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Exact estimate of norm of integral operator with
Oinarov condition

Aigerim A. Kalybay1,a, Askar O. Baiarystanov2,b
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Communicated by: Ryskul Oinarov
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Abstract. Criteria for the boundedness of integral operators satisfying the “Oinarov condition” in

weighted Lebesgue spaces were obtained about thirty years ago. However, in these results, the norms

of integral operators are estimated from below and from above by the same expressions, without exact

calculation of the coefficients. For applications of these results to oscillatory and spectral problems of

differential equations, the knowledge of these coefficients plays an important role. Therefore, this work

is devoted to finding exact values of these coefficients.

Keywords. Integral operator, weight function, Hardy type inequality, kernel.

1 Introduction

Let I = (0,∞), 1 < p, q < ∞ and 1
p + 1

p′ = 1. Let weight functions v ≥ 0 and ρ > 0

satisfy the conditions ρ, v ∈ Lloc1 (I) and ρ1−p
′ ∈ Lloc1 (I).

Consider the integral operator

Kf(x) =

x∫
0

K(x, s)f(s)ds, x ∈ I,

where the kernel K(·, ·) is a continuous non-negative function increasing in the first argument,
decreasing in the second argument and satisfying the condition: there exists a number h ≥ 1
such that

K(x, s) ≤ h(K(x, t) +K(t, s)) (1)

for all (x, t, s) : 0 < s ≤ t ≤ x <∞.

2010 Mathematics Subject Classification: 26D10, 47B38.
Funding: This research was supported by the Ministry Education and Science of the Republic of Kaza-

khstan, grant No. AP08856100.
c© 2021 Kazakh Mathematical Journal. All right reserved.



Exact estimate of norm of integral operator with Oinarov condition 7

Let Lp,ρ(I), 1 < p < ∞, be a space of all measurable and almost everywhere finite on I
functions f with the norm

‖f‖p,ρ =

( ∞∫
0

ρ(x)|f(x)|pdx

) 1
p

<∞.

We need the statement that follows from Theorem 5 given in [1, p. 48].

Theorem A. Let 1 < p ≤ q < ∞ and µ be a Borel measure. Then the weighted Hardy
inequality ( ∞∫

0

v(x)

∣∣∣∣∣
x∫

0

f(s)ds

∣∣∣∣∣
q

dµ(x)

) 1
q

≤ C

( ∞∫
0

ρ(t)|f(t)|pdt

) 1
p

holds for all functions f ∈ Lp,ρ(I) if and only if

B = sup
x>0

[µ([x,∞)]
1
q

 x∫
0

ρ1−p
′
(t)dt

 1
p′

<∞.

Moreover, B ≤ C ≤ p
1
q (p′)

1
p′B, where C is the best constant in the Hardy inequality.

Assume that

A1 = sup
z>0

( ∞∫
z

v(x)dx

) 1
q
( z∫

0

Kp′(z, s)ρ1−p
′
(s)ds

) 1
p′

,

A2 = sup
z>0

( ∞∫
z

v(x)Kq(x, z)dx

) 1
q
( z∫

0

ρ1−p
′
(s)ds

) 1
p′

.

2 Main results

Theorem 1. Let 1 < p ≤ q <∞. The inequality( ∞∫
0

v(x)

∣∣∣∣∣
x∫

0

K(x, s)f(s)ds

∣∣∣∣∣
q

dx

) 1
q

≤ C

( ∞∫
0

ρ(t)|f(t)|pdt

) 1
p

(2)

holds for all functions f ∈ Lp,ρ(I) if and only if A = max{A1, A2} < ∞. Moreover, the
estimate

A ≤ C ≤ (h+ 1)3p
1
q (p′)

1
p′A (3)

Kazakh Mathematical Journal, 21:1 (2021) 6–14



8 Aigerim A. Kalybay, Askar O. Baiarystanov

holds, where C is the best constant in (2).

Proof. Necessity. Let inequality (2) hold with the best constant C > 0.
Let f0(t) = χ(α,z)(t)ρ

1−p′(t), where χ(α,z)(·) is the characteristic function of the interval
(α, z), 0 < α < z <∞. Since

∞∫
0

ρ(t)|f0(t)|pdt =

z∫
α

ρ(t)ρp(1−p
′)(t)dt =

z∫
α

ρ1−p
′
(t)dt <∞,

then f0 ∈ Lp,ρ(I). Assuming f ≡ f0 in (2), we have

C

( ∞∫
0

ρ(t)|f0(t)|pdt

) 1
p

= C

( z∫
α

ρ1−p
′
(t)dt

) 1
p

≥

( ∞∫
0

v(x)

∣∣∣∣∣
x∫

0

K(x, s)f0(s)ds

∣∣∣∣∣
q

dx

) 1
q

≥

( ∞∫
z

v(x)

∣∣∣∣∣
z∫
α

K(x, s)ρ1−p
′
(s)ds

∣∣∣∣∣
q

dx

) 1
q

≥

( ∞∫
z

v(x)Kq(x, z)dx

) 1
q

z∫
α

ρ1−p
′
(s)ds.

This gives ( ∞∫
z

v(x)Kq(x, z)dx

) 1
q
( z∫
α

ρ1−p
′
(s)ds

) 1
p′

≤ C.

In the last inequality, the left-hand side does not depend on α and z, therefore, proceeding
to limit when α→ 0 and taking supremum with respect to z, we get

A2 ≤ C. (4)

Now, we assume that f1(t) = χ(α,z)(t)K
p′−1(z, t)ρ1−p

′
(t). Then

∞∫
0

ρ(t)|f1(t)|pdt =

z∫
α

ρ(t)Kp′(z, t)ρp(1−p
′)(t)dt

=

z∫
α

ρ1−p
′
(t)Kp′(z, t)dt ≤ Kp′(z, α)

z∫
α

ρ1−p
′
(t)dt <∞.

Kazakh Mathematical Journal, 21:1 (2021) 6–14



Exact estimate of norm of integral operator with Oinarov condition 9

Therefore, f1 ∈ Lp,ρ(I). Assuming f ≡ f1 in (2), we have

( ∞∫
z

v(x)

∣∣∣∣∣
z∫
α

K(x, s)Kp′−1(z, s)ρ1−p
′
(s)ds

∣∣∣∣∣
q

dx

) 1
q

≤ C

( z∫
α

Kp′(z, t)ρ1−p
′
(t)dt

) 1
p

.

Using K(x, s) ≥ K(z, s), the latter yields

( ∞∫
z

v(x)dx

) 1
q
( z∫
α

Kp′(z, s)ρ1−p
′
(s)ds

) 1
p′

≤ C

for all 0 < α < z <∞. Hence, A1 ≤ C, which, together with (4), gives

A ≤ C. (5)

Sufficiency. Let A < ∞ and f ∈ Lp,ρ(I), f ≥ 0. Since the function Kf(x), x ∈ I, is
continuous and increasing, we find a sequence of points {xk}k>−∞ ⊂ I such that

(h+ 1)k =

xk∫
0

K(xk, s)f(s)ds. Then we have

(h+ 1)k−1 = (h+ 1)k − h(h+ 1)k−1

=

xk∫
0

K(xk, s)f(s)ds− h
xk−1∫
0

K(xk−1, s)f(s)ds

=

xk∫
xk−1

K(xk, s)f(s)ds+

xk−1∫
0

[
K(xk, s)− hK(xk−1, s)

]
f(s)ds

≤
xk∫

xk−1

K(xk, s)f(s)ds+ hK(xk, xk−1)

xk−1∫
0

f(s)ds. (6)

Let us note that the last step in (6) is estimated by using (1). Now, using (6), we estimate

Kazakh Mathematical Journal, 21:1 (2021) 6–14



10 Aigerim A. Kalybay, Askar O. Baiarystanov

the left-hand side of (2):

( ∞∫
0

v(x)

∣∣∣∣∣
x∫

0

K(x, s)f(s)ds

∣∣∣∣∣
q

dx

) 1
q

=

(∑
k

xk+1∫
xk

v(x)

∣∣∣∣∣
x∫

0

K(x, s)f(s)ds

∣∣∣∣∣
q

dx

) 1
q

≤

(∑
k

(h+ 1)q(k+1)

xk+1∫
xk

v(x)dx

) 1
q

=

(
(h+ 1)2q

∑
k

(h+ 1)q(k−1)

xk+1∫
xk

v(x)dx

) 1
q

= (h+ 1)2

(∑
k

( xk∫
xk−1

K(xk, s)f(s)ds+ hK(xk, xk−1)

xk−1∫
0

f(s)ds

)q

×
xk+1∫
xk

v(x)dx

) 1
q

≤ (h+ 1)2

[(∑
k

( xk∫
xk−1

K(xk, s)f(s)ds

)q xk+1∫
xk

v(x)dx

) 1
q

+

(∑
k

xk+1∫
xk

v(x)dxhqKq(xk, xk−1)

( xk−1∫
0

f(s)ds

)q) 1
q
]

= (h+ 1)2

[
J1 + hJ2

]
. (7)

Let us estimate J1 and J2 separately. To estimate J1, we use Hölder’s inequality and obtain

J1 ≤

(∑
k

( xk∫
xk−1

ρ(t)|f(t)|pdt

) q
p
( xk∫
xk−1

Kp′(xk, s)ρ
1−p′(s)ds

) q
p′

xk+1∫
xk

v(x)dx

) 1
q

≤

(∑
k

( xk∫
xk−1

ρ(t)|f(t)|pdt

) q
p
( xk∫

0

Kp′(xk, s)ρ
1−p′(s)ds

) q
p′
∞∫
xk

v(x)dx

) 1
q

≤ A1

(∑
k

( xk∫
xk−1

ρ(t)|f(t)|pdt

) q
p
) 1

q

≤ A1

(∑
k

xk∫
xk−1

ρ(t)|f(t)|pdt

) 1
p

(8)

≤ A1

( ∞∫
0

ρ(t)|f(t)|pdt

) 1
p

.

Kazakh Mathematical Journal, 21:1 (2021) 6–14



Exact estimate of norm of integral operator with Oinarov condition 11

We write the expression J2 in the form

J2 =

(∑
k

xk+1∫
xk

v(x)Kq(xk, xk−1)

( xk−1∫
0

f(s)ds

)q
dx

) 1
q

=

( ∞∫
0

( x∫
0

f(s)ds

)q
dµ(x)

) 1
q

, (9)

where dµ(x) =
∑
k

xk+1∫
xk

v(x)Kq(xk, xk−1)δ(x − xk−1)dx and δ(·) is the Dirac delta-function.

Applying Theorem A to the right-hand side of (9), we have( ∞∫
0

( x∫
0

f(s)ds

)q
dµ(x)

) 1
q

≤ p
1
q (p′)

1
p′ sup
z>0

(
µ
(
[z,∞)

) 1
q

( z∫
0

ρ1−p
′
(s)ds

) 1
p′
)( ∞∫

0

ρ(t)|f(t)|pdt

) 1
p

. (10)

Since

µ
(
[z,∞)

)
=

∫
[z,∞)

dµ(x) =
∑

xk−1≥z

xk+1∫
xk

v(x)Kq(xk, xk−1)dx

≤
∑

xk−1≥z

xk+1∫
xk

v(x)Kq(x, z)dx ≤
∞∫
z

Kq(x, z)v(x)dx,

from (9) and (10) we have

J2 ≤ p
1
q (p′)

1
p′A2

( ∞∫
0

ρ(t)|f(t)|pdt

) 1
p

. (11)

From (7), (8) and (11) we get( ∞∫
0

v(x)

( x∫
0

K(x, s)f(s)ds

)q
dx

) 1
q

≤ (h+ 1)3p
1
q (p′)

1
p′A

( ∞∫
0

ρ(t)|f(t)|pdt

) 1
p

.

Therefore, inequality (2) holds with the estimate

C ≤ (h+ 1)3p
1
q (p′)

1
p′A (12)

Kazakh Mathematical Journal, 21:1 (2021) 6–14



12 Aigerim A. Kalybay, Askar O. Baiarystanov

for the best constant C in (2). From (5) and (12) we get (3). The proof of Theorem 1 is
complete.

Remark 1. Theorem 1 was first announced in the paper [2]. Its complete proof was presented

in the paper [3]. However, the value of the coefficient (h+ 1)3p
1
q (p′)

1
p′ was not found in (3).

Let us consider the operator

Iαf(x) =

x∫
0

(x− s)αf(s)ds, α > 0.

The function K(x, s) = (x− s)α ≥ 0 for x ≥ s. Moreover, it increases with respect to x and
decreases with respect to s for 0 < s ≤ x. In the case 0 < α ≤ 1, we have

(x− s)α ≤ (x− t)α + (t− s)α for 0 < s ≤ t ≤ x and h ≡ 1.
Hence, from Theorem 1 we have the following statement.

Corollary 1. Let 1 < p ≤ q <∞ and 0 < α ≤ 1. The inequality( ∞∫
0

v(x)

∣∣∣∣∣
x∫

0

(x− s)αf(s)ds

∣∣∣∣∣
q

dx

) 1
q

≤ C

( ∞∫
0

ρ(t)|f(t)|pdt

) 1
p

, ∀f ∈ Lp,ρI, (13)

holds if and only if Aα = max{A1,α, A2,α} <∞. Moreover, the estimate

Aα ≤ C ≤ 8p
1
q (p′)

1
p′Aα (14)

holds for the best constant C in (13), where

A1,α = sup
z>0

( ∞∫
z

v(x)dx

) 1
q
( z∫

0

(z − s)p′αρ1−p′(s)ds

) 1
p′

,

A2,α = sup
z>0

( ∞∫
z

v(x)(x− z)qαdx

) 1
q
( z∫

0

ρ1−p
′
(s)ds

) 1
p′

.

Let α > 1. Then (x− s)α ≤ 2α−1
[
(x− t)α + (t− s)α

]
for 0 < s ≤ t ≤ x and h = 2α−1.

In this case we get one more statement.

Corollary 2. Let 1 < p ≤ q <∞ and α > 1. Inequality (13) holds if and only if
Aα = max{A1,α, A2,α} <∞. Moreover,

Aα ≤ C ≤
(
2α−1 + 1

)3
p

1
q (p′)

1
p′Aα, (15)
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where C is the best constant in (13).

Remark 2. The statements of Corollaries 1 and 2 were announced in [4] and proved in [5].
However, the numerical values of the coefficients were not found in (14) and (15).

If α = n − 1, n ≥ 2 and p = q = 2, then from Corollary 2 we have the following
statement.

Corollary 3. Let n ≥ 2. The inequality

∞∫
0

v(x)

∣∣∣∣∣
x∫

0

(x− s)n−1f(s)ds

∣∣∣∣∣
2

dx ≤ C
∞∫
0

ρ(t)|f(t)|2dt (16)

holds if and only if An = max{A1,n, A2,n} <∞. Moreover, the estimate

An ≤ C ≤ 4
(
2n−2 + 1

)6
An (17)

holds for the best constant C in (16), where

A1,n = sup
z>0

∞∫
z

v(x)dx

z∫
0

(z − s)2(n−1)ρ−1(s)ds,

A2,n = sup
z>0

∞∫
z

v(x)(x− z)2(n−1)dx
z∫

0

ρ−1(s)ds.

For n = 2 inequality (16) with the estimate (17) has the form

∞∫
0

v(x)

∣∣∣∣∣
x∫

0

(x− s)f(s)ds

∣∣∣∣∣
2

dx ≤ C
∞∫
0

ρ(t)|f(t)|2dt

with the estimate A2 ≤ C ≤ 256A2.

Remark 3. Let us note that in the mathematical literature condition (1) is often called
“Oinarov condition”.
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Қалыбай А.А., Байарыстанов А.О. ОЙНАРОВ ШАРТЫ БАР ИНТЕГРАЛДЫ ОПЕ-
РАТОРДЫҢ НОРМАСЫ ҮШIН НАҚТЫ БАҒА

Ядросы “Ойнаров шартын” қанағаттандыратын интегралдық оператордың салмақты
Лебег кеңiстерiнде шенелiмдiлiгiнiң баламасы отыз жыл бұрын алынған. Бiрақ та бұл
нәтижеде интегралдық оператордың нормасы бiр өрнекпен екi жақты бағаланып, бағала-
удағы коэффициенттер шамасы есептелмеген болатын. Осы нәтиженi дифференциалдық
теңдеулердiң тербелiмдiк, спектралдық есептерiне қолданғанда бұл коэффициенттердiң
мәндiк шамасының орны өте зор. Сондықтан бұл мақала айтылған коэффициенттердiң
мәнiн табуға арналған.

Кiлттiк сөздер. Интегралдық оператор, салмақты функция, Харди типтi теңсiздiк,
өзек.

Калыбай А.А., Байарыстанов А.О. ТОЧНАЯ ОЦЕНКА НОРМЫ ИНТЕГРАЛЬНО-
ГО ОПЕРАТОРА С УСЛОВИЕМ ОЙНАРОВА

Критерии ограниченности интегральных операторов в весовых пространствах Лебе-
га, когда их ядра удовлетворяют “условию Ойнарова”, были получены около тридцати
лет назад. Однако в этих результатах нормы интегральных операторов оцениваются
снизу и сверху одинаковыми выражениями, без точного подсчета коэффициентов. Для
приложений этих результатов к осцилляционным и спектральным задачам дифферен-
циальных уравнений знание этих коэффициентов играет важную роль. Поэтому данная
работа посвящена нахождению точных значений этих коэффициентов.

Ключевые слова. Интегральный оператор, весовая функция, неравенство типа Харди,
ядро.
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Abstract. In this paper we consider the problem of finding necessary and sufficient conditions for the

fulfillment of a discrete inequality of the Hilbert-Stieltjes type. Moreover, an alternative proof of the

discrete Hardy-type inequality with variable limits of summation is presented.

Keywords. Hardy-type inequality, boundedness, weighted Lebesgue spaces, Hilbert-Stieltjes type oper-

ator.

1 Introduction

Let 1 < p, q < ∞, 1
p + 1

p′ = 1, u = {ui}∞i=1 be sequence of non-negative real numbers,
v = {vi}∞i=1 be sequence of positive real numbers. Let lpv be the space of sequences f = {fi}∞i=1

for which the following norm is finite

∥f∥p,v = ∥vf∥p =

( ∞∑
i=1

|vifi|p
) 1

p

, 1 ≤ p < ∞.

At the beginning of the 20th century, the famous Hilbert’s double series inequality [1] of
the following form was proved

∞∑
n=1

∞∑
k=1

fkgk
k + n

<
π

sin(π/p)

( ∞∑
n=1

fp
n

) 1
p
( ∞∑

n=1

gp
′

n

) 1
p

, p > 1, (1)

where fn, gn ≥ 0,
∑∞

n=1 f
p
n < ∞,

∑∞
n=1 g

p′
n < ∞ and

π

sin(π/p)
is the best constant in (1) (see.

[1]).
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The inequality (1) is equivalent to Hardy-Hilbert’s inequality of the following form( ∞∑
n=1

( ∞∑
k=1

fk
n+ k

)p) 1
p

<
π

sin(π/p)

( ∞∑
n=1

fp
n

) 1
p

, fn ≥ 0. (2)

The validity of the inequality (2) means the boundedness of the Hilbert operator:

(Hf)n =
∞∑
k=1

fk
k + n

from lp to lp (see [2]). Note that a similar connection is kept between the integral analogues

of the inequalities (1) and (2), with the best constant
π

sin(π/p)
(see [1], [2]).

The inequality (1) with its improvements has played a fundamental role in the develop-
ment of many mathematical branches, and considerable attention has been paid to Hilbert’s
double series inequality with its integral version and inverse version, various improvements
and extensions by many authors, see for instance [3–12]. In papers [13], [14] the boundedness
of the Stieltjes integral operator of the following form

Sγf(x) =

∫ ∞

0

f(t)

(x+ t)γ
dt, x > 0, γ > 0,

in weighted Lebesgue spaces and the weighted estimates for its discrete analogue

(Sf)n =

∞∑
k=1

fk
(k + n)γ

, γ > 0

are also established for cases 1 ≤ p ≤ q < ∞ and 1 < q < p < ∞, respectively. Moreover,
in [15] the equivalence of four alternative conditions of the weighted integral inequality for
Stieltjes operator is proved when 1 ≤ p ≤ q < ∞. A similar result for the weighted integral
Stieltjes inequality when 0 < q < p, 1 < p < ∞ was obtained in [16], where in particular, a
new proof of a result of G. Sinnamon [14] is given, which also covers the case 0 < q < 1.

In this paper we consider the generalized Hilbert-Stieltjes inequality of the following form( ∞∑
n=1

|un(Tf)n|q
) 1

q

≤ C

( ∞∑
n=1

|vnfn|p
) 1

p

, ∀f ∈ lp,v, 1 < p ≤ q < ∞, (3)

where

(Tf)n =

∞∑
k=1

fk
(b(k) + b(n))γ

(4)

Kazakh Mathematical Journal, 21:1 (2021) 15–24



On a discrete Hilbert-Stieltjes inequality 17

is the Hilbert-Stieltjes type operator, γ > 0 and b : N → N is a non-decreasing mapping such
that b(1) = 1, limn→∞ b(n) = ∞.

The aim of the work is to prove the weighted estimate (3) for the Hilbert-Stieltjes type
operator (4).

Note that when γ = 1, b(n) = n, the inequality (3) coincides with the inequality (2).
When b(n) = n, the operator T coincides with the discrete analogue of the Stieltjes operator.

The investigated operator (4) for f = {f}∞i=1 non-negative sequences of real numbers
can be represented as a sum of two discrete Hardy-type operators with upper and lower
summation limits as follows

(Tf)n =

∞∑
k=1

fk
(b(k) + b(n))γ

≈ 1

bγ(n)

b(n)∑
k=1

fk +

∞∑
k=b(n)

fk
bγ(k)

= (T1f)n + (T2f)n, (5)

then the inequality (3) is characterized by splitting it into two weighted Hardy-type inequal-
ities for f ≥ 0, and thus we obtain two different conditions.

In [17], [18] necessary and sufficient conditions of the validity of weighted inequalities (3)
for discrete Hardy type operators of T1, T2 when γ = 0 are obtained. A similar problem for
integral Hardy type operators was studied in a series papers [19–22].

From above-mentioned it follows that to obtain the main result of this paper (see Theorem
1), firstly we need to establish criteria for the fulfillment of discrete weighted Hardy type
inequalities (see Theorems 2 and 3) for operators T1, T2 with variable summation limits of
the following types ∞∑

n=1

∣∣∣∣∣∣un
b(n)∑
k=1

fk

∣∣∣∣∣∣
q

1
q

≤ C

( ∞∑
k=1

|vkfk|p
) 1

p

, ∀f ∈ lp,v, (6)

 ∞∑
n=1

∣∣∣∣∣∣un
∞∑

k=b(n)

fk

∣∣∣∣∣∣
q

1
q

≤ C

( ∞∑
k=1

|vkfk|p
) 1

p

, ∀f ∈ lp,v, (7)

which have independent meanings. Note that in [17], [18] the condition on the sequence
{b(n)} differs from ours, where {b(n)} is an increasing sequence of natural numbers and their
method of the sufficiency proof is not applicable in our case. Here we use the method of
localization, which previously was used in the paper [23].
Remark. In the sequel the symbol M << K means that M ≤ cK, where c > 0 is a constant
depending only on unessential parameters. If M << K << M , then M ≈ K. Also we will
assume

∑m
i=k = 0, if m < k.

2 Main results

Kazakh Mathematical Journal, 21:1 (2021) 15–24
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Our result reads:

Theorem 1. Let 1 < p ≤ q < ∞. Then the inequality (4) holds if and only if D = D1+D2 <
∞, where

D1 = sup
n≥1

( ∞∑
i=n

(
ui

bγ(i)

)q
) 1

q

b(n)∑
k=1

v−p′

k

 1
p′

,

D2 = sup
n≥1

(
n∑

i=1

uqi

) 1
q

 ∞∑
k=b(n)

(
vk

bγ(k)

)−p′
 1

p′

.

Moreover D ≈ C, where C is the best constant in (4).

Before to prove Theorem 1, we establish the criteria for the fulfillment of the inequalities
(6) and (7).

Theorem 2. Let 1 < p ≤ q < ∞. Then the inequality (6) holds if and only if

A = sup
n≥1

( ∞∑
i=n

uqi

) 1
q

b(n)∑
k=1

v−p′

k

 1
p′

< ∞. (8)

Moreover A ≈ C, where C is the best constant in (6).

Proof. Necessity. Let the inequality (6) hold for ∀f ∈ lp,v with a finite constant C, we show

A < ∞. For ∀m ∈ N take the test sequence f̄k =

{
v−p′

k , 1 ≤ k ≤ b(m);
0, k > b(m).

We substitute f̄ in the inequality (6):

C∥f̄∥p,v = C

b(n)∑
k=1

v−p′

k

 1
p

≥

 ∞∑
n=1

un

b(n)∑
k=1

f̄k

q
1
q

≥

 ∞∑
n=m

un

b(m)∑
k=1

v−p′

k

q
1
q

=

b(m)∑
k=1

v−p′

k

( ∞∑
n=m

uqn

) 1
q

. (9)

From (9) it follows that

A = sup
m≥1

b(m)∑
k=1

v−p′

k

 1
p ( ∞∑

n=m

uqn

) 1
q

≤ C < ∞. (10)

Sufficiency. Let A < ∞ and 0 ≤ f ∈ lp,v.
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For all i ≥ 1 we define the following set: Ti =
{
k ∈ Z : 2k ≤ (Pf)i :=

∑b(i)
j=1 fj

}
, ki =

max Ti. Then
2ki ≤ (Pf)i < 2ki+1, i ≥ 1. (11)

Let m1 = 1 and M1 = {i ∈ N : ki = k1 = km1}. Suppose that m2 is such that supM1 + 1 =
m2. Obviously m2 > m1 and if the set M1 is upper bounded, then m2 < ∞ and m2 − 1 =
maxM1 = supM1. Let us inductively define numbers 1 = m1 < m2 < ... < ms < ∞, s ≥ 1.
To define ms+1, we assume that ms+1 = supMs + 1, where Ms = {i ∈ N : ki = kms}.

