and solving the special Cauchy problem with conditions (7), we find
O] = (1), 05 (1), .y ()"

Step 1. a) Putting the found values ne (t), r = 1, N, into the right side of (15), from
the equation [Q(h)]A = —F(h) — G(u®), h) we define A1) = ()\(11), )\(21), e )\5\1,)).

b) Putting the found )\7(61), r = 1, N, into the right-hand side of the system of integro-
differential equations (6) and solving the special Cauchy problem with conditions (7), we find
u[t) = (i (1), uy (1), uy ()

Continuing the process, on the k-th step of the algorithm, we find the system of pairs
AF) u®[4]), k =0,1,2, .... Unknown functions u[t] = (u1(t),ua(t),...,un(t)) are deter-
mined from the special Cauchy problem for systems of integro-differential equations (6) with
initial conditions (7). Unlike the Cauchy problem for ordinary differential equations, the
special Cauchy problem for systems of integro-differential equations is not always solvable.
Suppose that there is a so-called fundamental matrix of the principal part of the differential
equation, then the following theorem is true:

Theorem [9, p. 499]. Let o € (0,1). Then a solution of the problem
To(ur)(t) = AQt)ur(t) + g(t,u), u(to) =n€R"
is determined by the formula:

u(t) = UEa(A, t— tO) + /t (t - S)a_l Ea(—A, S = tO)Ea(Aa t— t0)9(7—7 U(T))dT,

to

where Eq (A, s) = exp ()\%) .

According to this theorem, we obtain

ur(t) = Eq(A(t),t — 0,_1) /9 (t — 1) L Ba(—A(r), 7 — 6,_1) (A(T) A,

m+1

™ Z Kj(T))‘j dr + Ea(A(t)’ t— 07"—1) /Ht (t - 7_)04—1 Eoc(_A(T)7 T Hr—l)f(T)dTv (16)
j=1 r—1
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te [91”—1707‘)7 r= 1)m7
where E,(A(t),t —0,_1) = exp (fetT,l (1 —0,_1)* " A(T)dT) .
From (16) defining , liI}{l 0us(t), s = 1, m, and putting their corresponding expressions into
—sh—

the conditions (8) and (9), we get the system of linear equations concerning to the unknown
parameters A\, 7 = 1,m + 1:

BXM + CApy1 = d, (17)

0s m+1
As + Eo(A(0),05 — 951)/ (t—7)* Ba(—A(r), 7 = 0r1) [ A(T)As + D Kj()N; | dr

0571 ]71

0s 1
_As—&-l = _Ea(A(es)u 05 - 98—1)/ (t - 7_)04— Eoz(_A<T)7 T = er—l)f(T)dT ) (18)
97"—1
combining the same parameters

BXM + CApy1 = d, (19)

(I + Ea(A(05), 05 — 05-1) /9S (t— T)a_l Eo(-A(r), 7 — Bs—l)A(T)dT> As

03—1

m+1 .9,
+Ea(A(05),0, — 05-1) > / (t = 7) N Eo(—A(T), 7 — 05_1)K;(T)dTA; — Ast1
j*l 9571

0s
= —FE,(A(0s),0s — 05_1) /9 (t —7)* L Ey(—A(7), 7 — Os_1) f(7)dr. (20)

A matrix of the dimension n(m + 1) x n(m + 1), corresponding to the left-hand side of the
systems of linear equations (19), (20) is denoted by Q(#). Then the system of linear equations
(19), (20) is written in the form

Q.(O)\ = —F(0), e RN, (21)
where

01
F(h) = {d, E,(A(0,),61) /0 (t = 1) L Ey(—A(r), 7) f(r)dr ...,

T
EL(A(T), T — 9m_1)/ (t —7)* L E (—A(r), T — em_l)f(f)df} .

9m71

Based on the proposed algorithm on finding a solution, it follows:
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Theorem 1. For unique solvability of the boundary value problem (1), (2), it is necessary
and sufficient that the matriz Q«(0) is invertible.

