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DISCRETE ORDER ON A DEFINABLE SET AND
THE NUMBER OF MODELS

In this paper there is considered a condition, which is similar to a 2-ary relation
of following. We prove that a small theory, which has the formula called the
quasi-successor has the maximum number of countable models.

Keywords: ordered structure, number of countable models.

INTRODUCTION

This paper is devoted on finding of a condition of maximality of the number
of countable non-isomorphic models of complete theories with definable linear
orders. The number of countable models of theories with an ()-definable linear
order had been studied in the works [1]-[6] and others.

THE MAIN THEOREM

Further N will be a countable saturated model of a small theory T. We
shall consider ordered theories and we shall suppose that < is an )—definable
relation of a linear order.

The formulas of the first order will be often written by the relations of
definable sets.

© A.A. Alibek, B.S. Baizhanov, T.S. Zambarnaya, 2014.
Keywords: ordered structure, number of countable models
2010 Mathematics Subject Classification: 03C15, 03C64.
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6 A.A. Alibek, B.S. Baizhanov, T.S. Zambarnaya

For example,

z < ¢(N) Vy(oly) — = <y),
x € (B, B2) B < < B,
P(N)YNO(N) # 0 N | Jz(p(x) A 0(x)),

H(N) < O(NYT = N EVHWy(0(y) =y <t) = Va(p(x) — 2 < 1)).

For any A C N (not necessary definable) we denote

At :={yeNNa€eA: N Ea<~y}
A= ={yeNNac A: N [E=~v<a}.

DEFINITION 1. Let A C B. The set A is said to be convex in B, if
Va,y € Alx <y),VzeBlx<z<y—z€B).
If A is convex in N, we say that A is convex.

DEFINITION 2. For a formula ¢(x,a) a convex closure of ¢ is a formula ¢°,
such that

(2w, @) := Fy1, Jya(d(y1, &) A (Y2, @) A (y1 < @ < y2)).

DEFINITION 3. Let p € S1(A) be an 1-type. A convex closure of p is a type p°©,
such that

P = {¢(x, A)lo(x,a € p)}.

DEFINITION 4. Let A and B C N, and ¢(x,y) be an A-definable 2-formula.
We say that ¢(x,y) is B-stable, if Yoo € B, 31, 72 € B (M1 < a < ¥2), such
that

7 < (]5(0[,]\7) <72, and (b(a:N)mB #Q

If B =©(N)and © is an A-definable 1-formulaor B = p(N) and p € S1(A)
is an one-type then we we say that ¢(x,y) is ©-stable or p-stable.

DEFINITION 5. We say that a B-stable 2-formula ¢(x,y) is convex to the right
on B, if

MATEMATUYECKUI *KYPHAJ 2014. Tom 14. Ne 8 (53)



Discrete order on a definable set and the number of models 7

Vae B,VB(B € ¢(a, N) »a < gAVyE Bla<v < —v€d(a,N)).

If for © € F1(A),p € S1(A), we have B = O(N) or B = p(NN), then we say
that the 2-formula is convex to the right on ©(x), or on p(x).

DEFINITION 6. We say that a B-stable 2-formula ¢(x,y) is convex to the left
on B, if
Va e B,VB(B € ¢(a, N) = < a) \Vy € B(f <y <a—vepla,N)).

If for © € F1(A),p € S1(A), we have B = O(N) or B = p(NN), then we say
that the 2-formula is convex to the left on ©(x), or on p(x).

The definitions 4, 5 and 6 generalize the notions for weakly o-minimal
theories, defined in [7] and [8], and introduced in [9]. The other generalization
of p-stability was represented in [10]. In this work instead of the notion “p-
stable” the notion “p-preserving” is used.

DEFINITION 7. We say that a convex to the right 2-formula ¢(x,y) increases
on B, ifVa, 8 € B,

(@ <B—=¢(B,N)* S ¢la, N)T).
We are interested in the case, when 5 € ¢(a, N).

DEFINITION 8. We say that a convex to the left 2-formula ¢(x,y) decreases on
B, ifVa, B € B,

(@< B = ¢(a, N)~ S o(8,N)7).

DEFINITION 9. We say that an A-definable increasing (decreasing) on B 2-
formula ¢(x,y) is a quasi-successor on B, if Yoo € B, 36 € ¢(a, N) N B, such
that

BN (o(8, N)\ ¢(a, N)) # 0.

If ¢(z,y) is a quasi-successor denote

<l50(90 y) = {90 =yh
¢"(2,y) == Jy1, ..., a1 (Pp(x y1 A ¢ yhyz) AP Yn—1,Y));
¢, y) == Ty, 3% 1(@(x1, ) Aplag, x1) A APy, p-1) ANy <

e AN s < ).
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8 A.A. Alibek, B.S. Baizhanov, T.S. Zambarnaya

Let ¢(x,y) be a quasi-successor on B. Denote for o € B

Vola) :={ye€ BlIne€ Z,vy € ¢"(a, N) N B}.

THEOREM 1. Let A be a finite subset of N, p € S1(A), and ¢(x,y) be an
A-definable quasi-successor on p(x). Then T has 2“ countable non-isomorphic
models.

Proof. Without loss of generality we assume that ¢(z,y) is convex to the right
on p(x).

Let g(z,y) = {z < ytUp@)Uply) Uiy € ¢"(z,N)ln < w}U
{R(y,x)|R(x,y) is an A-definable convex to the right on p 2-formula such
that Vn < w,Va € p(N),¢" (o, N) N p(N) C R(a, N)} U {L{x,y)|L(x,y)
is an A-definable convex to the left on p 2-formula, such that Vn < w,
day, a € p(N), a1 < (a2, N), a1 € Lo, N)},

The consistence of g(x,y) is verified directly.

Let the tuple < «a, 8 > realizes q(x,y). Then we fix this tuple until the end
of the proof of the Theorem 1. Denote

(Vos(@), Vs B)) oy = (7 € DN Vis(@) < 7 < VpolB)).
LEMMA 1. v’717’72 < <‘/Z)7¢7(a)7 ‘/1),¢(/8)>p<]\[)7

tp*(mlAU {a, 5}) = tp°(ral AU {a, B}).

Proof of Lemma 1. Suppose that the conclusion of Lemma 1 is not true,
ie. Iy, 72 € (Vpgla), Vpo(B))pvy and there exists an (AU {«, §})-definable
formula, such that vy € H(N,«a, ) < 2. We can suppose that H(N,a, 5)
is convex. If it is not we can take an (A U {«, 8})-definable formula, which
determines the set (H(Na, 5)7)~.

By the theorem of compactness we can suppose that

() there is an A-definable formula ©(x) € p such that for every two
elements o/, ' € O(N), o < " if Vo 4(/) < Vo »(8), then Iy, 72 €
(Vo,p(a), Vo 4(8'))e(n), such that v € H(N, o/, f') <2 and 72 € ¢(71, N).

For k,n1,n2 < w such that n; + ne < k we denote

Sk (H)(@,9) == (2 < y Ay & 62, N)) —
Jz,dzme (r<z1<z2<yAzr €™ (x, N)Ay & ¢ (z2, N) A
21 € H(N,z,y) N H(N,2,9y) < 22 A 22 € ¢(21, N)).

MATEMATUYECKUI *KYPHAJ 2014. Tom 14. Ne 8 (53)



Discrete order on a definable set and the number of models 9

CLAIM 1. There exist two non-constant non-decreasing functions, 81,82 1 W —
w, such that Im < w, Vk > m, Yo/, B’ € (o, B)p(ny, for which the following is
true:

N Sksa(h),sai) (H) (o, 7).

Proof of Claim 1. In the opposite case, by the theorem of compactness, we
obtain a contradiction with the definition of H(x, «, /3). O
Continuation of the proof of Lemma 1. We denote Hy(x, o, §) == ~H(x, 6)
Jy(o(y, x)ANH (y, o, B)). It follows from the Claim 1 that Hy(N, o, )N ( ) £
and Hy(N, o, ) N p(N) C Vp5(39) for some 5 € (Vs(0), Vio(B))pin

Then we denote

Golx,a, 8) := Fz(H(x, o
Gi(x,a, ) == Fz(H(x, 2

So, by () we have Go(N, &, ) < Vp 4 (1), Vpo(a) < Go(N, o, f)T and

‘/p@(,}/@) < Gl(Ny 047,8)+,G1(N, &, /8) < Vp@(/@)
Let

Hy(x) := ~Go(z, o, B)
Hy(x) := ~Gi(z, o, B)

Then by the Claim 1 we have

Ho(N,a, B) Np(N) # 0 and Ho(N, o, B) N p(N) C Vp.4(70) for some vy €
(Voo (@), Vs (90))p(v)-

Hi(N,a,8) Np(N) # 0 and Hi(N,«, B) N p(N) C Vp (1) for some v €
(‘/1),05(’7@)7 ‘/P@(/B))p(N)

Thus, we have (xx) o < Ho(N) < Hg(N) < Hi(N) < j3,

Voo(a) < Vps(10) < Vpel) < Vp¢(’71) Voo (),

Ho(N) C Vpo(h0), Hp(N) C Vpe(p), Hi(N) C Vpo(m)-
Then we designate

3 (GO(y7 &, /8) A (b(y? LE))7
G

ATy
/\Ely( 1(y,04,,8)/\¢(y,$)).

Goolz,a, B) = Fz(H(x,a,2) AN Ho(z, a, B));
Goi(z, o, B) = Fz1,22(H(x, 21, 22) A Ho(z1, c, B) A Hy(z2, v, 5));
Gro(z, o, ) = Fz1,22(H(x, 21,22) AN Hp(21, o, B) A Hi(220x, B));
Gz, a,8) = Fz(H(x,z, ) ANHi(z,«,5)).

MATEMATUYECKUA KYPHAN 2014. Tom 14. Ne 8 (53)



10 A.A. Alibek, B.S. Baizhanov, T.S. Zambarnaya

So, by (xx) we have Goo(N, o, 8) < Vp,.6(70), Vosl(a) < Goo(N, a, 8)T and

‘/p,tﬁ(,yo) < GOl(Ny «, /B)er GOl(Ny «, /8) < %@(7@)7

Gro(N,a, B) < Vo), Voe(rp) < Gio(N,a, B)T and

‘/p@(,}/@) < Gll(Ny «, /8)+7 Gll(Ny «, /8) < ‘/p@( )

Then by the Lemma 1 we have

Hoo(N, o, 8) N p(N) # 0 and Hoo(N, o, 8) N p(N) C V, 4(v00) for some
Y00 € (Vpo(@), Vpo(10)) — p(IV).

Hoi(N, o, B) N p(N) # 0 and Hoi (N, o, 8) Np(N) C Vpg(vo1) for some

Y01 € (Vpio(10), Voo (Y0))p(v)

Hio(N, o, ) Np(N) # 0 and Hio(N, o, 3) Np(N) C Vpg(vi0) for some
0 € (Voo(), Voo (1))pvy Hut(N, o, 8) N p(N) # 0 and Hi(N, o, 8) N
P(N) C Vpp(711) for some v11 € (V, 6(71), Vo6 (B))p(y-

Repeating this consideration w times we obtain a countable number of A-
definable formulas Hg, ¢ € 2<% such that for every 7 € 2%, 7(n) € {0,1} there
is pr € S1(A), one-type over A which extends the following set of A-definable

1-formulas:

Ur(2) == {2 < Hery,7)(N, @, B)|7(n + 1) = 03U
{H),... 7, 0, B)|T(n + 1) = 1}.

This contradicts to our assumption that 7" is small. ]
As a corollary of the proof of the Lemma 1 we obtain the following lemma.

LEMMA 2. For every ay, =< ai,...,0n >, a; € (Vp (), Vo 6(8))p(n)
1 <i < n; such that Vp ¢(as) < Vpglaipr) (1 <i < (n—1)), for every y € N
such that tp(¥|AU &, U {a, B}) is isolated the following is true:

1,72 € (Vo (00), Violss1)) we have

tp(mlAUa, UyU{a, B}) = tp“(plAUa, Uy U {a, 5}).

It follows from the Lemma 2 that any element v € (V¢ (c), Vpo(it1))
has a non-isolated one-type over AU &, U5 U {a, 8} because it is irrational.
Continuation of the proof of Theorem 1. Let 2<% be a set of all finite tuples of
elements from {0,1}. Then for every n € 2<%, n:=<n(1),n(2),...,n(n) > we
denote I(n) := n. Let n # 7 € 2<“, then we say that n is less than 7 (n < )
if either n C 7 A®(l(n) +1) = 1, or i < min{l(n),l(m)}, Vi < 4,n(j) =
m(j) An(i) =0Axn(i) = 1.

MATEMATUYECKUI *KYPHAJ 2014. Tom 14. Ne 8 (53)



Discrete order on a definable set and the number of models 11

Let < a1, 2, ..., Qp, ... >p<w be an w-consequence of elements from p(N),
such that

Vos(@) < Vplaw) < Vpglaipr) < Vpg(B), (1 <i<w).

Then for every 7 € 2% we shall construct, by using of the Lemma 2, the
countable model M, < N such that for every n < w, o, € M,

7(n) =0 <= in M; there is no element from (V}, 4(2n), Vp o (Q2n11))p(n);
and

m(n) = 1 <= for any n € 2<¥, there exists an element a,, €
(Vpgla2n), Vpo(@ant1))p(ny M M7, such that for every two n # m € 2<% if
n <, then V,, 4(any) < Vpo(tnx).

Construction of M...

Let 7 € 2*. We shall construct M, as a union of increasing chain of finite
sets My = Upew By Bm—1 C An C By, such that |By,|, |An] < w; | By \
Ap| = m?; tp( B\ Apm| A is isolated and for every i < m we have some fixed
enumeration of Fy(B;), where Fy(B;) is the set of all B;-definable 1-formulas.

Step 0. We denote By := A. Fix some enumeration of F(By).

Step m + 1. By the Lemma 2, and by using the approach in the choice of
Yy from the proof of the Lemma 1 we can determinate

Amg1 = B U{aigln € 29, l(n) <m +1, 7(i) = 1}.

For every k < m+ 1 we denote B,y 1k := Ami1 U { By [k < k}.

We define S, y1k Let O ;(x) be a 1-formula from Fi(By), such that
Om41..(N) N By = 0 and j is minimal with this property. Then take
G(x) — an arbitrary atom from Fi(By,114) (i.e. for every K(z) € Fi(Bpy1k)
if G(N)NK(N) # () then G(N) € K(N) ), such that G(N) C ©;(N), and
arbitrary element from S, 1, € G(N). The existence of G(x) follows from
our assumption that 7" is small, and because By,41,k is finite.

Then put B,y := Uk<m+1 By 1., and fix some enumeration of (B, q1).

Let us to verify that M, is model. Consider an arbitrary M, -definable 1-
formula ¥(x,%),5 € M;, such that N = JaxW¥(x, 7). Then there exists k < w
such that 4 N (B \ Bg_1) # 0. Thus, for some m < w,k < m we have
N E U (Bmk,7), 8 € M. This means [11] that M, < N.

It is clear that if 7 4 7/ € 2%, then in language L* := LU A U {«, 3},
MZE 21+ MZ,. So, because any countable model of 7" can generate maximum

MATEMATUYECKUA KYPHAN 2014. Tom 14. Ne 8 (53)



12 A.A. Alibek, B.S. Baizhanov, T.S. Zambarnaya

countable number of non-isomorphic models in language L*, T has 2* countable
non-isomorphic models. O
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Amubex A.A., Baitxkanos B.C., 3ambapuas T.C. ©OPMVJTAJIBI 2KBIH-
HAYHBI JUCKPETTI PET »KoHE MOAEJIbJIEP CAHBI

Maxanaga eki OpPBIHABLI iecy KATLIHACKIHA YKCAC MAPT KAPaCThIPBLIAIEI
JKDHE JIe KBa3U-iJiecy Jier arajaaThiH (popMysiara ue Kill peTTesireH Teopusiia
MaKCHMAJIIbI CAHAIBIMIL MOASILAED CAHBI AP eKeHl a9jesneHes].