Let N0 = {s ∈ N : ms < ∞}. Further, we assume kms = ns, s ∈ N0. From the definition
of ms and from (11) it follows that, for s ∈ N0

2ns ≤ (Pf)i < 2ns+1,ms ≤ i ≤ ms+1 − 1 (12)

and
N =

∪
s∈N0

[ms,ms+1), N =
∪

s∈N0

[b(ms), b(ms+1)),

where [ms,ms+1)
∩
[ml,ml+1) = ⊘, [b(ms), b(ms+1))

∩
[b(ml), b(ml+1)) = ⊘, s ̸= l.

Hence

∥Pf∥qq,u =
∑
s∈N0

ms+1−1∑
j=ms

(Pf)qju
q
j =

m2−1∑
j=m1

(Pf)qju
q
j +

m3−1∑
j=m2

(Pf)qju
q
j +

∑
s≥3

ms+1−1∑
j=ms

(Pf)qju
q
j . (13)

We consider all three cases separately. Using (12) and Hölder’s inequality, we obtain

m2−1∑
j=m1

(Pf)qju
q
j ≤

m2−1∑
j=m1

2(n1+1)quqj << 2qn1

m2−1∑
j=m1

uqj ≤ (Pf)qm1

m2−1∑
j=m1

uqj

≤

b(m1)∑
k=1

fk

q
∞∑

j=m1

uqj ≤

b(m1)∑
k=1

v−p′

k


q
p′ ∞∑

j=m1

uqj

b(m1)∑
k=1

(vkfk)
p


q
p

≤ Aq∥f∥qp,v. (14)

m3−1∑
j=m2

(Pf)qju
q
j ≤ 2(n2+1)q

m3−1∑
j=m2

uqj << 2qn2

m3−1∑
j=m2

uqj ≤ (Pf)qm2

m3−1∑
j=m2

uqj

≤

b(m2)∑
k=1

fk

q
m3−1∑
j=m2

uqj ≤

b(m2)∑
k=1

v−p′

k


q
p′ ∞∑

j=m2

uqj

b(m2)∑
k=1

(vkfk)
p


q
p

≤ Aq∥f∥qp,v. (15)

To estimate the third term in (13) for s ≥ 3, we first estimate 2ns−1 using (12) and
ns−2 + 1 ≤ ns − 1, which follows from ns−2 < ns−1 < ns

2ns−1 = 2ns − 2ns−1 ≤ 2ns − 2ns−2+1 ≤ (Pf)ms − (Pf)ms−1−1 ≤
b(ms)∑

k=b(ms−1)

fk. (16)
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Using Hölder’s and Jensen’s inequalities, we get

∑
s≥3

ms+1−1∑
j=ms

(Pf)qju
q
j <

∑
s≥3

2(ns+1)q

ms+1−1∑
j=ms

uqj <<
∑
s≥3

2(ns−1)q

ms+1−1∑
j=ms

uqj

≤
∑
s≥3

 b(ms)∑
k=b(ms−1)

fk

q
ms+1−1∑
j=ms

uqj ≤
∑
s≥3

 b(ms)∑
k=b(ms−1)

|vkfk|p


q
p
 b(ms)∑

k=b(ms−1)

v−p′

k


q
p′ ms+1−1∑

j=ms

uqj

≤

∑
s≥3

b(ms)∑
k=b(ms−1)

|vkfk|p


q
p

sup
s≥1

b(ms)∑
k=1

v−p′

k

 ∞∑
j=ms

uqj

 1
q


q

<< Aq∥vf∥qp. (17)

Then from (13), (14), (15) and (17) it follows

∥Pf∥q,u << A∥f∥p,v, f ≥ 0

and C << A, which together with (10) we get C ≈ A.

Theorem 3. Let 1 < p ≤ q < ∞. Then the inequality (7) holds if and only if

B = sup
n≥1

(
n∑

i=1

uqi

) 1
q

 ∞∑
k=b(n)

v−p′

k

 1
p′

< ∞. (18)

Moreover C ≈ B, where C is the best constant in (7).

Proof.Necessity.
Let us show that B < ∞, when inequality (7) holds ∀f ∈ lp,v ∀m,M ∈ N : b(m) ≤ M, we

assume that f̄k =

{
v−p′

k , b(m) ≤ k ≤ M ;
0, 1 ≤ k < b(m).

Substituting f̄ into the inequality (7), we have

C∥f̄∥p,v = C

 M∑
k=b(m)

v−p′

k

 1
p

≥

 ∞∑
n=1

un

∞∑
k=b(n)

f̄k

q
1
q

≥

≥

 m∑
n=1

un

M∑
k=b(m)

v−p′

k

q
1
q

=

 M∑
k=b(m)

v−p′

k

( m∑
n=1

uqn

) 1
q

. (19)

It follows from (19) taking into account that ∀m,M ∈ N

B = sup
m≥1

(
m∑
i=1

uqi

) 1
q

 ∞∑
k=b(m)

v−p′

k

 1
p′

≤ C < ∞. (20)

Kazakh Mathematical Journal, 21:1 (2021) 15–24



On a discrete Hilbert-Stieltjes inequality 21

Sufficiency. Let f ≥ 0. For all i ≥ 1 we define the following set

Ti = {k ∈ Z : (Qf)i :=
∞∑

j=b(i)

fj ≤ 2−k}

and we assume that ki = maxTi. Then

2−(ki+1) < (Qf)i ≤ 2−ki , i ≥ 1. (21)

Let m1 = 1 and M1 = {i ∈ N : ki = k1 = km1}. Suppose m2 such that supM1 + 1 = m2.
Obviously, m2 > m1 and if the set M1 is bounded from above, then m2 < ∞ and m2 − 1 =
maxM1 = supM1. We define inductively the numbers 1 = m1 < m2 < ... < ms < ∞, s ≥ 1.
For the definition ms+1, assume that ms+1 = supMs + 1, where Ms = {i ∈ N : ki = ms}.
Let N0 = {s ∈ N : ms < ∞}. Further, we put kms = ns, s ∈ N0. It follows from the definition
of ms and (21) that for s ∈ N0

2−(ns+1) < (Qf)i ≤ 2−ns , ms ≤ i ≤ ms+1 − 1 (22)

and
N =

∪
s∈N0

[ms,ms+1), N =
∪

s∈N0

[b(ms), b(ms+1)),

where [ms,ms+1)
∩
[ml,ml+1) = ⊘, [b(ms), b(ms+1))

∩
[b(ml), b(ml+1)) = ⊘, s ̸= l.

Therefore

∥Qf∥qq,u =
∑
s∈N0

ms+1−1∑
j=ms

(Qf)qju
q
j ≤

∑
s∈N0

2−nsq

ms+1−1∑
j=ms

uqj <<
∑
s∈N0

2−(ns+2)q

ms+1−1∑
j=ms

uqj . (23)

Let us estimate the value 2ns+2 using (22) and ns + 2 ≤ ns+2, which follows from ns <
ns+1 < ns+2

2−(ns+2) = 2−(ns+1) − 2−(ns+2) ≤ 2−(ns+1) − 2−ns+2 ≤

(Qf)ms+1−1 − (Qf)ms+2 ≤
∞∑

j=b(ms+1−1)

fj −
∞∑

j=b(ms+2)

fj ≤
b(ms+2)∑

j=b(ms+1−1)

fj . (24)

Applying (24) and Holder’s inequality in (23), we obtain

∥Qf∥qq,u <<
∑
s∈N0

2−(ns+2)q

ms+1−1∑
j=ms

uqj ≤
∑
s∈N0

 b(ms+2)∑
i=b(ms+1−1)

fi

q
ms+1−1∑
j=ms

uqj

≤
∑
s∈N0

 b(ms+2)∑
i=b(ms+1−1)

(vifi)
p


q
p
 ∞∑

b(ms+1−1)

v−p′

i


q
p′ ms+1−1∑

j=1

uqj << Bq∥vf∥qp.
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Hence C << B together with (20) we obtain C ≈ B. Theorem 3 is proved.

Using Theorems 2 and 3, we present the proof of the main result:

Proof of Theorem 1. It follows from condition (5) that the fulfillment of inequality (3) is
equivalent to the fulfillment of the weighted Hardy-type inequalities of the following form ∞∑

n=1

∣∣∣∣∣∣ un
bγ(n)

b(n)∑
k=1

fk

∣∣∣∣∣∣
q

1
q

≤ C1

( ∞∑
k=1

|vkfk|p
) 1

p

, ∀f ∈ lp,v (25)

and  ∞∑
n=1

∣∣∣∣∣∣un
∞∑

k=b(n)

fk
bγ(k)

∣∣∣∣∣∣
q

1
q

≤ C2

( ∞∑
k=1

|vkfk|p
) 1

p

, ∀f ∈ lp,v (26)

and C ≈ C1 + C2, where C1, C2 are the best constants of inequalities (25) and (26), respec-
tively. Then, by Theorem 2 and Theorem 3, inequalities (25) and (26) hold, respectively, if
and only if

C1 ≈ D1 = sup
n≥1

( ∞∑
i=n

(
ui

bγ(i)

)q
) 1

q

b(n)∑
k=1

v−p′

k

 1
p′

< ∞,

C2 ≈ D2 = sup
n≥1

(
n∑

i=1

uqi

) 1
q

 ∞∑
k=b(n)

(
vk

bγ(k)

)−p′
 1

p′

< ∞.
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Темирханова А.М., Бесжанова А.Т. ДИСКРЕТТI ГИЛЬБЕРТ-СТИЛЬТЬЕС
ТЕҢСIЗДIГI ТУРАЛЫ

Бұл жұмыста Гильберт-Стильтьес типтi дискреттi теңсiздiктiң орындалуының қа-
жеттi және жеткiлiктi шарттары қарастырылады. Одан басқа, қосындылау шектерi ай-
нымалы болатын Харди типтес дискреттi теңсiздiктiң дәлелдеуiнiң балама әдiсi келтiрiл-
ген.

Кiлттiк сөздер. Харди типтес теңсiздiк, оператордың шенелiмдiгi, Лебег салмақты
кеңiстiктерi, Гильберт-Стильтьес типтi оператор.

Темирханова А.М., Бесжанова А.Т. ОБ ОДНОМ ДИСКРЕТНОМ НЕРАВЕНСТВЕ
ГИЛЬБЕРТА-СТИЛЬТЬЕСА

В работе рассматривается задача о нахождении необходимых и достаточных усло-
вий выполнения дискретного неравенства типа Гильберта-Стилтьеса. Кроме того, при-
водится альтернативный способ доказательства дискретного неравенства типа Харди с
переменными пределами суммирования.

Ключевые слова. Неравенство типа Харди, ограниченность оператора, весовые про-
странства Лебега, оператор типа Гильберта-Стилтьеса.
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Abstract. A new type of oscillations of discontinuous unpredictable solutions for linear inhomogeneous

systems with impulsive actions is considered. The moments of impulses of investigated systems consti-

tute a newly determined unpredictable discrete set. The models under investigation admit unpredictable

perturbations. Sufficient conditions for the existence and the uniqueness of asymptotically stable discon-

tinuous unpredictable solutions are provided. For constructive definitions of unpredictable components in

examples, randomly determined unpredictable sequences are utilized. The set of discontinuity moments

is realized by the logistic map. Examples with simulations are given to illustrate the results.

Keywords. Discontinuous unpredictable function, Linear impulsive system, Bernoulli process, Asymp-

totic stability.

1 Introduction and preliminaries

Oscillations are functions, which are of indisputable importance for applications. This
is why they are in the focus not only of specialists in the field of applied mathematics and
differential equations, but also physicists and neural network experts. A new type of oscilla-
tion, called an unpredictable trajectory, was introduced in the paper [1]. An unpredictable
trajectory is necessarily positively Poisson stable, and one of its distinctive features is the
emergence of chaos in the corresponding quasi-minimal set. The type of chaos based on the
presence of an unpredictable trajectory is called Poincaré chaos [1].
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Unpredictable functions continue the line of oscillations such as periodic, almost periodic,
recurrent and Poisson stable motions, which are basic oscillations considered in theory of
differential equations. Different types of differential equations with unpredictable solutions
were studied in the papers [2–6] and in the book [7]. Recently it is proved in [8, 9] that
unpredictable motions take place also in random processes.

There are papers [10–16], which investigate discontinuous periodic and almost periodic
oscillations in various types of differential equations. In this paper, using the techniques
presented in [2–4, 7] and results on the theory of impulsive differential equations [17, 18],
the existence, uniqueness, and stability of discontinuous unpredictable solutions of linear
impulsive systems are studied. To construct an unpredictable function, an unpredictable
sequence resulting from a randomly defined discrete Bernoulli process [8] is utilized.

Throughout the work, N, Z and R denote the sets of natural numbers, integers and real
numbers, respectively. Moreover, we make use of the usual Euclidean norm for vectors and
the spectral norm for square matrices [19].

Denote by R the set of all functions defined on the real axis. They are continuous, except
countable sets of points. At the points the functions admit one-sided limits. The sets of
points do not necessarily coincide, if functions are different. The sets of points do not have
finite accumulation points and are unbounded on both sides.

The functions g(t) and h(t) from R, are said to be ϵ-equivalent on interval S ⊆ R, if the
points of discontinuity of the functions g(t) and h(t) in S can be respectively numerated θgk
and θhk , k = 1, 2, . . . , p, such that |θgk − θhk | < ϵ for each k = 1, 2, . . . , n, and ||g(t)− h(t)|| < ϵ
for each t ∈ S, except those between θgk and θhk for each k. In the case that g and h are
ϵ-equivalent on S, we also say that the functions are in ϵ-neighborhoods of each other. The
topology defined with the aid of such neighborhoods is called the B-topology [17].

In what follows, we will denote by [d̂1, d2], d1, d2 ∈ R, the interval [d1, d2], if d1 < d2 and
the interval [d2, d1], if d2 < d1.

Let θk, k ∈ Z, be a sequence of real numbers such that θ ≤ θk+1−θk ≤ θ for some positive
numbers θ, θ, and |θk| → ∞ as |k| → ∞.

Definition 1. A piecewise continuous and bounded function φ(t) : R → Rp with the set of
discontinuity points θk, k ∈ Z, satisfying φ(θk−) = φ(θk) for each k ∈ Z is called discontin-
uous unpredictable function (d.u.f.) if there exist positive numbers ϵ0, σ, sequences tn, sn of
real numbers and sequences ln,mn of integers all of which diverge to infinity such that

(a) |θk+ln − tn − θk| → 0 as n → ∞ on each bounded interval of integers and
|θmn+ln − tn − θmn | ≥ ϵ0 for each natural number n;

(b) for every positive number ϵ there exists a positive number δ such that ∥φ(t1)− φ(t2)∥ < ϵ
whenever the points t1 and t2 belong to the same interval of continuity and |t1 − t2| < δ;

(c) φ(t+ tn) → φ(t) as n→ ∞ in B-topology on each bounded interval;
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(d) for each natural number n there exists an interval [sn−σ, sn+σ] ⊆ [ ̂θmn , (θmn+ln − tn)]
which does not contain any point of discontinuity of φ(t) and φ(t+tn), and ∥φ(t+tn)−
φ(t)∥ ≥ ϵ0 for each t ∈ [sn − σ, sn + σ].

In Definition 1, we call the property (b) conditional uniform continuity of φ, the property
(c) Poisson stability of φ, and the property (d) unpredictability of φ.

The sequence θk, k ∈ Z, is said to be an unpredictable discrete set if the condition (a) is
satisfied.

Definition 2. Suppose that ψ(t) : R → Rp is a piecewise continuous and bounded function
with the set of discontinuity points θk, k ∈ Z, satisfying ψ(θk−) = ψ(θk) and Γk, k ∈ Z, is
a bounded sequence in Rp. The couple (ψ(t),Γk) is called unpredictable if there exist positive
numbers ϵ0, σ, sequences tn, sn of real numbers and sequences ln,mn of integers all of which
diverge to infinity such that

(a) |θk+ln − tn − θk| → 0 as n → ∞ on each bounded interval of integers and
|θmn+ln − tn − θmn | ≥ ϵ0 for each natural number n;

(b) for every positive number ϵ there exists a positive number δ such that ∥ψ(t1)− ψ(t2)∥ < ϵ
whenever the points t1 and t2 belong to the same interval of continuity and |t1 − t2| < δ;

(c) ψ(t+ tn) → ψ(t) as n→ ∞ in B-topology on each bounded interval;

(d) for each natural number n there exists an interval [sn−σ, sn+σ] ⊆ [ ̂θmn , (θmn+ln − tn)]
which does not contain any point of discontinuity of ψ(t) and ψ(t + tn), and ∥ψ(t +
tn)− ψ(t)∥ ≥ ϵ0 for each t ∈ [sn − σ, sn + σ];

(e) |Γk+ln − Γk| → 0 as n → ∞ for each k in bounded intervals of integers and
|Γmn+ln − Γmn | ≥ ϵ0 for each natural number n.

If the couple (ψ(t),Γk) is unpredictable in the sense of Definition 2, then ψ(t) is a discon-
tinuous unpredictable function in the sense of Definition 1.

Definition 1 does not follow from the Definition 2, since one cannot obtain the former
just by diminishing the terms Γk. The sequence of zeros is not an unpredictable sequence.
Consequently, both definitions are needed in the paper.

According to the purpose of the present study, we specify the discontinuity moments of
the impulsive systems that will be investigated as

θk = kT + γk, k ∈ Z, (1)

where γk, k ∈ Z, is a sequence of real numbers which is unpredictable in the sense of Definition
3.1 [4], and T ≥ 4 is a number such that sup

k∈Z
|γk| < T/h for some number h ≥ 3.
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Since γk, k ∈ Z, is an unpredictable sequence, there exist a positive number ϵ0 and
sequences ζn, ηn both of which diverge to infinity such that |γk+ζn − γk| → 0 as n → ∞ for
each k in bounded intervals of integers and |γζn+ηn − γηn | ≥ ϵ0 for each natural number n.

Let us show that the sequence θk, k ∈ Z, is an unpredictable discrete set. More precisely,
we will demonstrate that the property (a) mentioned in Definition 1 is valid for θk, k ∈ Z,
with tn = Tζn, ln = ζn, and mn = ηn for each natural number n. By these choices of the
sequences tn, ln and mn, we have that

|θk+ln − tn − θk| = |(k + ζn)T + γk+ζn − ζnT − kT − γk| = |γk+ζn − γk| .

Therefore, |θk+ln − tn − θk| → 0 as n → ∞ for each k in bounded intervals of integers. On
the other hand,

|θmn+ln − tn − θmn | = |(ηn + ζn)T + γηn+ζn − ζnT − ηnT − γηn |
= |γηn+ζn − γηn | ≥ ϵ0

for each natural number n.
Additionally, one can confirm that θk, k ∈ Z, defined by (1) satisfies the inequality

θ ≤ θk+1 − θk ≤ θ with θ = T − 2T

h
and θ = T +

2T

h
.

2 Linear systems with non-unpredictable impulses

The main object of the present section is linear impulsive system,

x′(t) = Ax(t) + f(t), t ̸= θk,

∆x|t=θk = Bx(θk), (2)

where t ∈ R, the matrices A ∈ Rp×p and B ∈ Rp×p commute, the sequence θk, k ∈ Z, of
discontinuity moments is defined by equation (1), and f(t) : R → Rp is a d.u.f. in the sense
of Definition 1. We suppose that det(I +B) ̸= 0, where I is the p× p identity matrix.

Let us denote by X(t, u) the Cauchy matrix of the following linear impulsive system
associated with (2),

x′(t) = Ax(t), t ̸= θk,

∆x|t=θk = Bx(θk). (3)

Since the matrices A and B commute, we have for t > u that

X(t, u) = eA(t−u) (I +B)k([u,t)) , (4)

where k([u, t)) denotes the number of the terms of the sequence θk, k ∈ Z, which belong to
the interval [u, t), and X(u, u) = I [18].
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Let us denote by λj , j = 1, 2, . . . , p, the eigenvalues of the matrix A+
1

T
Ln(I +B).

The following condition on the system (2) is required:

(C) max
j

ℜeλj = λ < 0, where ℜeλj is the real part of λj for each j = 1, 2, . . . , p.

In consequence of (4), under the condition (C), there exist numbers K ≥ 1 and 0 < α <
−λ such that

∥X(t, u)∥ ≤ Ke−α(t−u) (5)

for t ≥ u [17,18].
Let us prove the following auxiliary assertion.

Lemma 1. Assume that the condition (C) is fulfilled, then the following inequality

∥X(t+ tn, u+ tn)−X(t, u)∥ ≤ K0e
−α(t−u) (6)

holds, where K0 = Kmax (1, ∥B∥).

Proof. By using (4) and (5), we can show that

∥X(t+ tn, u+ tn)−X(t, u)∥ ≤
∥∥∥eA(t−u) (I +B)k([u+tn,t+tn)) − eA(t−u) (I +B)k([u,t))

∥∥∥
≤

∥∥∥eA(t−u) (I +B)k([u,t))
∥∥∥ ∥∥∥(I +B)|k([u+tn,t+tn))−k([u,t))| − I

∥∥∥
≤ Kmax (1, ∥B∥) e−α(t−u)

for t ≥ u. The lemma is proved. �
The following theorem is concerned with the discontinuous unpredictable solution of sys-

tem (2).

Theorem 1. Suppose that the condition (C) is valid. If f(t) is a d.u.f. in the sense of Defi-
nition 1, then system (2) possesses a unique asymptotically stable discontinuous unpredictable
solution.

Proof. As it is known from the theory of impulsive differential equations [17, 18], according
to the boundedness of the function f(t), system (2) admits a unique solution φ(t) which is
bounded on the real axis and satisfies the equation

φ(t) =

t∫
−∞

X(t, u)f(u)du, t ∈ R. (7)
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One can verify for points of continuity that

∥∥∥∥dφ(t)dt

∥∥∥∥ ≤ ∥A∥
t∫

−∞

∥X(t, u)∥ ∥f(u)∥ du+ ∥f(t)∥ =
∥A∥MfK

α
+Mf , (8)

where Mf = sup
t∈R

∥f(t)∥. Therefore, φ(t) is a conditional uniform continuous function. The

asymptotic stability of φ(t) can be verified in a very similar way to the stability of a bounded
solution mentioned in [17].

Since f(t) is a d.u.f., there exist positive numbers ϵ0, σ, sequences tn, sn of real numbers
and sequences ln,mn of integers all of which diverge to infinity such that the properties (c)
and (d) in Definition 1 hold for f(t), i.e., when φ is replaced by f .

Let us check that the Poisson stability of φ(t) is valid.

Fix an arbitrary positive number ϵ and an arbitrary compact interval [a, b], where b > a.
We will show for sufficiently large n that the inequality ∥φ(t+ tn)−φ(t)∥ < ϵ is satisfied for
each t in [a, b]. Choose numbers c < a and ξ > 0 such that

Mf (K0 + 2K)

α
e−α(a−c) <

ϵ

3
, (9)

Mf (K0 + 2K)
(
eαξ − 1

)
α (1− e−αθ)

<
ϵ

3
, (10)

and

Kξ

α
<
ϵ

3
. (11)

Let n be a sufficiently large natural number such that |θk+ln − tn − θk| < ξ for θk ∈ [c, b],
k ∈ Z, and ||f(t + tn) − f(t)|| < ξ for t ∈ [c, b]. We assume without loss of generality that
θk ≤ θk+ln . Additionally, suppose that

θm−1 ≤ c ≤ θm < · · · < θq ≤ t ≤ θq+1

for m, q ∈ Z.
If t ∈ [a, b], then we have

∥φ(t+ tn)− φ(t)∥ ≤
c∫

−∞

∥X(t+ tn, u+ tn)−X(t, u)∥ ∥f(u+ tn)∥ du
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+

t∫
c

∥X(t+ tn, u+ tn)−X(t, u)∥ ∥f(u+ tn)∥ du

+

c∫
−∞

∥X(t, u)∥ ∥f(u+ tn)− f(u)∥ du+

t∫
c

∥X(t, u)∥ ∥f(u+ tn)− f(u)∥ du.

Using (6), one can obtain

c∫
−∞

∥X(t+ tn, u+ tn)−X(t, u)∥ ∥f(u+ tn)∥ du

≤
c∫

−∞

MfK0e
−α(t−u)du <

MfK0

α
e−α(a−c).

Moreover, we have

t∫
c

∥X(t+ tn, u+ tn)−X(t, u)∥ ∥f(u+ tn)∥ du

≤
q∑

k=m

θk+ln−tn∫
θk

MfK0e
−α(t−u)du ≤

q∑
k=m

MfK0

α
e−αt

(
eα(θk+ln−tn) − eαθk

)

≤
q∑

k=m

MfK0

α
e−α(t−θk)

(
eαξ − 1

)

<
MfK0

α

(
eαξ − 1

)
e−α(t−θq)

q∑
k=m

e−α(θq−θk) <
MfK0

(
eαξ − 1

)
α (1− e−αθ)

.

Likewise, one can deduce that

c∫
−∞

∥X(t, u)∥ ∥f(u+ tn)− f(u)∥ du+

t∫
c

∥X(t, u)∥ ∥f(u+ tn)− f(u)∥ du
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≤
c∫

−∞

2MfKe
−α(t−u)du+

t∫
c

Kξe−α(t−u)du+

q∑
k=m

θk+ln−tn∫
θk

2MfKe
−α(t−u)du

<
2MfK

α
e−α(a−c) +

Kξ

α
+

2MfK
(
eαξ − 1

)
α (1− e−αθ)

.