Example. Consider
1
Ty /o(z)(t) = tx(0) + = <3> +x(1)+2t, telo,1], (22)
z(0) = z(1). (23)

)=1[0,3Hu] il)), 1), and denote restriction of the function (t)

We break the interval [0, 1
(t), and on the interval [,1) by @2(t). Then

on the interval [0, %) by x1
1 i 1
Tl/Q(xl)(t) =tx1(0) + 2 3 + tl}{llol’z(t) +2t, te |0, 3/

1 ) 1
Tip(aa)(0) = 010)+ 2 (3 ) + lim o) + 20 t€ 1),

1(0) = i ()

1
li t) = — .
0= ()
Denote A\ = z1(0), Ao = z9 (%), A3 = tlillrnoatl(t), and change z1(t) = ui(t) + A1,
ey
x9(t) = u2(t) + A2. Then we obtain

1
nmmww4M+M+&+%,te@3) (24)
u1(0) = 0, (25)
1

T]_/Q(’U;Q)(t) = tAl + )\2 + )\3 + 2t, te |:3, 1) s (26)

1
A1 - A37 (28)
A1+ lim ul(t) = Mg, (29)

t—)%—O
Ao + tEEOUZ (t) = A3. (30)
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Solutions of the Cauchy problems (24)-(25) and (26)-(27) is defined as follows

t 1
/\FdTAlJr/ Do+ TA3+2/ Jrdr, te[O,g),
7' 0

td t 1
/\FdT)\l—i-/ — A9 + T)\3—|-2/ Vrdr, te |:,1>.
§VT . ’
Thus
1
ui(t) = VB + Vidg +Vids +2V13, L€ [0,3), (31)

up(t) = (\/ﬁ—\/;> A1+<\/7E—\/g)>\2+(\/i—\/g> A3+2<\/?3— 217> (32)
e [la).

From (31), (32) we determine the limits lim uy (1), PH%’LLQ(t) and put into (29) and (30). Then
t—3 -

the equations (28), (29) and (30) can be written in the form:

— A3 =0,

1 1
>\1+\/ )\1+\/7)\2+ 3/\3—>\2 \/27a
/1 1 1 1

Or, combining the same parameters, we get

A — A3 =0, (33)
1.19A; — 0.42)\5 + 0.58)\3 = —0.38, (34)
0.81)\ + 1.42)5 — 0.58)\3 = —1.62. (35)

The matrix corresponding to the left-hand side of the equations (33), (34) and (35) is denoted
by Q(6). Then
1 0 -1
Q)= 119 —042 158
0.81 142 —-0.58
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Since the matrix QQ(#) has the inverse:

05 035 0.1
QB = 049 —0.05 069 |,
—0.51 035 0.1

then system of the equations (33), (34) and (35) has a unique solution and

A\ = —0.30,
Ao = —1.09,
A3 = —0.30.

Since

1
uy(t) = VI3A + Vida + Vids +2VE3, te [0, 3> ,

u(t) = (\/773\/;> A1+<\/%\/5>A2+(ﬂ\/g> A3+2<x/?3 217>
teBJ),
21(t) = ur(t) + A = VBA +Vido + VA3 +2VI3 - 03, te {0, >

Lo (t) = ug(t) + Ay = (@—@) A1+<\/¥,—\/§) A2+<\/E—\/g> A3
+2 <¢ﬁ—\/;> —1.09, te B1>

Therefore, the solution of the boundary value problem (22)-(23) can be written in the form

\/t>3)\1+\/£)\2+\/£/\3+2\/t>3—0.3, tE[O,%),

z(t) = <\/t>3—\/;)/\14-(\/%—\/g>)\2+(\/i—\/g>)\3+2(\/t73—\/;)_1_09’

te[3,1),

then

—0.3, t=1.

References

[1] Khalil R., Horani M.A., Yousef A. and Sababheh M. A new definition of fractional derivative,
J. Comput. Appl. Math., 264:1 (2014), 65-70. DOI: 10.1016/j.cam.2014.01.002.