Amubex A.A., Baitzkanos B.C., 3ambapras T.C. JUCKPETHBIN 1TOPS-
JOK HA ®OPMYJIbHOM MHOYKECTBE W YU CJIO MOJEJIEN

B cratbe paccMaTpuBaeTcs yCIOBUE, TIOXOXKee HA 2-X MECTHOE OTHOITIEHWE
CJIEJIOBAHUS U JOKA3BIBAETCS, YTO MaJjias YIOPsIOo4YeHHasi Teopus, 00/1a1a10-
masi popMyJIoit, HA3bIBAEMO KBA3U-CJIEI0BATEIEM, HMEET MAKCHMAJILHOE YHC-
JIO CUETHBIX MOJEJE.
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ESTIMATES OF THE SOLUTION
OF THE TWO-PHASE SINGULARLY PERTURBED
PROBLEM FOR THE PARABOLIC EQUATIONS. II

Two-phase boundary value problem for the parabolic equations with two small
parameters at the principle terms in the boundary condition is studied in the
Hélder space. There is derived an estimate of the solution of the problem with
the constant independent on the small parameters, an estimate of the time
derivative of the solution at the small parameter in the boundary condition is
obtained.

Keywords: parabolic equation, small parameters in the boundary condition,
estimates of the solution, Hélder space.

1 STATEMENT OF THE PROBLEM. MAIN RESULTS

Let Dy == R* = {o : 2/ e R 2, <0}, Dy =R} = {x:2 €
R 2, >0}, n>2 R:={x:2 e R, =0}, Dyr:=D,x(0,T),
p=1,2, Rp:=Rx[0,T], x = (', 2,), ¥ = (21,...,Tpn_1)-

Consider the problem with the unknown functions vi(x,t) and va(x, t)

8tfu1 — aA’Ul =0in DlTy (1.1)

© G.I. Bizhanova, 2014.

Keywords: parabolic equation, small parameters in the boundary condition, estimates of
the solution, Hdélder space
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n
(’9,{02 — Z aij (’ﬁﬂjvg =01in DQT, (1.2)
ij=1
Uplt=o = 0in Dp, p = 1,2, (1.3)
<,U1 — ’U2>|mn:0 =0 on Ry, (1.4)

(e o1 + kdV vy — th'le)‘ = (a',t) on Ry, (1.5)

=0
where all coefficients are constant, a > 0, d = (d',dy), d = (dy,...,dn_1),
h= (W, hy), b = (h1,..., hn_1), VT =colon(d,,,...,0,,) — column-vector,
dh' = dihy + ...+ dphs, - scalar product, A = (’9%1 4+ 8§n7 oy = 0/0t,
Oy, = 0/0x;, Kk > 0 and £ > 0 — small parameters,

n
Qi = Gj4, i, j = 1,...,71, Z aij&fj > a0£2, £€ Rn7 ag = const > 0.
ij—1

This paper is a continuation of a previous one [1|, where there was
constructed the solution of the problem (1.1) — (1.5) in the explicit form, the
estimates of Green functions were derived. Now we shall obtain the estimates
of the solution with the constant independent on the small parameters x and &
(Theorem 1.1), the estimate of the time derivative € dyv1]s,—o in the boundary
condition (Theorem 1.2) in the Hélder space.

This model problem is on the basis of the establishment of the unique
solvability of the linear and free boundary problems for the parabolic equation
with two small parameters in the boundary condition. The Theorems 1.1 and
1.2 proved in this paper permit also to justify the convergence of the solution
of the perturbed problem to the solution of the unperturbed one, to obtain the
existence, uniqueness and estimates of the unperturbed problem without loss
of the smoothness of given functions.

We shall study the problem (1.1) — (1.5) in the Holder space C’i“’ 1Zrl/2(§T)7
[ — positive non-integer, of the functions u(z,t) with the norm [2]:

LS DI A D e
2mo+|m| <2+l 2mo+|m|=2+({]
mo om, (5%
+ Z [at am u]@QT s a=1— [l] < (07 1)7 (16)

2mo+|m|=1+({]
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16 G.I. Bizhanova

where Qp := Q x (0,7), Q is a domain in R”, n > 2, m = (mq,...,my), mi,
i =1,...,n, — non-negative integers, |[m| =my + ...+ my,

[v]q, = max |v, [’U]ng) = [U];ogT + [U]E%ﬁ)y

(x,H)EQ
() "U(LE,t) _,U(Zﬂf)‘ (o) "U(LE,t) _U(mytl)‘
[V, 0p, = max - , g, = max - .
: (z.b) () |T — 2] (2,0),(a,t1) €07 |t —t1]
024+, 14 /2

By C, (Qr) we designate the subset of the functions u(x,t) €
C2HE 2@y, such that 9Ful, =0, k= 0,...,1 1 [1/2].
The following lemma is valid.

obt/2 _
Lemma 1.1, [3] In €y 4 (Qr), | — positive non-integer, the norm |ulg, (2+)

defined by formula (1.6) is equivalent to the norm

{ _
lull) ~ sup ¢ 2(u(z, )]+
(z,8)€Qr

7T 7 772 77 <1+o¢>
oY Sl ey g, a=1- 1) (17)
2mo+|m|=2+({] 2mo+|m|=1+({]

(for [I] = 0 the last sum is omitted).
We formulate the main results of a present work.

THEOREM 1.1. Letd, >0, hy, >0, & €0, ro|, € € (0, ¢].
111
2,5 (Rr), | — positive non-integer, the
0 24L1H/2
problem (1.1) — (1.5) has a unique solution vy(x,t) €C, + (Dpr), D=
o 141, 1H
1,2, £01lg,—0 €C4 t (Rr) and it satisfies an estimate

ol
For every function p(x',t) € C,.

2
Z [up 510+ lednn |, < Caleplip, (1.8)

where a constant C1 does not depend on k and .

THEOREM 1.2. Let dp, > 0, hy, > 0, & € [0, ko], € € (0,0, I =k + «,
k=0,1,..., ae(0,1).
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Estimates of the solution to the singularly perturbed problem 17

o Lthta, 1Hhte
For every function p(x',t) €Cy ¢ (Rr) the time derivative

ed1(x,t)|z,—0 in the condition (1.5) of the problem (1.1) — (1.5) satisfies
an estimate

4
|€atv1|01+k+571i§ﬁ(}2 < C2€a/ |¢|C1+k+a71¢§ﬂ< )7 /8 S (0704/2), (19)

T) / ; (Br

z! t T

where a constant Cy s independent on k and .
In [1] under the conditions d, > 0, h, > 0, there was constructed the
solution of the problem (1.1) — (1.5) in the explicit form

1 t
= —/ dT/ ey, )G =y an, t —T)dy (1.10)
£ 0 Rnfl

where

¢
Gp(x,t)/ K, 0t — 0)do,
0
t K
Ki(x,0,t) —4a/ dﬂ/ 8mn1“1(x—n—gda,t—ﬁ)x
0 n—1

dn' =

aﬁkFQ(n + Tl)‘nnzo

¢ z—n—rdo/e)?
E/ / —Wn My Ao/ Cpederet
rr-1 (24/an(t — 1)) (t — 1)

a% (n;+hyo/e)(n; thio/e)
g/e 1 7.] 1 e 7
o/ m | dn, 2, <0, (1.11)

(21 JTTL)TL 4 /|An| =0

t
KQ(LE,(T,t) - —4&/ dTl/ (’9%1“1(77— ng,Tl)X
0 n—1

ho ;L

\/|A— Z aknamk F2

/ dTl/ Iian'/€ % mn_nn+hn0/€ %
rr—1 (2 /amm)” 7'1 (2/7(t — 7)) (t —71)
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18 G.I. Bizhanova

1 e‘EZFJJ”%77L5;§ﬂ”7W+%ﬂk)\ dif, wn >0 (1.12)
|An| Pn=0 9 " 9
where
Fi(x,t) = ée_él%, Loz, t) = #e_w (1.13)
(2Vamt)” (2V/mt)"

are the fundamental solutions of the equations (1.1), (1.2) respectively, | A,| > 0
— determinant of a matrix A,, = {a;;} a¥,i,§ =1,...,n, are the elements
of the inverse matrix A,

In [1] there was obtained also the following estimates of the kernels (1.11),
(1.12) for k € [0, ko], & € (0, €o] :

n
4,7=17

k am 1 _ﬁ_q%vz
|at am Kp(LE,O', t)| < CSNE e t 2t (114)
3
where - -
q% cohy o cohy

T2t 22t 2rold ) T T2
constant C3 does not depend on £ and k, constant ¢3 is from the estimates

1 2 22

|OFIT Ty, t)| < Cy e, p=1,2, ¢y = const > 0.
t

n+2k+|m|
2

2 Proor or THEOREM 1.1.

In [4, 5] there was considered the problem with the unknown functions
up(x,t) and us(x,t) satisfying zero initial data
Oyur — ap Aup = 01in Dyr, p = 1,2,

2.1
(g — u2)|w,—0 = 0, (23u1+bVTius — eV ug)|s,—0 = p(2,t) on Ry, 21

where a, >0, p=1,2, ¢ > 0is a small parameter.
For this problem the following theorem is valid [5].

THEOREM 2.1. Let b, >0, ¢, >0, 0 <& <¢gg.
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Estimates of the solution to the singularly perturbed problem 19

[e] l717+l
For every function o(x',t) € C, 2,5 (Rr), | — positive non-integer, the
o 24L14H/2
problem (2.1) has a unique solution uy(x,t) €C, + (Dpr), p = 1,2,

o 1+l717+l
g0y (a,t) €ECy Zt (Rr), and it satisfies the estimate

2
S w50 4 et < crlpla (2.2)
p=1
where a constant C'v does not depend on &.
The estimate (1.14) of the Green functions K, of the problem (1.1) — (1.5)
does not depend on k, the Green functions of the problem (2.1) satisfy the
same inequality [4, 5]. The theorem 2.1 for [ = « € (0,1) was proved in [4] by

direct evaluations of the norms |up|g:Ta) only with the help of the estimates

of the Green functions, the estimate of the norm |€8tu1|§;rl> follows from the
second boundary condition. Further, in [5] there was proved Theorem 2.1 for
any positive non—integer [ with the help of the estimetes derived in [4]. Thus,
Theorem 1.1 is valid and the constant € in the estimate (1.8) does not depend
on k and £.

3 PrROOF OF THEOREM 1.2

First, we prove the following lemma.

LEMMA 3.1. Let the conditions of the Theorem 1.2 be fulfilled.
Then the derivatives of the function 0w (x,t)|z,—0 from the condition
(1.5) of the problem (1.1) — (1.5) may be represented in the form

000 Dyvt|w,—0 — WV 1) + Wi (@ t) — WiV, 1), (3.1)
t T
W“)x',tf/dr/ d’/ By, T — 0) — Dy, 7)) x
17 (@ 1) - Rnilyo( (y ) = Os(y', 7)) (52)
xdVIK | (x —y 0, t —T) cla‘gcn:07
W<S>(£EI t)l/th/ dy’/T ((ID (,7—0)— Os(¢/ T))X
2 ’ g Jo Rn—1 0 ’ 7 (33)

xhVIKy(x —y 0.t —7) da‘m o
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20 G.I. Bizhanova

i
S / dT/ b DK@ — st —T)dy|, =
0 Rn—1 n=

t
E/ dT/ (I)(yl7t_7)K1(£E—ylyt_TrT)dyl‘z =0’
0 Rnfl "

Oy(2',t) = (’9?%27’@(:8',15), 2mo + |m/| = 8,8 = 0,1,2,... .k, 1+ k, k=
0,1, ....,m =(my,...,Mn_1).

Proof of Lemma 3.1. We differentiate the solution (see (1.10))

(3.4)

t
wat) =1/ [Ldr [ oW =nG@—yit-)dy.

t—7

Gp(m_ylyt_T) - Kp(m_yl707t_7_0)d07
0

of the problem (1.1) — (1.5) and after the substitution 7y = 7+ ¢ in the integral
with respect to 7 we obtain

oo vy (x, t) 1/8/ dT/ (’9m08, o, T)Gplx =yt —T)dy =

1/8/ ClT/ / T =—0)Ky(x =y 0t —7)do, p=1,2, (3.5)
Rn— 1

Oy(2!, 1) = AT (2, 1), 2mo + M| = s.
From the condition (1.5) we find

(3.6)

x,=0

MY Ovy| = B2 1) — (kdV T AT vy — RV T 05T v,
t x 2, =0

and applying formula (3.5) we represent the difference of the derivatives in
(3.6) in the form

_AVTOTOG vy — hNT IO v)| =
2n=0

= I, ), o+ W) - W@+ Wi, (3.7)
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21

here the functions W1<S> (', 1), W2<S> (2',t) are determined by the formulas (3.2),

(3.3),

t
(S>(w’,t)/d7/ Oy, 7)dy'x
0 Rr—1

o0 1
X / (gdngl(m - yI7 07t - T)_ghv£K2(m B yl7 07t N T)) ClO"xn:O;

i
I, 1) = /O dr /]R by,

o0 1
x / (CAVIKi@ 0.t =)= _hVIKa(e /0,1 = 7)) do.
0

We show that
I(LE, t) ‘mn:() - (I)S(ml7 t)y

then from (3.6), (3.7) the required formula (3.1) will follow.
Consider an integral (3.9). Let ®4(2/,¢) = 1, then

¢ o0
I(x,t) = / dT/ dy'/ EclVle(ac —y, ot —7)do—
0 Rl 0o €

/dT/ dy/ —hVKg:E—y o,t—71)do.
Rr—1

(3.8)

(3.9)

(3.10)

(3.11)

As in [1] we integrate (3.11) with respect to 4/, #', 71 and 7 applying the

formulas

__a® b2 atb)?
e 4(t—r1) 471 dTl — Me_ ( 4t)
243/2

/t ab
0 Ay/r(t— )32

[ s s = 2 [7 g e
- " oTAtm 7-—/ e~ =erfc——, a > 0,
0 2Tt —T7)3/2 N3 S5 2Vt

i _ |4yt &2
Saaeay o (y/pint Al
e 1 dﬁ' e n—1
Rnfl

V1421

, a>0,b>0,
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22 G.I. Bizhanova

where A~! is a matrix of (n — 1)-order obtained from a matrix A;', in which
the n—th line and n-th row are crossed out, |[A;1] = det A;! = 1/|A,|, then
we obtain

—anrndnUl/s hnag/s
koo [ Ve A
I(myt)‘mnzozgdvm 0 erfs 2\/% ‘01 =09=0 ‘mn:O_
rdno1 /5 Tnthnoa/e
1 >0 va Anll4, L]
_gth/O erfs 2\\? - ‘UliUindO-‘mn:O:
—zp+tkdpoy/e hnoo /e
20 Va Anl[4, L]
—/ Oy, erfs \/ ‘ o ‘ i
o 2\/% o1=03=0 rp,=0
Kdpot/e Tpthnoa/e
20 Ve Al
—/O Og,erfs W ‘Ul:czzgda‘znzo =
Kdpo /e hno/e
Vo lanliagt)
—erfs Wi do =erfc0=1 (3.12)

here d, > 0, h, > 0, erfs ( satisfies an estimate erfc { < \/§e_g2/27 ¢>0.