Thus, ∥φ(t+ tn)− φ(t)∥ < ϵ for t ∈ [a, b] in conformity with the inequalities (9)-(11) and
therefore, φ(t+ tn) → φ(t) uniformly on each compact interval in B-topology.

The unpredictability property can be proved identically as in Theorem 2.2 [5].

3 Linear systems with unpredictable impulses

Consider the following linear impulsive system,

x′(t) = Ax(t) + f(t), t ̸= θk,

∆x|t=θk = Bx(θk) + Jk, (12)

where t ∈ R, the matrices A ∈ Rp×p and B ∈ Rp×p commute, the sequence θk, k ∈ Z, of
discontinuity moments is defined by equation (1), and (f(t), Jk) is an unpredictable couple in
the sense of Definition 2. Additionally, det(I +B) ̸= 0, where I is the p× p identity matrix.

It is worth noting that (12) is a linear impulsive system with unpredictable impulses, and
it is not a particular case of system (2). Indeed, to introduce the perturbations Jk in the
impulsive part, one must not only consider the sequence to be unpredictable but also assume
that the sequences tn and sn proper for the unperturbed system have to be consistent with
the new terms.

Theorem 2. Suppose that the condition (C) is valid. If the couple (f(t), Jk) is unpredictable
in the sense of Definition 2, then system (12) possesses a unique asymptotically stable dis-
continuous unpredictable solution.

The proof of the Theorem 2 is similar to that of Theorem 1.

4 Examples

Example 1. Consider the logistic map

νk+1 = µνk(1− νk), k ∈ Z (13)

with µ = 3.95 in the interval [0, 1]. Then there exists the unpredictable solution γk, k ∈ Z, [2].
And there exist a positive number ϵ0 and sequences ζn, ηn, both of which diverge to infinity
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such that |γk+ζn − γk| → 0 as n → ∞, for each k in bounded intervals of integers and
|γηn+ζn − γηn | ≥ ϵ0 for each n ∈ N.

Let us consider the sequence θk, k ∈ Z defined by

θk = 4k + γk, k ∈ Z. (14)

Since the sequence (14) has the form (1) with T = 4, then there exist a positive number ϵ0,
a sequence tn = 4ζn of real numbers and sequences ln = ζn, mn = ηn of integers all of which
diverge to infinity such that |θk+ln − tn − θk| → 0 as n→ ∞ for each k in bounded intervals
of integers and |θmn+ln − tn − θmn | ≥ ϵ0 for each natural number n. That is, the sequence is
the unpredictable discrete set.

We utilize a realization of the Bernoulli process for construction of discontinuous unpre-
dictable function by considering it as infinite sequences of two integers 3 and 5 with equal
probability 1/2 such that according to Theorem 1, [8]. Then there exists an unpredictable
sequence τk, τk = 3, 5, k ∈ Z, and there exist sequences ζn, ηn, n ∈ N, of positive integers
both of which diverge to infinity as n → ∞ such that τk+ζn = τk for each k in bounded
intervals of integers and |τζn+ηn − τηn | ≥ ε0 = |3− 5| = 2 for each natural number n.

Let χ(t) : R → R be the function defined through the equation χ(t) = τk for t ∈ [θk, θk+1),
k ∈ Z. We will show that χ(t) is a discontinuous unpredictable function in the sense of
Definition 1.

One can show that if t ∈ [θk, θk+1), k ∈ Z, then t + tn ∈ [θk+ζn , θk+1+ζn), k ∈ Z. For
t ∈ [θ′k, θ

′
k+1), k ∈ Z, it can be verified that θ′k ≤ t < θ′k+1, and θ

′
k + tn ≤ t+ tn < θ′k+1 + tn,

then θ′k+ζn
≤ t + tn < θ′k+1+ζn

. That is, the discontinuity points of χ(t + tn) are that ones
for χ(t). Let us denote them θ′k = θk+ζn − tn. Accordingly, for each k ∈ Z, n ∈ N the
value of function χ(t + tn) is equal to τk+ζn . Hence, by using the unpredictability τk, we
have that χ(t + tn) → χ(t) as n → ∞ in B-topology on each bounded interval. Moreover,
the values of functions χ(t) and χ(t + tn), on the corresponding intervals [θηn , θηn+1), and
[θηn+ζn , θηn+1+ζn), for fixed n, are respectively equal to τηn and τηn+ζn . Consequently, we
have that |χ(t+ tn)− χ(t)| = |τηn+ζn − τηn | ≥ ϵ0 = 2.

Thus, χ(t) is the discontinuous unpredictable function with positive numbers ϵ0 = 2, σ =

3
2 and sequences tn = 4ζn, sn =

θηn + θηn+1

2
.

Example 2. Let us consider the impulsive system,

x′1 = −2x2 + 4χ3(t), t ̸= θk,

x′2 = 2x1 − 9χ(t), t ̸= θk,

∆x1|t=θk = −80

81
x1 + 0.4γk,

∆x2|t=θk = −80

81
x2 − 0.6γk, (15)
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where χ(t) is the d.u.f. from Example 1, and

A =

(
0 −2
2 0

)
, B =

(
−80

81 0
0 −80

81

)
.

The couple (f(t), Jk) =

((
4χ3(t)
−9χ(t)

)
,

(
0.4γk
−0.6γk

))
is unpredictable in the sense of

Definition 2 according to Lemmas 1.4 and 1.5 [5].
The matrices A and B commute, and the matrix

A+
1

T
ln (I +B) =

(
− ln 3 −2

2 − ln 3

)
,

has the eigenvalues λ1,2 = − ln 3 ± 2i. Inequality (5) is satisfied for system (15) with
α = 1 and K = 2.5. According to Theorem 2, there exists the unique asymptotically stable
discontinuous unpredictable solution of system (15).

0 5 10 15 20 25 30 35 40

0

0.5

1

 t

 
ω
1

0 5 10 15 20 25 30 35 40

−0.5

0

0.5

1

1.5

 t

 
ω
2

Figure 1 – The time series of the coordinates ω1, ω2 of the solution of system (15).

The simulation of the unpredictable solution x(t) is not possible, because the initial value
is not known precisely. For this reason, we will consider another solution ω(t) = (ω1(t), ω2(t)),
with initial value ω1(0) = 0.95, ω2(0) = 0.6. The graph of function ω(t) approaches to the
discontinuous unpredictable solution x(t) of the system (15), as t increases. Then, one can
consider the graph of ω(t) instead of the curve of unpredictable solution x(t). The coordinates
of the solution ω(t) are depicted in Figure 1. Moreover, Figure 2 presents the trajectory of
this solution.
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Figure 2 – The trajectory of the solution ω(t), which approximates

the discontinuous unpredictable solution x(t).
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[2] Akhmet M., Fen M.O. Poincaré chaos and unpredictable functions, Commun. Nonlinear Sci.
Nummer. Simulat., 48 (2017), 85-94. https://doi.org/10.1016/j.cnsns.2016.12.015.

[3] Akhmet M., Fen M.O. Existence of unpredictable solutions and chaos, Turk. J. Math., 41
(2017), 254-266. doi:10.3906/mat-1603-51.

[4] Akhmet M., Fen M.O. Non-autonomous equations with unpredictable solutions, Commun. Non-
linear Sci. Numer. Simulat., 59 (2018), 657-670. https://doi.org/10.1016/j.cnsns.2017.12.011.

[5] Akhmet M., Fen M.O., Tleubergenova M., Zhamanshin A. Unpredictable solutions of linear
differential and discrete equations, Turk. J. Math., 43 (2019), 2377-2389. doi:10.3906/mat-1810-86

[6] Akhmet M., Tleubergenova M., Zhamanshin A. Quasilinear differential equations with strongly
unpredictable solutions, Carpathian J. Math., 36 (2020), 341-349.

Kazakh Mathematical Journal, 21:1 (2021) 25–37



36 Marat Akhmet, Madina Tleubergenova, Zakhira Nugayeva

[7] Akhmet M.U., Fen M.O., Alejaily E.M. Dynamics with Chaos and Fractals, Springer-Verlag,
Berlin, 2020.

[8] Akhmet M., Fen M.O., Alejaily E.M. A randomly determined unpredictable function, Kazakh
Mathematical Journal, 20:2 (2020), 30-36.

[9] Akhmet M.,Tola A, Unpredictable Strings, Kazakh Mathematical Journal, 20:3 (2020), 16-22.
[10] Erbe L.H., Liu X.Existence of periodic solutions of impulsive differential systems, J. Appl.

Math. Stochastic Anal., 4 (1991), 137-146. https://doi.org/10.1155/S1048953391000102.

[11] Li Y., Zhou Q.D. Periodic solutions to ordinary differential equations with impulses, Sci. China
Ser. A, 36 (1993), 778–790.
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Ахмет М., Тлеубергенова М., Нугаева З. БОЛЖАНБАЙТЫН ТЕРБЕЛIСТЕРI БАР
ИМПУЛЬСТIК ЖҮЙЕ

Импульстiк әсерi бар сызықтық бiртектi емес жүйелер үшiн үзiлiстi болжанбайтын
шешiмдердiң тербелiстерiнiң жаңа түрi қарастырылды. Бұл жүйелердiң импульстi сәт-
терi жаңадан анықталған болжанбайтын дискреттi жиынтықты қүрайды. Зерттелетiн
модельдер болжанбайтын қозуларға ие. Асимптотикалық орнықты үзiлiстi болжанбай-
тын шешiмдердiң бар болуы мен жалғыздығының жеткiлiктi шарттары келтiрiлдi. Бо-
лжанбайтын компоненттердi жүйелi түрде анықтау үшiн мысалдарда кездейсоқ аны-
қталған болжанбайтын тiзбектер қолданады. Үзiлiс нүктелерiнiң жиыны логистикалық
бейнелеудi қолдану арқылы жүзеге асырылады. Нәтижелердiн орындалуын көрсету үшiн
мысалдар келтiрiлдi.

Кiлттiк сөздер. Үзiлiстi болжанбайтын функция, сызықтық импульстiк жүйе, Бер-
нулли процесi, асимптотикалық орнықтылық.

Ахмет М., Тлеубергенова М., Нугаева З. ИМПУЛЬСНАЯ СИСТЕМА С НЕПРЕД-
СКАЗУЕМЫМИ КОЛЕБАНИЯМИ

Рассматривается новый тип колебаний разрывных непредсказуемых решений для ли-
нейных неоднородных систем с импульсными воздействиями. Моменты импульсов ис-
следуемых систем являются нововведенным непредсказуемым дискретным множеством.
Исследуемые модели допускают непредсказуемые возмущения. Приведены достаточ-
ные условия существования и единственности асимптотически устойчивых разрывных
непредсказуемых решений. Для конструктивного определения непредсказуемых компо-
нентов в примерах используются случайно определенные непредсказуемые последова-
тельности. Множества моментов разрыва реализуется с помощью логистического отоб-
ражения. Для иллюстрации результатов приведены примеры с моделированием.

Ключевые слова. Разрывная непредсказуемая функция, линейная импульсная систе-
ма, процесс Бернулли, асимптотическая устойчивость.
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Abstract. The problem of an action on a cavity supported by a multilayer circular cylindrical shell located

in the elastic half-space of a stationary moving load of an arbitrary profile is under consideration. The

motion of the shell layers and the elastic half-space is described by the dynamic equations of the theory of

elasticity in a moving coordinate system. Analytical solution of the problem of determining components

of stress-strain state of the array and the shell at subsonic speeds of load movement at different contact

interaction of the shells between each other and the array is obtained. Results of numerical calculations

of stress-strain state of steel shell and surface of elastic mass at transport loads are given.

Keywords. Elastic half-space, moving load, multilayer cylindrical shell, stress strain state.

1 Introduction

As the main model problems used to study the dynamics of transport underground struc-
tures under the influence of a transport load, the problems of acting on a circular cylindrical
shell of a load uniformly moving along the inner surface of the shell along its generatrix
located in an elastic space or half-space are usually considered. The first task simulates the
dynamic behavior of a deep-laid structure, the second – a shallow one. The problems of
the action of a movable axisymmetric normal load on a thin-walled and thick-walled circular
cylindrical shell in elastic space are solved in articles [1,2], respectively. Similar problems
under the action of various non-axisymmetric moving loads on the shell were considered in
[3-5] and other works.

In contrast to these problems, similar problems for the elastic half-space are more com-
plicated, since it becomes necessary to take into account the waves reflected by the boundary
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of the half-space. Therefore, the number of publications devoted to the study of this prob-
lem is small and covers mainly the recent years, in particular [6-14]. In these works, when
constructing a mathematical model, the lining of the tunnel or pipeline was considered as a
homogeneous elastic circular cylindrical shell.

In the present work, these constructions are presented in the form of an inhomogeneous,
multilayered elastic shell, the layers of which are thick-walled circular cylindrical shells with
different geometric parameters and physico-mechanical properties. This is typical for lining
of modern underground structures, which are multilayer and have a thickness comparable to
the diameter of the structures. A mathematical model of such structures is constructed on
the basis of solving the problem by the contact grab based on the equations of motion of
elastic multilayer elastic shells in the elastic half-space for different contact interaction of the
layers. Transport solutions of this problem are obtained in the range of subcritical velocities
at which there are no resonance phenomena.

In the particular case when the shell is a single-layer (homogeneous thick-walled shell),
the results of a numerical experiment are presented and analyzed.

2 Statement of transport boundary value problems

Let consider an infinitely long circular cylindrical multilayer shell, consisting of N con-
centric layers with different physicomechanical and geometric characteristics, located in a
linearly elastic, homogeneous and isotropic half-space (array). We enter fixed cylindrical and
Cartesian coordinate systems whose z-axis coincides with the axis of the shell and parallel
to the horizontal load-free horizontal boundary of the half-space, the x-axis is perpendicular
to this boundary (Figure 1). The contact between the shell layers is assumed to be hard.
The contact between the shell by an array will be assumed to be either rigid or sliding for
two-way communication in the radial direction.

A load of intensity P moves along the inner surface of the shell in the direction of its
z-axis at a constant speed c, the form of which does not change over time (transport load).
The speed of the load is taken subsonic, i.e. lower propagation velocity of shear waves in the
array and shell layers.

We number the shell layers sequentially, assigning the serial number 2 to the layer
in contact with the array. The physical and mechanical properties of the material of
the array and the shell layers are characterized by the following constants, respectively:
ν1, µ1, ρ1; νi, µi, ρi (i = 2, 3, ..., N +1), where νk is Poisson’s ratio, µk = Ek/2(1+ νk) is shear
modulus, ρk is mass density, Ek is Young’s modulus (k = 1, 2, ..., N + 1). Further, the index
k = 1 refers to the array, and k = 2, 3, ..., N + 1 to the layers of the shell.

Let us determine the reaction of the shell and its environment to a transport load, using
the Lama’s dynamic equations of elasticity theory in vector form to describe the motion of
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Figure 1: A multilayer shell in an elastic half-space

the array and shell layers:

(λk + µk)graddivuk + µk∆uk = ρk
∂2uk

∂t2
, k = 1, 2, ..., N + 1, (1)

Here λk, µk are Lama’s parameters, uk are the displacement vectors of the points of the array
and shell layers, ∆ is Laplace operator.

Since a steady process is considered, the deformation pattern is stationary with respect
to a moving load. Therefore, we can go to a load-related moving Cartesian (x, y, η = z − ct)
or cylindrical (r, θ, η = z − ct) coordinate systems. Then equations (1) take the next form:

(M−2
pk −M−2

sk )graddivuk +M−2
sk ∆uk =

∂2uk

∂η2
, k = 1, 2, ..., N + 1, (2)

where Mpk = c/cpk, Msk = c/csk are Mach numbers; cpk =
√

(λk + µk)/ρk, csk =
√

µk/ρk
are propagation velocity of dilatation and shear waves in the array and shell layers.

By use Lama’s potentials [15]

uk = gradφ1k + rot(φ2keη) + rotrot(φ3keη), k = 1, 2, ..., N + 1, (3)

we transform equations (2) to the form

∆φjk = M2
jk

∂φjk

∂η2
, j = 1, 2, 3, k = 1, 2, ..., N + 1. (4)

Here eη is the unit vector of η -axis, M1k = Mpk, M2k = M3k = Msk.
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Using (3) and Hooke’s law, we obtain expressions for the components of the vectors and
stress tensors in the array (k = 1) and shell layers (k = 2, 3, ..., N +1) in a moving cylindrical
coordinate system:

urk = ∂φ1k
∂r + 1

r
∂φ2k
∂θ + ∂2φ3k

∂η∂r ,

uθk = 1
r
∂φ1k
∂θ − ∂φ2k

∂r + 1
r
∂2φ2k
∂η∂θ ,

uηk = ∂φ1k
∂η +m2

sk
∂2φ3k

∂η2
;

(5)

σηηk =
(
2µk + λkM

2
pk

)
∂2φ1k

∂η2
+ 2µkm

2
sk

∂3φ3k

∂η2
,

σθθk = 2µk
r

(
1
r
∂2φ1k

∂θ2
+ ∂φ1k

∂r + 1
r
∂2φ2k
∂θ − ∂2φ2k

∂r∂θ + 1
r
∂3φ3k

∂θ2∂η
+ ∂2φ3k

∂r∂η

)
,

σrrk = λkM
2
pk

∂2ϕ1k

∂η2
+ 2µk

(
∂2ϕ1k

∂r2
+ 1

r
∂2ϕ2k
∂θ∂r − 1

r2
∂ϕ2k
∂θ + ∂3ϕ3k

∂r2∂η

)
,

σrηk = µk

(
2∂2φ1k

∂η∂r + 1
r
∂2φ2k
∂θ∂η +

(
1 +m2

sk

) ∂3φ3k

∂η2∂r

)
,

σηθk = µk

(
2
r
∂2φ1k
∂θ∂η − ∂2φ2k

∂r∂η +
(1+m2

sk)
r

∂3φ3k

∂θ∂η2

)
,

σrθk = 2µk

(
1
r
∂2φ1k
∂θ∂r − 1

r2
∂φ1k
∂θ − ∂2φ2k

∂r2
− m2

sk
r2

∂2φ2k

∂η2
+ 1

r
∂3φ3k
∂r∂η∂θ −

1
r2

∂2φ3k
∂η∂θ

)
,

(6)

where
m2

sk = 1−M2
sk > 0.

In moving Cartesian coordinates, the expressions for the components of the stress-strain
state (SSS) of the array have the form

ux1 =
∂φ11

∂x + ∂φ21

∂y + ∂2φ31

∂x∂η ,

uy1 =
∂φ11

∂y − ∂φ21

∂x + ∂2φ31

∂y∂η ,

uη1 =
∂φ11

∂η +m2
s1

∂2φ31

∂η2
;

(7)

σηη1 =
(
2µ1 + λ1M

2
p1

) ∂2φ11

∂η2
+ 2µ1m

2
s1

∂3φ31

∂η3
,

σyy1 = λ1M
2
p1

∂2φ11

∂η2
+ 2µ1

(
∂2φ11

∂y2
+ ∂2φ21

∂x∂y + ∂3φ31

∂y2∂η

)
,

σxx1 = λ1M
2
p1

∂2φ11

∂η2
+ 2µ1

(
∂2φ11

∂x2 + ∂φ21

∂x∂y + ∂3φ31

∂x2∂η

)
,

σxη1 = µ1

(
2∂2φ11

∂η∂x + ∂2φ21

∂y∂η +
(
1 +m2

s1

) ∂3φ31

∂η2∂x

)
,

σηy1 = µ1

(
2∂2φ11

∂y∂η − ∂2φ21

∂x∂η +
(
1 +m2

s1

) ∂3φ31

∂y∂η2

)
,

σxy1 = 2µ1

(
∂2φ11

∂x∂y − ∂φ21

∂x2 − m2
s1
2

∂2φ21

∂η2
+ ∂3φ31

∂x∂η∂y

)
.

(8)
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Thus, to determine the components of array and shell layers SSS, it is necessary to solve
equation (4) using the following boundary conditions:

– for a load-free half-space surface (x = h)

σxx1 = σxy1 = σxη1 = 0; (9)

– for sliding contact of the shell with the array

by r = R1 ur1 = ur2, σrr1 = σrr2, σrη1 = 0, σrθ1 = 0, σrη1 = 0, σrθ2 = 0,

by r = Rk ujk = ujk+1, σrjk = σrjk+1,

by r = RN+1 σrjN+1 = Pj(θ, η), j = r, θ, η, k = 2, 3, ..., N ;

(10)

– for hard contact of the shell with the array

by r = Rk ujk = ujk+1, σrjk = σrjk+1,

by r = RN+1 σrjN+1 = Pj(θ, η), j = r, θ, η, k = 2, 3, ..., N.
(11)

Here Pj(θ, η) are the intensity components of transport load P (θ, η).

3 The solution of BVP for the periodic loads

Let us consider the action on the shell of a sinusoidal over η moving load with an arbitrary
dependence on the angular coordinate:

P (θ, η) = p(θ, ξ)eiξη, p(θ, ξ) =
∞∑

n=−∞
Pn(θ, ξ)e

inθ,

Pj(θ, η) = pj(θ, ξ)e
iξη, pj(θ, ξ) =

∞∑
n=−∞

Pn(θ, ξ)e
inθ, j = r, θ, η,

(12)

where ξ defines the period T = 2π/ξ of acting load.

In the steady state, the dependence of all quantities on η has the form (12), therefore

φjk(r, θ, η) = Φjk(r, θ)e
iξη. (13)

Substituting (13) to (4) we get

∆2Φjk −m2
jkξ

2Φjk = 0, j = 1, 2, 3, k = 1, 2, ..., N + 1, (14)

where ∆2 is two-dimensional Laplace operator, m1k ≡ mpk, m2k = m3k ≡ msk, m
2
jk =

1−M2
jk.
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At a subsonic speed of motion, solutions of equations (14) can be represented as

Φjk = Φ
(1)
jk +Φ

(2)
jk , j = 1, 2, 3, k = 1, 2, ..., N + 1, (15)

where:
for an array (k = 1)

Φ
(1)
j1 =

∞∑
n=−∞

anjKn(kj1r)e
inθ,

Φ
(2)
j1 =

∞∫
−∞

gj (ξ, ζ) exp
(
iyζ + (x− h)

√
ζ2 + k2j1

)
dζ;

(16)

for shell layers (k = 2, 3, ..., N + 1)

Φ
(1)
jk =

∞∑
n=−∞

anj+3(2k−3)Kn(kjkr)e
inθ, Φ

(2)
jk =

∞∑
n=−∞

anj+6(k−1)In(kjkr)e
inθ. (17)

Here In(kr), Kn(kr) are modified Bessel functions and MacDonald functions, kj1 =
|mj1ξ|, kjk = |mjkξ|. Unknown functions gj(ξ, ζ) and coefficients an1, ..., an(6N+3) must be
determined.

As shown in [6,9], the representation of potentials for half-space in the form (15) leads to
their following expressions in the Cartesian coordinate system:

Φj1 =

∞∫
−∞

[
e−xfj

2fj

∞∑
n=−∞

anjΦnj + gj(ξ, ζ)e
(x−h)fj

]
eiyζdζ (18)

where fj =
√

ζ2 + k2j1, Φnj = [(ζ + fj)/kj1]
n , j = 1, 2, 3, ....

We use the boundary conditions (9), taking into account (8), (13), (18). By isolating the
coefficients by eiyζ and equating, due to the arbitrariness of y, to zero, we obtain a system
of three equations, from which we express functions gj(ξ, ζ) in terms of unknown coefficients
an1, an2, an3:

gj(ξ, ζ) =
1

∆∗

3∑
l=1

∆∗
jle

−hfl

∞∑
n=−∞

anlΦnl, (19)

where ∆∗ = (2ρ2∗ − β2)2 − 4ρ2∗
√

ρ2∗ − α2
√

ρ2∗ − β2,

∆∗
11 =

∆∗

2
√

ρ2∗ − α2
− (2ρ2∗ − β2)2√

ρ2∗ − α2
, ∆∗

12 = −2ζ(2ρ2∗ − β2),

∆∗
13 = 2ξ(2ρ2∗ − β2)

√
ρ2∗ − β2,
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∆∗
21 =

M2
s1

m2
s1

∆∗
12, ∆

∗
22 = − ∆∗∗

2
√

ρ2∗ − β2
, ∆∗

23 = −4ξζ
M2

s1

m2
s1

√
ρ2∗ − α2

√
ρ2∗ − β2,

∆∗
31 =

∆∗
13

m2
s1ξ

2
, ∆∗

32 =
∆∗

21

β2
, ∆∗

33 = − ∆∗∗

2
√
ρ2∗ − β2

+
(2ρ2∗ − β2)2√

ρ2∗ − β2
,

α = Mp1ξ, β = Ms1ξ, ρ
2
∗ = ξ2 + ζ2, ∆∗∗ = (2ρ2∗ − β2)2 − 4ρ2∗∗

√
ρ2∗ − α2

√
ρ2∗ − β2,

ρ2∗∗ = ξ2 + (2/m2
s1 − 1)ζ2.

Note, that ∆∗(ρ∗) is the Rayleigh determinant, which vanishes at ρ2∗R = ξ2M2
R, or at

two points ±ζR = ±|ξ|
√

M2
R − 1, where MR = c/cR is the Mach number, MR = c/cR, cR is

Rayleigh velocity, the velocity of the Rayleigh surface waves [15]. It follows from the latter
that ∆∗(ρ∗) does not vanish on the real axis, if MR < 1 (c < cR), that is at pre-Delay
transport load speeds. In this case, potentials (18) can be represented as

Φj1 =

−∞∫
∞

[
e−xfj

2fj

∞∑
n=−∞

anjΦnj + e(x−h)fj

3∑
l=1

∆∗
jl

∆∗
ehfi

∞∑
n=−∞

anlΦnl

]
eiyζdζ. (20)

It should be noted that the Rayleigh velocity is large, but slightly lower than the shear
wave velocity in a array.