KAZAKH MATHEMATICAL JOURNAL, 20:4 (2020) 144-154



Boundary value problem for systems of loaded differential equations with singularities 153

[2] Unal E. and Gokdogan A. Solution of conformable fractional ordinary differential equations via
differential transform method, Optik, 128 (2017), 264-273. DOI: 10.1016/j.ijleo.2016.10.031.

[3] Hashemi M.S. Invariant subspaces admitted by fractional differential equations with conformable
derivatives, Chaos Solit. Fract., 107 (2018), 161-169. DOI: 10.1016/j.chaos.2018.01.002.

[4] Hammad M.A. and Khalil R. Abels formula and wronskian for conformable fractional differential
equations, Int. J. Differ. Equ. Appl., 13:3 (2014), 177-183. DOI: 10.12732/ijdea.v13i3.1753.

[5] Iyiola O.S. and Nwaeze E.R. Some new results on the new conformable fractional calculus
with application using d’Alambert approach, Progr. Fract. Differ. Appl., 2:2 (2016), 115-122.
DOI:10.18576/pfda,/020204.

[6] Abdeljawad T., Alzabut J. and Jarad F. A generalized Lyapunov-type inequality in the frame
of conformable derivatives, Adv. Differ. Equ., 2017:321 (2017). DOI: 10.1186/s13662-017-1383-z.

[7] Refai M.A. and Abdeljawad T. Fundamental results of conformable Sturm-Liouville
eigenvalue problems, Complexity, vol. 2017, Article ID 3720471, 7 pages, 2017.
https://doi.org/10.1155/2017/3720471.

[8] Horani M.A.L., Hammad M.A. and Khalil R. Variation of parameters for local fractional
nonhomogenous linear differential equations, J. Math. Comput. Sci., 16:2 (2016), 147-153. DOI:
10.22436/jmcs.016.02.03.

[9] Sene Ndolane Solutions for some conformable differential equations, Progr. Fract. Differ. Appl.,
4:4 (2018), 493-501.

[10] Unal E., Gokdogan A. and Cumhur I. The operator method for local fractional linear differential
equations, Optik, 131 (2017), 986-993. DOI1:10.1016/J.1JLEO.2016.12.007.

[11] Dzhumabayev D.S. Criteria for the unique solvability of a linear boundary-value problem for
an ordinary differential equation, U.S.S.R. Comput. Maths. Math. Phys., 29:1 (1989), 34-46. DOLI:
10.1016,/0041-5553(89)90038-4.

[12] Dzhumabaev D.S. A method for solving the linear boundary value problem for an integro-
differential equation, Comput. Math. Math. Phys., 50:7 (2010), 1150-1161. DOI:
10.1134/50965542510070043.

[13] Dzhumabaev D.S. An algorithm for solving a linear two-point boundary value problem for
an integro-differential equation, Comput. Math. Math. Phys., 53:6 (2013), 736-758. DOI:
10.1134/50965542513060067.

[14] Dzhumabaev D.S. On one approach to solve the linear boundary value problems for Fred-
holm integro-differential equations, J. Comput. Appl. Math., 294:2 (2016), 342-357. DOLI:
10.1016/j.cam.2015.08.023.

[15] Dzhumabaev D.S. Computational methods of solving the boundary value problems for the loaded
differential and Fredholm integro-differential equations, Mathematical Methods in the Applied Sci-
ences, 41:4 (2018), 1439-1462. DOI: 10.1002/mma.4674.