Thus, for ®s(2’,t) = 1 due to (3.6), (3.7), (3.12) the formula (3.1) is proved.
oa,a/2
Let ®4(2/, t) be the function from the Holder space C ¢« (Rr), a€(0,1).

We represent the potential I(x,t) determined by (3.9) as follows:
¢
[, t) — Ji(, 1) + Du(a, t)/ dT/ dy
0 Rn—1
= T ! 1 T !
X ( dv, Ki(x y,a,t—T)—gthKg(w—y,a,t—T)) do, (3.13)

e 1
(z,1) /dT/ Dy, 7) — Bs(a, 1)) dy'/ (ngle — gthKg) do,
R” 0
(3.14)
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Estimates of the solution to the singularly perturbed problem 23

where as it was proved for &, =1

/ dT/ / AV K, ——thK2 ydo|, =1, (3.15)
Rr— 1

that is the second term in the right — hand side of (3.13) goes to ®s(2/,t) as
T, — 0.
We show that Ji(x, )|z, —0 = 0. We can see that

/ EclVle(a@—y',a,t—T)dU—/ Oy, K1do,
0. ¢ 0 (3.16)

/ gthKg(w—y',a,t—T)dJ/ Opy Ko do,
0 0

here

t=7 — (z—y' —n—rdoq/e)?
/ dTl/ In bl ERG0VE I
rre-1 (2v/an(t—717 — 1)t — 7T — 1)

X} o1 e (ithioa/)(nythios/e)

n(72/€ 1 ,
o e 47 S Cl77 =
(21/7{-7-1) T1 «\/|A | 01”72072:70
b= —2y + Koy /e _mrdar/o?
= / dTl/ e datq X
rn-1 (2y/amTi)"1
hnoa/e

\/|A | (2y/7(t — T — 7)) (t—T—Tl)X

/
=0, nn=0, ) d 77

o] =09=0

(3.17)

_ XPm1aY @iy thioa/e) (@i -y thjoa/e)
X (e 4(t—7—71)

(in the last exponent we added variable x,, for the sake of convenience to do

not divide the sum ¥, ; = 377 2T Y+ X)),

/ dﬁ/ ﬁdnol/e % X — N + hnoa/c "
pn-1(2,/a7T1) ”7'1 Cyrt—T—m))"t—T —T1)
1 2 e b (w;—y;—mythiog/)(@j—yj—n;+hjo/e)
% e At—r—r1) o dy. (3.18)
|A | =0, yn=0,
T o] =09=0
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24 G.I. Bizhanova

Comparing the formulas (3.17) and (3.18) we can see that

(K1 = K2)|, =0, (3.19)
so due to (3.19), (3.16) we obtain formally
0 1 0o
/O (g deKl—gth[Q) e /O (=05, K1~ 85, K| 12y do =

— —/ (05, K1 + 05, K1) | 0y =0y=0, do = —/ O K1|, o do=0. (3.20)
0 0

zp,=0

We shall show that an integral Ji(x,t) (see (3.14)) converges uniformly
with respect to (x,t) € Dyp. Applying the inequalities (1.14) for K7y,

[P, 7) = (@, )] < [@,]55) (10 = y/| + (¢ = 7))

and , ,
€[e® < et /2, 4 >0, (3.21)
then integrating with respect to 9/ and o we derive
t / /e _ a2 I e T
_ t 9 _ 1
0 Rr—1 t — T 2 0

< e+ ) [0 [T oo @ o
— 28( +e )[ S]RT 0 (t_T)l—a/Q — 38[ S]RT :

Thus, in the integral Jy(xz,t) we can make use of the identity (3.20) and
for the integrals Jy, I determined by (3.13), (3.14), (3.15) we have got

Ji(z,t) = 0, I(x,t) — ®g(2',t) as 2, — 0

and from the formulas (3.7), (3.6) we obtain formula (3.1): 29,237 Oyv1,,—0 =
—WT @)+ W@l 1) — WP (@),

We transform the function W§S> (2',t) defined by (3.8). As it is seen from
the formulas (3.20), (3.19)

1
(BaviKi@—yf ot —7) = WV Ka(e — gt =) )],y =

=0
(3.22)

— _<801K1 + 802K1> — _aO'Kl

o1=09=0,
zp=0

?
=0
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Estimates of the solution to the singularly perturbed problem 25

moreover, function W§S> (2/,t) converges uniformly in Ry thanks to the density
®, satisfying an estimate |®4(y/,7)| < 7%/2 < ¢%/2, 5 € (1, 00), S0 we can write

t o0
Wi @' 1) = — /0 ir /Rnfbs@',r)dy’ / dok(x =y oyt —7)do|,

and after integrating with respect to o we shall have formula (3.4).

We point out that we could not apply formula (3.20) in (3.11) (in the case
®, = 1) because an integral (3.11) is a potential of double layer and it has a
jump as &, — 0. O

Proof of Theorem 2.2. Due to Lemma 1.1 we shall estimate the norm

||e0pv1]] Likip = sup ¢ ATEED 25,0+
TP Ry (o )eRy

S R 7 AT A S S S = At o NP e AR 23
2mo+|m/|=1+k 2mo+|m/|=1+k ( : )

mo gm’ 5 0 1 (50

+ ) [T ol 3

2mo+|m/|=k

where by Lemma 3.1 £9]°97 dp1ls,—0 = —W1<S>(x’,t) + W2<S>(:E’,t) -

W§S>(£El,t), potentials Wfﬁ are determined by the formulas (3.2) — (3.4),
s =2mg + |m/|.

The density in the potentials Wlss> is Dg(a!, 1) = 0O (2! 1), s = 2mo +

o Lthta, iHhte

m/|, ®o =@, t)eC »  (Br), k=201,...,and & k(2 1) €
o 0‘70‘/2 [e] 1+ 7%
Car t (RT)7 (I)k(ml7t) €Cy ¢ (RT)

For the function (a2, t) we have the following estimates:

1ta
|90(yl7 T = 0) - gp(y/ﬂ'” <Myo > ) k = 07
k—

|90(yl77 - 0) - gp(y/ﬂ-” < Mk ot é+a: k = 1727 R (324)

14k
1tkta [ ; ] (1+§+a_[1;k])

|90(yly7-)| SMer 20, My = [at Ple Ry

L k=0,1,....

The functions ®44, Py satisfy the inequalities

1 1ta—j

Drps (U, T < Nes 725 |Pag (0, 7= 0) = Doy (v, 7 < Neyyo 2,
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26 G.I. Bizhanova

; 14+a—j
Nevs = [0 ) 2 ), 2mo + I/ =k +j, j = 0,1, (3.25)

Comparing the functions W1<S> and W2<S> determined by the formulas (3.2),
(3.3) we can see that they are similar. So for definiteness, we shall estimate

the functions W1<S> both with ngS).

First, due to (3.23) we estimate modulo of 9v1|s,—o, that is |W1<O>| and
|W3§O)| with &g = .

Consider the potential W1<O>(:E’,t). Applying an estimate (1.14) for Ky,
(3.24) for ¢, using an inequalities ¢'/2 < 71/2 and

2.2 252
43¢ _ 937
o267 2 < C«a/2€a/27-0¢/4e 22(t—) | (3.26)

which follows from (3.21) and integrating with respect to ¢’ and ¢ we shall
have for £k =0

©) Rt T g —75502
W t)| < CyMp— d — e 2t do<
Wl < cont [Car [l H e <

t 1/2 T q%o2

RO 2 T —
< Cx M2/ / e / e 226 do <
<Cs Oe A (t—7)3/2_0‘/4 T A =

1/2 1+a/2

dT§C7Molio€a/2t 2,

t
a/2 T
< C6Mol€0€ /O (t — T)l—a/4

W@, 0] < CrMoroe®t 3 T4, Be (0,0/2), k—0.  (3.27)

For k = 1,2,..., taking into account (3.24), the estimates g'~®/2 < rl-o/2
and (3.26) we obtain

2.2

t k7§+°‘+1—a/2 T 930
WO ') < CeM, @80‘/2/ T—d / 26720 dg <
W7 (2't)] < Cy K ATy T] o 2 o<

k+1
2

t k+14a/2
< Cnglioé“am/ @:’W dr = 010Mk1€0€a/2t 2 ,
o _

E+148  a—28

|W1<O)(£El,t)<0)| < CroMproe®t 2 T3, Be(0,a/2), k=1,2,....
(3.28)
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Estimates of the solution to the singularly perturbed problem 27

The function W2<O> satisfies the same estimate as Wfo) (without ko).

Consider potential ngo) (2, t) defined by formula (3.4). With the help of
the estimates (1.14) for Ky, (3.24) for ¢ and integrating with respect to y' we
find

1+kto 2.2
2

i T a7
WO, o) goan/ t
0

e 27 dr.

-7
Applying the inequality (3.21) and integrating with respect to 7 we obtain

1+k

t —
W< Cnaner? [T < Cpane S, 320)
B € (0,0/2).
Gathering the estimates (3.27) — (3.29) we have got
1+k+5 Likto
e8| < Crat™ 2 [ply g2 22(1 + ko), B € (0,/2). (3.30)

Now we estimate the Holder constants in (3.23) with respect to t. We
compose the differences letting {1 <

Dy = WD @ ) = W@ 1), p=1,3, 5 =0,1,
Oj+a7j+Ta

with density ;€ C,, ; (Rr),j=0,1

We represent the potential Wfkﬂ ) in the form

t—7
W<k+] / dT/ 1 dy’ / (Ppps(f t—T7—0) — Py (¢t — 7)) X
Rn

xdVIK (x =y, 0,7) dg‘zn:m
then
P i , t—T7 , ,
Al,j—/dr/ dy/ (B s (st =7 — 0) = Bpoys (o1 — 7)) %
£ t1 Rn—1 0
deTKl(:E—y o, T) da‘

m*O

t1
/ dT/ dy/ (Ppys(y, t—7—0)— <I>k+j(y',t—7))dVTK1 da‘ ot
Rn—1 ¢
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i t1—T
+f/ dr/ dy’/ At 0)dVIK (Vo] (3.31)
3 t Rn-1 0 n—

where
Al,j = Opy (Y t—T—0) = Pp (Y, t—T) =P (v, 1 =T —0) + Py (v 1 —7),

Doy = Wé’““’) @) = Wil 1) =

/ dT/ Pt =K —y' t —7,7) |wn—ody'+

i1 n—1

+/ dr 1A2](y Lt VK1 (2 =yt — 7, 7) |, —o0dy +
Rn

t1
/dﬂ/ ClT/ (IDkJr] y 1 — )871K1(x y T — )|mn:odyl, (3.32)
i1 n—1

where AQJ' = Op (v, — 7;) — <I>k~+j(y’,t1 — 7). '
We evaluate |A1 | = |A1 ;]| A14]17%. Letting 6 = 1;:%2_;], j=0,1, and
applying an inequality (3.25) for ®;; we have got

IASWIES
= [(Prys; (Y, t—T—0)=Pp (v, t1—T—0) )+ (Lo (v, 61 —T) —Piy (v, £—7)) 7%
|q)k+j(yl7t_T_U)_(I)k+j(yl7t_7)>+<q)k+j(yl7tl_T)_quJrj(ylyt1_7_0)>|1_0 <

1+a—j 1+a—j

< C15(Niy (t — 1) 2 >0<Nk+j0 2 )1 0—015Nk+](t—t1)

1+o¢/2 7 O_a/4

(3.33)
here t1 <t, ¢ > 0.
Consider the difference (3.31). Applying an estimate (1.14) for K, (3.25)
for ®;, and (3.33) and integrating with respect to 3 we shall have

1+o¢ 7

t—1 q%o
|A1J| <016Nk+] / ClT/ &2 Cl0'+

1 t—TO.Haf/ij O.1+a/4 W%U +a/2 Gt 11—, a/4 q2
+/o dT/ 2, do+(t—t1) / / 7_3/2 da)

t1—7
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. . 1ta/2—j 1 a/2 .
We make use the inequality o e < (t—r7) <(t—t) P

the first integral and (3.26) in all ones and integrate with respect to o,

1+a/2—
2

.ot
1ta/2—j dr
1A < 017Nk+moe“/4((t —t) e Am*

bodr T ite Lta/2-] b dr
—14 . 1to/2mg
+€/O 77'1_0‘/8/13_70 do+(t t1) /o 77.1—04/8)7

1A = WD @y — w4 <

/2-i
< C'18Nk+j/io€a/4(t —11) e (ta/8 + ta/4) <

< ChoNg jh0e® (t — 1) 5537 (1078 + /)
e (k)7 (H50) Lp=d
Wi g2 = max Ayt —t]T 2T <

(z,8),(x,t1)ERT

(5579

< 020ﬁ0€a/4 [8m08m ]t o ,

(3.34)

where 2mg + |m/| = k+j, f € (0,/2), 7 = 0,1, Ay = Wfkﬂ)(:v’,t) -
W1<k+])(m/7t1) ' '
Potential Wékﬂ ) satisfies the same estimate as Wfkﬂ ) (without ko).

Consider the difference Ag; determined by (3.32), where Ay, =
Qpy (Yt —7) — Ppy5 (Y, t1 — 7) satisfies an estimate

1+o¢/2 7

Al = Do) Aa P70 < Cot Nipy (¢ — t) (t — )/, (3.35)

0=l g <t =0,

Now as above we apply the estimates (3.25) for ®5;, (1.14) for the kernel
K1, (3.35) and integrating with respect to ¢’ we shall have

t 1+a—j 3
t—7 2 qg(t T)
|A27j| < 022Nk+j</ 7( ) e dr+

t1 T

-7

_i [t a/4 trz 1 _ 2(r—7)2

1+a/2 t— g ( ) t 7- 2 g3 (m1—7)

+(t—t1) 2 ]/ ( 7) : d7+/d71/ ! = e dT).
0 T i1 T
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In the first and last integrals we make use of the estimates

1+a—3 1+a/2—73

(t—7)" 2 <(t—t) 2 (-7 1e(t,t),

lta—j lta—j (11 — 7)1 Fo/4 (ry — 7)1 Fe/4
(tl - T) 2 < (Tl - T) 2 < 1fa/2—5 — 1+a/2—5°?
|- tre/2=g |- te/2=i
(11 —7) 2 (11 —11) 2

71 € (t1,t), 7 € (0,t1) respectively, and in all integrals an inequality (3.26),
then we obtain

|A27j| < 023Nk+j (2(t - tl) 2 - e 2 drt

¢ d 1 _ A\ 1+a/2 a3 —)°
T T —T _1n
Jr/ : 1a/2—; / n 332 e dT) =
1 (7'1 — tl)l_ ) 0 T

w/o /4 1ha/2—4 L dr b dr
< CouNiy (82 + ) (L —11) </o 1—a/8 Jr8/0 Tl—a/4) =

1t+a/2—j /t (t—T)O‘/4 _a3-1)?
a1

1+a/2—j

B—j a/2-8
< CosNig 24— 1)) 8 1B 21/8) < Coge®/ANjy s (t—t) 5 175,
(g 1485
gy ek (5 Ao llg g~ <
[ 3 ]t,RT (I,7t>7gf?§>eRT| 2,4 1] <
/ 14+a—j3
< e/t [ofoat o] 2, (3.36)

where 8 € 0,a/2), 2mo +|m/| = k+j, j = 0,1, Dg; = Wékﬂ)(:v’,t) -
W§k+]>(mlyt1)-
Now we evaluate the Holder constants of the potentials W;SHIC) P

1,3 with respect to the spatial variables 2’ with the density ®1x(2/,t) €
oa,a/2
C, ¢+ (Rr). For this we compose the differences with r = |2/ — 2/|

Dy = WM @) - W)

o=

t T
/ dT/ dy'/ (P11x(y . T—0) = @1y, 7)) (A} — dndy, ) x
0 ly/—z/|<2r 0

do+  (3.37)

X (Kl(ml - yI7 Yn, 0,1 — T) - Kl(zl - yl7yn7 o,t— T)) ‘yn:()
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t 1n 1
K
+—/ dT/ dy'/ (@Hk(y T—0)— O 0, 7) / Ty — Zy) X
£ Jo ly! =2 |>2r 0

Xy, (dV = dny, ) K1(Z' =y + N2 — 2), yn, 0,8 — 7) \yn:o d\do,

here we have used an identity for convenience

dval(ml_ylymm Ot =T)|zp=0 = _(dlvg_dnayn)Kl(ml_yly Yny 03 t—=T) |y =0,
Dy = WM @ty - Wit

i
/dT/ <I>1+k(y’ﬁ)(K1(w’—y’, Yn, 0, t=T) =K1 (2" =9/, yn, 0, t—T))\
0

dy'—
ly'—z'|<2r

Yn =0

1n 1
/ dT/ Oy p(y, T / v — Zy) X (3.38)
' —z|<2r

XayuKl(Zl _yl+)\(ml _ZI)7y’fl70—7t—T)‘ d)‘dyly

yn=0 ‘yn:O
in both differences we have applied the formula

Ki(@' — o, xn, ’)‘zn:O — K12~y 2, ,)‘ano =
1n 1
/ v — 20y, Ki(Z =y + A& = 2), yn, ~)‘yn:0 dA

and rename x, by yn, for the convenience.