Using the relation, which is known for x < h [6],

exp
(
iyζ + (x− h)

√
ζ2 + k2j

)
=

=
∞∑

n=−∞
In(kjr)e

inθ
[
(ζ +

√
ζ2 + k2j )/kj

]n
e
−h

√
ζ2+k2j ,

we write Φj1 (15) in a cylindrical coordinate system

Φj1 =

∞∑
n=−∞

anjKn(kj1r) + In(kj1r)

∞∫
−∞

gj(ξ, ζ)Φnje
−hfjdζ

 einθ.

Substituting in the last expression gj(ξ, ζ) from (19), we obtain

Φj1 =

∞∑
n=−∞

(anjKn(kj1r) + bnjIn(kj1r)) e
inθ, (21)

where bnj =
3∑

l=1

∞∑
m=−∞

amlA
ml
nj , Aml

nj =
∞∫

−∞

∆∗
jl

∆∗
ΦmlΦnje

−h(fl+fj)dζ.
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Substituting (21) into (5), (6), taking into account (13), we obtain formulas for computing
the components of the array SSS in cylindrical coordinates (by c < cR)

u∗l1 =
∞∑

n=−∞

3∑
j=1

[
T
(1)
lj1 (Kn(kj1r)) anj + T

(2)
lj1 (In(kj1r)) bnj

]
ei(ξη+nθ),

σ∗
lm1
µ1

=
∞∑

n=−∞

3∑
j=1

[
S
(1)
lmj1 (Kn(kj1r)) anj + S

(2)
lmj1 (Kn(kj1r)) bnj

]
ei(ξη+nθ).

(22)

Here l = r, θ, η, m = r, θ, η;

T
(1)
r11 = k11K

′
n(k11r), T

(1)
r21 = −n

r
Kn(k21r), T

(1)
r31 = −ξk31K

′
n(k31r),

T
(1)
θ11 = −n

r
Kn(k11r)i, T

(1)
θ11 = −k21K

′
n(k21r)i, T

(1)
θ31 = −n

r
ξKn(k31r)i,

T
(1)
η31 = ξKn(k11r)i, T

(1)
η21 = 0, T

(1)
η31 = −k231Kn(k31r)i,

S
(1)
rr11 = 2

(
k211 +

n2

r2
−

λ1M
2
p1ξ

2

2µ1

)
Kn(k11r)−

2k11K
′
n(k11r)

r
,

S
(1)
rr21 =

2n

r2
Kn(k11r)−

2k21K
′
n(k21r)

r
,

S
(1)
rr31 = −2ξ

(
k231 +

n2

r2

)
Kn(k31r) +

2ξk31K
′
n(k31r)

r
,

S
(1)
θθ11 = −2

(
n2

r2
+

λ1M
2
p1ξ

2

2µ1

)
Kn(k11r) +

2k11K
′
n(k11r)

r
,

S
(1)
θθ21 = −2nKn(k21r)

r2
+

2nk21K
′
n(k21r)

r
, S

(1)
θθ31 =

2ξn2Kn(k31r)

r2
− 2ξk31K

′
n(k31r)

r
,

S
(1)
ηη11 = −2ξ2

(
1 + λ1M

2
p1

2µ1

)
Kn(k11r), S

(1)
ηη21 = 0, S

(1)
ηη31 = 2m2

31ξ
3Kn(k31r),

S
(1)
rθ11 =

(
−2nKn(k11r)

r2
+

2nk11K
′
n(k11r)

r

)
i,

S
(1)
rθ21 =

(
−
(
k221 +

2n2

r2

)
Kn(k21r) +

2k21K
′
n(k21r)

r

)
i,

S
(1)
rθ31 =

(
2nξKn(k31r)

r2
− 2nξk31K

′
n(k31r)

r

)
i,

S
(1)
θη21 = ξk21K

′
n(k21r), S

(1)
θη31 =

2nξ2(1 +m2
31)Kn(k31r)

r
,
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S
(1)
rη11 = 2ξk11K

′
n(k11r)i, S

(1)
rη21 =

ξnKn(k21r)i

r
,

S
(1)
θη11 = −2nξKn(k11r)

r
, S

(1)
rη31 = −ξ2k31(1 +m2

31)K
′
n(k31r)i;

T
(2)
lj1 , S

(2)
lmj1 are obtained from T

(1)
lj1 , S

(1)
lmj1 replacing Kn by In.

For k = 2, 3, . . . , N + 1, substituting (15) in (5), (6) taking into account (13), we obtain
formulas for calculating the components of shell layers SSS at c < cR:

u∗lk =

=
∞∑

n=−∞

3∑
j=1

[T
(1)
ljk (Kn(kjkr))anj+3(2k−3) + T

(2)
ljk (Kn(kjkr))anj+6(k−1)]e

i(ξη+nθ),

σ∗
lmk
µk

=

=
∞∑

n=−∞

3∑
j=1

[S
(1)
lmjk(Kn(kjkr))anj+3(2k−3) + S

(2)
lmjk(In(kjkr))anj+6(k−1)]e

i(ξη+nθ).

(23)

Here l = r, θ, η, m = rmθ, η, k = 2, 3, ..., N + 1;

T
(1)
r1k = k1kK

′
n(k1kr), T

(1)
r2k = −n

r
Kn(k2kr), T

(1)
r3k = −ξk3kK

′
n(k3kr),

T
(1)
θ1k =

n

r
Kn(k1kr)i, T

(1)
θ2k = −k2kK

′
n(k2kr)i, T

(1)
θ3k = −n

r
ξKn(k3kr)i,

T
(1)
η1k = ξKn(k1kr)i, T

(1)
η2k = 0, T

(1)
η3k = −k23kKn(k3kr)i,

S
(1)
rr1k = 2

(
k21k +

n2

r2
−

λkM
2
pkξ

2

2µk

)
Kn(k1kr)−

2k1kK
′
n(k1kr)

r
,

S
(1)
rr2k =

2n

r2
Kn(k2kr)−

2k2kK
′
n(k2kr)

r
,

S
(1)
rr3k = 2ξ

(
k23k +

n2

r2

)
Kn(k3kr) +

2ξk3kK
′
n(k3kr)

r
,

S
(1)
θθ1k = −2

(
n2

r2
+

λkM
2
pkξ

2

2µk

)
Kn (k1kr) +

2k1kK
′
n (k1kr)

r
,

S
(1)
θθ2k = −2nKn (k2kr)

r2
+

2nk2kK
′
n (k2kr)

r
,

S
(1)
θθ3k =

2ξn2Kn (k3kr)

r2
− 2ξk3kK

′
n (k3kr)

r
,

S
(1)
ηη1k = −2ξ2

(
1 + λkM

2
pk

2µk

)
Kn (k1kr) ,
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S
(1)
ηη2k = 0, S

(1)
ηη3k = 2m2

3kξ
3Kn (k3kr) ,

S
(1)
rθ1k =

(
−2nKn (k1kr)

r2
+

2nk1kK
′
n (k1kr)

r

)
i,

S
(1)
rθ2k =

(
−
(
k22k +

2n2

r2

)
Kn (k2kr) +

2k2kK
′
n (k2kr)

r

)
i,

S
(1)
rθ3k =

(
2nξKn (k3kr)

r2
− 2nξk3kK

′
n (k3kr)

r

)
i,

S
(1)
θη2k = ξk2kK

′
n (k2kr) , S

(1)
θη3k =

nξ2
(
1 +m2

3k

)
Kn (k3kr)

r
,

S
(1)
rη1k = 2ξk1kK

′
n (k1kr) i, S

(1)
θη1k = −2nξKn (k1kr)

r
,

S
(1)
rη2k = −ξnKn (k2kr) i

r
, S

(1)
rη3k = −iξ2k3k

(
1 +m2

3k

)
K ′

n (k3kr) ;

T
(2)
ljk , S

(2)
lmjk are obtained from T

(1)
ljk , S

(1)
lmjk replacing Kn in In.

To determine the coefficients an1, ..., an(6N+3), we use the boundary conditions (10) or
(11), depending on the condition of contact between the shell and the medium.

Substituting the corresponding expressions into the boundary conditions and equating
the coefficients of the series with einθ, we obtain an infinite system (n = 0,±1,±2, . . . ) of
linear algebraic equations, for the solution of which one can use the reduction method or the
method of successive reflections. It is more convenient for solving such problem [6] because
it allows for each successive reflection to solve a system of linear equations of block-diagonal
form with determinants ∆n (ξ, c) along the main diagonal.

After determining the coefficients, the components of the stress-strain state of the array
and shell layers can be calculated by the formulas (22), (23).

If we have any periodic transport load, then it can be presented as Fourier series:

Pj (θ, η) =
∑
k

pkj (θ)e
iξkη.

In this case we solve the problem for every member of this series by use this method. The
sum of this solutions gives the solution of periodic transport problem.

4 Numerical experiment

As an example, we consider the dynamic behavior of an underground single-layer steel
pipeline (ν2 = 0, 3, µ2 = 8, 08 · 1010 Pa, ρ2 = 7, 8 · 103kg/m3; cs2 = 3218, 54m/s, cp2 =
6021, 33m/s) under the action of a moving load in it.
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The radius of the outer surfaces of the pipes is R1 = R = 1m, the internal one is
R2 = 0, 95m. The depth of the pipeline in the rock mass is h = 2R1. The array has the
following characteristics [16]: ν1 = 0, 25, µ1 = µ = 4, 0 · 109Pa, ρ1 = 2, 6 · 103 kg/m3; cs1 =
1240, 35m/s, cp1 = 2148, 34m/s, cR = 1140, 42m/s.

An axisymmetric cylindrical normal load of intensity q (Pa) is uniformly distributed in
the interval |η| ≤ l0 = 0, 2R, moves in a pipeline with a subcritical and pre-Delay speed
c = 100m/s. The load intensity is selected so that the total load along the entire length
of the loading section 2l0 is equivalent to the concentrated normal ring load intensity P ◦◦

(N/m), that is q = P ◦◦/2l0.
We use the designations: u◦r = urµ/P

◦ (m), σ◦
θθ = σθθ/P

◦, σ◦
ηη = σηη/P

◦, (m), u◦x =
uxµ/P

◦ (m), u◦y = uyµ/P
◦, σ◦

yy = σyy/P
◦ where P ◦ = P ◦◦/m (Pa).

The calculation results in the cross section η = 0 of the pipeline (in the xy coordinate
plane) are shown in Tables 1, 2 and in Figures 2, 3.

Table 1: Components of the array of strain–stress state at the contact points: r = R1, η = 0

Components
of strain-stress
state

θ, hail

0 20 40 60 80 100 120 140 160 180

Rigid contact of the pipeline with the array

u◦r 0,30 0,29 0,28 0,26 0,25 0,25 0,24 0,25 0,25 0,25

σ◦
θθ 0,18 0,17 0,17 0,16 0,17 0,16 0,15 0,14 0,14 0,14

σ◦
ηη -0,35 -0,36 -0,36 -0,36 -0,36 -0,36 -0,36 -0,36 -0,37 -0,37

Sliding pipe contact with the array

u◦r 0,32 0,32 0,30 0,28 0,26 0,26 0,26 0,26 0,27 0,27

σ◦
θθ -0,08 -0,06 -0,07 0,01 0,0 -0,01 -0,03 -0,06 -0,07 -0,07

σ◦
θθ -1,36 -1,36 -1,34 -1,30 -1,29 1,29 -1,29 -1,29 -1,30 -1,31

Tables 1, 2 show the values of the components of the array SSS under various contact
conditions of the array with the pipeline.

Figure 2, on the external (r = R1) and internal (r = R2) pipeline contours, shows the
diagrams of radial displacements u◦r and normal stresses σ◦

θθ, σ
◦
ηη. Curves 1 correspond to

the hard contact of the pipeline with the array, curves 2 correspond to the sliding contact.
Calculations show that with a hard contact, the extreme radial displacements ur and
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Table 2: Components of strain-stress state of earth surface (x = h, η = 0)

Components
of strain-stress state

y/R1

0,0 0,4 0,8 1,2 1,6 2,0 2,4 2,8 3,2

Rigid contact of the pipeline with the array

u◦x 0,11 0,10 0,08 0,06 0,04 0,03 0,02 0,01 0,01

u◦y 0,0 0,02 0,03 0,04 0,04 0,03 0,03 0,02 0,02

s◦yy 0,21 0,17 0,10 0,03 -0,01 -0,02 -0,03 -0,03 -0,02

s◦η,η 0,25 0,23 0,17 0,12 0,08 0,05 0,03 0,02 0,02

Sliding pipe contact with the array

u◦x 0,13 0,12 0,09 0,07 0,05 0,03 0,02 0,01 0,01

u◦y 0,0 0,03 0,04 0,04 0,04 0,03 0,02 0,02 0,01

s◦yy 0,24 0,20 0,11 0,02 -0,02 -0,04 -0,03 -0,02 -0,02

s◦η,η 0,29 0,26 0,20 0,13 0,08 0,05 0,04 0,02 0,02

normal tangential stresses σ◦
θθ are positive and some less than by a sliding contact. Axial

normal stresses σ◦
ηη are positive on the outer contour of the section and negative on the inner

contour. Moreover, by a hard contact, the value |σ◦
ηη| on the external circuit is almost half

as low as on the internal, and by a sliding contact they are almost the same. The highest
normal stresses σ◦

θθ act on the external contour of the cross section and, under any contact
conditions, are 2 – 3 times higher than σ◦

ηη.
Figure 3 shows the curves of changes in SSS of the earth’s surface. The numbering of the

curves has the same meaning as in Figure 1.
As follows from Figure 3 and Table 2, with an increase in |y| the components of the

earth’s surface SSS rapidly attenuate, and for |y| > 3R, displacements and stresses become
very small regardless of the interface between the pipeline and the array.
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a

b

c

Figure 2: Plots u◦r (a), σ◦
θθ (b), σ◦

ηη (c) in the cross section of the pipeline
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a

b

c

d

Figure 3: Changes of components of the earth’s surface SSS in the xy coordinate plane
(x = h, η = 0)
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Conclusion

In a rigorous mathematical formulation, an analytical solution to the problem of the
action of a moving load on a circular cylindrical multilayer shell in an elastic half-space with
a free boundary is obtained. The solution was obtained for subcritical loading speeds.

When using the obtained solution, the dynamic behavior of an underground steel pipeline
under the action of a load moving in it was investigated.

The developed calculation procedure is recommended to be used for the dynamic calcula-
tion of tunnels or layered and homogeneous shallow underground pipelines backed by layered
(in particular, homogeneous) lining under the influence of transport loads.

This work was supported by the Ministry of Education and Science of the Republic of
Kazakhstan (Grant AP05132272).
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The problem of an action on a cavity supported by a multilayer circular cylindrical shell
located in the elastic half-space of a stationary moving load of an arbitrary profile. The
motion of the shell layers and the elastic half-space is described by the dynamic equations of
the theory of elasticity in a moving coordinate system. Analytical solution of the problem of
determining components of stress-strain state of the array and the shell at subsonic speeds of
load movement at different contact interaction of the shells between each other and the array
is obtained. Results of numerical calculations of stress-strain state of steel shell and surface
of elastic mass at transport loads are given.
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located in the elastic half-space of a stationary moving load of an arbitrary profile. The
motion of the shell layers and the elastic half-space is described by the dynamic equations of
the theory of elasticity in a moving coordinate system. Analytical solution of the problem of
determining components of stress-strain state of the array and the shell at subsonic speeds of
load movement at different contact interaction of the shells between each other and the array
is obtained. Results of numerical calculations of stress-strain state of steel shell and surface
of elastic mass at transport loads are given.
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Abstract. In the present paper we study properties of combinations of countably categorical weakly

o-minimal structures. The main result of the paper is a criterion for weak o-minimality of a linearly

ordered disjoint P -combination of countably many countably categorical weakly o-minimal structures of

finite convexity rank.

Keywords. Weak o-minimality, P -combination, countable categoricity, convexity rank.

1 Introduction

Let L be a countable first-order language. Throughout this paper we consider L-structures
and suppose that L contains a binary relation symbol < which is interpreted as a (strict)
linear order in these structures. A subset A of a linearly ordered structure M is convex if for
all a, b ∈ A and c ∈ M whenever a < c < b we have c ∈ A. This paper concerns the notion
of weak o-minimality which was initially deeply studied by D. Macpherson, D. Marker and
C. Steinhorn in [1]. A weakly o-minimal structure is a linearly ordered structure M = 〈M,=
, <, . . .〉 such that any definable (with parameters) subset of M is a union of finitely many
convex sets in M . We recall that such a structure M is said to be o-minimal if any definable
(with parameters) subset of M is a union of finitely many intervals and points in M . Thus,
weak o-minimality generalizes the notion of o-minimality. Real closed fields with a proper
convex valuation ring provide an important example of weakly o-minimal (not o-minimal)
structures.

If 〈M1, <1〉 and 〈M2, <2〉 are linear orders then their linearly ordered disjoint combination
(or concatenation), denoted by M1 +M2, is the linear order 〈M1 ∪M2, <〉, where

a < b iff ([a, b ∈M1 ∧ a <1 b] or [a, b ∈M2 ∧ a <2 b] or [a ∈M1 ∧ b ∈M2]).
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Let M be an ℵ0-categorical 1-indiscernible weakly o-minimal structure of convexity rank
m for some m < ω. If we consider a linearly ordered disjoint combination of n copies of
M , each of which is distinguished by a unary predicate Pi (where 1 ≤ i ≤ n), then we
obtain an ℵ0-categorical weakly o-minimal structure of the same convexity rank (we lose
only 1-indiscernibility). If we consider a linearly ordered disjoint combination of ω copies
of M , where each copy is distinguished by Pi, i ∈ ω, then we can lose additionally both
weak o-minimality and the ℵ0-categoricity. We call such a combination as a P -combination
(see [2]– [9]).

Let Mi := 〈Mi;<Mi ,Σi〉 be a linearly ordered structure of a relational language, i ∈ ω.
Further in this paragraph we denote by M ′ a linearly ordered disjoint P -combination of the
structures Mi, i ∈ ω, in the language {<,Σ, P 1

i }i∈ω, where Σ = ∪i∈ωΣi, and the universe
of the combination is

⋃
i∈ωMi; Pi(M

′) = Mi for each i ∈ ω; either Pk(M ′) < Pm(M ′)
or Pm(M ′) < Pk(M ′) for any k,m ∈ ω with k 6= m. For definiteness we assume that each
structure Mi together with its signature enters in a P -combination by the unique way, namely,
every symbol S (but the order relation symbol) being in the signature Σi of the structure Mi

receives the upper index i in the signature Σ of the P -combination, and the following holds:
(a) for every predicate n-ary symbol S of the signature Σi

M ′ |= ∀x1 . . . ∀xn[Si(x1, . . . , xn)→ ∧nj=1Pi(xj)],

(b) for every functional m-ary symbol f of the signature Σi

M ′ |= ∀x1 . . . ∀xm[∃xm+1f
i(x1, . . . , xm) = xm+1 → ∧m+1

j=1 Pi(xj)],

(c) for every constant symbol c of the signature Σi we have M ′ |= Pi(c
i).

Thus, there are no coinciding relations (but the order relation) and functions acting in
distinct P -predicates.

For any i, j ∈ ω the set (Pi, Pj) := {Pk | Pi(M
′) < Pk(M ′) < Pj(M

′)} is said to be a
P -interval. Similarly, we can define P -intervals (Pi, Pj ], [Pi, Pj), [Pi, Pj ]. If M ′ does not have
the least P -predicate, then we can define a P -interval (∞, Pj), where

(∞, Pj) := {Pk | Pk(M ′) < Pj(M
′)}.

We say that Pi is an immediate P -predecessor of Pj if

M ′ |= ∀x∀y[(Pi(x) ∧ Pj(y)→ x < y) ∧ ∀z(x < z < y → Pi(z) ∨ Pj(z))].

In this case Pj is said to be an immediate P -successor of Pi.
Considering the predicates Pi instead of elements in M ′, we observe that cuts in M ′

are replaced by P -cuts (or accumulation P -points) consisting of partitions (P,P ′) of the
set of all predicates Pi with Pj(M

′) < Pk(M ′) for Pj ∈ P and Pk ∈ P ′. We will also
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admit the possibility for P = ∅ or P ′ = ∅ replacing the intervals (Pj , Pk) by (−∞, Pk) or
(Pi,∞), respectively. We say that two P -cuts C1 and C2 are orthogonal if they are realized
independently each other.

For a P -cut C = (P,P ′) the number of pairwise non-isomorphic countable models of
Th(M ′) in which C can be realized and all other P -cuts that are orthogonal to C are not
realized is said to be the C-spectrum.

We say that a P -cut C is P -rational to right (left) if there is a P -predicate Pi such that

C = {¬Pj(x) ∧ ∀y[Pj(y)→ y < x] | Pj(M
′) < Pi(M

′)} ∪ {¬Pi(x) ∧ ∀y[Pi(y)→ x < y]}

(C = {¬Pi(x) ∧ ∀y[Pi(y)→ y < x]} ∪ {¬Pj(x) ∧ ∀y[Pj(y)→ x < y] | Pi(M
′) < Pj(M

′)}).

A P -cut is said to be P -rational if it either P -rational to right or P -rational to left. A
non-P -rational P -cut is said to be P -irrational.

The following theorem is a criterion for Ehrenfeuchtness of a P -combination of countably
many structures in the ordered case.

Theorem 1 [10]. Let Mi be a countably categorical linearly ordered structure for each i ∈
ω, M ′ be a linearly ordered disjoint P -combination of these structures. Then Th(M ′) is
Ehrenfeucht iff there is no infinite partition of M ′ into infinite P -intervals, and for each
P -cut C the C-spectrum is finite.

Let M be a linearly ordered structure. If p, q ∈ S1(∅), we say that p is weakly orthogonal
to q (denoting this by p ⊥w q) if p(x)∪ q(y) has a unique extension to a complete 2-type over
∅. If p1, p2, . . . , ps ∈ S1(∅), we say that a family of 1-types {p1, . . . , ps} is weakly orthogonal
over ∅ if every s–tuple 〈a1, . . . , as〉 ∈ p1(M)× . . .× ps(M) satisfies the same type over ∅.

We extend the definition of the rank of convexity of a formula [11] on arbitrary (non-
necessarily definable) sets:

Definition 1 [11]. Let T be a weakly o-minimal theory, M |= T , A ⊆ M . The rank of
convexity of the set A (RC(A)) is defined as follows:

1) RC(A) = −1 if A = ∅.
2) RC(A) = 0 if A is finite and non-empty.
3) RC(A) ≥ 1 if A is infinite.
4) RC(A) ≥ α + 1 if there exist a parametrically definable equivalence relation E(x, y)

and an infinite sequence of elements bi ∈ A, i ∈ ω, such that:

• For every i, j ∈ ω whenever i 6= j we have M |= ¬E(bi, bj);

• For every i ∈ ω, RC(E(x, bi)) ≥ α and E(M, bi) is a convex subset of A.

5) RC(A) ≥ δ if RC(A) ≥ α for all α ≤ δ, where δ is a limit ordinal.
If RC(A) = α for some α, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) ≥ α

for all α), we put RC(A) =∞.
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The rank of convexity of a formula φ(x, ā), where ā ∈ M , is defined as the rank of
convexity of the set φ(M, ā), i.e. RC(φ(x, ā)) := RC(φ(M, ā)). The rank of convexity of an
1-type p is defined as the rank of convexity of the set p(M), i.e. RC(p) := RC(p(M)).

The notion of (p, q)-splitting formula was introduced in [12] for non-algebraic isolated 1-
types. Let A ⊆M , p, q ∈ S1(A) be non-algebraic, p 6⊥w q. Extending the definition of (p, q)-
splitting formula to non-isolated case, we say that an A–definable formula φ(x, y) is a (p, q)–
splitting formula if there is a ∈ p(M) such that φ(a,M) ∩ q(M) 6= ∅, ¬φ(a,M) ∩ q(M) 6= ∅,
φ(a,M) ∩ q(M) is convex, and [φ(a,M) ∩ q(M)]− = [q(M)]−. If φ1(x, y), φ2(x, y) are (p, q)–
splitting formulas then we say that φ1(x, y) is not greater than φ2(x, y) if there is a ∈ p(M)
such that φ1(a,M)∩ q(M) ⊆ φ2(a,M)∩ q(M). We say that (p, q)–splitting formulas φ1(x, y)
and φ2(x, y) are equivalent (φ1(x, y) ∼ φ2(x, y)) if φ1(a,M) ∩ q(M) = φ2(a,M) ∩ q(M) for
some (any) a ∈ p(M).

Obviously, if p, q ∈ S1(A) are non-algebraic and p 6⊥w q, then there is at least one (p, q)–
splitting formula, and the set of all (p, q)–splitting formulas is partitioned into a linearly
ordered set of equivalence classes with respect to ∼. It is also obvious that for any (p, q)–
splitting formula φ(x, y) the function f(x) := supφ(x,M) is not constant on p(M).

Let A,B,C ⊆ M and f : B → C be an A–definable function. The following notion was
introduced in [1]. We say f is locally increasing (locally decreasing, locally constant) on B if
for any a ∈ B there is an infinite interval J ⊆ B containing {a} so that f is strictly increasing
(strictly decreasing, constant) on J ; we also say f is locally monotonic on B if it is locally
increasing or locally decreasing on B.

In [13] countably categorical weakly o-minimal structures of finite convexity rank were
completely described. Here we present a criterion for weak o-minimality of a linearly ordered
disjoint P -combination of countably many countably categorical weakly o-minimal structures
of finite convexity rank (Theorem 2).