KAZAKH MATHEMATICAL JOURNAL, 20:4 (2020) 144-154



154 Kulzina Zh. Nazarova, Kairat |. Usmanov

Hazaposa K.2K., Yemanos K.bl. EPEKIIEJIIKTEPI BAP 2KYKTEJIT'EH JTVODE-
PEHIUAJIJIBIK TEHAEVJIEP »KYWUEJEPIHE APHAJIFAH IIETTIK ECEIT TYPA-
JIDbI

Bya »xymbIcTa epekiesiiri 6ap KyKTearen gudepeHnnaliiblK TeHIeyaep Kyieaepl yimin
CBIBBIKTBI €Ki HYKTEJHK IeTTiK ecen 3eprreserni. Koiibuiran ecernti 3eprrey yima mpodeccop
J.C. IxxymabaeBThIH YChIHFAH apaMeTpJey 9JiCi KOJIJaHbLIAbI, SFHI KaHA apaMeTpJep
eHTi311iI1, OCchbl IapaMeTpJiep Herisine »kaHa aflHbIMAJbLIAPFA aybICTHIPHLIAILI. 2KaHa alfHbI-
MaJibLIapra KOIry OapbIChIH I OacTaIKbI IapTTapabl aaMbis3. Jluddepennmaiipik TeHaey/IiH
bac GeJiriHiy iprejii MaTPUIACHIH KOJIJaHa OTBIPhIN Ko ecebiniy menmiMin ajiaMbl3. AJIbl-
HFaH IIeImMIepl MeTTIK MapTTapra KOsl OTBIPBIN, 0i3 eHri3iIreH mapamMerprepre KaThICThI
TeHaeyIep Kyiecin agaMbi3. Ochbl XKyieHIH MaTpUIACHIHBIH KANTapbIMIBLILIFBIH TAJIAIl €Te
OTBIPBII, KAPACTBIPBLIBII OTHLIPFAH €CENTiH OIpMOH MIENTMIIIINHIH KaKeTTi ImapTTapbiH
OpHAaTaMBbI3.

Kinrrix ceznep. 2Kykrenren auddepeHImanibK, TeHIEyIep Kylieci, mapamMerpJrey oici,
IeKapaJsIblK, MapTTap, KOHGopMabe bl TybIHIbI, OIPMOHII MITeITiMIiIiK.

Hazaposa K.2K., Yemanos K.M. O KPAEBOI 3AJTAYE JIJ1s1 CUCTEM HATPY2KEH-
HBIX TNOOEPEHIIMAJBHBIX YPABHEHNIT C OCOBEHHOCTSMMU

B pabore uccaemyercs jguHelHast AByXTOUYedHAasI KpaeBasl 3aa4a JIJIsT CHCTEM Harpy»KeH-
HBIX AuddepeHnnaibHbIX ypaBHEHN ¢ 0cobeHHOCThIO. Jljist ccienoBanms IOCTaBIeHHON 3a-
JIady UCIOJIB3YETCsSI METO/, lTapaMeTpU3alii, peaioykeHHbIi mpodeccopom .C. Ixxymabae-
BBIM, TO €CTb BBOJSITCsI HOBBIE IIapaMeTpPhl U Ha OCHOBE JAHHBIX IapaMeTPOB JIeJIaeTCsl 3aMeHa
IIEpEeMEHHBIX. HpI/I mepexo/ie K HOBBIM II€pEeMEHHbBIM HonyqaeM Ha4daJIbHbIE YCHOBI/IH. I/ICHO.HB—
3ys (byHIaMEHTAILHYIO MaTPUILy TJIaBHON JacTu mud depeHnnaabHOro ypaBHEHUsI U MOJICTaB-
JIAA HOJIyLIeHHI)Ie perrenud B KpaeBble yCJIOBI/IH, HOJIyLIa.eM CI/ICTeMy ypaBHeHHﬁ OTHOCUTEJIBHO
BBEIEHHBIX IapaMeTpoB. Ha ocHOBe 0OpaTHMOCTH MATPHUILI JAHHOHR CHCTEMBI YCTAHOBJIEHBI
HeOOXOIMMbIE YCJIOBUS CYIIECTBOBAHUS PEIICHUS PACCMaTPUBACMON 3a/1a4u.

Keywords. Cucrema Harpy»KeHHBIX IudpepeHInaJIbHbIX YPaBHEHNH, METO/I TapaMeTpu-
3alui, KpaeBble YCJIOBHSA, KOHPOpMade bHas IIPOU3BOIHASI, OJHO3ZHAYHAS PA3PEIINMOCTD.
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