Consider Ag defined by (3.37). We apply the inequalities (1.14) to Kj,
(3.25) for @k, pass to the spherical coordinates letting p = |2/ — /|, p =
|2/ — /| and p = |2/ —y' + A2’ — 2')| in the first, second and third integrals
respectively, then we obtain

2 2.2

t 3r 2r T a/2 qu 2o
/\ k -2 g 1 _727
| 3| S C28N1+k_ dT( + )pn dp 777%6 t—7  e2(t—7) do.
“\Jo 0 0 o (t—7)2

t o0 T O.a/2 _q%p2 _ q%o2
+r / dT/ pre dp/ e 7 e da) .
0 r 0o (t—71) 2
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We make use of the estimates

pn_“‘_ﬁ _qar
——— ¢ 7 < Cy, BE(0,0/2), u=

n—p—_3

1,0, (3.39)

(t—7) 2
in the two first integrals with 4 = 1 and in the last one with x = 0 and also

(3.26) and integrate with respect to ¢, then we obtain

3r 2r
oy ([ [ )i

|A3| < CgoNlJrklioé“ a/2 /

+r / ptP dﬂ) < Oy Ny yprioe® 2 18 v = |a |, B€(0,a/2)
and
(1+k7(8) | Az aj2[qm (a/2)
L B T s S Ciatos oo o]0, (3.40)

GRS TS C))
W<1+k)(z’,t) is estimated as Az and

where 2mg + |m/| = 1 +k, A3 :
2

The difference W2<1+k) (2, t)

subjected to the inequality (3.40) (without rq)
We evaluate the difference Ay (see (3.38)) with the help of the estimates

(1.14), (3.25), (3.21), (3.39)

2 3r 2r _gip”
— dT(/ +/ )p”_Qe TS0 dpt
0 0

¢
| A4 §033N1+k</ D
0o (t—71) 2

i Ta/2 [e 0] 5 _q%pz_ q%rz
0o (t—71) 2 r

< Clgg Ny 2/ %2 7"5 Be(0,a/2), r=|2" —72|,
A o
»B max | 4| < 035I€0€a/2 [amoam ]EP{2) (341)

(1K)
s Jorir = (@ 0),(=" ) eRy 2! — 2|
— W@ ) - W ).

here 2mo + |m/| =1+ k, B €(0,0/2), Ly := W,
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Remembering that 3,007 d1]e,—0 = — 1<S> (@', t) + W2<S>(£El,t) +
W§S>(£El,t), s = 2mg + |m/|, in the norm (3.23) of the derivative £0,v1|y, -0
we apply obtained estimates (3.30), (3.34), (3.36), (3.40), (3.41) of the modulo
|edyvi| and the Holder constants

(W)y [W(k+j)](1+§*f)y [WfHk)}(ﬁ) [WélJrk)}(/B)

(k+7)
[Wl ] t,Rr 3 t,Rr xRy’ xRt

respectively, then we shall have

000l s rsges S Cuole/ o 07%) (14 o)

! + RT)

’ / 14a
(S e Y amardle)),
2mo+|m/|=1+k 2mo+|m/|=k

and

CZTINPRTER Care®/ (1 + ro)lpl ™, B € (0,0/2),

z! t RT

where the constant C's7 is independent on £ and x. This is an estimate (1.9)
Theorem 1.2 is proved completely. ]
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Buxkanosa I". [TAPABOJIAJIBIK TEHAEVJIEP YIIIH EKI®A3AJIBI
CUHTVJIAPIBI KOBAJIZKBITAH ECEIITIH, IIEIIIMIHIH, BATAJIAY-
JIAPBHI. 11

lenbnep xeHicTirivge mekapasbik, maprTarbl 6ac myienepingeri exi kirmi
napamMeTpJiepi 6ap napaboJasibIK TEHAEYIED YINiH ChI3bIKTAH/ LI PBIIFaH eKia-
3aJbl MeTTIK ecen 3eprrenineni. Kimi nmapamerpaepnen Toyencis TYPaAKTHICH
Oap ecenTiH mermiMiHiH Oafaiaybl aJabIHJIbI, TEKAPAJILIK, [MAPTTAFbl Killli napa-
MeTPJEri MENTMHIH yaKbIT OOUBIHINA TYBIHIBICHIHBIH Oafajiaybl TaraiibiH/a -

Bl

Buskanosa I'M. OUEHKW PEIHEHUYA JIBYX®A3HOWU CUHIYJIAP-
HO BO3MYIIEHHOW 3AJAYN AJId ITAPABOJIMYECKINX YPABHE-
HU. 11

Nzyuaerca neyxdasHas kpaesas 3a7a4a Jjisi MapaboniecKux ypaBHEH I
C ABYMs MaJIbIMU TapaMeTpaMn IIpu CTapmnx 4jeHax B I'PaAaHUYHOM YCJIOBUN
B mpocTpancTee enbaepa. [lonyuena onenka permenus 3aa49u ¢ KOHCTAHTOMH,
He 3aBUCAIIEN OT MaJILIX MapaMeTpoB, YCTAHOBJIEHA OIIEHKA MPOM3BOIHON 1O
BpEMEHU DEIEHUs PN MaJIOM TlapaMeTpE B 'DAaHUYHOM YCJIOBUU.
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BBEIEHUE

Ha cerogusamunit seqs 00mMenpusHano, IT0 OCHOBHBIM WHCTPYMEHTOM aHa-
JIN38, TETT0-MaCCOOOMEHHBIX MPOIIECCOB SIBMISIETCST MATEMATHIECKOE MOIETPO-
Banue. llepeHoc memnsa, Macchl BEMECTBa, HEHTPOHOB W APYTUX CyOCTAHIIMI
OTUCHLIBAETCS YPABHEHUSIMA B YACTHBIX MPOUZBOIHLIX. DTH YDPABHEHWsT COB-
MECTHO € JOTOTHUTENHHBIMIA YCJIOBHIMH JIOKAJU3ZAIAN SIBJICHUST WJIH TTPOTIECCa
Ha TMPOCTPAHCTBEHHO - BPEMEHHBIX I'DAHUIAX 06aCTH (KPAEBBIMH YCJIOBHsI-
M) 0TOOPAXKAIOT B AHATUTHYIECKOH (hOPME M3YUIAEMBIil MTPOTECC U SABJISIIOTCS
MATEMATHYIECKUMI MOJIEISIMHI TIOCTABICHHBIX 3a/1a4. Peanusarust Mozenn (MH-
TErpUPOBAHUE COOTBETCTBYIONINX YPABHEHHIT) TO3BOJSIET MOJYIUTh KAPTHHY
pacrpenenenusi MOTEHIMAIO0B Teperoca. [loayuennbie MO U WX PeeHnst
JIATOT BO3MOXKHOCTH HAMOOJIEe TPOCTO YCTAHOBUTH BJAMSHHE KAK OTAETBHBIX
napaMeTpoB, TaK M UX KOMILJIEKCOB (KPUTEPUEB) HA XOJ MPOIECcca W Ha ITOi
OCHOBE Pa3paboTaTh WHIKEHEPHBIE METOIBI PACTETa U OTTHMHUZAITHH TTPOTIECCOB.

B nacrosimiee Bpemst Bce 60J1bINee 3HAYEHKE TPHOOPETAIOT pa3paboTKu, CBsi-
3aHHBIE C CO3JAHUEM BBICOKOID(MEKTHBHBIX TEXHOJIOTHI, ¢ HHTeHCH(DUKAIHEH
JIEHCTBYIOMX MPOW3BOJICTE MPH OJIHOBPEMEHHOM PEMeHNH 38,181 M0 TOBLITIe-
HUIO KATYeCTBEHHBIX XapPaKTEePUCTHK MPOU3BOINMBIX MaTepuanos. Hampuwmep,
OJTHAM M3 TAKWX HAIPABIEHNH, MTO3BONSIOMIX HHTEHCH(PUINPOBATH TPONIBO/I-
CTBEHHBIE MPOIECCHI, CHU3HTH SHEPTO3ATPATHI, SIBISIETCS CO3MAHNE YKOHOMH Y-
HBIX TG Y3UOHHBIX (TEMI0-MacCOOOMEHHBIX ) ANMapaToB U ONpENeTeHNe Pe-
JKUMOB X paboThl. Takue anmapaThl TPUMEHSTIOTCS B ABHAITHOHHOM W KOCMUe-
CKOU TEXHUKE, SHEPreTHKe XUMUYecKoil, HedprenepepabaThiBaIOIIEH, THITIEBO
MPOMBITIIIEHOCTH, B XOJOIAIBHON W KPHOTEHHOH TEXHHKE, B CHCTEMAX OTOTI-
JIEHWsT W TOPSIero BOAOCHADKEHWS, KOHINITNOHHPOBAHNSI, B PA3NUTHBIX Tell-
JOBBIX gpurarensx. C POCTOM SHEPTETHYIECKUX MOIMHOCTEH W o6hema Mpons-
BOJICTRA, BCe HOJTee YBENNINBAIOTCS MaCcca U rabapuThl TPUMEHIEMBIX TETI000-
MEHHBIX anmapaToB. Ha WX Mpou3BOICTBO PACXOIYETCST OTPOMHOE KOJMIECTRO
JIETUPOBAHHBIX 1 TIBETHBIX METAJIIOB. Y MEHBITIEHNE MACCHI 1 TADAPUTOR TETLIO-
0OMEHHBIX ANNapaToB SABJISETCH aKTyaJbHOU 1pobemMoil, a Haubojee neperek-
TUBHBIM TIYTEM DEMIEHUsT 3TOH TPOGIEeMbI SIBISIETCST MHTEHCH(OUKAINS TETLI0-
obmena. Hanbomee mepcreKTUBHBIME MATEPUATAMHE, TIO3BOJSIOMUMIA WHTEHCH-
GUNHUPOBATH TEMIOOTAAYY B JECATKH Pa3, SIBJSIIOTCS MOPHUCTHIE MATEPHUATIL.
Kpowme Toro, Takne MOPHUCThIE MATEPHUANBI, KAK TTEHOMETAJJIBI, OTHOCATITHECS K
CPaBHUTENHLHO HOBOMY KJIACCY KOHCTPYKITMOHHBIX MATEPHUAJIOR, COYETAIOT B Ce-
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0€ BBICOKYIO YKECTKOCTb, MAJIbIil YJEIbHBINA BEC U HU3KYIO TEIJIOIPOBOTHOCTD.
DT0 MO3BOJISIET MPUMEHSATh X KAK YTEIIATEH U 3BYKOU30IATOPHI (31€Ch HC-
MOJIB3YETCsT UX CBOICTBO TACHTH BOJIHBI), B KAYECTBE 3AMOJHUTENEH B TOHKO-
CTEHHBIX 0aJIKaX JJisd OMOPHBIX WHIYCTPHAJbHBIX KOHCTPYKIIMI KaK yJIapo3a-
MATAIONTHE KOHCTPYKITHH.

st mocTpoeHnsi HOBBIX TEXHOJIOTHI, CBA3aHHbIX C J1u(Dy3MOHHBIME TTPO-
[ECCAMHU, OKA3BIBAETCS HEODXOIUMBIM PEIIEHUE 33/1a91 O BOCCTAHOBJICHUN I1a-
PaAMETPOB, XapaKTEPU3YIOIIHX CBONCTBA MaTEpUAJIa WM IPOIECCa, HEODXOIH-
MBIX JIJIst TOJIyYeHus (PUHAJIBHOTO COCTOSIHMS 38 KOHEYHBIH TPOMEXKYTOK Bpe-
MeHu. Takue MaTeMaTHnyeCcKue 38491 HA3bIBAIOTCS ODPATHBIMY 33/189aMK TE€O-
pUH HAYAJIBHO-KPAEBBIX 3314 JJid YPABHEHHUI B YaCTHBIX MPOU3BO/HBIX.

B pabore paccmarpuBaeTcs OJHO CEMEHCTBO 3814, MOJAETUPYIOMUX 1PO-
[ECC SKCTPArHPOBAHUS U3 TBEPJABIX IMOJHIUCIEPCHBIX IMOPUCTHIX MATEPUAJIOB
10 33JAHHBIM HAYAJTBHOMY W KOHEYHOMY (¥KejgaeMoMy) cocrostHuio. Ilpm mx
MaTeMATHYECKOH (GOPMYINPOBKE BO3HUKAET 00paTHas 3aa4a JjIsd ypPaBHEHUS
gudbdysuu, B KOTOPOil BMeECTE ¢ PeIeHHeM YpaBHeHusi Tpebyercd HalTH u
HEH3BECTHYIO ITPABYIO YaCTh, 3ABUCSINYIO TOJHKO OT MPOCTPAHCTBEHHOM epe-
venuoi. Crenndukoil paccMaTpUBAEMOro CeMeicTBa 34084 SIBJISIETCS TO, ITO
cucreMa cOOCTBEHHBIX (DYHKIHI onepaTopa KparHoro guddepeHnupobanus,
MOYMHEHHOTO KPAEBbIM YCJIOBHsIM HUCXOJHOM 3a1a4u, He 00/Ia/laeT CBOHCTBOM
0a3UCHOCTH.

MaremMaruieckoMy MOAEJIUPOBAHUIO HECTAIMOHAPHBIX AU DY3HOHHBIX
MPOIIECCOB Ha OCHOBE 0OPATHBIX 33124 HA CErOJIHSINTHUI JIEHb TOCBAIIEHO 00JIh-
IMI0€ KOJIMYECTBO HAYyYHBIX PaboOT M MaATEMATHKOB H TEXHOJOIOB. BOIpPOCh
PA3pENIUMOCTH PA3JIMYHBIX 0OPATHBIX 33184 JJisd 1apaboJIniecKuX ypaBHEHU
M3ydaJnCch BO MHOTHX paborax (cM., Hampumep, [1-8]). B orandaue or npemsi-
Jymux paboT, HaMu Hcceyercss obpaTHas 3a/1a49a JiJisi YPaBHEHUS TEILIONPO-
BOJIHOCTH C KPAEBBIMHU YCJIOBUSAMH 110 TPOCTPAHCTBEHHON TEPEMEHHOI, TP KO-
TOPBIX COOTBETCTBYIOIIAs CIEKTPaIbHASA 330242 /st OOBIKHOBEHHOTO judde-
PEHITMATBLHOTO OIIEPATOPa UMEET CUCTEMY COOCTBEHHBIX (DYHKIMMH, He 00pa3y-
oyt 6asuc. Haubosiee OJIM3KUMH K TEMATHKE HACTOSINEH CTATHU ABJISIOTCS
Hamm padorsr [9-11].