2 Results

Let k denote a set consisting of k elements a1, a2, . . . , ak such that a1 < a2 < . . . < ak,
a1 has no immediate predecessor and ak has no immediate successor, and ai+1 is immediate
successor of ai for every 1 ≤ i ≤ k − 1. We also call k a finite ordering consisting of k
elements. In particular, 2 denotes a duplet, where a duplet is a set consisting of two elements
where one of them is immediate predecessor of the second one, the smaller element has no
immediate predecessor and the second one has no immediate successor.

The following example shows that a linearly ordered disjoint P -combination of countably
many countably categorical o-minimal structures is not weakly o-minimal in general.

Example 1. Let Mi := 〈Q+i+Q, <〉 be a linearly ordered structure for every i ∈ ω, where Q
is the set of rational numbers. Obviously, Mi is a countably categorical o-minimal structure
for every i ∈ ω. Let M ′ be a linearly ordered disjoint P -combination of these structures
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ordered by ω. Consider the following formula:

φ1(x) := ∃y[x < y ∧ ∀z(x ≤ z ≤ y → x = z ∨ z = y)].

Obviously, φ1(M
′) is a union of infinitely many ¬φ1(M ′)-separable convex sets, whence

M ′ is not weakly o-minimal.

The following example shows that a linearly ordered disjoint P -combination of coun-
tably many copies of a countably categorical o-minimal structure is not weakly o-minimal in
general.

Example 2. Let M := 〈Q + 2 + Q, <〉 be a linearly ordered structure, where Q is the set of
rational numbers. Obviously, M is a countably categorical o-minimal structure. Let M ′ be
a linearly ordered disjoint P -combination of ω copies of M .

Similarly as in Example 1, M ′ also is not weakly o-minimal.

The following theorem is a criterion for weak o-minimality of a linearly ordered disjoint
P -combination of countably many countably categorical weakly o-minimal structures of finite
convexity rank.

Theorem 2. Let Mi be a countably categorical weakly o-minimal structure of finite convexity
rank for each i ∈ ω, M ′ be a linearly ordered disjoint P -combination of these structures.
Suppose that Mi has both left and right endpoints for almost all i ∈ ω (i.e. but finitely many
structures Mi). Then Th(M ′) is weakly o-minimal iff the following holds:

(1) Mi is dense for almost all i ∈ ω;

(2) there are only finitely many P -predicates having an immediate P -predecessor or an
immediate P -successor.

Proof. (⇒) (1) follows by Proposition 1 [10]. For completeness of the proof we present it:
if (1) does not hold, then there are infinitely many structures Mi that are not dense. Since
every such Mi is not dense, then there are elements of the structure Mi having an immediate
predecessor or an immediate successor. By the countable categoricity of Mi there is ni < ω
such that the length of any discretely ordered chain having at least two elements is less than
ni. By weak o-minimality of Mi there exists only finitely many such chains, whence there
are only finitely many elements in Mi having an immediate predecessor or an immediate
successor.

Consider the following formula:

φ(x) := ∃y[x < y ∧ ∀z(x ≤ z ≤ y → x = z ∨ z = y)].

Obviously, by infinitely many non-dense structures Mi the set φ(M ′) is a union of infinitely
many ¬φ(M ′)-separable convex sets, whence M ′ is not weakly o-minimal.
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Now we prove that (2) holds. Obviously, if Pi is immediate P -predecessor of Pj , then
the maximal element in Pi has a successor which is the minimal element in Pj . If there
are infinitely many P -predicates having immediate P -predecessor or immediate P -successor,
then the formula saying ”x has a successor” has infinitely many convex components that
contradicts weak o-minimality of Th(M ′).

(⇐) By both (1) and (2) there are only finitely many elements in M ′ having immediate
predecessor or immediate successor. Denote these elements by d1, . . . , dt for some t < ω.
Observe that M ′ �Pi(M ′)= Mi, i.e. the restriction of the structure M ′ on an arbitrary P -
predicate is a countably categorical weakly o-minimal structure of finite convexity rank. By
Theorem 2.8 [13] Th(Mi) admits quantifier elimination to the language

L := {<}
⋃
{cij | 1 ≤ j ≤ si}

⋃
{U i

l (x) | U i
l (Mi) = pil(Mi), p

i
l ∈ S1(∅), 1 ≤ l ≤ ri}⋃

{Ei
l,j(x, y) | Ei

l,j is an equivalence relation on pil(Mi), RC(pil) = nil, 1 ≤ j ≤ nil, 1 ≤ l ≤ ri}⋃
{f il,j | f il,j : pil(Mi)→ pij(Mi) is a locally monotonic bijection,

dcl({a}) ∩ pij(Mi) 6= ∅ for some a ∈ pil(Mi), RC(pil) ≥ RC(pij)}⋃
{Si

l,j(x, y) : pil 6⊥w pij , dcl({a}) ∩ pij(Mi) = ∅ for all a ∈ pil(Mi), RC(pil) ≥ RC(pij),

Si
l,j(x, y) is a basic (pil, p

i
j)-splitting formula}.

Then Th(M ′) admits quantifier elimination to the language

L ∪ {d1 . . . , dt} ∪ {Pi | i ∈ ω},

where cij ∈ Pi(M
′) and U i

l (M
′) ⊆ Pi(M

′) for all 1 ≤ j ≤ si, 1 ≤ l ≤ r.
Recall that Σi ∩ Σj = ∅ for any i, j < ω with i 6= j. Thus, any formula of the language

L∪{d1 . . . , dt}∪ {Pi | i ∈ ω} is decomposed into a boolean combination of subformulas, each
of which is a formula of the language Σi for some i ∈ ω. By weak o-minimality of Mi for
every i ∈ ω the set of realizations of any formula with one free variable of the signature Σi

with constants from Mi is a union of finitely many convex sets in Mi. Since every predicate
Pi(x) is convex, we conclude that Th(M ′) is weakly o-minimal.

Corollary 1. Let Mi be a countably categorical weakly o-minimal structure of finite convexity
rank for each i ∈ ω, M ′ be a linearly ordered disjoint P -combination of these structures.
Suppose that Mi has no endpoints or has only a left (right) endpoint for almost all i ∈ ω.
Then Th(M ′) is weakly o-minimal iff Mi is dense for almost all i ∈ ω.

Proof. (⇒) It follows by Proposition 1 [10].
(⇐) Since Mi is dense for almost all i ∈ ω, there exist only finitely many structures Mi

that are not dense. Consequently, by countable categoricity of Mi every non-dense Mi has
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only finitely many elements having immediate predecessor or immediate successor, whence M ′

also has only finitely many elements with this property. Denote these elements by d1, . . . , dt
for some t < ω. Further by analogy with the proof of Theorem 2 we establish that Th(M ′)
is weakly o-minimal.

Recall that a theory T is Ehrenfeucht if T has finitely many countable models (I(T, ω) <
ω) but is not countably categorical (I(T, ω) > 1). A structure with an Ehrenfeucht theory is
also Ehrenfeucht.

Proposition 1. Let M be a countably categorical weakly o-minimal structure of finite con-
vexity rank, M ′ be a linearly ordered disjoint P -combination of ω copies of M . Then Th(M ′)
has either 2ω countable models or Th(M ′) is Ehrenfeucht.

Proof.
Case 1. M is not dense. Then consider the following formula:

φ(x) := ∃y[x < y ∧ ∀z(x ≤ z ≤ y → x = z ∨ z = y)].

Obviously, φ(M) 6= ∅. Since any countably categorical weakly o-minimal structure has
only finitely many elements having an immediate predecessor or an immediate successor,
φ(M) is finite. Consequently, ¬φ(M) is infinite.

Let us call the structures Mr := 〈M< +Q, <〉 and Ml := 〈Q+M<, <〉 Mr-component and
Ml-component, respectively, where M< is the reduct of the structure M on {<}.

Obviously, for any ordering a P -combination of countably many copies of M there exists
at least one P -cut C. If C is rational to right (left), then it can be realized by any finite
or infinite number of Mr-components (Ml-components), and between any discretely ordered
chains of Mr-components (Ml-components) we can realize infinitely many densely ordered
Mr-components (Ml-components). If C is P -irrational, then it can be realized by any finite or
infinite number of either Mr-components or Ml-components and so on. Then the C-spectrum
is 2ω, i.e. Th(M ′) has 2ω countable models.

Case 2. M is dense and it has both endpoints. If there are only finitely many P -predicates
having immediate P -predecessor or immediate P -successor, then by Theorem 1 there are in-
finitely many pairwise orthogonal P -cuts, and consequently Th(M ′) has 2ω countable models.

Suppose now that M ′ has finitely many P -cuts and there are infinitely many P -predicates
having immediate P -predecessor or immediate P -successor. Consider the following formula:

θ(x) := φ(x) ∨ ∃y[y < x ∧ ∀z(y ≤ z ≤ x→ y = z ∨ z = x)].

Then θ(M ′) is infinite, and θ(x) defines duplets in M ′. Let us call the structures Mr :=
〈2 + Q, <〉 and Ml := 〈Q + 2, <〉 Mr-component and Ml-component, respectively, where 2
denotes a duplet. By our supposition there is at least one P -cut C. It can be showed similarly
as in Case 1 that the C-spectrum is 2ω, i.e. Th(M ′) has 2ω countable models.
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Case 3. M is dense and if M has a first element, then M has no a last element. In this case
θ(M ′) = ∅, and consequently the C-spectrum of any P -cut C is finite. If there is no an infinite
partition of M ′ into infinite P -intervals, then by Theorem 1 Th(M ′) is Ehrenfeucht. If there
is infinite partition of M ′ into infinite P -intervals, then by Theorem 1 there are infinitely
many pairwise orthogonal P -cuts, and consequently Th(M ′) has 2ω countable models.

References

[1] Macpherson H.D., Marker D., and Steinhorn C. Weakly o-minimal structures and real closed
fields, Transactions of The American Mathematical Society, 352:12 (2000), 5435–5483.

[2] Sudoplatov S.V. Combinations of structures, The Bulletin of Irkutsk State University. Series
Mathematics, 24 (2018), 82–101.

[3] Sudoplatov S.V. Closures and generating sets related to combinations of structures, The Bulletin
of Irkutsk State University. Series Mathematics, 16 (2016), 131–144.

[4] Sudoplatov S.V. Families of language uniform theories and their generating sets, The Bulletin
of Irkutsk State University. Series Mathematics, 17 (2016), 62–76.

[5] Sudoplatov S.V. On semilattices and lattices for families of theories, Siberian Electronic Math-
ematical Reports, 14 (2017), 980–985.

[6] Sudoplatov S.V. Combinations related to classes of finite and countably categorical structures
and their theories, Siberian Electronic Mathematical Reports, 14 (2017), 135–150.

[7] Sudoplatov S.V. Relative e-spectra, relative closures, and semilattices for families of theories,
Siberian Electronic Mathematical Reports, 14 (2017), 296–307.

[8] Pavlyuk In.I., Sudoplatov S.V. Families of theories of Abelian groups and their closures, Bulletin
of Karaganda University. Mathematics, 92:4 (2018), 72–78.

[9] Feferman S., Vaught R. The first order properties of products of algebraic systems, Fundamenta
Mathematicae, 47 (1959), 57–103.

[10] Kulpeshov B.Sh., Sudoplatov S.V. P -combinations of ordered theories, Lobachevskii Journal of
Mathematics, 41:2 (2020), 227–237.

[11] Kulpeshov B.Sh. Weakly o-minimal structures and some of their properties, The Journal of
Symbolic Logic, 63 (1998), 1511–1528.

[12] Kulpeshov B.Sh. Criterion for binarity of ℵ0-categorical weakly o-minimal theories, Annals of
Pure and Applied Logic, 45 (2007), 354–367.

[13] Kulpeshov B.Sh. Countably categorical weakly o-minimal structures of finite convexity rank,
Siberian Mathematical Journal, 57:4 (2016), 606–617.

Kazakh Mathematical Journal, 21:1 (2021) 54–62



62 Beibut Kulpeshov, Fariza Torebekova

Кулпешов Б.Ш., Торебекова Ф.А. ӘЛСIЗ О-МИНИМАЛДЫ ҚҰРЫЛЫМДАРДЫҢ
КОМБИНАЦИЯЛАРЫ ТУРАЛЫ

Бұл мақалада бiз саналымды категориялық әлсiз о-минималды құрылымдар комби-
нацияларының қасиеттерiн зерттеймiз. Мақаланың негiзгi нәтижесi — дөңестiк рангiсi
шектеулi саналымды категориялық әлсiз о-минималды құрылымдардың саналымды сан-
ды сызықты реттi қиылыспайтын P -комбинацияның әлсiз o-минималдық критерийi.

Түйiндi сөздер. Әлсiз о-минималдық, P -комбинация, саналымды категориялық, дөңе-
стiк рангiсi.

Кулпешов Б.Ш., Торебекова Ф.А. О КОМБИНАЦИЯХ СЛАБО О-МИНИМАЛЬ-
НЫХ СТРУКТУР

В настоящей статье мы исследуем свойства комбинаций счетно категоричных сла-
бо о-минимальных структур. Основной результат статьи — это критерий слабой о-
минимальности линейно упорядоченной непересекающейся P -комбинации счетного чис-
ла счетно категоричных слабо о-минимальных структур конечного ранга выпуклости.

Ключевые слова. Слабая о-минимальность, P -комбинация, счетная категоричность,
ранг выпуклости.
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Abstract. In this note, we prove the blow-up of solutions to the Dirichlet initial value problem for the

p-sup-Laplacian heat equation on the Heisenberg group by using the concavity method.
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1 Introduction

Let f be a locally Lipschitz continuous function on R, f(0) = 0, and such that f(u) > 0
for u > 0. Furthermore, we suppose that u0 is a non-negative and non-trivial function in
L∞(Ω)∩ S̊1,p and that u0(ξ) = 0 on boundary ∂Ω of Ω, where S̊1,p is the Sobolev type space
defined at the end of the Introduction.

We consider the following p-sub-Laplacian heat equation
ut(ξ, t)− Lpu(ξ, t) = f(u(ξ, t)), (ξ, t) ∈ Ω× (0,+∞),

u(ξ, t) = 0, (ξ, t) ∈ ∂Ω× [0,+∞),

u(ξ, 0) = u0(ξ) ≥ 0, ξ ∈ Ω,

(1)

where 1 < p <∞ and Ω is a bounded domain in the Heisenberg group with smooth boundary
∂Ω. Here

Lpf :=

n∑
j=1

(
Xj(|∇Hf |p−2Xjf) + Yj(|∇Hf |p−2Yjf)

)
, p > 1, (2)

is the p-sub-Laplacian on the Heisenberg group, where X1, . . . , Xn, Y1, . . . , Yn are the left-
invariant vector fields spanning the first stratum.

In the Euclidean setting, it is well-known that there often exists a solution of the p-
Laplacian parabolic equation as the one in (1) for all times. There is a large literature on the

2010 Mathematics Subject Classification: 35H20, 35K92, 35B44, 35R03.
c© 2021 Kazakh Mathematical Journal. All right reserved.
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sufficient conditions for the local existence of solutions to the p-Laplacian parabolic equation.
For example, the sufficient conditions for the local existence of solutions to the p-Laplacian
parabolic equations are derived by Ball [1] and Zhao [2] for p = 2 and p > 2, respectively.
Then, blow-up solutions have been investigated by many authors such as Levine [3], Philippin
and Proytcheva [4], Ding and Hu [5], Bandle and Brunner [6], with a more detailed review of
their works presented in [7].

In this paper, we study the blow-up solutions of the p-sub-Laplacian heat equations on
the Heisenberg group. Our proof is mainly based on the concavity method with a condition

c1

∫ u

0
f(s)ds ≤ uf(u) + c3u

p + c1c2, for u > 0,

which is recently introduced by Chung and Choi [7].
Let us give a brief introduction to the Heisenberg group. Let Hn be the Heisenberg group,

that is, the set R2n+1 equipped with the group law

ξ ◦ ξ̃ := (x+ x̃, y + ỹ, s+ s̃+ 2

n∑
i=1

(x̃iyi − xiỹi)),

where ξ := (x, y, s) ∈ Hn, x := (x1, . . . , xn), y := (y1, . . . , yn), and ξ−1 = −ξ is the inverse
element of ξ with respect to the group law (see, e.g. [8]). The dilation operation of the
Heisenberg group with respect to the group law has the form

δλ(ξ) := (λx, λy, λ2s) for λ > 0.

The Lie algebra h of the left-invariant vector fields on the Heisenberg group Hn is spanned
by

Xi :=
∂

∂xi
+ 2yi

∂

∂s
for 1 ≤ i ≤ n,

Yi :=
∂

∂yi
− 2xi

∂

∂s
for 1 ≤ i ≤ n,

and with their (non-zero) commutator

[Xi, Yi] = −4
∂

∂s
.

The horizontal gradient of Hn is given by

∇H := (X1, . . . , Xn, Y1, . . . , Yn),

then we express

L :=

n∑
i=1

(
X2
i + Y 2

i

)
,
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and for p > 1

Lpf := ∇H · (|∇Hf |p−2∇Hf),

as the sub-Laplacian and p-sub-Laplacian on the Heisenberg group Hn, respectively. We refer
the recent open access book [9] for Heisenberg-type and more general Lie group dicussions.
We also refer remarkable work by Kirane and his collaborators (see, e.g. [10]- [11]) in this
direction.

Let Ω ⊂ Hn be an open set, then we define the functional spaces

S1,p(Ω) = {u : u, |∇Hu| ∈ Lp(Ω)}. (3)

We consider the following functional

Jp(u) := ‖∇Hu‖Lp(Ω).

Thus, the functional class S̊1,p(Ω) can be defined as the completion of C1
0 (Ω) in the norm

generated by Jp, see e.g. [12].

2 Main results

2.1 Blow-up solutions to the sub-Laplacian heat equation. We consider the blow-
up solutions to the sub-Laplacian heat equation on the Heisenberg group Hn, that is,

ut(ξ, t)− Lu(ξ, t) = f(u(ξ, t)), (ξ, t) ∈ Ω× (0,+∞), Ω ⊂ Hn,

u(ξ, t) = 0, (ξ, t) ∈ ∂Ω× [0,+∞),

u(ξ, 0) = u0(ξ) ≥ 0, ξ ∈ Ω,

(4)

where f is locally Lipschitz continuous on R, f(0) = 0, and such that f(u) > 0 for u > 0.
Furthermore, we suppose that u0 is a non-negative and non-trivial function in C1(Ω) and
that u0(ξ) = 0 on the boundary ∂Ω.

Lemma 1 [13]. Let Ω be a bounded domain of the Heisenberg group Hn. Then there exist
λ1 > 0 and 0 < v1 ∈ S̊1,2(Ω) such that{

−Lv1(ξ) = λ1v1(ξ), ξ ∈ Ω,

v1(ξ) = 0, ξ ∈ ∂Ω, Ω ⊂ Hn,
(5)

where

λ1 := inf
u∈S̊1,2(Ω)

∫
Ω |∇Hu|

2dξ∫
Ω |u|2dξ

.

Recall that λ1 is the principal frequency of L and v1 is the associated eigenfunction.
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Theorem 1. Let Ω be a bounded domain of the Heisenberg group Hn with a smooth boundary
∂Ω. Let a function f satisfy the condition that there exist constants c1 > 2 and c2 such that
for all u > 0 we have

c1

∫ u

0
f(s)ds ≤ uf(u) + c3u

2 + c1c2, (6)

where 0 < c3 ≤ (c1−2)λ1

2 , where λ1 is the principal frequency of the sub-Laplacian L.
If u0 ∈ C1(Ω) with u0 = 0 on ∂Ω satisfies the inequality

−1

2
‖∇Hu0‖2L2(Ω) +

∫
Ω

(∫ u0(ξ)

0
f(s)ds− c2

)
dξ > 0, (7)

then the nonnegative solution to the equation (4) blows up at a finite time T ∗ for

M :=

(
1 +

√
c1
2

)
‖u0‖4L2(Ω)

2(c1 − 2)
[
−1

2‖∇Hu0‖2L2(Ω)
+
∫

Ω(
∫ u0(ξ)

0 f(s)ds− c2)dξ
] , (8)

such that

0 < T ∗ ≤ M(√
c1/2− 1

)
‖u0‖2L2(Ω)

, (9)

that is,

lim
t→T ∗

∫ t

0

∫
Ω
u2(ξ, τ)dξdτ = +∞. (10)

Proof of Theorem 1. Following the standard procedure we define a new functional F , that
is,

F(t) := −1

2

∫
Ω
|∇Hu(ξ, t)|2dξ +

∫
Ω

(F (u(ξ, t))− c2)dξ, t ∈ [0,+∞), (11)

where F (u) :=
∫ u

0 f(s)ds. In the case t = 0 this functional has the form

F(0) := −1

2
‖∇Hu0‖2L2(Ω) +

∫
Ω

(F (u0)− c2)dξ > 0, (12)

in view of (7).
By (7) it is strictly positive. Now we have the following computations∫ t

0

d

dτ
F(τ)dτ = −

∫ t

0

∫
Ω
〈∇Hu(ξ, τ),∇Huτ (ξ, τ)〉dξdτ +

∫ t

0

∫
Ω
Fu(u(ξ, τ))uτ (ξ, τ)dξdτ

=

∫ t

0

∫
Ω
Lu(ξ, τ)uτ (ξ, τ)dξdτ +

∫ t

0

∫
Ω
f(u(ξ, τ))uτ (ξ, τ)dξdτ =

∫ t

0

∫
Ω
u2
τ (ξ, τ)dξdτ,
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and ∫ t

0

d

dτ
F(τ)dτ = −1

2

∫
Ω

∫ t

0

d

dτ
(|∇Hu(ξ, τ)|2)dτdξ +

∫
Ω

∫ t

0

d

dτ
(F (u(ξ, τ))− c2)dτdξ

= −1

2

∫
Ω

(|∇Hu(ξ, t)|2 − |∇Hu0|2)dξ +

∫
Ω

[F (u(ξ, t))− F (u0)]dξ.

That allows one to write the functional F(t) in the following way

F(t) = F(0) +

∫ t

0

d

dτ
F(τ)dτ = F(0) +

∫ t

0

∫
Ω
u2
τ (ξ, τ)dξdτ. (13)

We introduce a new function I as follows

I(t) :=

∫ t

0

∫
Ω
u2(ξ, τ)dξdτ +M, t ≥ 0, (14)

where M > 0 is a constant to be determined later. By Leibniz’s integral rule we get

I ′(t) =
d

dt
I(t) =

d

dt

(∫ t

0

∫
Ω
u2(ξ, τ)dξdτ

)
=

∫
Ω
u2(ξ, t)dξ,

and ∫
Ω

∫ t

0
2u(ξ, τ)uτ (ξ, τ)dτdξ =

∫
Ω

∫ t

0

d

dτ
u2(ξ, τ)dτdξ =

∫
Ω
u2(ξ, t)dξ − ‖u0‖2L2(Ω).

This gives the relation

I ′(t) =

∫
Ω
u2(ξ, t)dξ =

∫
Ω

∫ t

0
2u(ξ, τ)uτ (ξ, τ)dτdξ + ‖u0‖2L2(Ω). (15)

Using the above computations, the condition (6) and Lemma 1, we compute the second
derivative of I(t) with respect to time

I ′′(t) =
d

dt
I ′(t) =

d

dt

∫
Ω
u2(ξ, t)dξ = 2

∫
Ω
u(ξ, t)ut(ξ, t)dξ

= 2

∫
Ω
u(ξ, t)Lu(ξ, t) + 2

∫
Ω
u(ξ, t)f(u(ξ, t))dξ

≥ −2

∫
Ω
|∇Hu(ξ, t)|2dξ + 2

∫
Ω

[
c1F (u(ξ, t))− c3u

2(ξ, t)− c1c2

]
dξ

= 2c1

[
−1

2

∫
Ω
|∇Hu(ξ, t)|2dξ +

∫
Ω

(F (u(ξ, t))− c2)dξ

]
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+(c1 − 2)

∫
Ω
|∇Hu(ξ, t)|2dξ − 2c3

∫
Ω
u2(ξ, t)dξ

≥ 2c1F(t) + ((c1 − 2)λ1 − 2c3)

∫
Ω
u2(ξ, t)dξ ≥ 2c1F(t).

That can be rewritten as

I ′′(t) ≥ 2c1F(0) + 2c1

∫ t

0

∫
Ω
u2
τ (ξ, τ)dξdτ. (16)

Also, we compute by making use of Hölder and Schwartz’s inequalities,

(I ′(t))2 ≤ 4(1 + σ)

(∫
Ω

∫ t

0
u(ξ, τ)uτ (ξ, τ)dτdξ

)2

+

(
1 +

1

σ

)
‖u0‖4L2(Ω)

≤ 4(1 + σ)

(∫
Ω

(∫ t

0
u2(ξ, τ)dτ

) 1
2
(∫ t

0
u2
τ (ξ, τ)dτ

) 1
2

dξ

)2

+

(
1 +

1

σ

)
‖u0‖4L2(Ω)

≤ 4(1 + σ)

(∫
Ω

∫ t

0
u2(ξ, τ)dτdξ

)(∫
Ω

∫ t

0
u2
τ (ξ, τ)dτdξ

)
+

(
1 +

1

σ

)
‖u0‖4L2(Ω),

where σ > 0. Then by combining the above expressions and taking σ =
√
c1/2− 1 > 0,

we establish the estimate

I ′′(t)I(t)− (1 + σ)(I ′(t))2 ≥ 2c1

(
F(0) +

∫ t

0

∫
Ω
u2
τ (ξ, τ)dξdτ

)(∫ t

0

∫
Ω
u2(ξ, τ)dξdτ +M

)

−4(1 + σ)(1 + σ)

(∫
Ω

∫ t

0
u2(ξ, τ)dτdξ

)(∫
Ω

∫ t

0
u2
τ (ξ, τ)dτdξ

)
−(1 + σ)

(
1 +

1

σ

)
‖u0‖4L2(Ω) ≥ 2c1MF(0)− (1 + σ)

(
1 +

1

σ

)
‖u0‖4L2(Ω).

Since F(0) > 0 and we choose M > 0 as large enough to satisfy

I ′′(t)I(t)− (1 + σ)(I ′(t))2 > 0. (17)

We can see that the above expression for t ≥ 0 implies

d

dt

[
I ′(t)
Iσ+1(t)

]
> 0⇒

I ′ ≥
‖u0‖2

L2(Ω)

Mσ+1 I1+σ(t),

I(0) = M.

Then we arrive at

I(t) ≥

(
1

Mσ
−
σ‖u0‖2L2(Ω)

Mσ+1
t

)− 1
σ

.
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From here we see that the solutions blow up in the finite time T ∗ which is

0 < T ∗ ≤ M

σ‖u0‖2L2(Ω)

,

where M can be estimated from (17), that is,

M : =
(1 + σ)(1 + 1

σ )‖u0‖4L2(Ω)

2c1F(0)
=

(
1 +

√
c1
2

)
‖u0‖4L2(Ω)

2(c1 − 2)[−1
2‖∇Hu0‖2L2(Ω)

+
∫

Ω(F (u0)− c2)dξ]
.

Therefore, it follows that I(t) cannot remain finite for all t > 0. In other words, the solution
u blows up in finite time T ∗.

2.2 Blow-up solutions for p-sub-Laplacian heat equations. We consider now the
blow-up solutions to the p-sub-Laplacian heat equation on the Heisenberg group Hn, that is,

ut(ξ, t)− Lpu(ξ, t) = f(u(ξ, t)), (ξ, t) ∈ Ω× (0,+∞), Ω ⊂ Hn,

u(ξ, t) = 0, (ξ, t) ∈ ∂Ω× [0,+∞),

u(ξ, 0) = u0(ξ) ≥ 0, ξ ∈ Ω,

(18)

where f is locally Lipschitz continuous on R, f(0) = 0, and such that f(u) > 0 for u > 0.
Furthermore, we suppose that u0 is a non-negative and non-trivial function in L∞(Ω)∩S̊1,p(Ω)
and that u0(ξ) = 0 on the boundary ∂Ω.

Theorem 2. Let Ω be a bounded domain of the Heisenberg group Hn with a smooth boundary
∂Ω. Let a function f satisfy the condition that there exist constants c1 > p and c2 such that
for all u > 0 we have

c1

∫ u

0
f(s)ds ≤ uf(u) + c3u

p + c1c2, (19)

where 0 < c3 ≤ (c1−p)λ1,p

p and λ1,p is the principal eigenvalue of the p-sub-Laplacian Lp. If

u0 ∈ L∞(Ω) ∩ S̊1,p(Ω) satisfies for the inequality

−1

p
‖u0‖pLp(Ω) +

∫
Ω

(∫ u0(ξ)

0
f(s)ds− c2

)
dξ > 0, (20)

then the nonnegative solution to the equation (18) blows up at a finite time T ∗ for

M :=

(
1 +

√
c1
2

)
‖u0‖4L2(Ω)

2(c1 − 2)[−1
p‖u0‖pLp(Ω) +

∫
Ω(
∫ u0(ξ)

0 f(s)ds− c2)dξ]
, (21)
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such that

0 < T ∗ ≤ M(√
c1/2− 1

)
‖u0‖2L2(Ω)

, (22)

that is,

lim
t→T ∗

∫ t

0

∫
Ω
u2(ξ, τ)dξdτ = +∞. (23)

We introduce Lemma 2 and Lemma 3 that will be useful to proving Theorem 2.

Lemma 2 [13]. For 1 < p < ∞ there exist λ1,p > 0 and φ1,p ∈ S1,p(Ω) with φ1,p > 0 in Ω
such that {

−Lpv1,p(x) = λ1,p|v1,p(x)|p−2v1,p, x ∈ Ω, Ω ⊂ Hn,

v1,p(x) = 0, x ∈ ∂Ω.
(24)

Moreover, λ1,p is given by

λ1,p = inf
u∈S1,p

0 (Ω)

∫
Ω |∇Hu|

pdξ∫
Ω |u|pdξ

> 0.

Recall that λ1,p is the principal frequency and v1,p is the associated eigenfunction of the
p-sub-Laplacian Lp.

Remark. Note that the existence of solutions for the nonlinear eigenvalue problems with
weights for the p-sub-Laplacian on the Heisenberg group was discussed in [13]. Lemma
from [13] is useful in the proof of blow-up solutions for p-sub-Laplacian heat equations.

Lemma 3. Let u be a weak solution to the equation (18) with |∇Hu0| ∈ Lp(Ω). Then

1

2

∫ t

0

∫
Ω

(u2(ξ, τ))τdξdτ =
1

2

∫
Ω

[u2(ξ, t)− u2
0(ξ)]dξ (25)

=

∫ t

0

∫
Ω

[−|∇Hu(ξ, t)|p + u(ξ, t)f(u(ξ, t))]dξdτ,

and ∫ t

0

∫
Ω
u2
τ (ξ, τ)dξdτ = −1

p

∫
Ω

[|∇Hu(ξ, t)|p − |∇Hu0(ξ)|p]dξ (26)

+

∫
Ω

[F (u(ξ, t))− F (u0(ξ))]dξ,

where F (u) :=
∫ u

0 f(s)ds.
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Proof of Lemma 2. We first prove the equality (25) by using the equation (18), that is,

1

2

∫ t

0

∫
Ω

(u2(ξ, τ))τdξdτ =
1

2

∫
Ω
u2(ξ, τ)|t0dξ =

1

2

∫
Ω

[u2(ξ, t)− u2
0(ξ)]dξ,

and
1

2

∫ t

0

∫
Ω

(u2(ξ, τ))τdξdτ =

∫
Ω

∫ t

0
u(ξ, τ)uτ (ξ, τ)dξdτ

=

∫ t

0

∫
Ω
Lpu(ξ, τ)u(ξ, τ)dξdτ +

∫ t

0

∫
Ω
f(u(ξ, τ))u(ξ, τ)dξdτ

= −
∫ t

0

∫
Ω
|∇Hu(ξ, τ)|pdξdτ +

∫ t

0

∫
Ω
f(u(ξ, τ))u(ξ, τ)dξdτ,

which proves the expression (25). Now we prove the inequality (26) by using the Leibniz
integral rule, as follows∫ t

0

∫
Ω
u2
τ (ξ, τ)dξdτ =

∫ t

0

∫
Ω
Lpu(ξ, τ)uτ (ξ, τ)dξdτ +

∫ t

0

∫
Ω
f(u(ξ, τ))uτ (ξ, τ)dξdτ

= −
∫ t

0

∫
Ω
〈|∇Hu(ξ, τ)|p−2∇Hu(ξ, τ),∇Huτ (ξ, τ)〉dξdτ +

∫ t

0

∫
Ω
f(u(ξ, τ))uτ (ξ, τ)dξdτ

= −1

2

∫
Ω

∫ t

0

d

dτ

(∫ |∇Hu(ξ,τ)|2

0
s
p−2

2 ds

)
dτdξ +

∫
Ω

∫ t

0

d

dτ

(∫ u(ξ,τ)

0
f(s)ds

)
dτdξ

= −1

2

∫
Ω

∫ |∇Hu(ξ,τ)|2

0
s
p−2

2 dsdξ|t0 +

∫
Ω
F (u(ξ, τ))dξ|t0

= −1

2

∫
Ω

(
2

p
s
p
2 ||∇Hu(ξ,τ)|2

0

)
dξ|t0 +

∫
Ω
F (u(ξ, τ))dξ|t0

= −1

p

∫
Ω

[|∇Hu(ξ, t)|p − |∇Hu0(ξ)|p] dξ +

∫
Ω
F (u(ξ, t))− F (u0(ξ))dξ,

which proves the expression (26).
Proof of Theorem 2. We begin by defining the function Fp by

Fp(t) := −1

p

∫
Ω
|∇Hu(ξ, t)|pdξ +

∫
Ω

[F (u(ξ, t))− c2]dξ. (27)

Then for t = 0, by (20), we have

Fp(0) = −1

p
‖∇Hu0‖pL2(Ω)

+

∫
Ω

[F (u0(ξ))− c2]dξ > 0.
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We can rewrite Fp by using Lemma 3 as

Fp(t) = Fp(0) +

∫ t

0

d

dτ
Fp(τ)dτ = Fp(0) +

∫ t

0

∫
Ω

(uτ (ξ, τ))2dξdτ,

where ∫ t

0

d

dτ
Fp(τ)dτ = −1

p

∫
Ω

∫ t

0

d

dτ
(|∇Hu(ξ, τ)|p)dτdξ +

∫ t

0

∫
Ω

d

dτ
F (u(ξ, τ))dτdξ

= −
∫

Ω

∫ t

0
〈|∇Hu(ξ, τ)|p−2∇Hu(ξ, τ),∇Huτ (ξ, τ)〉dτdξ +

∫ t

0

∫
Ω

d

dτ

(∫ u(ξ,τ)

0
f(s)ds

)
dτdξ

=

∫
Ω

∫ t

0
Lpu(ξ, τ)uτ (ξ, τ)dξdτ +

∫
Ω

∫ t

0
f(u(ξ, τ))uτ (ξ, τ)dτdξ =

∫ t

0

∫
Ω

(uτ (ξ, τ))2dξdτ.

Let us define the function Ip by

Ip(t) :=

∫ t

0

∫
Ω
u2(ξ, τ)dξdτ +M, t ≥ 0, (28)

where M is a positive constant. Then we compute the derivative of I(t) with respect to time,
which gives that

I ′(t) =
d

dt

∫ t

0

∫
Ω
u2(ξ, τ)dξdτ =

∫
Ω

d

dt

(∫ t

0
u2(ξ, τ)dτ

)
dξ =

∫
Ω
u2(ξ, t)dξ

=

∫ t

0

∫
Ω

2u(ξ, τ)uτ (ξ, τ)dτdξ + ‖u0‖2L2(Ω).

The second derivative of Ip(t) with respect to time t can be calculated by Lemma 3, using
the condition (19), and Lemma 2, so that we get the estimate for I ′′p (t) as follows:

I ′′p (t) =
d

dt
I ′p(t) =

d

dt

∫
Ω
u2(ξ, t)dξ = −2

∫
Ω
|∇Hu(ξ, t)|pdξ + 2

∫
Ω
u(ξ, t)f(u(ξ, t))dξ

≥ −2

∫
Ω
|∇Hu(ξ, t)|pdξ + 2

∫
Ω

(c1F (u(ξ, t))− c3u
p(ξ, t)− c1c2) dξ

= 2c1

[
−1

p

∫
Ω
|∇Hu(ξ, t)|pdξ +

∫
Ω

[F (u(ξ, t))− c2]dξ

]
+

2(c1 − p)
p

∫
Ω
|∇Hu(ξ, t)|pdξ − 2c3

∫
Ω
up(ξ, t)dξ
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≥ 2c1Fp(t) + 2

(
(c1 − p)λ1,p

p
− c3

)∫
Ω
up(ξ, t)dξ ≥ 2c1Fp(t).

Then by using (28) the above estimate can be written in the following form

I ′′p (t) ≥ 2c1Fp(0) + 2c1

∫ t

0

∫
Ω
u2
τ (ξ, τ)dξdτ. (29)

By making use of Schwartz’s inequality and for arbitrary σ > 0 as in the case p = 2 we arrive
at (

I ′p(t)
)2 ≤ 4(1 + σ)

(∫
Ω

∫ t

0
u2(ξ, τ)dτdξ

)(∫
Ω

∫ t

0
u2
τ (ξ, τ)dτdξ

)
+

1 + σ

σ
‖u0‖4L2(Ω).

Now we use estimates of I ′p(t) and I ′′t (t) with σ =
(√

c1/2− 1
)

to obtain

I ′′p (t)Ip(t)− (1 + σ)(I ′p(t))2

≥ 2c1

[
Fp(0) +

∫ t

0

∫
Ω
u2
τ (ξ, τ)dξdτ

] [∫ t

0

∫
Ω
u2(ξ, τ)dξdτ +M

]
−4(1 + σ)(1 + σ)

(∫
Ω

∫ t

0
u2(ξ, τ)dτdξ

)(∫
Ω

∫ t

0
u2
τ (ξ, τ)dτdξ

)
−(1 + σ)

(
1 + σ

σ

)
‖u0‖4L2(Ω) > 2c1MFp(0)− (1 + σ)

(
1 + σ

σ

)
‖u0‖4L2(Ω). (30)

Noting that Fp(0) > 0 and taking M > 0 as large as necessary, we obtain the following
estimate

I ′′p (t)Ip(t)− (1 + σ)(I ′p(t))2 > 0. (31)

For t ≥ 0 the above expression can be written as

d

dt

( I ′p(t)
I1+σ
p (t)

)
> 0,

which implies I ′p(t) ≥
‖u0‖2

L2(Ω)

Mσ+1 I1+σ
p (t), t > 0,

Ip(0) = M.
(32)

Then we arrive at

Ip(t) ≥

(
1

Mσ
−
σ‖u0‖2L2(Ω)

Mσ+1
t

)− 1
σ

,
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From here we see that the solutions blow up in the finite time T ∗ which is

0 < T ∗ ≤ M

σ‖u0‖2L2(Ω)

,

where M can be estimated from (30) as follows

M =
(1 + σ)

(
1+σ
σ

)
‖u0‖4L2(Ω)

2c1Fp(0)
. (33)
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Әбiлқасым А., Сәбитбек Б. ГЕЙЗЕНБЕРГ ТОБЫНДАҒЫ p-СУБ-ЛАПЛАСИАН
ҮШIН ЖЫЛУ ӨТКIЗГIШТIК ТЕҢДЕУIНIҢ ШЕШIМДЕРIНIҢ ҚИРАУЫ

Бұл мақалада бiз Гейзенберг тобындағы p-суб-Лапласиан үшiн жылу өткiзгiштiк тең-
деуiне арналған Дирихле бастапқы есебiнiң шешiмдерiнiң қирауын ойысу әдiсi арқылы
дәлелдедiк.

Кiлттiк сөздер. Қирау, p-суб-Лапласиан, Гейзенберг тобы, ойысу әдiсi.

Абилкасым А., Сабитбек Б. РАЗРУШЕНИЕ РЕШЕНИЙ УРАВНЕНИЯ ТЕПЛО-
ПРОВОДНОСТИ ДЛЯ p-СУБ-ЛАПЛАСИАНА НА ГРУППЕ ГЕЙЗЕНБЕРГА

В этой статье мы доказали разрушение решений начальной задачи Дирихле урав-
нение теплопроводности для p-суб-Лапласиана на группе Гейзенберга с использованием
метода вогнутости.

Ключевые слова. Разрушение, p-суб-Лапласиан, группа Гейзенберга, метод вогнуто-
сти.
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Abstract. Differential equations encountered in applications, as a rule, contain numerical parameters

that characterize certain properties of the described processes. Finding their values requires additional

information on the solution and quite often leads to boundary value problems with a parameter, such

as the equation of electron motion around a nucleus, the problem of a harmonic oscillator, and the

electron motion in Hal’s magnetron. To date, mainly, the regular linear boundary value problems for

linear ordinary differential equations containing a parameter have been studied. In this paper, we study

a boundary value problem for a linear differential equation with a parameter under nonlinear two-point

boundary conditions. The problem is investigated by the parametrization method of D.S. Dzhumabaev

with a modified algorithm, which was originally proposed to establish the unique solvability criteria for

a linear two-point boundary value problem for a linear system of ordinary differential equations without

a parameter. The present work proposes a numerical method for solving the boundary value problem

under investigation, based on solving the Cauchy problems for functions of a special type and solving a

system of nonlinear algebraic equations with respect to the introduced parameters, which arises when

the parametrization method is applied. Also, to demonstrate the effectiveness of the proposed numerical

method, a test example for finding a numerical solution to a nonlinear two-point boundary value problem

for a system of linear differential equations with a parameter is given.
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Differential equations encountered in applications, as a rule, contain numerical parameters
that characterize certain properties of the described processes. Finding their values requires
additional information on the solution and often leads to boundary value problems with a
parameter.

The theory of boundary value problems with a parameter goes back to the works of
Hikosaka-Nobory [1], S. Takahaschi [2], K. Zawischa [3], G. Zwirner [4].

A significant contribution to the theory of boundary value problems with parameters was
made by Kazakh mathematicians. For infinite systems of differential equations containing an
infinite number of parameters, the two-point boundary value problems in spaces l2,m were
considered in the works of O.A. Zhautykov, M.E. Esmukhanov [5], M.E. Esmukhanov [6, 7].
Necessary and sufficient conditions for the solvability of regular nonlinear boundary value
problems with a parameter for differential equations in a Banach space were established by
D.S. Dzhumabaev [8], [9]. Works of B.B. Minglibayeva [10,11] were devoted to the establish-
ment of coefficient criteria for the unique solvability and well-posedness of linear two-point
boundary value problems with parameter.

This paper investigates a boundary value problem for a linear differential equation with
a parameter under nonlinear two-point boundary conditions. The problem is investigated by
using the Dzhumabaev parametrization method [12] with a modified algorithm. A numerical
method for solving the boundary value problem under investigation is proposed. We also
provide a test example that demonstrates the effectiveness of the proposed numerical method
for finding a solution.

2 Modification of the parametrization method algorithms

We consider a boundary value problem for a linear differential equation with a parameter
obeying the nonlinear two-point boundary conditions with a parameter

dx

dt
= A(t)x+B(t)λ0 + f(t), t ∈ (0, T ), x ∈ Rn, λ0 ∈ Rm, (1)

g(λ0, x(0), x(T )) = 0, (2)

where the (n×n)-matrix A(t), (n×m)-matrix B(t), and n-vector-function f(t) are continuous
on [0, T ], g : Rm × Rn × Rn → Rm+n is a continuous function, ‖x‖ = max

i=1:n
|xi|, ‖A(t)‖ =

max
i=1:n

n∑
j=1
|aij(t)| 6 α, ‖B(t)‖ = max

i=1:n

m∑
j=1
|bij(t)| 6 β, α, β are constants.

We need to determine a pair (λ∗0, x
∗(t)) with function x∗(t) satisfying at λ0 = λ∗0 the

differential equation (1) and boundary conditions (2). Note that the unknown parameter λ0

is contained both in the differential equation and in the boundary condition.

Let us introduce the notation:
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∆N is a partition of interval [0, T ) =
N⋃
r=1

[tr−1, tr) by the points ts = sh, s = 0 : N ,

h = T/N (N = 1, 2, . . .);

C([0, T ], Rn) is the space of continuous on [0, T ] functions x : [0, T ]→ Rn with the norm
‖x‖1 = max

t∈[0,T ]
‖x(t)‖;

C([0, T ],∆N , R
nN ) is the space of function systems x[t] = (x1(t), x2(t), . . . , xN (t)) with

function xr(t) ∈ C[tr−1, tr) which has a finite limit lim
t→tr−0

xr(t) (r = 1 : N) with the norm

‖x[·]‖2 = max
r=1:N

sup
t∈[tr−1,tr)

‖xr(t)‖.

Denote the restriction of function x(t) to [tr−1, tr) by xr(t), r = 1 : N , and reduce the
problem (1), (2) to the equivalent multipoint boundary value problem

dxr(t)

dt
= A(t)xr(t) +B(t)λ0 + f(t), t ∈ [tr−1, tr), r = 1 : N, (3)

g

(
λ0, x1(0), lim

t→tN−0
xN (t)

)
= 0, (4)

lim
t→tr−0

xr(t) = xr+1(ts), s = 1 : (N − 1), (5)

where (5) are the conditions for matching the solution at the interior points of partition of
the interval [0, T ].

The solution to the problem (3)-(5) is the system of functions

x∗[t] = (x∗1(t), x∗2(t), . . . , x∗N (t)) ∈ C([0, T ], h,RnN ),

with functions x∗r(t), r = 1 : N , continuously differentiable on [tr−1, tr), satisfying the system
of differential equations with a parameter (3) and conditions (4), (5) at λ0 = λ∗0.

The boundary value problem (3)-(5) is equivalent to a multipoint boundary value problem
with parameters

dur
dt

= A(t)(λr + ur) +B(t)λ0 + f(t), t ∈ [tr−1, tr), r = 1 : N, (6)

ur(tr−1) = 0, r = 1 : N, (7)

g (λ0, λ1, λN+1) = 0, (8)

λr + lim
t→tr−0

ur(t) = λr+1, r = 1 : N, (9)

where λr = xr(tr−1), r = 1 : N , λN+1 = lim
t→tN−0

xN (t), ur(t) = xr(t) − λr at t ∈ [tr−1, tr),

r = 1 : N .
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Let us introduce the linear operator [13, p. 145]

Xr(t) = I +

∫ t

tr−1

A(τ1)dτ1 +

∞∑
j=2

∫ t

tr−1

A(τ1)

∫ τ1

tr−1

A(τ2) . . .

∫ τj−1

tr−1

A(τj)dτj . . . dτ2dτ1,

t ∈ [tr−1, tr), r = 1 : N,

where I is the identity matrix of dimension (n×n). The operator Xr(t) satisfies the problem

dXr

dt
= A(t)Xr, Xr(tr−1) = I, t ∈ [tr−1, tr), r = 1 : N. (10)

For fixed values of the parameters λr ∈ Rn (r = 1 : N) and λ0 ∈ Rm, using the notation

ar(P, t) = Xr(t)

∫ t

tr−1

X−1
r (ξ)P (ξ)dξ, t ∈ [tr−1, tr], r = 1 : N, (11)

we write down the unique solution of the Cauchy problem (6), (7)

ur(t) = ar(A, t)λr + ar(B, t)λ0 + ar(f, t), t ∈ [tr−1, tr), r = 1 : N, (12)

and compose a system of functions u[t] = (u1(t), u2(t), . . . , uN (t)).
Note that the function ar(P, t) satisfies the Cauchy problem

d

dt
ar(P, t) = A(t) · ar(P, t) + P (t), ar(P, tr−1) = 0, t ∈ [tr−1, tr], r = 1 : N. (13)

Determine lim
t→tr−0

ur(t), r = 1 : N , from (12), substitute them in (8), (9), then multiplying

(8) by h > 0, we write down the system of nonlinear equations with respect to unknown
parameters

Q∗,∆N
(λ) = 0, λ = (λ0, λ1, λ2, . . . , λN , λN+1) ∈ Rm+n(N+1), (14)

where the operator Q∗,∆N
(λ) has the form

Q∗,∆N
(λ) =


h · g (λ0, λ1, λN+1)

a1(B, t1)λ0 + (I + a1(A, t1))λ1 − λ2 + a1(f, t1)
a2(B, t2)λ0 + (I + a2(A, t2))λ2 − λ3 + a2(f, t2)

. . .
aN (B, tN )λ0 + (I + aN (A, tN ))λN − λN+1 + aN (f, tN )

 .

Let us choose the vector λ0 = (λ0
0, λ

0
1, λ

0
2, . . . , λ

0
N , λ

0
N+1) ∈ Rm+n(N+1) and numbers

ρλ > 0, ρx > 0 and define the sets:

S(λ0, ρλ) =

{
λ = (λ0, λ1, . . . , λN+1) ∈ Rm+n(N+1) :
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‖λ− λ0‖ = max
{
‖λ0 − λ0

0‖, max
r=1:(N+1)

‖λr − λ(0)
r ‖
}
< ρλ

}
,

G0(ρλ, ρx) =
{

(w0, w1, w2) ∈ Rm+2n : ‖w0 − λ0
0‖ < ρλ, ‖w1 − λ0

1‖ < ρx, ‖w2 − λ0
N+1‖ < ρx

}
.

Condition B. The function g(v, w) is continuous in G0(ρλ, ρx) and has uniformly con-
tinuous partial derivatives g′w0

(w0, w1, w2), g′w1
(w0, w1, w2), and g′w2

(w0, w1, w2).

When solving the equation (14) with respect to λ ∈ Rm+n(N+1), we use iterative processes
with damping factors. It is known that to expand the range of initial approximations at
which the iterative process converges, damping factors are used. The following statement,
formulated on the basis of Theorem 1 from [14], establishes the conditions for the convergence
of iterative processes with different damping factors to the same solution of the equation (14)
with the same initial approximations, as well as an estimate of the difference between the
solution and the initial approximation.

Theorem 1. Let the following conditions be satisfied:

1) the Jacobi matrix
∂Q∗,∆N

(λ)

∂λ
: Rm+n(N+1) → Rm+n(N+1) is uniformly continuous in

S(λ0, ρ),

2)
∂Q∗,∆N

(λ)

∂λ
: Rm+n(N+1) → Rm+n(N+1) is boundedly invertible for all λ ∈ S(λ0, ρ) and

∥∥∥∥∥
(
∂Q∗,∆N

(λ)

∂λ

)−1
∥∥∥∥∥ ≤ γ,

γ is a constant,
3) γ · ‖Q∗,∆N

(λ0)‖ < ρ.

Then there exists a number α0 ≥ 1 such that for any α1 ≥ α0, the sequence {λ(p+1)},
p = 0, 1, 2, . . . , determined by the iterative process:

λ(0) = λ0,

λ(p+1) = λ(p) − 1

α1

(
∂Q∗,∆N

(λ(p))

∂λ

)−1

·Q∗,∆N
(λ(p)), p = 0, 1, 2, . . . ,

(15)

is contained in S(λ0, ρ), converges to λ∗, is the solution of the equation (14) in S(λ0, ρ), and
the following estimate holds:

‖λ∗ − λ0‖ ≤ γ · ‖Q∗,∆N
(λ0)‖. (16)

Moreover, any solution to the equation (14) in S(λ0, ρ) is isolated.
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3 Numerical method for solving a nonlinear two-point boundary value problem
with parameter (1), (2)

In this section, we propose the following numerical method for solving a nonlinear two-
point boundary value problem with a parameter (1), (2).