1 ITOCTAHOBKA 3AJIAYU

B obmactu 2 = {(x,1) : 0 <2 <1, 0 <t < T} paccmoTpuMm 3a7a4y 0O
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HAXOXKJeHN N TpaBoil wactu f(x) ypasuenus nuddysznn

ur(, 1) — e (2, 1) = f(2) (1)

u ero permenusi 4(x, t), yIOBIETBOPSIOMET0 HAYATBHOMY U KOHEIHOMY YCJIOBHU-
AaAM

u(x,0) = p(x), wlxe,T)=v(r), 0<x<1, (2)

" KpaeBbIM YCJOBUAM
Ue(0,1) = ur(1, 1) + au(l,t), u(0,t)=0, 0<t<T. (3)

[Tapamerp o — J110060€ TOMOKUTENBHOE TUCTO, & Y(x) 1 Y(xr) — 3amaHHbIE
dyukmuu. Ilpu o = 0 Kpaesbie ycmoBus (3) XOPOIMIO M3BECTHBI U HOCAT B
nureparype nassanue ycaosuii Camapekoro-Moukuna.

B uccnenyemoit Hamu Momenu ypasaenue (1) o3Hadaer GAJAHC MACCHI B
MHUKPOTIOPax (B 6e3pasMepHBIX MEPEMEHHBIX JTMHA MHKPOIOPHI B3sTa PaBHOI
eIMHUTIE), 8 KpaeBble yeoBus (3) COOTBETCTBYIOT MEPEXOIY HKCTPATHPYEMOro
[EJIEBOI0 KOMIIOHEHTA, Ha CIEAYIONYIO CTa (110, BTopoe 13 rpaHindHbIX YCIOBH
(3) MOmenupyeT B3aMMOCBA3bL KOHIEHTPAIUIT [€JIEBOr0 KOMIIOHEHTA Ha TPAHHU-
ax Makpo - M MHUKPOmop vactuil. HavanbHble n KOHEUHBIE yCaoBHs (2) MO-
JIEJTUPYIOT HAYAIBLHOE COCTOAHNE (KOJMYECTBO [EJIEBOH KOMIIOHEHTHI B HAUAJIE
nporiecca) u (pUHATBHOE (JKEIaeM0oe) COCTOsTHNE - (DIHATBHYIO KOHIIEHTPAIIHIO
HeJEBOM KOMIIOHEHTHI. B KadecTBe ylpaBjeHus BhIOUPAETCH BHEITHEE BO3/IEii-
CTBHE, KOTOPOE€ HE 3aBHCHUT OT BPEMEHH N MOXKET H3MEHATLCA B IIPOCTPaH-
CTBEHHLIX KOODAIWHaTaX. B peayIbHBIX 3aJa49aX TaKOe BOSﬂeﬁCTBHe OIINChIBaCT
BJIMSIHUE [TPOIECCOB B MAKPOIOPE HA MPOIECCH B MUKPOIOPaX.

B pabore npeapuiynux aBTopos obparHas 3a1ada (¢ IMPOCTBIMU KPAEBbI-
MH YCJIOBHSIME) PEMaeTcss 9ucjaeHHo MeronoMm Byouosa-lanepkuua. OmHako
YIa4HOE MPUMEHEHHE 3TOrO METO/A 3aBUCUT OT BLIOOpPA GA3MCHLIX PEIIeHuil,
KOTODbBIE OIIPEAC/IAIOTCA I'DaHNYHLIMU YCJIOBUAMU. HpI/I IPaHUYHBIX YCJIOBUAX
(3), a TaKKe BXOMHBIX MAPAMETPAX BO3HUKAECT HEOOXOIMMOCTE BHIOOPA HOBOTO
Oazmca. A 1715 387189 ¢ HEYCUIEHHO PETYISIPHBIMA KPAEBBIMH YCJIOBUSIME TAKOE
BO3MOKHO HE BCErjia.

ITpumenenne meroga Pypre s pemenns 3ama4n (1)—(3) TpUBOANT K CrieK-
TpaJibHOU 3aja4e jijisi oneparopa [, 3anannoro guddepeHnuaabHbIM BbIpaX<e-
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HUEM U KPDaCBBIMU YyCJIOBUAMU

Wy) = —y'(x) = Myl(z), O0<az<l,
¥ (0) = /(1) + ay(1), y(0) = 0.

Kpaesbie ycioBus B (4) aBISIOTCS PETYASAPHBIMI, HO HE YCHIEHHO PETY/ISPHBI-
v [12]. Cucrema KOpHEBBIX (BYHKIMIT omepaTopa | sBIsieTcst MOJTHO CHCTEMOIH,
HO He obpasyer maxe obbraHoro 6azuca B Lo(0,1) [13]. Ognako, kKak mokasa-
HO B [14], HAa ocHOBE 3THX COOCTBEHHBIX (DYHKIMI MOXKET OBITH MOCTPOEH Oa-
3HC, MO3BOJISIONINIT TPUMEHUTH METOJ] PA3IEICHNsT MEPEMEHHBIX JJIsi PEITeHMsT
HAYATBHO-KPAEBOIl 3371891 ¢ KPACBBIM yCIOBHEM (3).

B [7-8] paccMOTpeHBI TpU 9aCTHBIX Ciydasi 00paTHoil 3a1a4au (1)—(2), korma
KPAEBbIE YCJIOBHsI SIBJISIIOTCS HEYCUICHHO PErYJIsIPHBIMEU — CJIydail mepruoande-
CKUX KPAEBBIX YCJIOBUIl U cjrydaii yemosuit Tuma Camapekoro-Monkuna (Kpae-
Bhie yeaoBus (3) npu o = 0). OZHAKO METOANKA MCCIEIOBAHNS YTHX 3324 He
MOXKeT OBITH aBTOMATHYECKH MEPEHECEHA HA 33Ja9M ¢ KPAECBBIMU YCJIOBHSIME
(3) mpu r #£ 0. DT0 CBAZAHO ¢ CYMECTBEHHBIM UCTIOIb30BaHNEM B [7-8] Hasuc-
HOCTH CHCTEMBI COOCTBEHHBIX U MPUCOEINHEHHBIX (DYHKIHI COOTBETCTBYIOMIEH
CIEKTPANBHOIN 387890 it onepaTtopa KparHoro auddepeniuposanns. B Ha-
crosmeil paboTe MpeaIaraeTcs HCMoIb30BaHNEe METOAUKN paboThl [14] st pe-
menns obparHoif 3ama4n (1)—(3). Ormernm, 9To B Hamux paborax [9-11] 6pura
HCIOIH30BAHA HECKOJIBKO HHAS METOAMKA M MOJYYEHBI OJU3KHE 10 COAEpIKa-
HUIO PE3YIbTATHI.

(4)

2 TIOCTPOEHUE BA3BUCA M3 COBCTBEHHBIX ®YHKIIMN 3A1AUMN (4)

B sTOM myHKTe mpuBeneM HeoOXOANMBIE HAM /Il JaJbHEIel paboTsl pe-
gyabrarsl u3 [14|. CrnexkrpanbHas 3amada (4) nmeer nBe cepun cOOCTBEHHBIX
SHAYEHnI

AV = @rk)? k=12, AP =(280)% k=0,1,2,....
Baeck S — KopHU ypasuenus tg 8 = /23, > 0, oHu yIOBIETBOPSIOT HEPa-
BerctBaM Tk < B < wk+ /2, k =0,1,2,..., u aag paswoctu d = B — 7k
IIpu 10CTaTOYIHO 6OJ'H>H_H/IX k] BBIMMOJIHAIOTCA ABYCTOPDOHHUE OHECHKN
« 1 « 1
—(l—— )<l <—{1+—]. )
2rk < 27rk:> M ork < + 27rk:> (5)
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Cobcreennble (GpyHKINN 3a7a490 (4) IMEOT BH/
MWy g _ 2y o _
Y, (x) =sin27kx, k=1,2,..., 1y, (z)=sin2fx, k=0,1,2,....

DTa cuCcTEMA SBJISETCS MOYTH HOPMUPOBAHHOI, HO He 00pa3yeT Jlazke 0OBIYHOTO
basuca B L2(0,1). TlocTpoerHast u3 Hee BCIIOMOTATE/IbHAS CHCTEMA

yo(@) = y§7 (@) (260) 7", yar(@) =y (@),

yora(@) = (37 @) = @) 2607 k=12,

obpazyer Haszuc Pucca B Ly(0, 1), a GHOPTOroHANBHOMN K HEll SIBISIETCST CHCTEMA
vo(x) = 2601}(()2) (x), vor(x) = U,f) (r) + ’U,iD (),

’U2]€_1($) - 26kU§€2)($), k= 17 27 R

MIOCTPOEHHAS M3 COOCTBEHHBIX (DYHKINI COMpsyKeHHoi K (4) 3a1a9n
'u,il)(x) = C,i1> cos(2rkx + ), k=1,2,...,

v,f)(:v) = 0,22) cos(Br(1 —22)), k=0,1,2,....
KoncranTer C’,ij ) BBIOMPAIOTCsT 13 COOTHOIEHUS OUOPTOTOHAIBHOCTH
o) =1, j=1,2.
Ecin y(x) € C2?[0,1] u ynosnersopsier KpaeBbiM yeiosuam (4), To ee ps
Dypee o cucreme {yg(r)} cxomurest abCOTIOTHO.
HerpynHo BBIMHCINTD, 9TO

v (@) = =27wo@), v (@) = AV yar(@),

ygk—l(m) = —A§€2)y2k—1($) -
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3 TIOCTPOEHUE ®OPMAJILHOI'O PEIIEHUS 3A0AYN (1)—(3)

Kak cnenyer u3 pasgena 2, moboe pemenne u(z,t), f(x) zanasn (1)-(3)
IIpeacTaBuUMO B BHIE 6I/IOpTOFOHaJH)H])IX PAO0B!

ulwst) = S untu@), @) =3 fana), (7)
k=0 k=0

rae u(t) = (u(@, 1), ve(@)), fr = (f(2), vp(2)).

Ioncrasnsis (7) B ypaBrenue (1), B HAYaNbHBIE 0 KOHEUHBIE yCa0Bud (2), €
yaeTom (6), 1t HAXOXKIeHUsT HeU3BECTHBIX (hYHKIHI Uk (1) 1 KoabDDUIIeHTOB
[k TOMyHaeM cleayrome 3a,1a4n:

() + A uo(t) = fo, uo(0) = o, uo(T) = o (8)

b1 (1) + A§€2)U2k—1(t) = for—1, u2k—1(0) = wor—1, uok—1(1) = Yor—1; (9)

A2 M
() + A Ui (t) = 2 25, E o1 (8) + for, t2k(0) = ok, t(T) = o,
(10)
rae g, Y — Koxpdunnenter Oypre paznoxkenusi Gynkumit o(r) u ()
B OGuoproromanpubii psag no cucreMe {yp(x)}: v = (o(x),vr(x)), Yp =

((@), vi(w)).-
Permenne 3a1a4 (8) u (9) cymecTByer, eIHHCTBEHHO U MOYKET OBITH BBITH-
CaHO B BHOM BHUJIE:

YN 1= et O
uo(t) = e~ "o + /\(2)T<0—€ 0 900)7
— 0
AP @
Jo= 07 O_A@)T (1/10 — e TSOO) ;
— 0
‘ R (1)
NG —e % @
Ugp—1(t) = €M oo 1+ — . (1/J2k—1 — e T902k—1) )
1— e—)xk T
AZ @
Jak—1 = ﬁ (1/1%—1 —e M T902k—1) s k=1,2,....
— 6_ k
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Ioncrasnsis naiinennsle ¢yukium (11) B npaByio dacts ypasHenuit (10), mo-
ayguM, 970 331492 (10) TakKe NMeeT eNHCTBEHHOE DEIeHre, i OHO 3aIHChI-
BAETCS B BH/JE

E\COM 1 et et oAt
Uni(t) = €™ "o + I Par—1+
AL 20y,
| Y1 e Ty { R e e_Aél)t}
\E) o ’
1—eM'T 26} Y 20y,

@ M
AL ) e T _ o= NT
for = —Fr (1/J2k—1 —e M T902k—1) - Th Pok—1 ¢ +
1—e™

Yop_1 — G_AECZ)TQO%—l { )\/gc2> - )\g) + )\21) 6_’\22)T — e_’\gcl)T }

25k 1— e—AS)T 25k

(12)

Honcrasnss dyukmun (11) u (12) B pager (7), moxyvaem dopMaabHOE pe-
IMEHIEe 38,1a%H.

4 OCHOBHAS TEOPEMA

st 3aBeprienns ncce0BaHns HeoOx0AMMO (aHATOrnIHO MeTo Ty Dyphbe)
000CHOBATH TVIAJKOCTb IOJYYEHHOTO (POPMATBLHOIO PEIIeHUs M CXOJAUMOCTD
BCEX TOJIYYEHHBIX PsifioB. ChopMynupyeM OCHOBHOM pe3ybTarT padoTh.

TeOPEMA. Eeau p(a), ¥(2) € CU0,1] u dynruyuu p(z), (@), ¢"(2), ¥"(2)
YJ06ACMEOPAIOM KPAESHM YCAOBUAM (4), mo cywecmeyem eduncmeenoe
Kaaccuueckoe pewenue u(x,t) € C2F (Q), f(x) € C0,1] sadawu (1)-(3).

Joxasameavemeo. Tak xak ¢ (x), ¥"(x) € C?[0,1] u ynoBieTBopsior Kpae-
BBIM yCJI0BuAM (4), TO (CM. I. 2) OHH pa3IAraloTcs B aDCOTIOTHO CXOJSIIHECST
pansl Pypee no cucreme {yg(z)}. Orcoona u us (6) uMeeM abCOMIOTHYIO
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PaABHOMEPHYIO CXOAUMOCTH PAI0B

@ (x ):—)\o woyo( Z{)‘k PorYor(x +)\§€>902k 1Wok—1(x) }—

x A2 (1) (13)
-y al P2r—1Y2k (),
=1
Y (@) = 1/Joyo Z{)\ Uoryor (2 A§€2>w2k—1y2k—1($)}—
00 )\22 )\(1) (14)

- Z o1y ().
Jlerko Buzers, 4TO ()\22) — )\g)) /20k = 41k + 24. Tlosromy m3 (11), (12)

¢ yaeroM (5) HECIOKHO TONYYUTh PABHOMEDPHBIE 10 k OTIEHKH
[ugk—1()] < C (|par—1] + |P2r-1l) ,
|[ugk (V)] < C (lpakl + p2r—1] + [ar] + |P2r-1]) ;
b1 (D] < C (92| + [hnea ) 1A,
g ()] < C (ool + 2] + [l + [gara]) N,
| fak1] < C (Ip2r—1] + [tbak—1]) [N,
| for] < C (Jpar| + [p2r—1] + [tar] + [th2r_1]) |)\§€2)|-

Orciona, n3 abcomoTHOl cxonnmoctn psaaos (13) u (14) crenyer cxomnMocThb
psino (7) u mpuHAAIEKHOCTH permenust 3aga4qn (1)—(3) wmaccam u(x,t) €
Cri (), f(x) e Clo,1).