1) Divide the interval [tr−1, tr] into M equal parts (M = 1, 2, . . .) and determine the

numerical solution to the Cauchy problem (13) at points tr,k = tr−1 +k · tr − tr−1

M
(r = 1 : N ,

k = 0 : M).

2) Compile a system of nonlinear algebraic equations (14) with respect to the parameter
λ ∈ Rm+n(N+1).

3) Choose the vector λ0 ∈ Rm+n(N+1) such way that Q∗,∆N
(λ0) 6= 0 and using the iterative

process (15), find a solution λ∗ to the equation (14).

4) Define λ(p) such way that Q∗,∆N
(λ(p)) = 0, p = 1, 2, . . ..

5) Use the values of the numerical solution to the Cauchy problems (13) and according
to the equality (12), find ur(tr,k) (r = 1 : N , k = 0 : M).

The numerical solution to the problem (1), (2) is a pair (λ
(p)
0 , x̃(t̂)), where

x̃(t̂) =



λ
(p)
1 + u1(t1,k), if t̂ = k

t1 − t0
M

, k = 0 : (M − 1),

λ
(p)
2 + u2(t2,k), if t̂ = t1 + k

t2 − t1
M

, k = 0 : (M − 1),

. . .

λ
(p)
N + uN (tN,k), if t̂ = tN−1 + k

tN − tN−1

M
, k = 0 : (M − 1),

λ
(p)
N+1, if t̂ = tN .

4 Example

It is required to find the numerical solution to the nonlinear boundary value problem for
a differential equation with parameter:

dx

dt
=

 1
2 −1

4

−1
4

1
2

x+
1

8
·

 0 1
2 t −

1
4 t

2

−1
5 t

2 1
4 t

3 1
2

 · λ0

+

 39
80 t−

9
64 t

2 − 1
2

9
80 t

2 − 1
160 t

3 − 1
4 t−

17
32

 , x ∈ R2, λ0 ∈ R3, (17)
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

1 1
2

1
3

1
3 −1 1

2

−1
2

1
3 1

−1
2 −1

3
1
2

0 −1
4

1
2


· λ0 +



1
5

1
2

−1
8 1
−1

5
1
8

1
2 −1

4

1
3 −1

9


· x(0) +



−1
2

1
8

−2
5

1
16

−1
5

3
4

7
8 −1

8

2
5

1
4


· x(1)

+



λ0,1 · x1(0)

λ0,2 · x1(1)

λ0,3 · x2(0)

x1(0) · x2(1)

x2(0) · x1(1)


−



−139
192

2497
1920

1259
480

6161
960

9379
1440


=



0

0

0

0

0


. (18)

Let us make a partition of the interval [0, 1): ∆10 : [0, 1) =
10⋃
r=1

[0.1(r− 1), 0.1r). Construct

a system of nonlinear equations with respect to parameters of the form (14):

Q∗,∆10 (λ) = 0, λ = (λ0, λ1, λ2, ..., λ10, λ11) ∈ R25, λ0 ∈ R3, λr ∈ R2, r = 1 : 11, (19)

where Q∗,∆10 (λ) =
(
Q∗,∆10 (λ)0 Q∗,∆10 (λ)1 Q∗,∆10 (λ)2 . . . Q∗,∆10 (λ)10

)T
,

Q∗,∆10 (λ)0 =



1 1
2

1
3

1
3 −1 1

2

−1
2

1
3 1

−1
2 −1

3
1
2

0 −1
4

1
2


· λ0 +



1
5

1
2

−1
8 1

−1
5

1
8

1
2 −1

4

1
3 −1

9


· λ1 +



−1
2

1
8

−2
5

1
16

−1
5

3
4

7
8 −1

8

2
5

1
4


· λ11
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+



λ0,1 · λ1,1

λ0,2 · λ11,1

λ0,3 · λ1,2

λ1,1 · λ11,2

λ1,2 · λ11,1


−



−139
192

2497
1920

1259
480

6161
960

9379
1440


,

Q∗,∆10 (λ)1 =

(
5.313926e− 8 0.000318 −0.000091
−8.438817e− 6 −1.881198e− 6 0.006410

)
· λ0

+

(
1.051600 −0.026285
−0.026285 1.051600

)
· λ1 − λ2 +

(
−0.048148
−0.055089

)
,

Q∗,∆10 (λ)2 =

(
5.898982e− 7 0.000959 −0.000155
−0.000060 1.176714e− 6 0.006410

)
· λ0

+

(
1.051600 −0.026285
−0.026285 1.051600

)
· λ2 − λ3 +

(
−0.043406
−0.057485

)
,

Q∗,∆10 (λ)3 =

(
1.772920e− 6 0.001599 −0.000283
−0.000162 0.000033 0.006412

)
· λ0

+

(
1.051600 −0.026285
−0.026285 1.051600

)
· λ3 − λ4 +

(
−0.038955
−0.059653

)
,

Q∗,∆10 (λ)4 =

(
3.602205e− 6 0.002239 −0.000475
−0.000315 0.000113 0.006414

)
· λ0

+

(
1.051600 −0.026285
−0.026285 1.051600

)
· λ4 − λ5 +

(
−0.034795
−0.061596

)
,

Q∗,∆10 (λ)5 =

(
6.077754e− 6 0.002878 −0.000731
−0.000520 0.000260 0.006417

)
· λ0

+

(
1.051600 −0.026285
−0.026285 1.051600

)
· λ5 − λ6 +

(
−0.030927
−0.063318

)
,

Q∗,∆10 (λ)6 =

(
9.199565e− 6 0.003516 −0.001051
−0.000777 0.000493 0.006421

)
· λ0

+

(
1.051600 −0.026285
−0.026285 1.051600

)
· λ6 − λ7 +

(
−0.027350
−0.064822

)
,
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Q∗,∆10 (λ)7 =

(
0.000013 0.004153 −0.001436
−0.001084 0.000832 0.006426

)
· λ0

+

(
1.051600 −0.026285
−0.026285 1.051600

)
· λ7 − λ8 +

(
−0.024063
−0.066114

)
,

Q∗,∆10 (λ)8 =

(
0.000017 0.004789 −0.001884
−0.001443 0.001297 0.006431

)
· λ0

+

(
1.051600 −0.026285
−0.026285 1.051600

)
· λ8 − λ9 +

(
−0.021068
−0.067196

)
,

Q∗,∆10 (λ)9 =

(
0.000022 0.005422 −0.002397
−0.001853 0.001905 0.006438

)
· λ0

+

(
1.051600 −0.026285
−0.026285 1.051600

)
· λ9 − λ10 +

(
−0.018364
−0.068073

)
,

Q∗,∆10 (λ)10 =

(
0.000028 0.006054 −0.002973
−0.002314 0.002676 0.006445

)
· λ0

+

(
1.051600 −0.026285
−0.026285 1.051600

)
· λ10 − λ11 +

(
−0.015950
−0.068748

)
.

When solving the system of nonlinear algebraic equations (19), we take the vector

λ0 = (λ0
0, λ

0
1, λ

0
2, ..., λ

0
10, λ

0
11) =

 1
0
0

 ,

(
0
0

)
,

(
0
0

)
, ...,

(
0
0

)
,

(
0
0

) ∈ R25

as an initial approximation.

The operator Q∗,∆10 (λ) in the sphere S(λ0, 3) satisfies all conditions of the Theorem
1. Using the iterative process (15) at the 100th iteration, we find the parameter λ∗ =
(λ∗0, λ

∗
1, λ
∗
2, ..., λ

∗
10, λ

∗
11) ∈ R25, where

λ∗0 =

 −0.50000
0.20000
2.00000

 , λ∗1 =

(
2.00000
2.00000

)
, λ∗2 =

(
2.00250
1.99875

)
, λ∗3 =

(
2.01000
1.99500

)
,

λ∗4 =

(
2.02250
1.98875

)
, λ∗5 =

(
2.04000
1.98000

)
, λ∗6 =

(
2.06250
1.96875

)
, λ∗7 =

(
2.09000
1.95500

)
,

λ∗8 =

(
2.12250
1.99500

)
, λ∗9 =

(
2.16000
1.92000

)
, λ∗10 =

(
2.20250
1.89875

)
, λ∗11 =

(
2.25000
1.87500

)
.
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The exact solution to the problem (17), (18) is a pair (λ∗0, x
∗(t)), where x∗(t) = 1

4 t
2 + 2

2− 1
8 t

2

 and λ∗ = (−1/2, 1/5, 2).

From the estimation

max
r=1:11

‖λ∗r − x∗(0.1 · (r − 1))‖ ≤ 3.307576 · 10−12 < 10−11

it can be seen that the values of the required vector function x̃(t) =

(
x̃1(t)
x̃2(t)

)
at the points

of the partition ∆10, found by the proposed method, differ from the values of the exact
solution x∗(t) at the same points by no more than 10−11. Table 1 shows the values of the
found numerical solution x̃(t) at points t̂ = 0.05k k = 0 : 20, and the difference between the
values of the obtained solution and the exact solution at these points.

Table 1. Comparison of the values of the numerical solution and the exact solution at the
points of the interval [0, 1]

k t̂ x̃1(t̂) x̃1(t̂)− x∗1(t̂) x̃2(t̂) x̃2(t̂)− x∗2(t̂)

0 0.00 2.000000 -1.599165e-12 2.000000 2.520428e-12

1 0.05 2.000625 5.196696e-10 1.999688 -5.060261e-10

2 0.10 2.002500 -1.639577e-12 1.998750 2.577272e-12

3 0.15 2.005625 5.196275e-10 1.997188 -5.059675e-10

4 0.20 2.010000 -1.685763e-12 1.995000 2.638778e-12

5 0.25 2.015625 5.195786e-10 1.992188 -5.059038e-10

6 0.30 2.022500 -1.735945e-12 1.988750 2.704503e-12

7 0.35 2.030625 5.195258e-10 1.984688 -5.058356e-10

8 0.40 2.040000 -1.791900e-12 1.980000 2.774669e-12

9 0.45 2.050625 5.194671e-10 1.974688 -5.057630e-10

10 0.50 2.062500 -1.853628e-12 1.968750 2.849720e-12

11 0.55 2.075625 5.194023e-10 1.962188 -5.056855e-10

12 0.60 2.090000 -1.922462e-12 1.955000 2.929879e-12

13 0.65 2.105625 5.193304e-10 1.947188 -5.056024e-10

14 0.70 2.122500 -1.996181e-12 1.938750 3.015366e-12

15 0.75 2.140625 5.192531e-10 1.929688 -5.055143e-10

16 0.80 2.160000 -2.076561e-12 1.920000 3.106848e-12

17 0.85 2.180625 5.191692e-10 1.909688 -5.054197e-10

18 0.90 2.202500 -2.164491e-12 1.898750 3.204104e-12

19 0.95 2.225625 5.190777e-10 1.887188 -5.053196e-10

20 1.00 2.250000 1.060075e-9 1.875000 -1.033438e-9

The Table 1 shows that
∥∥x∗(t̂)− x̃(t̂)

∥∥ < 10−8. The result obtained clearly shows the
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rather high efficiency of the proposed method for finding the numerical solution to the nonlin-
ear two-point boundary value problem for the system of ordinary differential equations with
parameter. Calculations have been performed in the mathematical package MathCAD 15.
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Темешева С.М., Дүйсен А.Қ., Алиханова Г.С. СЫЗЫҚТЫҚ ЕМЕС ПАРАМЕТРI
БАР ШЕТТIК ЕСЕПТI ШЕШУДIҢ БIР САНДЫҚ ӘДIСI ТУРАЛЫ

Қосымшаларда кездесетiн дифференциалдық теңдеулерде, әдетте, сипатталған про-
цестердiң белгiлi бiр қасиеттерiн сипаттайтын сандық параметрлер болады. Олардың
мәндерiн табу шешiм туралы қосымша ақпаратты қажет етедi және көбiнесе парамет-
рi бар шеттiк есептерге әкеледi. Мысалы, ядроның айналасындағы электронның қозға-
лыс теңдеуi, гармоникалық осциллятор туралы есеп, Хэл магнетронындағы электронның
қозғалысы. Негiзiнен, осы уақытқа дейiн, параметрi бар сызықтық жәй дифференциал-
дық теңдеулер үшiн регулярлық сызықтық шеттiк есептер зерттелген. Бұл жұмыста па-
раметрi бар сызықтық дифференциалдық теңдеу үшiн сызықтық емес екi нүктелi шет-
тiк шарттарды қанағаттандыратын шеттiк есеп зерттеледi. Есеп Д.С. Джумабаевтың
параметрлеу әдiсiмен зерттеледi. Бұл әдiс параметрi жоқ жәй сызықтық дифференци-
алдық теңдеулер жүйесi үшiн сызықтық екi нүктелi шеттiк есептiң бiрмәндi шешiлуiнiң
белгiлерiн анықтау үшiн ұсынылған. Зерттелетiн шеттiк есептi шешудiң сандық әдiсi
ұсынылады, бұл әдiс арнайы типтегi функциялар үшiн Коши есептерiн шешуге және
параметрлеу әдiсiн қолдану кезiнде пайда болатын енгiзiлген параметрлерге қатысты
сызықтық емес алгебралық теңдеулер жүйесiн шешуге негiзделген. Шешiмдi табудың
ұсынылған сандық әдiсiнiң тиiмдiлiгiн көрсететiн параметрi бар сызықтық дифференци-
алдық теңдеулер жүйесi үшiн сызықты емес екi нүктелi шеттiк есептiң сандық шешiмiн
табудың сынақ мысалы келтiрiлген.

Кiлттiк сөздер. Сызықтық емес шеттiк есеп, параметрi бар теңдеу, сандық шешiм.

Темешева С.М., Дүйсен А.Қ., Алиханова Г.С. ОБ ОДНОМ ЧИСЛЕННОМ МЕТОДЕ
РЕШЕНИЯ НЕЛИНЕЙНОЙ КРАЕВОЙ ЗАДАЧИ С ПАРАМЕТРОМ

Дифференциальные уравнения, встречающиеся в приложениях, как правило, содер-
жат числовые параметры, характеризующие те или иные свойства описываемых процес-
сов. Нахождение их значений требует дополнительной информации о решении и часто
приводит к краевым задачам с параметром. Например, уравнение движения электрона
вокруг ядра, задача о гармоническом осцилляторе, движения электрона в магнетроне
Хэла. В основном на сегодняшний день изучены регулярные линейные краевые задачи
для линейных обыкновенных дифференциальных уравнений, содержащих параметр. В
данной работе исследуется краевая задача для линейного дифференциального уравне-
ния с параметром с нелинейными двухточечными краевыми условиями. Задача иссле-
дуется методом параметризации Д.С. Джумабаева с модифицированным алгоритмом,
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который изначально был предложен для установления признаков однозначной разре-
шимости линейной двухточечной краевой задачи для линейной системы обыкновенных
дифференциальных уравнений без параметра. Предлагается численный метод решения
исследуемой краевой задачи, который основан на решении задач Коши для функций
специального вида и решении системы нелинейных алгебраических уравнений, возни-
кающей при применении метода параметризации, относительно вводимых параметров.
Приведен тестовый пример нахождения численного решения нелинейной двухточечной
краевой задачи для системы линейных дифференциальных уравнений, содержащих па-
раметр, демонстрирующий эффективность предложенного численного метода нахожде-
ния решения.

Ключевые слова. Нелинейная краевая задача, уравнение с параметром, численное
решение.
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1 Introduction

An explicit form of the Green’s function in the sector for biharmonic and triharmonic
equations is given in [1], [2]. The Green’s function of the Neumann problem for the Poisson
equation in the half-space R+

n is explicitly constructed in [3], and the Green’s function for the
Robin problem in the circle in [4], [5], [6]. We also note the articles [7], [8], which are devoted
to the construction of the Green’s function for the Dirichlet problem for the polyharmonic
equation in the unit ball. In [9], [10] a representation of the Green’s function for the classical
external and internal Neumann problems for the Poisson equation in the unit ball is given.

2 Formulation of the problem

Let Q = {(x, t) : x > 0, t > 0}. The following hyperbolic equation is considered in Q:

Lu ≡ ∂2u(x, t)

∂t2
− ∂2u(x, t)

∂x2
+ a1(x, t) · ∂u(x, t)

∂x
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+b1(x, t) · ∂u(x, t)

∂x
+ c1(x, t) · u(x, t) = F (x, t), (x, t) ∈ Q, (1)

with the initial conditions

u(x, 0) = T (x),
∂u

∂t
(x, 0) = N(x), x > 0, (2)

and the boundary condition
∂u

∂x
(t, 0) = Φ(t), t > 0. (3)

It is well known that this problem is correct, both in the sense of classical and generalized
solutions. We are interested in the question of the integral form of the solution of this
problem. We show that the solution of the problem can be written in terms of the Green
function, the definition of which we introduce.

In the characteristic coordinates ξ = x+ t, η = x− t equation (1) has the form

∂2u

∂ξ∂η
+ a(ξ, η)

∂u

∂ξ
+ b(ξ, η)

∂u

∂η
+ c(ξ, η)u = f(ξ, η), (ξ, η) ∈ Ω, (4)

and the initial conditions (2) have the form

u(ξ, ξ) = τ(ξ),

(
∂u

∂ξ
− ∂u

∂η

)
(ξ, ξ) = ν(ξ), ξ > 0, (5)

and the boundary condition (3) will change to(
∂u

∂ξ
+
∂u

∂η

)
(−η, η) = ϕ(η), η ≤ 0. (6)

We will assume that a, b ∈ C1
(
Ω
)
; c, f ∈ C

(
Ω
)
; ϕ ∈ C1 ((−∞, 0]); τ ∈ C1 ([0,+∞)) ; ν ∈

C1 ([0,+∞)) ; ϕ′(0) = −ν ′(0), ϕ(0) = τ ′(0).
The task is to build a Green’s function and a solution of the problem (4)-(6).

3 On the Riemann function of the equation (4).

It is well known that the Riemann-Green function R(ξ, η; ξ1, η1) is not defined in the
entire domain Ω×Ω, but only for those points (ξ1, η1) ∈ Ω, which |η| < ξ1,−ξ < η1 < ξ. And
for the remaining points of the domain Ω × Ω, the Riemann-Green function is not uniquely
determined. For our further constructions, it is important for us to use the Riemann-Green
function defined at all points of the domain Ω× Ω, for which η1 < −ξ.

For further reasoning, we need to fulfill some relations between the coefficients a(ξ, η) and
b(ξ, η) on the border ξ = −η. For this purpose, in equation (4) let us replace the function

u(ξ, η) = U(ξ, η) · γ(η) · µ(ξ). (7)
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Then with respect to the new unknown function U(ξ, η) we get the equation

∂2U

∂ξ∂η
+ â(ξ, η)

∂U

∂ξ
+ b̂(ξ, η)

∂U

∂η
+ ĉ(ξ, η)U = f̂ , (ξ, η) ∈ Ω, (8)

where

â =
1

γ(η)
·
(
γ′(η) + a(ξ, η)γ(η)

)
, b̂ =

1

µ(ξ)
·
(
µ′(ξ) + b(ξ, η)µ(ξ)

)
,

ĉ =
γ′(η)µ′(ξ)

γ(η)µ(ξ)
+ a(ξ, η)

µ′(ξ)

µ(ξ)
+ b(ξ, η)

γ′(η)

γ(η)
+ c(ξ, η), f̂ =

f

γ(η)µ(ξ)
. (9)

Let us take functions γ(η), µ(ξ) so that equalities

â(−η, η) = −b̂(−η, η), âξ(−η, η) = b̂η(−η, η), η ≤ 0. (10)

is performed. Then from (10) we have the next system of equations
γ′(η)

γ(η)
= −µ

′(−η)

µ(−η)
− a(−η, η)− b(−η, η), η ≤ 0,

γ′(η)

γ(η)
=
µ′(−η)

µ(−η)
− aξ(−η, η) + bη(−η, η), η ≤ 0.

(11)

This system (11) has a solution that can be written as

γ(η) = exp

[
1

2

∫ η

0
(bη(−t, t)− aξ(−t, t)− a(−t, t)− b(−t, t)) dt

]
,

µ(ξ) = exp

[
1

2

∫ ξ

0
(−bη(t,−t) + aξ(t,−t)− a(t,−t)− b(t,−t)) dt

]
.

Thus, if γ(η), µ(ξ) are selected in this way, condition (10) is met at η ≤ 0. For values η > 0,
we continue the function γ(η) in such a way that it is continuously differentiable and the
condition γ(η) > 0 is met .

To introduce the Riemann-Green function at all points of the domain Ω×Ω we continue
the coefficients of equation (8) in the domain Ω− = {(ξ, η) ∈ R2 : η < −|ξ|} as follows

A(ξ, η) =

{
â(ξ, η), (ξ, η) ∈ Ω,

−b̂(−η,−ξ), (ξ, η) ∈ Ω−,
(12)

B(ξ, η) =

{
b̂(ξ, η), (ξ, η) ∈ Ω,

−â(−η,−ξ), (ξ, η) ∈ Ω−,
(13)

C(ξ, η) =

{
ĉ(ξ, η), (ξ, η) ∈ Ω,

ĉ(−η,−ξ). (ξ, η) ∈ Ω−.
(14)
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If the coefficients a(ξ, η), b(ξ, η) ∈ C1
(
Ω
)

; c(ξ, η) ∈ C
(
Ω
)
, then in virtue of (9), (10) coeffi-

cients A(ξ, η), B(ξ, η), C(ξ, η) in the domain Ω̃ = Ω ∪ Ω− = {(ξ, η) ∈ R2 : ξ > η} have the
following smoothness

A(ξ, η), B(ξ, η) ∈ C1
(
Ω
)

;C(ξ, η) ∈ C
(
Ω
)
, (15)

and satisfies the following symmetry conditions:

A(ξ, η) = −B(−η,−ξ), Aξ(ξ, η) = Bη(−η,−ξ),

C(ξ, η) = C(−η,−ξ), (ξ, η) ∈ Ω̃. (16)

Actually, show that (16) is true. From (12) we have that

A(−η,−ξ) =

{
â(−η,−ξ), (−η,−ξ) ∈ Ω,

−b̂(ξ, η), (−η,−ξ) ∈ Ω−,

= −

{
b̂(ξ, η), (ξ, η) ∈ Ω,

−â(−η,−ξ), (ξ, η) ∈ Ω−,
= −B(ξ, η).

Also in the same way, from (13), (14) we get

Aξ(ξ, η) =

{
âξ(ξ, η), (ξ, η) ∈ Ω,

b̂η(−η,−ξ), (ξ, η) ∈ Ω−,
= Bη(−η,−ξ),

C(ξ, η) =

{
ĉ(ξ, η), (ξ, η) ∈ Ω,

ĉ(−η,−ξ), (ξ, η) ∈ Ω−,
= C(−η,−ξ).

If we have chosen (ξ, η) from Ω then (−η,−ξ) will be from Ω−.
In Ω̃ we consider the equation

∂2U

∂ξ∂η
+A(ξ, η) · ∂U

∂ξ
+B(ξ, η) · ∂U

∂η
+ C(ξ, η) · U = F, (ξ, η) ∈ Ω̃, (17)

Due to smoothness (14), it is well known that for the equation (17) a Riemann-Green function
[11] exists in Ω̃, that for any (ξ, η) ∈ Ω̃ satisfies equation

∂2

∂ξ1∂η1
R(ξ, η; ξ1, η1)− ∂

∂ξ1

(
A(ξ1, η1)R(ξ, η; ξ1, η1)

)
− ∂

∂η1

(
B(ξ1, η1)R(ξ, η; ξ1, η1)

)
+ C(ξ1, η1)R(ξ, η; ξ1, η1) = 0, (ξ1, η1) ∈ Ω̃; (18)
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and the conditions on the characteristics

∂R(ξ, η; ξ1, η1)

∂η1
−A(ξ1, η1) ·R(ξ, η; ξ1, η1) = 0, when ξ1 = ξ; (19)

∂R(ξ, η; ξ1, η1)

∂ξ1
−B(ξ1, η1) ·R(ξ, η; ξ1, η1) = 0, when η1 = η; (20)

R(ξ, η; ξ, η) = 1. (21)

Thus, with this choice of the method of continuation of the coefficients of the equation (16),
we determined the values of the Riemann-Green function for all points of the domain Ω×Ω.

Lemma 1. If conditions (16) are met, then the Riemann-Green function has symmetry such
that

R(ξ, η; ξ1, η1) = R(−η,−ξ;−η1,−ξ1), (ξ, η) ∈ Ω̃, (ξ1, η1) ∈ Ω̃. (22)

Proof. Denote

R1(ξ, η; ξ1, η1) = R(−η,−ξ;−η1,−ξ1), (ξ, η) ∈ Ω̃, (ξ1, η1) ∈ Ω̃.