Tax Kak cucreMa {yk (:E)} obpazyer Hazuc Pucca npocrpanctsa Lo(0, 1), T0
n000e permenne 3amaqn (1)—(3) U3 maHHOTO Kiacca npeacTaBuMo psagamu (7).
U3 oxrosmaunoctu nocrpoerus pemennit (11), (12) 3amau (8)—(10) caemyer

eIMHCTBEHHOCTD permenns 3ana4an (1)—(3). Teopema mokazana moaHocThio. [
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5 SAKJIIOUEHUE

Takum 0bpazom, B paboTe HAMU TOKA3aHA KOPPEKTHOCTH 00PATHON 3a1a4u
npoitecca Juddy3un, pacCMOTPEHHOTO B OTIEILHO B3ATOM MUKpOTIope. B kaue-
CTBE yIPABJIEHNsT BLIOPAHO BHEITHEE BO3/EHCTEIE, KOTOPOE HE 3aBUCUT OT Bpe-
MCHH U MOXKET U3MEHATLCA B IIPOCTPAHCTBECHHLIX KOODAHMHATAX. B peaJIbHBIX
38/1a1MaX TAKOE BO3/EHCTBUE OMUCHIBAET BAWSIHUE MPOIECCOB B MAKPOIOpEe HAa
MPOIECChl B MUKPOIIOpax. Pesysnbrar HacTosmel paboThl JaeT BO3MOXKHOCTb
MOCTPOEHNST MATEMATHIECKON MoJenu mporecca Mudpy3un 1emesoil KOMITo-
HEHTBI U3 IMOJHAUCIEPCHBIX IMOPHUCTBIX MaTEpHUaJIOB, yLII/ITbIBaIOIJ_Ieﬁ COBMECT-
HO€ W B3AMMHOE BJIMAHUE NTPOIECCOB B MAKPO- U MUKPOIIOPaX.
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Opazos 1., Caap6ekor M.A. AKBIPTBI KATITA AHBIKTAJIBIMIHI
KEPI ECEI HETI3IHIETT CTALIMOHAP/IBIK EMEC IU®OY3UAIBIK
MTPOLIECCTI MATEMATUKAJIBIK MOAEIEYITIH BIP ECEBI TVPA-
JIbI

Byt xKymMBICTa KATTHI HOJHIUCIEPCHSIIBI KEYEK MATEPHAJAAPABI OACTAIIKbI
JKOHE COHFBI (KaJjay/ibl) Kyiijaepinin Oepinren mamackl OofibiHIa G amy
MPOIIECiH MOAEIIEHTIH ecenTepain Oip TonTaMachl KapacThIPLLIaILL. By ecemn-
TiH, MATEMATHKAJBIK, TYKbIPbIMIaMachl 1uy3usibik TeHaey i Kepi ecebine
OKeJeNi, MYHJA €CENnTiH TeK IemiMin TabyMeH faHa IMeKTeIMeNH, KOChIMIIA
OHBIH, KEHICTIK aiffHBIMAJIBIIAH FaHa Toyesni OosiaTbin Oeiriciz oH kak OeJi-
rin taby Tasan erijeni. KapacThIPbLIbII OTHIPFAH €CENTEP TONTAMACHIHBIH
epeKIenir dacTanKpl eCenTiy IMeKapaJsblK, MapThiHa Toyesai 6ojgaTeiH ecesi
mudbdepeHnuaiiay OnepaTopPbIHbIH, MEHITIKTI (DyHKIusAIAD XKylieci HazucTik
KacHeTKe 1e DOMMAlTHIHABITBIHIS,. EcenTin KIaccuKa bk mermiMinig ap »KomHe
KAJFBI3 eKEH I T9aedIeH .

Orazov 1., Sadybekov M.A. ON A MATHEMATICAL MODELING
PROBLEM OF NONSTATIONARY DIFFUSION PROCESS BASED ON
THE INVERSE PROBLEM WITH FINAL OVERDETERMINATION

In the paper there is considered a set of the problems modelling the
extraction process from solid polydisperse porous materials under the given
values of the initial and final (desired) states. The mathematical formulation
of these problems leads to the inverse problem for the diffusion equation, in
which it is required to find both together a solution of the equation and its
right-hand side depending only on a spatial variable. A specific feature of the
considered set of the problems is that the system of eigenfunctions of the
multiple differentiation operator subjected to the boundary conditions of the
original problem, does not have the basis property. It is proved the existence
and uniqueness of the classical solution of the problem.
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AXIOMATIZABLE THEORIES AS A WEAK RELEASE OF THE
UNIVERSAL CONSTRUCTION

In this work, based on an available version of the canonical construction of
finitely axiomatizable theories, we deduce some weaken release of the same
construction which is said to be the canonical-mini construction. The obtained
construction has a standard formulation of the universal construction of finitely
axiomatizable theories controlling not large (nevertheless, non-trivial) semantic
layer of model-theoretic properties. Thus, the canonical-mini construction can
be said to be the universal-under-canonical construction. Supporting a sublayer
of the infinitary semantic layer, the canonical-mini construction can perform
the role of a weak release of the universal construction; moreover, it favorably
differs from the latter by a much simpler and understandable proof.
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INTRODUCTION

The universal construction of finitely axiomatizable theories, [1], Ch.4,
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predicate logic. Starting from an input computably axiomatizable theory T°
this construction yields a finitely axiomatizable theory F' together with a
computable isomorphism p : L£(T) — L(F) of their Tarski-Lindenbaum
algebras passing from complete extensions of theory T to corresponding
complete extensions of theory F' all model-theoretic properties within the
infinitary semantic layer M@L. Fundamental nature as well as maximality
of the infinitary layer MQL is established in the work [2]. Although there
are weaker versions of the universal construction with a reduced or even
omitted rigidity mechanism (thus controlling smaller layers of model-theoretic
properties), nevertheless, all they represent large complexity in studying
almost indistinguishable from that of any stronger version of the universal
construction.

In the work, we present an even weaker version of the universal construction
that is a simple enough consequence of the canonical construction Fc(m, s)
described in [1], Ch.3. It is said to be the canonical-mini construction,
alternatively, universal-under-canonical construction. In Section 8, we present
a routine deduction of the canonical-mini construction from the canonical
construction. The other parts of the paper represent auxiliary notions; they
are included for the sake of completeness of the text. Principal advantage of
the canonical-mini construction is that it is essentially simpler in studying
in comparison with that of any normal version of the universal construction.
Although the new construction supports not large semantic layer of model-
theoretic properties, nevertheless, this construction represents a non-trivial
statement and can find useful applications.

PRELIMINARIES. We consider theories in first-order predicate logic with
equality and use general concepts of model theory, algorithm theory, and
constructive models found in Hodres [3], Rogers [4], and Goncharov and Ershov
[5]. Generally, incomplete theories are considered. In the work, the signatures
are considered only, which admit a G6del numbering of the formulas. Such a
signature is called enumerable.

A finite signature is called rich, if it contains at least one n-ary predicate or
function symbol for n > 2, or two unary function symbols. A nulary predicate
symbol is often said to be a propositional variable. The following notations are
used: I'L(c) is the set of all formulas of signature o, FLi(0) is the set of all
formulas of signature o with free variables xg, ..., xx_1, SL(c) is the set of all
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sentences (i.e., closed formulas) of signature ¢. Let ¢ be a signature, and 3 be
a subset of SL(c). Denote by [X]7 a theory of signature o generated by X' as a
set of its axioms. There is another variant of the definition. Let X C SL(o) be
a set of sentences. By [X]*, we denote a theory of a signature ¢’ C ¢ generated
by the set X as a set of its axioms, where ¢’ contains only those symbols from
o that occur in formulas of the set 3.

We use Cantor’s function e(xz,y) = (2 + 2zy + y? + 32 + y)/2 presenting
a one-one mapping from the set of pairs NxN onto N, cf. [4] Sec.5.3. We
use more common notation {(x1,...,%m,) for a m-ary computable function
presenting a one-one mapping from the set N onto N; for instance, in the
case k = 4, it is possible to define this function as follows: (21, z2, 23, 24) =
c(xy, c(xe, c(xs, 4))). By vn(z), we denote nth partial computable function in
Kleene’s numbering, while (:X (t) denotes nth partial function in computation
with an oracle X. Often we use binary universal computable functions defined
by the rules ¢$ (x,y) = walc@,y)) and P (x,y) = p2(c(x, 1)), denoted
wnlx,y) and @/}(x,y) for short. By W,, we denote nth computably enumerable
set in Post’s numbering, while W;? denotes nth computably enumerable set in
computation with an oracle A, cf. [4] Ch.5,Ch.9. These universal numberings
are defined by the following rules W,, = Dom(y,(x)) and W2 = Dom(p2(2))
foralln e Nand A CN.

The set of all finite tuples « of the form o = (g, a1, . . ., ag—1), ; € {0, 1},
k > 0, is denoted by 2<%, while 2% is the set of all infinite tuples of the form
a = {a;i < w), a; € {0,1}. We use symbol < for a partial order on the set
2<% U 2% defined by the rule: ¢ < /&« is an initial segment of &/. If @ is a
formula and « € {0, 1}, ®* means ¢ for a = 1, and =& for a = 0. For a theory,
c.a. means computably ariomatizable, while .a. means finitely axiomatizable.

We denote by ¢ a fixed maximum large enumerable signature. Namely,
signature o contains countably many constant symbols, symbols of proposi-
tional variables, and predicate and function symbols of each arity n > 1. It is
supposed that each considered signature ¢ is a proper part of the «universals
signature ¢®°. We use a fixed Gddel numbering &5, k € N, for the set of
sentences of a fixed signature o, and @7°, k € N, for the set of sentences of the
infinite signature ¢®°. An entry Nom ¥ denotes the number of a sentence ¥ in
an accepted Go6del numbering of the set of sentences.

Based on the Post numbering of the family of all computably enumerable
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sets Wy, n € N, we construct an effective numbering for the class of all
computably axiomatizable theories. There are two versions of indices. The
first one represents c.e. indices of c.a. theories of a given enumerable or
finite signature o. If a theory T of signature ¢ is defined by the set of
axioms {®; | i € Wy}, the number m is called a computably enumerable
index or simply c.e. index of the theory 1. The second version represents
indices of c.a. theories of arbitrary enumerable signatures, which are subsets
of the «universal» signature ¢°°. Given m € N. Consider the set of axioms
Y = {®* | i € W,,} and construct the theory 7" = [X]|*. The number m
is called a weak computably enumerable index or simply weak c.e. index of
the theory T'. As for a finitely axiomatizable theory £, it is defined by a
finite system A of axioms, and therefore, by a single formula ¢ which is a
conjunction of the formulas from A. A Gédel number n for this formula @ is
normally considered as a Gddel number or strong index of the theory I

LEMMA 0.1. There is an effective transformation from c.e. indices of compu-
tably aziomatizable theories of a fixed enumerable signature o to their weak c.e.
indices.

Proof. Immediately. O
Normally, so-called static method of operating with signatures of theories
is applied. According to this method, first, we fix a signature; then we define
a Godel numbering of the set of formulas; further, we describe a theory by
enumerating its axioms; and finally, turn to studying its properties. This
method is often applicable whenever we use normal c.e. indices of theories.

In contrary, while using weak indices of theories, we are forced to change
the order of consideration applying a so-called dynamic method of operating
with signatures. Having a weak c.e. index of a theory T, first, we enumerate
formulas provable in T" obtaining its signature ¢ C ¢°°; then, we have to define
a Godel numbering of the set of formulas of signature ¢ as well as its subsets
SL(c), FLp(o), k < w, etc., as needed; finally, we turn to studying properties
of the theory under consideration.

The following statement represents a technical basis for the dynamic
method.

LEMMA 0.2. Fiz a Gédel numbering pg°(Z¢), t € N, for the set of all formulas of
the mazimum large signature o°°. There are total computable functions f(n,1)
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and h(n, k,i), such that, if n is a weak c.e. index of a theory T of signature o,
we have:

(a) ©F i) (Tfny)), @ € N, represents a Gddel numbering of the set of all
formulas of signature o,

(b) Chn0.0) (Thin,0)), @ €N, represents a Gdel numbering of the set SL(o)
of all sentences of signature o,

(c) Chln ki) (Thin,k,i)), © € N, represents a Gidel numbering of the set FLy(o)
of all formulas of signature o with k free variables, for any fized k, 1 < k < w.

Proof. Immediately. ]
Lemma 0.1 shows that the dynamic method of operating with signatures
can also be applied to the normal version of indices for c.e. theories of a fixed
enumerable or finite signature o.
A statement concerning particular models of a complete theory.

CraiMm 0.3. Given a complete theory T of an enumerable signature whose
models are infinite. The following assertions are satisfied:

(a) [6]: T has a prime model < principal types form a dense subset in the
set of all types in Li(T) for all k satisfying 1 < k < w,

(b) |7, 8]: in the case when T has a prime model N, the model N is strongly
constructivizable < T is decidable and the set of all principal types of T is
computable,

(c) [9]: in the case when T has a strongly constructivizable prime model M,
the model N has algorithmic dimension 1 relative to strong constructivizations
& the set of all atomic formulas of T is computably enumerable < the set of
all atomic formulas of T is computable,

(d) [6]: T has a countable saturated model < the set of all types in Li(T)
s at most countable for all k satisfying 1 < k < w,

(e) [10]: in the case when T has a countable saturated model M, the model
M is strongly constructivizable < T' is decidable and the set of all types of T
s computable.

We apply these statements further in Section 8 in considering preservation
of the layer of model-theoretic properties involved in the canonical-mini
construction.

Give some definitions concerning numerated Boolean algebras.

A Boolean algebra B together with a numeration v : N oo, |B|, denoted by
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(B,v), is said to be a numerated Boolean algebra if its signature operations are
uniformly presentable by total computable functions on the v-numbers; i.e., if
there are total computable functions u(z,y), v(x,y), and w(x) that represent
operations in the Boolean algebra as follows for all ¢, j € N:

v(i) Uv(j) = viu(i, j)), (0.1)
i) Nw(j) = v(v(i, 4)),

(i) = v(w(i)).
A numerated Boolean algebra (B, v) is called a c.e. Boolean algebra if the

equality relation in B is computably enumerable in this numeration v; i.e.,
there is a relation E(x,y) in £9, such that, for all i,j € N

<
~—~

g

v(i) =v(j) & E(i,7). (0.2)
Two numerated Boolean algebras (By, v1) and (Ba, v2) are called equivalent,
or computably isomorphic, denoted (By,v1) = (Bg,v2), if there is an

isomorphism g between By and By and two total computable functions f(z)
and g(z) such that the following diagram is commutative:

N=—/———N

ull Z lyg

81—>BQ

(0.3)

Introduce indices for numerated Boolean algebras.

DEFINITION 0.A. Given a numerated Boolean algebra (B,v). An integer m
is said to be a relativized characteristic index of the algebra (B,v) in com-
putation with an oracle A if, by decoding the number m as follows: m =
(m1, ma, mz, my), we obtain four integers satisfying the following properties:

(a) functions uw(x,y) = omi (2, y), v(@,y) = @my(7,y), w(z) = Omy(z)
realize all requirements posed in (0.1),

(b) function ¢, (x,y) is a total function having the domain {0,1};
moreover, the relation F(x,y) < goﬁZL (x,y) = 1 realizes the requirement posed
in (0.2).
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1 TABLE CONDITIONS AND THE PARAMETRIC STONE SPACE

A propositional variable is a variable X whose value can be either true or
false. For brevity, the Boolean values «true» and «falses may be written as
1 and 0. The term “propositional variable” is used as a synonym for “nulary
predicate”.

Consider the following sequence of propositional variables

OO:{XQ,Xl,XQ,...,Xk,...; I{JGN} (1.1)

It is said to be a special propositional signature. By FRM(c°), we denote the set
of all formulas of signature ¢° constructed with the only connective | called the
Sheffer stroke. This connective is defined by the rule X|Y < (X AY). Itis a
known fact that the operation | represents a complete system for propositional
logic. As for the connectives =, A, V, —, and «, we consider them as suitable
Boolean expressions via the basic connective |.

We use Cantor’s function ¢(x, y) presenting a one-one mapping from the set
NxN onto N. Based on this primitive recursive function, we define a mapping
nom’ from the set of formulas FRM(c°) into the set of natural numbers by the
following rule:

nom(Xy) =2k, keN, (1.2)
nom(¥'|¥")y = 2 ¢(nom(¥’'), nom(¥")) + 1, ¥, ¥" € FRM(c®).
It is possible to check that the function 'nom’ is a bijective mapping from

FRM(0°) onto N. For k € N, we denote . = nom~!(k). As a result, we have
obtained a sequence of propositional formulas

PBr, ke N. (1.3)

This sequence represents a Gédel numbering of the set of all formulas of the
propositional signature ¢°.
In detail, the sequence of formulas (1.3) looks as follows:

mk(Xle:---:Xa): a—= CL(I{I), ke N7 (14)

where a(k) is a primitive recursive function such that all variables of the
formula By, are contained in the list Xo, X1,..., Xq(); although, some of them
may be absent in the formula .
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Often, some expressions of a true-false type can be substituted in formula
Br. instead of its variables X;, i < a(k). Particularly, we can consider the
formula Py as a truth-table condition (or briefly tt-condition); for this, we
should replace each of its variables Xy, k < a(k), by elementary truth-table
conditions of the form

Xy = «the set includes element k»; (1.5)

thereby, By will turn out to be applied to an arbitrary set A C N. The claim
that t&-condition Py is satisfied on A is written as A F . Alternatively, for
a set A C N, we can count that an entry A |= B means a truth-value of the
term Prxa(0), ..., xa(a(k))), where ya(x) is a characteristic function of the
set A C N. Thereby, we count that the same sequence (1.3) of propositional
formulas represents a Gédel numbering of the set of all tt-conditions.

Let m € N be an integer parameter. We introduce the following notation
for a subset of the power-set P(N):

2(m) = {A SN | (Vk € Win)[AFE Puil}. (1.6)

It is called the parametric Stone space, while the number m is called its
index. The set (1.6) is used as a technical tool for presenting Stone spaces
of computably axiomatizable and finitely axiomatizable theories.

Give a characterization of the parametric Stone space:

LEMMA 1.1. The following conditions are equivalent with each other for all
meN and A CN:

(a) A€ £2(m),

(b) (Vk € W) A E Byl
Proof. 1t is a direct consequence of definition (1.6). O

2 TARSKI-LINDENBAUM ALGEBRAS OF THEORIES

Let T be a theory of signature . On the set of sentences SL(c), an
equivalence relation ~7 is defined by the rule

SrplW & THP T,
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denoted by ~ for brevity. The logical connectives V, A, and — generate Boolean
operations U, N, and, respectively, — on the quotient set SL(¢)/ by the rule

D) U W] =gpn [PV Y], [P N[0 =g [P AV,
—[Pl~ =grn [-P]~.,
=dfn (Vo) (@ # 2)], 1 =gpn [(Vo)(2 = 2)]~.

0
It can easily be checked that, these operations are well-defined on the ~-classes;
i.e., these operations are defined independently of the choice of representatives.
As a result, we obtain an algebra of the form

L(T) = (SL{o) ) ; U,N,—,0,1).

In fact, this is a Boolean algebra. It is called the Tarski-Lindenbaum algebra
of the theory T, denoted by L(T').

The set of ultrafilters of L(T') is said to be Stone space of theory T', denoted
by St(L(T")), or St(T") for short. By definition, its elements are ultrafilters of the
Boolean algebra L£(T') presenting complete extensions of the theory T'. Thus,
we have

St(T) = {T" | T is a complete extension of T}.

Study generating sets of the Tarski-Lindenbaum algebras of theories.

Let T be a theory of signature . A set G C SL(0) is said to be a generating
set for the Tarski-Lindenbaum algebra L(T"), if any sentence ¢ € SL(o) is
equivalent in 7" to a Boolean expression under sentences of the set G.

Give a criterion for a set of sentences to be generating in a theory.

LEMMA 2.1. Let T be a theory of signature o. A set G CSL(0) is a generating
set for the Tarski-Lindenbaum algebra L(T) if and only if for any subset G' C
(G, the theory determined by the following set of sentences

TG =TUG U{~¥ |¥ecG\G"}

1s either complete or inconsistent.

Proof. The necessity is obvious.
Now, we prove the sufficiency. Assume, that T[G’] is either complete or
inconsistent for any set G’ C GG, and let @ be a sentence of signature . Let us
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enumerate the set G and present it in the form {¥; | i € N}. Consider the set
© of all finite tuples of the form

(ag, a1y a51), a; €{0,1},

such that neither @ nor its negation is provable in the theory TU{#* | k < s};
here, ordinary notations ¥ = =@, &' = ¥ are applied.

Relative to the natural lexicographic order, the set ® is a 2-branching
tree. Therefore, it cannot be infinite, since otherwise a tuple of length w could
be constructed whose finite initial segments belong to ©. However, this tuple
would determine a set G’ C G such that neither @ nor its negation is provable
in the theory T[G’], that contradicts the assumptions. Thus, the set ® must
be finite. Thereby, it is possible to choose a natural k exceeding length of any
tuple in .

Denote by (2 a disjunction of all those elementary conjunctions of the form

Cla) = WO AU A AR, a={ag,...,c6-1), a; € {0,1},

for which sentence @ is provable in the theory T°'U {C(«)}. It is obvious, that
the sentence {2 has the form of a Boolean expression constructed from the
sentences ¥;, i € N. It is possible to check that both sentences & and 2 are
either simultaneously true or false in each complete extension of I". Thereby,
the sentence @ is equivalent in 7" to the pointed out sentence 2.

Thereby, an arbitrary sentence @ is equivalent in 1" to a Boolean expression
of sentences from (G. By definition, this means that the GG is indeed a generating
set for the Tarski-Lindenbaum algebra £(T).

Lemma 2.1 is proven. O

We are going to describe a technical method of constructing isomorphisms
between the Tarski-Lindenbaum algebras of computably axiomatizable theori-
es.

LEMMA 2.2, Let T1 and Ty be computably axiomatizable theories of signatures

o1 and, respectively, o2, while v; : N onto, SL(0;), 1 = 1,2, be Gidel numberings

of their sets of sentences. Let also
{@0,@1,...,@k,... ; I{IGN}QSL(O'D, (21)
{%,%,...,Wk,... ; I{JGN}QSL(OQ),
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be computably enumerable sequences of sentences in these theories that repre-
sent generating sets in the Tarski-Lindenbaum algebras L(T1) and L(T3).

The following assertions are equivalent:

(a) (VBi € FRM(0°))[T1 F Bs(Po, P1,..., Pa)) < To b PBi(Wo, ¥, ...,
Wa(z))L

(b) partial mapping p' defined by the rule ¢/ (®;) = ¥;, i € N, can be
expanded up to a computable isomorphism y between the numerated Tarski-
Lindenbaum algebras (L(T1),v1) and (L(T3),y2) of these theories.

Proof. Implication (b)=-(a) is obvious. For (a)=-(b), we apply a known
algebraic method. The map p' pointed out in (b) establishes a one-to-one
correspondence between the generating sequences (2.1) and (2.2). The partial
mapping ' can be expanded up to an isomorphism between the algebras
whenever the set of dependencies relative to generating elements in the first
algebra L(17) exactly coincides with that relative to corresponding generating
elements in the second algebra L(73). Obviously, the pointed out algebraic
condition is exactly equivalent to the demand given in Part (a). Thereby,
an isomorphism p : L£(Ty) — L(T:) expanding 1’ indeed exists. Having
an initial correspondence ®; — ¥;, i € N, we can conclude that sentence
Pr(Po, . .., Pary) of theory T1 must correspond to sentence P(Po ..., Pary)
of theory Ty for all k& € N; additionally, the closure operations under the
equivalence relations ~1 in T and ~5 in T5 may be applied. Since the sequences
(2.1) and (2.2) are generating in corresponding Tarski-Lindenbaum algebras,
we obtain finally the following presentation for y, for all sentences ¢ € SL(oy)
and ¥ € SL(a3):

1([@]y) = [Py & (FR)[@ ~1 Bi(Do, - .., o) A Br(o, - -+, Yagry) ~2 ¥ .

(2.3)

From this, based on the fact that both theories 17 and 7% are computably

axiomatizable and both sequences (2.1) and (2.2) are effective, it is possible to
show that the isomorphism g is, in fact, computable.

Lemma 2.2 is proven. ]

3 COMPACT BINARY TREES

The concept of a compact binary tree corresponds to that introduced in

1], Ch.2.
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A full compact binary tree is a partially ordered set O = (N, <) of the form
shown in Fig. 3.1. Particularly, we have the following relations between the
elements: 1 < 8, 6 <6, (6 <9), (9 < 6), etc. Notice that, the basic relation
=< is computable. The other natural relations and functions for trees described
later are also computable.

There are two following natural operations on elements of a tree:

L(n) = the left successor of element n,

R(n) = the right successor of element n.

A tree is a set D C N for which the following conditions are satisfied:

n<mAmeD = neD, for all n,m € N,
L(n) €D < R(n) €D, forall neN.

YRR VARV RV AR VRV VERY
7T 8 9 10 11 12 13 14
N/ N/ N/ \/

3 4 5 6
N/ N/
1 \ / 2
0
Fig. 3.1 Full binary tree

Three examples of trees are presented in Fig. 3.2, where (a) and (b) are
finite trees while the tree (¢) is infinite.

2324
(a) \1{ 12 (b) (¢) 13 14
a C
\/ \ /

3 4 5 6 5 6
\1/ \2/ ) ) : \2/
NN NS

Fig. 3.2 Examples of trees

An element n € D such that L(n) € D is called a dead end of the tree D.
The set of all dead-end elements of a tree D is denoted by Dend(D). A tree
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is called atomic if, above each of its elements, there is at least one dead-end
element. All trees presented in Fig. 3.2 are atomic, while the full tree is not.
A chain is a set m € N for which two following conditions are satisfied:

nmAmMeET = nemw, forall n,meN,

nmen =>nx<mvVm=sn, foral n,meN.

A chain may be either finite or infinite. A finite chain whose maximal
element is a is denoted by w[a]. It is uniquely determined by the maximal
element a.

Consider two simple properties of trees and chains.

LEmMA 3.1. Let D be a tree. The following assertions are equivalent:
(a) D is computable,
(b) Dend(D) is computable.

Proof. If D is computable, Dend(D) is also computable by definition of this
set. Conversely, suppose, that Dend(D) is computable. The following relation

x €D & xeDend(D) V w[x] N Dend(D) = &

shows that D is a computable set. O

A chain 7 is called a mazimal chain in a tree D, if 1 C D, and no chain
7' exists such that 1 € 7/ € D and 7 # 7’. The set of all maximal chains of
a tree D is denoted by I1(D), while the set of all finite maximal chains of this
tree is denoted by II7%(D).

It is obvious that for any tree D, the following claims are satisfied:

(a) II(D) is infinite < D is infinite, (3.1)
) |[II(D)] < 2%,
(@ [I7"™(D)| < w.

Let A C N. Denote by ClTree|A] the closure of A up to a tree, i.e., ClTree[A]
means a minimal tree D’ satisfying A € D’. In the case of a singleton element,
we use a brief entry D[a| instead of complete ClTree[{a}|.
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23 24
\/
11 12

\/

5 6
\ /
1 \ / 2
0
Fig. 3.3 Closure operation of a singleton set upto a tree

The following immediate formula takes place
Dla] = m[a] U Nb(x[a]~.{0}), (3.2)

where a function Nb(x) pointing out a 'neighboring’ element is defined by the
rule:

y =Nb(z) & (y # ) A (F2)({z,y} = {R(2), L(2)} )

Notice that, Nb(0) is not defined. Fig.3.3 presents a demonstration of the
formula (3.2) for a = 24.
Characterize the closure operation of an arbitrary set A C N up to a tree.

LEMMA 3.2. The following assertions are held:
(¢) for any set A C N, a closure of A up to a tree is defined,
(d) ClTree[A] = |J,eq Pla), for all A C N,

(e) ClTree[ClTree[A]] = ClTree[A], for all A C N,

(f) a set A C N s a tree if and only if A = ClTree[A|.

Proof. Immediately, by using the definition of a tree and the description of the
closure Dlal up to a tree of a singleton {a}. O
We introduce some standard numbering for computably enumerable trees.
Let W,, n € N, be the standard Post numbering of the family of all
computably enumerable sets, while W;f‘, n € N, be the standard numbering of
the sets which are computably enumerable with an oracle A C N. Introduce
the following notations:

Dy, =gpn, ClTree[W,], n €N, (3.3)
D2 =4, ClTree[ W], necN, ACN.

n
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By Lemma 3.2 (e,f), these sets are trees, since they are constructed by the
closure operation up to a tree. They play the role of a universal computable
numbering of the family of all computably enumerable trees and, respectively,
the family of all trees computably enumerable with an oracle A. It follows from
Lemma 3.2 (f) that all possible computably enumerable trees are presented in
the sequence (3.3), and all possible computably enumerable with an oracle A
trees are presented in the sequence (3.4).

By standard methods of algorithm theory, one can prove that there are
total computable functions f(x) and g(x) reducing numberings (3.3) and (3.4)
to standard numberings of computably enumerable sets and, respectively, sets
computably enumerable with an oracle, by the following rules:

Dy, = Wiy, for alln € N, (3.5)
Dy = Wiy, for alln €N, ACN. (3.6)

In the case with an oracle, the reducing function g(x) does not depend on the
contents of an oracle A.

Now, we study the class of superatomic trees.

Consider the set [I(D) of all maximal chains in an arbitrary tree D. Let
G be a subset of [I(D). A chain 7 € G is called isolated in G, if there is an
element ¢ € 7 such that 7 is the only chain from G passing through ¢. By G’,
we denote the set of all chains m € G which are not isolated in GG. By induction
on ordinals, we define subsets I1,(D) C I1(D) as follows:

1o 1(D) = (1n(D))',
IL(D) = N{113(D) | B <7}, if v is a limit ordinal.

The least « such that I1,41(D) = [1,(D), is said to be rank of the tree D,
denoted by Rank(D). Rank of a chain m € II(D), denoted by rank(r), is an
ordinal a such that 7 € I1,(D)~Il441(D). Clearly, the rank function in general
is partially defined on the set II(D). A compact tree D is called a tree with
total rank function or a superatomic tree, if the rank function is totally defined
on the set II(D). In other words, a tree D is superatomic whenever 11, (D) = &
for some a.
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The following relations are immediate consequences of the definitions:

(@ (Va < Rank(D)) (3r € II(D)) [rank(r) = ], (3.7)
®) Rank(D) = sup{rank(n)|r € II™*"%(D)},

where IT"K(D) is the set of all chains in IT(D) for which the rank function is
defined.