Show that R1(ξ, η; ξ1, η1) satisfies equation (18) and conditions (19)-(21). Indeed, substituting
the representation of R1(ξ, η; ξ1, η1) in equation (18), at first entering a new designation
−ξ1 = η2,−η1 = ξ2, and then also entering the new symbols

−η = ξ̃, −ξ = η̃, ξ2 = ξ̃1, η2 = η̃1

again and using conditions (16) we get

∂2

∂ξ1∂η1
R(−η,−ξ;−η1,−ξ1)− ∂

∂ξ1

(
A(ξ1, η1)R(−η,−ξ;−η1,−ξ1)

)
− ∂

∂η1

(
B(ξ1, η1)R(−η,−ξ;−η1,−ξ1)

)
+ C(ξ1, η1)R(−η,−ξ;−η1,−ξ1) =

∂2

∂ξ2∂η2
R(−η,−ξ; ξ2, η2) +

∂

∂η2

(
A(−η2,−ξ2)R(−η,−ξ; ξ2, η2)

)
+

∂

∂ξ2

(
B(−η2,−ξ2)R(−η,−ξ; ξ2, η2)

)
+ C(−η2,−ξ2) ·R(−η,−ξ; ξ2, η2) =

∂2

∂ξ̃1∂η̃1

R(ξ̃, η̃; ξ̃1, η̃1)− ∂

∂η̃1

(
B(ξ̃1, η̃1)R(ξ̃, η̃; ξ̃1, η̃1)

)
− ∂

∂ξ̃1

(
A(ξ̃1, η̃1)R(ξ̃, η̃; ξ̃1, η̃1)

)
+ C(ξ̃1, η̃1) ·R(ξ̃, η̃; ξ̃1, η̃1) = 0. (23)
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Thus R1(ξ, η; ξ1, η1) satisfies equation (18). Also substituting the representation of
R1(ξ, η; ξ1, η1) into conditions (19)-(21) and using all the notation at the top we have

−∂R(−η,−ξ;−η1,−ξ1)

∂ξ1
−A(ξ1, η1) ·R(−η,−ξ;−η1,−ξ1)

=
∂R(ξ̃, η̃; ξ̃1, η̃1)

∂ξ̃1

−B(ξ̃1, η̃1) ·R(ξ̃, η̃; ξ̃1, η̃1) = 0, when η̃1 = η̃; (24)

−∂R(−η,−ξ;−η1,−ξ1)

∂η1
−B(ξ1, η1) ·R(−η,−ξ;−η1,−ξ1)

=
∂R(ξ̃, η̃; ξ̃1, η̃1)

∂η̃1
−A(ξ̃1, η̃1) ·R(ξ̃, η̃; ξ̃1, η̃1) = 0, when ξ̃1 = ξ̃; (25)

R(−η,−ξ;−η,−ξ) = R(ξ̃, η̃; ξ̃, η̃) = 1. (26)

Due to (23)-(26) easy to see that the function R(−η,−ξ;−η1,−ξ1) is also Riemann-Green
function of the same equation (17). But, it is well-known that Riemann-Green function is
unique. It follows that equality (22) is true.

Corollary 1. On the line ξ = −η, η ≤ 0, the next equality holds

R(−η, η; ξ1, η1) = R(−η, η;−η1,−ξ1). (27)

4 Green’s function of the problem (4)-(6).

Let us build a Green’s function to the first initial-boundary value problem in the quarter
plane

∂2U

∂ξ∂η
+A(ξ, η) · ∂U

∂ξ
+B(ξ, η) · ∂U

∂η
+ C(ξ, η) · U = F, (ξ, η) ∈ Ω, (28)

U(ξ, ξ) = T1(ξ),

(
∂U

∂ξ
− ∂U

∂η

)
(ξ, ξ) = M1(ξ), ξ > 0, (29)(

∂U

∂ξ
− ∂U

∂η

)
(−η, η) = P (η), η ≤ 0. (30)

Definition 1. Green’s function of the problem (28)-(30) let us call the function G(ξ, η; ξ1, η1),
which for every fixed (ξ1, η1) ∈ Ω, satisfies the homogeneous equation

L(ξ,η)G(ξ, η; ξ1, η1) = 0, (ξ, η) ∈ Ω, at ξ 6= ξ1, η 6= η1, η 6= −ξ1; (31)

and the next boundary conditions

G(ξ, ξ; ξ1, η1) = 0, ξ ≥ 0, (ξ1, η1) ∈ Ω; (32)

Kazakh Mathematical Journal, 21:1 (2021) 89-106



On the Green function of the Cauchy-Neumann ... 95

(
∂G

∂ξ
− ∂G

∂η

)
(ξ, ξ; ξ1, η1) = 0, ξ ≥ 0, (ξ1, η1) ∈ Ω, at ξ 6= ξ1, η 6= η1; (33)

(
∂G

∂ξ
+
∂G

∂η

)
(−η, η; ξ1, η1) = 0, η ≤ 0, (ξ1, η1) ∈ Ω, (34)

and on the above characteristic lines, the following conditions must be met: the values of the
derivatives of the Green function in directions parallel to these characteristics must coincide
in adjacent regions; i.e.,

∂G(ξ1 + 0, η; ξ1, η1)

∂η
+A(ξ1, η)G(ξ1 + 0, η; ξ1, η1)

=
∂G(ξ1 − 0, η; ξ1, η1)

∂η
+A(ξ1, η)G(ξ1 − 0, η; ξ1, η1), at η 6= η1; (35)

∂G(ξ, η1 + 0; ξ1, η1)

∂ξ
+B(ξ, η1)G(ξ, η1 + 0; ξ1, η1)

=
∂G(ξ, η1 − 0; ξ1, η1)

∂ξ
+B(ξ, η1)G(ξ, η1 − 0; ξ1, η1), at ξ 6= ξ1; (36)

∂G(ξ,−ξ1 + 0; ξ1, η1)

∂ξ
+B(ξ,−ξ1)G(ξ,−ξ1 + 0; ξ1, η1)

=
∂G(ξ,−ξ1 − 0; ξ1, η1)

∂ξ
+B(ξ,−ξ1)G(ξ,−ξ1 − 0; ξ1, η1); (37)

G(ξ1,−ξ1 − 0; ξ1, η1) = 2G(ξ1,−ξ1 + 0; ξ1, η1); (38)

and the ”corner condition”

G(ξ1 − 0, η1 − 0; ξ1, η1)−G(ξ1 + 0, η1 − 0; ξ1, η1)

+G(ξ1 + 0, η1 + 0; ξ1, η1)−G(ξ1 − 0, η1 + 0; ξ1, η1) = 1. (39)

must be satisfied as the regions meet at (ξ, η) = (ξ1, η1).

5 Existence and uniqueness of the Green’s function of the problem (4)-(6).

Theorem 1. The function G(ξ, η; ξ1, η1) that satisfies the conditions (31)-(19) exists and is
unique.
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Figure 1: (3a) - splitting the domain Ω, when η1 > 0; (3b) - splitting the domain Ω, when
η1 < 0.
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Proof. To show that a function G(ξ, η; ξ1, η1) which satisfies the conditions (31)-(39) exists
and unique, we divide the domain Ω into several subdomains (see Figure (1)) and consider the
following problems sequentially. Let (ξ1, η1) be an arbitrary point of the domain Ω. Consider
the case of η1 > 0, the case of η1 < 0 is considered similarly.

In the domain Ω1 = {(ξ, η) : 0 < ξ < η1,−ξ < η < ξ} we consider the problem

L(ξ,η)G = 0, (ξ, η) ∈ Ω1; (40)

G(ξ, ξ; ξ1, η1) = 0, ξ ≥ 0; (41)(
∂G

∂ξ
− ∂G

∂η

)
(ξ, ξ; ξ1, η1) = 0, ξ ≥ 0; (42)(

∂G

∂ξ
+
∂G

∂η

)
(−η, η; ξ1, η1) = 0, η ≤ 0. (43)

The problem (40)-(43) is a Cauchy-Neumann problem and has a unique solution

G(ξ, η; ξ1, η1) ≡ 0, (ξ, η) ∈ Ω1. (44)

In the domain Ω2 = {(ξ, η) : η1 < ξ < ξ1, η1 < η < ξ} let us consider the problem

L(ξ,η)G = 0, (ξ, η) ∈ Ω2; (45)

G(ξ, ξ; ξ1, η1) = 0, ξ ≥ 0; (46)(
∂G

∂ξ
− ∂G

∂η

)
(ξ, ξ; ξ1, η1) = 0, ξ ≥ 0. (47)

The problem (45)-(47) is a Cauchy problem and has a unique solution

G(ξ, η; ξ1, η1) ≡ 0, (ξ, η) ∈ Ω2. (48)

Therefore from (36), (44), (48) in the domain Ω3 = {(ξ, η) : η1 < ξ < ξ1,−η1 < η < η1},
we get the problem

L(ξ,η)G = 0, (ξ, η) ∈ Ω3; (49)

G(η1, η; ξ1, η1) = 0,−η1 ≤ η ≤ η1; (50)

∂G(ξ, η1 − 0; ξ1, η1)

∂ξ
+B(ξ, η1) ·G(ξ, η1 − 0; ξ1, η1) = 0, η1 < ξ < ξ1. (51)

Integrating (51) by ξ we have

G(ξ, η1 − 0; ξ1, η1) = exp

(
−
∫ ξ

η1

B(t, η1)dt

)
C1(ξ1, η1), η1 < ξ < ξ1. (52)
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Substituting ξ = η1 − 0 in (52), using condition (32) we have that C1(ξ1, η1) ≡ 0 and

G(ξ, η1 − 0; ξ1, η1) = 0, η1 ≤ ξ ≤ ξ1. (53)

Therefore, the problem (49)-(51) is equivalent to the problem (49), (50), (53), which is a
Goursat problem and has a unique solution

G(ξ, η; ξ1, η1) ≡ 0, (ξ, η) ∈ Ω3. (54)

Since Green’s function is continuous at η = −η1, then from (54) in the domain Ω4 =
{(ξ, η) : η1 < ξ < ξ1,−ξ < η < −η1} we get the problem

L(ξ,η)G = 0, (ξ, η) ∈ Ω4; (55)(
∂G

∂ξ
+
∂G

∂η

)
(−η, η; ξ1, η1) = 0, η ≤ 0; (56)

G(ξ,−η1; ξ1, η1) = 0, η1 ≤ ξ ≤ ξ1. (57)

This problem (55)-(57) is a Darboux problem and has a unique solution

G(ξ, η; ξ1, η1) ≡ 0, (ξ, η) ∈ Ω4. (58)

In the domain Ω5 = {(ξ, η) : ξ1 < ξ, η > ξ1} our problem is the Cauchy problem

L(ξ,η)G = 0, (ξ, η) ∈ Ω5; (59)

G(ξ, ξ; ξ1, η1) = 0, ξ ≥ 0; (60)(
∂G

∂ξ
− ∂G

∂η

)
(ξ, ξ; ξ1, η1) = 0, ξ ≥ 0. (61)

which has a unique solution

G(ξ, η; ξ1, η1) ≡ 0, (ξ, η) ∈ Ω5. (62)

Therefore from (35), (48), (62) in the domain Ω6 = {(ξ, η) : ξ1 < ξ, η1 < η < ξ1} we have
the next problem

L(ξ,η)G = 0, (ξ, η) ∈ Ω6; (63)

G(ξ, ξ1; ξ1, η1) = 0, ξ ≥ ξ1; (64)

∂G(ξ1 + 0, η; ξ1, η1)

∂η
+A(ξ1, η)G(ξ1 + 0, η; ξ1, η1) = 0, η1 < η < ξ1. (65)
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Integrating (65) by η we get

G(ξ1 + 0, η; ξ1, η1) = exp

(
−
∫ η

η1

A(ξ1, t)dt

)
C2(ξ1, η1), η1 < η < ξ1; (66)

Substituting η = ξ1 + 0 in (66), using condition (32) we have that C2(ξ1, η1) ≡ 0 and

G(ξ1 + 0, η; ξ1, η1) = 0, η1 ≤ η ≤ ξ1. (67)

Therefore, the problem (63)-(65) is equivalent to the problem (63), (64), (67), which is a
Goursat problem and has a unique solution

G(ξ, η; ξ1, η1) ≡ 0, (ξ, η) ∈ Ω6. (68)

From (35), (36), (38), (54), (58), (68) in the domain Ω7 = {(ξ, η) : ξ1 < ξ,−ξ1 < η < η1}
we have the problem

L(ξ,η)G = 0, (ξ, η) ∈ Ω7; (69)

∂G(ξ1 + 0, η; ξ1, η1)

∂η
+A(ξ1, η)G(ξ1 + 0, η; ξ1, η1) = 0, −ξ1 < η < η1. (70)

∂G(ξ, η1 − 0; ξ1, η1)

∂ξ
+B(ξ, η1)G(ξ, η1 − 0; ξ1, η1) = 0, ξ1 < ξ. (71)

G(ξ1 + 0, η1 − 0; ξ1, η1) = −1. (72)

The problem (69)-(72) is a Goursat problem and it has a unique solution, and it is easy to
see that its solution coincides with the Riemann-Green function, that is,

G(ξ, η; ξ1, η1) = −R(ξ, η; ξ1, η1), (ξ, η) ∈ Ω7. (73)

Therefore from (73) in the domain Ω8 = {(ξ, η) : ξ1 < ξ,−ξ < η < −ξ1} we get the
problem

L(ξ,η)G = 0, (ξ, η) ∈ Ω8; (74)(
∂G

∂ξ
+
∂G

∂η

)
(−η, η; ξ1, η1) = 0, η ≤ 0; (75)

∂G(ξ,−ξ1 − 0; ξ1, η1)

∂ξ
+B(ξ,−ξ1)G(ξ,−ξ1 − 0; ξ1, η1)

= −∂R(ξ,−ξ1; ξ1, η1)

∂ξ
−B(ξ,−ξ1)R(ξ,−ξ1 − 0; ξ1, η1), ξ1 < ξ. (76)

Let us rewrite condition (76) in the following form[
∂

∂ξ

(
G(ξ,−ξ1 − 0; ξ1, η1) exp

(∫ ξ

ξ1

B(t,−ξ1)dt

))]
exp

(∫ ξ1

ξ
B(t,−ξ1)dt

)
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=

[
∂

∂ξ

(
−R(ξ,−ξ1; ξ1, η1) exp

(∫ ξ

ξ1

B(t,−ξ1)dt

))]
exp

(∫ ξ1

ξ
B(t,−ξ1)dt

)
. (77)

Integrating (77) by ξ we get

G(ξ,−ξ1 − 0; ξ1, η1) = −R(ξ,−ξ1; ξ1, η1) + C(ξ1, η1) exp

(∫ ξ1

ξ
B(t,−ξ1)dt

)
. (78)

Using condition (38) we have that

C(ξ1, η1) = −R(ξ1,−ξ1; ξ1, η1) = exp

(∫ η1

−ξ1
A(ξ1, t)dt

)
. (79)

Substituting (79) in (78) and using condition (16) we have

G(ξ,−ξ1 − 0; ξ1, η1) = −R(ξ,−ξ1; ξ1, η1)− exp

(∫ −η1
ξ

B(t,−ξ1)dt

)
, ξ > ξ1. (80)

The problem (74), (75), (80) is a Darboux problem and has a unique solution.
Thus, we have shown that for any (ξ1, η1) ∈ Ω and (ξ, η) ∈ Ω the Green’s function that

satisfies the conditions (31)-(39) exists and unique. The theorem is proved.

Corollary 2. In the course of proving the existence of the Green’s function, we obtained that
G(ξ, η; ξ1, η1) ≡ 0 in the domains Ω1, Ω2, Ω3, Ω4, Ω5, Ω6. That is, G(ξ, η; ξ1, η1) ≡ 0 for
ξ1 > ξ.

6 Construction of the Green’s function of the problem (4)-(6).

As can be seen from the proof of Theorem 6.1, the Green’s function G(ξ, η; ξ1, η1) = 0 in
the domains Ω1, Ω2, Ω3, Ω4, Ω5, Ω6. And in the domain Ω7 it coincides with the Riemann
function (73).

Let us find a representation of the Green’s function in the domain Ω8. To construct
the Green’s functions, we assume that the coefficients of equation (80) satisfy the symmetry
conditions of (16).

Let (ξ1, η1) be an arbitrary point of the domain Ω. In order to construct the Green
function in the domain Ω8, consider the problem:

∂2G1

∂ξ∂η
+A(ξ, η)

∂G1

∂ξ
+B(ξ, η)

∂G1

∂η
+ C(ξ, η)G1 = 0, (ξ, η) ∈ Ω̃8, (81)

where Ω̃8 = Ω8 ∪ Ω−8 , Ω−8 = {(ξ, η) : ξ1 < ξ, η < −ξ}.

G(ξ,−ξ1 − 0; ξ1, η1) = −R(ξ,−ξ1; ξ1, η1)− exp

(∫ −η1
ξ

B(t,−ξ1)dt

)
, ξ1 < ξ; (82)
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G(ξ1 + 0, η; ξ1, η1) = −R(−η,−ξ1; ξ1, η1)− exp

(∫ η1

η
B(t,−ξ1)dt

)
, η < −ξ1; (83)

G1(ξ1,−ξ1 − 0; ξ1, η1) = −2R(ξ1,−ξ1; ξ1, η1). (84)

The problem (81)-(84) is a Goursat problem. Its solution exists and unique. We are interested
in the representation of the function G1(ξ, η; ξ1, η1).

Lemma 2. If the function G1(ξ, η; ξ1, η1) is the solution to the problem (81)-(84), then for
any (ξ, η) ∈ Ω̃8 we have G1(ξ, η; ξ1, η1) = G1(−η,−ξ; ξ1, η1).

Proof. To show that the function G1(−η,−ξ; ξ1, η1) satisfies the equation (81), in (82) replace
ξ = −η2, η = −ξ2, (−η2,−ξ2) ∈ Ω−8 and after using the conditions (12)-(14), we get that
G1(−η,−ξ; ξ1, η1) satisfies the equation (81).

Also doing the substitution of ξ = −η2, η2 < −ξ1 in (81) and using the conditions (12),
(13) we get the condition (83). Similarly, by replacing −η = ξ2, η < −ξ1 in (83) and using
the conditions (12), (13) we get the condition (82).

Thus, we have shown that the function −G1(−η,−ξ; ξ1, η1) is also a solution to the prob-
lem (81)-(84). Since the solution to problem (81)-(84) is unique, then

G1(ξ, η; ξ1, η1) = G1(−η,−ξ; ξ1, η1), (ξ, η) ∈ Ω̃8.

Solution of the problem (81)-(84) we search in the following form

G1(ξ, η; ξ1, η1) = g(ξ, η; ξ1, η1)−R(ξ, η; ξ1, η1), (ξ, η) ∈ Ω̃8.

Then we get the following problem

∂2g

∂ξ∂η
+A(ξ, η)

∂g

∂ξ
+B(ξ, η)

∂g

∂η
+ C(ξ, η)g = 0, (ξ, η) ∈ Ω̃8; (85)

g(ξ,−ξ1; ξ1, η1) +R(ξ,−ξ1; ξ1, η1) = 0, ξ1 < ξ; (86)

g(ξ1, η; ξ1, η1) +R(−η,−ξ1; ξ1, η1) = 0, η < −ξ1; (87)

It is easy to see that the solution to the problem (85)-(87) has the form

g(ξ, η; ξ1, η1) = −R(−η,−ξ; ξ1, η1), (ξ, η) ∈ Ω̃8. (88)

Then from (88) we get

G1(ξ, η; ξ1, η1) = −R(−η,−ξ; ξ1, η1)−R(ξ, η; ξ1, η1), (ξ, η) ∈ Ω̃8. (89)

Thus the next theorem is proved.
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Theorem 2. The Green’s function of the equation (28)-(30) exists and unique. Representa-
tion of the solution of the first initial boundary value problem (28)-(30) in integral form with
Green’s function

G(ξ, η; ξ1, η1) ≡ 0, if (ξ, η) ∈ Ω1,Ω2,Ω3,Ω4,Ω5,Ω6;

G(ξ, η; ξ1, η1) = −R(ξ, η; ξ1, η1), if (ξ, η) ∈ Ω7;

G(ξ, η; ξ1, η1) = −R(−η,−ξ; ξ1, η1)−R(ξ, η; ξ1, η1), if (ξ, η) ∈ Ω8.

It is well known that for self-adjoint problems (for example, for elliptic equation), the
Green function is symmetric with respect to external and internal variables. In our case, for
the Green’s function of the hyperbolic first initial-boundary value problem, this is not the
case.

Lemma 3. Let (ξ, η) be an arbitrary point of the domain Ω. By internal variables (ξ1, η1)
the Green’s function of the problem (28)-(30) has the following properties:

L∗(ξ1,η1)G(ξ, η; ξ1, η1) = 0, (ξ1, η1) ∈ Ω, at ξ1 6= ξ, η1 6= η, ξ1 6= −η; (90)(
∂G

∂ξ1
+
∂G

∂η1

)
(ξ, η; ξ1,−ξ1)

−
(
A(ξ1,−ξ1) +B(ξ1,−ξ1)

)
G(ξ, η; ξ1,−ξ1) = 0, ξ1 < −η; (91)

∂G(ξ, η; ξ − 0, η1)

∂η1
−A(ξ, η1)G(ξ, η; ξ − 0, η1) = 0, at η1 6= η; (92)

∂G(ξ, η; ξ1, η + 0)

∂ξ1
−B(ξ1, η)G(ξ, η; ξ1, η + 0) = 0, at ξ1 6= ξ; (93)

∂G(ξ, η;−η − 0, η1)

∂ξ1
−B(−η, η1) G(ξ, η;−η − 0, η1)

=
∂G(ξ, η;−η + 0, η1)

∂ξ1
−B(−η, η1)G(ξ, η;−η + 0, η1); (94)

G(ξ, η; ξ − 0, η − 0)−G(ξ, η; ξ + 0, η − 0)

+G(ξ, η; ξ + 0, η + 0)−G(ξ, η; ξ − 0, η + 0) = 1. (95)

Proof. Properties (90)-(95) are easy to get out of the construction of the Green’s function
of problem (28)-(30). Under these conditions (90)-(95) it is possible to uniquely restore the
Green’s function of problem (28)-(30).
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Figure 2: The domain Ω(ξη), when η < 0.

Using properties (90)-(95) we can use it to write the integral representation of the solution
to problem (28)-(30). To do this, we consider the following integral∫∫

Ω(ξη)

G(ξ, η; ξ1, η1)F (ξ1, η1)dξ1dη1

=

∫∫
Ω(ξη)

G(ξ, η; ξ1, η1)

(
∂2U

∂ξ1∂η1
+A

∂U

∂ξ1
+B

∂U

∂η1
+ CU

)
dξ1dη1. (96)

Applying Green’s theorem in a plane [12] and using the initial conditions (29), properties
of Green’s function (90)-(95), from (96) we get the following representation of the solution
to problem (28)-(30) in the domain Ω(ξη), at η > 0 (see Figure (2))

U(ξ, η) = −1

2
G(ξ, η; η, η)T1(η)− 1

2
G(ξ, η; ξ, ξ)T1(ξ)

−1

2

∫ η

ξ

(
∂G

∂N1
(ξ, η; ξ1, ξ1) + 2(A−B)(ξ1, ξ1)G(ξ, η; ξ1, ξ1)

)
T1(ξ1)dξ1

+
1

2

∫ η

ξ
G(ξ, η; ξ1, ξ1)M1(ξ1)dξ1 +

∫∫
Ω(ξη)

G(ξ, η; ξ1, η1)F (ξ1, η1)dξ1dη1. (97)

Also, at η < 0 applying Green’s theorem in a plane [12] and using the initial conditions
(29), boundary condition (30), properties of Green’s function (89)-(94), from (95) we get the
following representation of the solution to problem (28)-(30) in the domain Ω(ξη) (see Figure
(3))
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Figure 3: The domain Ω(ξη), when η < 0.
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U(ξ, η) = −1

2

(
G(ξ, η;−η − 0,−η − 0)−G(ξ, η;−η + 0,−η + 0)

)
T1(−η)

−1

2
G(ξ, η; ξ, ξ)T1(ξ) +

1

2

∫ −η
0

G(ξ, η; ξ1,−ξ1)P (−ξ1)dξ1

+
1

2

∫ ξ

0

(
∂G

∂N1
(ξ, η; ξ1, ξ1) + 2(A−B)(ξ1, ξ1)G(ξ, η; ξ1, ξ1)

)
T1(ξ1)dξ1

−1

2

∫ ξ

0
G(ξ, η; ξ1, ξ1)M1(ξ1)dξ1 +

∫∫
Ω(ξη)

G(ξ, η; ξ1, η1)F (ξ1, η1)dξ1. (98)

It is easy to see that (97), (98) are solutions to problem (28)-(30). Substituting
U(ξ, η), γ(η), µ(ξ) for (28) we get a solution to problem (4)-(6).
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Дербiсалы Б.О., Садыбеков М.А. ШИРЕК ЖАЗЫҚТЫҚТАҒЫ ГИПЕРБОЛАЛЫҚ
ТЕҢДЕУ ҮШIН КОШИ-НЕЙМАН ЕСЕБIНIҢ ГРИН ФУНКЦИЯСЫ

Ширек жазықтықтағы гиперболалық теңдеу үшiн Коши-Нейман есебiниң Грин функ-
циясының анықтамасы берiлдi. Оның бар екендiгi және жалғыздыгы дәлелдендi. Грин
функцияның анықтамасы берiлдi. Грин функциясы Риман-Грин функциясы арқылы
берiлетiнi көрсетiлдi.

Кiлттiк сөздер. Гиперболалық теңдеу, екiншi бастапқы шекаралық есеп, шекаралық
шарт, Грин функциясы.

Дербисалы Б.О., Садыбеков М.А. О ФУНКЦИИ ГРИНА ЗАДАЧИ КОШИ-
НЕЙМАНА ДЛЯ ГИПЕРБОЛИЧЕСКОГО УРАВНЕНИЯ В ЧЕТВЕРТИ ПЛОСКО-
СТИ

Дано определение функции Грина задачи Коши-Неймана для гиперболического урав-
нения в четверти плоскости. Доказаны ее существование и единственность. Дано пред-
ставление функции Грина. Показано, что функция Грина может быть представлена через
функцию Римана-Грина.

Ключевые слова. Гиперболическое уравнение, вторая начально-краевая задача, гра-
ничное условие, функция Грина.
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