Specify some properties of the rank function on chains.

LEMMA 3.3. For any compact tree D, the set of chains m € II(D) having rank
s at most countable.

Proof. Let m € (D)~ Ilo41(D). By I(7), we denote the set of elements
isolating chain 7 in I1,(D). One can easily check that, if chains 71 and 7y have
ranks, then /(m) N I(m2) = @ is satisfied whenever 7; # 7a. Since the set N
is countable, any set consisting of its nonempty pairwise disjoint subsets must
be at most countable. O

LEMMA 3.4. Rank of any compact tree is a countable ordinal.

Proof. The statement is a consequence of Lemma 3.3 together with the

properties (3.7)(a) and (3.7)(b). O

LEMMA 3.5. Let m;, ¢ € N be an infinite sequence of maximal chains in a
compact tree D. Then, one can find an infinite chain 7 in D such that there
are infinitely many chains in the given sequence passing through each of its
elements L € w*.

Proof. First, note an obvious fact that all chains m;, ¢ € N, pass through
the root 0 of the tree. Therefore, infinitely many of them should pass either
through L(0) or through R(0). Suppose, that it is the case for L(0). Among
the chains passing through L(0), an infinite number of them should pass either
through L(L(0)) or through R(L(0)). Continuing this process for w steps, we
will construct a chain 7* satisfying the required property. O

LEMMA 3.6. Let D be a superatomic tree. Then, Rank(D) is a non-limiting
ordinal.

Proof. Assume, that D is a superatomic tree. By virtue of properties (3.7), it
is enough to show that, if v is a limiting countable ordinal, such that, for all
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(3 < 7, there are chains of rank 3 in II(D), the family must contain a chain of
rank not less than «y. Indeed, choose a sequence of chains 7g, k € N, in II1(D)
such that sup{rank(mg)|k € N} = ~. By virtue of Lemma 3.5, we can construct
a chain * € (D) such that there are infinitely many chains of the sequence
T} passing through each of its elements. Since the tree D is superatomic, rank
of the chain 7* must be defined. Moreover, we have rank(7*) > ~ by the
definition. From this, we obtain Rank(D) > « + 1, that is exactly what is
required. ]
Let us characterize superatomic trees.

THEOREM 3.7. Let D be a tree. The following conditions are equivalent to each
other:

(a) tree D is superatomic,

(b) the set II(D) is no more than countable,

(¢) the power of the set II(D) is less than 2“,

(d) each countable set G C II(D) has an isolated chain,

(e) each set G C II(D) has an isolated chain.

Proof is done by the following scheme: (a)=-(b)=(c)=(d)=(e) =(a).

The implication (a)=-(b) is a consequence of Lemma 3.3.

The implication (b)=-(c) is obvious.

For the proof of implication (¢)=-(d), assume the opposite: let there is a
countable set G C I1(D) not having isolated chains. Then, the set of the form
V = U{r|7m € G} is a subset of D and satisfies the following conditions

rxyNyeV=axecV,
VeeV)(FyzeV)esyre<szA(y<2)A(z <y

Therefore, among subsets of V', there are 2% various infinite chains, and all of
them belong to II(D), that is impossible since this contradicts Part (c).

The implication (d)=-(e) is true, since from any nonempty subset G C
I1(D) not having isolated chains, it is possible to choose a countable subset
(Go € @ in which there are no isolated chains.

The implication (e)=-(a) is a consequence of the definitions. O

LemMA 3.8. If D is a superatomic tree, then D is an atomic tree.
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Proof. Suppose that D is not atomic. Then, there is an element & without
dead-end elements over it; thus, there are 2¢ chains in IT(D) passing through
k. By Theorem 3.7, this contradicts to the assumption that D is superatomic.
OJ

Consider some natural operations on the class of trees.

Define a total computable function EmbTree(n, x) by the following scheme,
for all n,x € N:

EmbTree(n,0) = n,
EmbTree(n, L(z)) = L{(EmbTree(n, x)),
EmbTree(n, R(x)) = R(EmbTree(n, z)).

It is possible to check that, for a fixed parameter n € N, the unary function

Az EmbTree(n, z) is an isomorphic mapping from the full tree D = N into the
region {z|n < x} of the full tree.

(a) (b)

Fe9 eTee..

Fig. 3.4. Scheme of the sum operations on compact binary trees

The direct sum of two trees Dy and Dy is a set defined by the following rule
Dy @ Dy = {0} UEmbTree(1, Dy) U EmbTree(2, Ds). (3.8)

It is possible to check that Dy @ D3 is indeed a compact tree. The tree Dy & Do
can be obtained by attaching isomorphic copies of the source trees Dy and Do
to the two dead-end elements of the three-element tree presented in Fig. 3.2 (b).

The direct sum of a sequence of trees Dy, k € N, is a set of the following
form:

OrexDr = {0} U{2,6,... t, +1,...} UEmbTree(1, Do)U (3.9)
UEmbTree(5,D1) U. .. UEmbTree(ty, Dy) U. ..,
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where t;, = 2512 — 3. This tree is obtained by attaching isomorphic copies of
the trees Dy to subsequent dead-end elements of the infinite tree shown in Fig.
3.2 (c).

Schematic rules for both types of the operation are shown in Fig. 3.4(a,b).

LeEmMA 3.9. The following assertions take place:

(a) D1 B Dy is a computably enumerable tree if and only if both Dy and Do
are computably enumerable trees.

(b) @®renDr is a computably enumerable tree if and only if Dy, k € N, is
a computable sequence of c.e. trees.

Proof. Immediately. ]
Now, we consider some structural properties of the operations on the trees.

LemMA 3.10. The following assertions hold:

(a) D1 @ Do is an atomic tree if and only if both Dy and Dy are atomic
trees.

(b) @renDr is an atomic tree if and only if all trees in the sequence Dy, k €
N, are atomuc.

Proof. By immediate check of the definition. ]

LemMA 3.11. The following assertions hold:

(a) tree D1 @ Dy is superatomic if and only if both trees Dy and Dy are
superatomic.

(b) tree @penDr is superatomic if and only if all trees in the sequence Dy,
k € N, are superatomic.

Proof. By immediate check with the help of characterization of superatomic
trees given in Theorem 3.7. O

4 NATURAL BINARY TREES AND INDICES FOR THEM

A set D C 2<% is said to be a natural binary tree if the following conditions
are satisfied:

(a) FeD, (4.1)
® €D & (0 D)V (sl €D), forallee2<%.

It is possible to check that an arbitrary natural tree D is closed downwards,
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and is semi-closed upwards; i.e., the following relations are satisfied:

(2 exed NdeD=czeD, (4.2)
) £ € D, length(e) <k <w = (3=’ € D)(e <& Alength(s') = k).

Now, we consider natural trees jointly with the compact trees.

Hereafter, we will use a specified symbol D for natural binary trees and
another symbol D for compact binary trees. A natural tree D may be said
to be a tuple tree because it is formed by a tuple logical structure. As for
a compact tree, it presents the structure of branchings in a more compact
form; this explains the choice of the term. Mention that both types of trees
we are considering are supposed to be binary. Given a structure & of some
kind that can produce a tree. We denote by tree(&) a natural tree, while by
Tree(&), a compact tree determined by the structure &. For instance, tree(, v)
means a natural tree determined by a numerated Boolean algebra (B, v), while
Tree(B, v) means a compact tree determined by the algebra (B, v).

Let D C 2<% be a natural tree. A natural number n is said to be a
characteristic index of D, if nth Kleene’s computable function ¢,(x) is a
characteristic function for the set Nom(D) of Gédel numbers of the tree; i.e.,
the function ¢, () is total and satisfies the following relation for all = € 2<%:

n(Nom(e)) =

1, if e€ D,
0, if e D.

We now turn to a relativized version. A number n is said to be a relativized
characteristic index of a natural tree I) in computation with an oracle A C N if
nth computable function @/} (x) with an oracle is total; moreover, this function
is characteristic for the set Nom(D).

Let us introduce the following notations for n € N and A C N:

Dy, is the natural tree with o characteristic index n, (4.3)
D;f} is the natural tree with a characteristic index n under an oracle A. (4.4)
Notice that, D, may be undefined for some n; the same concerns Df. As for

indices for compact trees, they are defined for all n and A by rules (3.3) and
(3.4).
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5 CHAINS AND THE RANK FUNCTION IN A NATURAL TREE

We are going to rewrite for natural binary trees all main concepts available
for compact binary trees.

Definition of a natural binary tree is given in (4.1). Let D C 2<% be a
natural tree. An element £ € D is called atomic in the tree D if it is indivisible
upwards within D; i.e., the following is satisfied:

(V6,0 €2 e <6 Ae<C ASCeED=8=<CVE.

By At(D), we denote the set of all atomic elements in a natural tree D. A
natural tree is said to be atomic if above each of its elements, there is at least
one atomic element.

A set of finite sequences ¢ C 2<% is said to be a (natural) chain, if there is
an infinite sequence £ € 2% such that & consists of all finite initial segments of
2, i.e., the following equality is satisfied

e={0ec2¥ | =<z} (5.1)

Obviously, the infinite sequence £ in (5.1) is uniquely determined by the chain
¢, and conversely, the chain ¢ is uniquely determined by the sequence €. In the
case when (5.1) is satisfied, € is said to be the limit sequence of the chain &,
denoted by lim £; as for the inverse passage €+ &, we use notation € = chain(¢)
in this case. A chain £ in a natural tree D is called isolated if there is 6 € ¢
such that § is an atomic element in the tree D. By definition, any chain in a
natural tree D is its maximal chain.

The set of all chains of a natural tree D is denoted by I1( D), while the set
of all isolated maximal chains of this tree is denoted by I1**°(D). Let G be a
subset of I1(D). A chain 7 € G is called isolated in G if there is an element
5 € 7 such that 7 is the only chain from G passing through §. By G’, we
denote the set of all chains 7 € (G which are not isolated in . By induction
on ordinals, define subsets I1,(D) C II(D) as follows:

oy 1(D) = (Ha(D)),
IL(D) = ({IIg(D) | B <7}, if v is a limit ordinal.
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The least « such that I q1(D) = I1,(D), denoted by Rank(D), is called rank
of the natural tree D. Rank of a chain 7 € II(D) is an ordinal «, denoted
rank(7), such that 7 € 11, (D)~1l,41(D). Clearly, the rank function in general
is partially defined on the set II(D). A natural tree D is called a superatomic
tree, if the rank function is totally defined on I7(D). In other words, a natural
tree D is superatomic if 11,(D) = & for some .

6 TRANSFORMATIONS BETWEEN BOOLEAN ALGEBRAS AND TREES

We describe main types of transformations needed for our main theorem.

(a) Transformation ct2Ly from a complete theory to the Tarski-Linden-
baum algebra with k free variables.

We advance concept of the Tarski-Lindenbaum algebra given in Section 2.

Let T" be a complete theory of signature ¢ and k be an integer; T" and
k represent a pair of input parameters of the transformation. Fix a Goédel
numbering v : N onto FLg(c). On the set of formulas FLg(c), we define an
equivalence relation ~7 by the rule

P(T) ~r Y(T) & T VD)[p(T) < @),

denoted by ~ for short. The logical connectives V, A, and — generate Boolean
operations U, N, and — on the quotient set FLi(c)/. As a result, we obtain
an algebra of the form

Li(T) = (FL(o) /e UM, —,0,1), (6.1)

that, in fact, is a Boolean algebra. It is called the Tarski-Lindenbaum algebra
of theory T under formulas with k free variables xg,...,2r_1, denoted by
Li(T). The set of ultrafilters of the Boolean algebra Ly (1) is called Stone
space of dimension k of theory T, denoted by St(Ly(T')), or Stg(7T") for short.
By definition, its elements are ultrafilters of the Boolean algebra Li(T'); in
model theory, these ultrafilters are said to be complete types of T" with k free
variables xg, ...,2r_1. Thus the whole transformation looks as follows:

cl2Ly : (T, k) — Li(T) = (FLe(o)/o; U,N,—,0,1). (6.2)

Formulate a main statement describing the transformation:
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LEMMA 6.1. Transformation ct2Ly is uniformly effective. More precisely: there
is a partial computable function e(x,z), such that, for any n € N, if n is a
relative characteristic index of a complete theory T of signature o, e(n, k) is
defined; moreover, the number m = e(n, k) is a relative characteristic index of
the algebra (6.1) considered as a numerated algebra with a Gédel numbering

of the set FLi(o).

Namely, by decoding the number m, we obtain four numbers
e(n, k) =m = <m17m27m37m4> (63)

satisfying the following properties:

(a) functions ©m, (2,Y), Om,(2,y), and omq(x) are total; moreover, they
present signature operations U, N, and, respectively, — in numeration v of the
algebra (6.1); i.e, the following relations are satisfied for all i,j € N:

Y@ UG ~ v(omi (4, 5)), (6.4)
V(@) Ny (G) ~ v (om, (45 4)),
—y(1) ~ Y Pms(D));

(b) binary function gpfm (x,y) with an oracle A is total and has the domain
{0, 1}; moreover, this function presents the equality relation in numeration -y
of the algebra (6.1); i.e., the following relation is satisfied for all i,j € N:

V(i) = 7)) & om0, 5) = 1. (6.5)

Proof. Immediately, {rom the procedure of construction of the Tarski-Linden-
baum algebra that is effective in a characteristic index of the input theory T°
in computation with an oracle. O

(b) Transformation b2n from a Boolean algebra to a natural binary tree.

First, we consider this transformation in a more common form.

Let (B,v) be a numerated Boolean algebra, and G = (g; | i < w) be a
computably enumerable in numeration v sequence of elements of B presenting
a generating set for this algebra. We normally count that g; = v (i), for all i € N;
although, another form of this sequence (G is also admitted, when needed.
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Consider the following transformation (in fact, it is effective in relative
indices):

(B,v) — D =tree(B,v) ={e € 2<% | &= (0, ..., 5p_1)s G5° N...Ng" " #0}.

(6.6)
It can be easily checked that the set D is a natural tree; moreover, this tree
represents the algebra B itself. Actually, this is a well-known construction used
in applications in many works.

Now, we turn to a particular form of this transformation.

Consider the Tarski-Lindenbaum algebra Lg(T), (6.1), of a complete
theory T of signature ¢ under formulas with k free variables xq,...,xr_1; by
construction, it is a Boolean algebra. Fix a computably enumerable sequence
of formulas G = {ps(T) : i € N), T = (x0,...,%,_1) presenting a generating
set for the algebra L (7). Normally, unless otherwise specified, we count that
0i(T), i € N, is a Godel numbering of the set FLg(c).

Consider the following transformation

(Li(T),y) — (6.7)
D = tree(Li(T),v) =
{e€2<¥|e={e0,....,66-1), TE D) (@) A... N (@)}

We can easily check that D) is a natural tree; in a known sense, it represents
the Tarski-Lindenbaum algebra L(T"). Obviously, this form of the operation
is a particular case of the common form (6.6).

Study main properties of the transformation.

LEMMA 6.2. Transformation b2n is effective under the relative indices in
computation with an oracle A. More precisely: there is a partial computable
function e(x) such that, for any natural n, if n is a relative characteristic
index of a numerated Boolean algebra (Lx(T),7), e(n) is defined; moreover,
e(n) is a relative characteristic index of the natural tree D = tree(Ly(T),);
e, D= Dj(n), cf. (4.4).

Proof. Immediately, from the description of the transformation of a numerated
Boolean algebra to a natural tree that is effective in corresponding indices. [

(¢) Transformation n2c from a natural tree to a compact tree.
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We are going to describe a natural transformation from the class of natural
trees into the class of compact trees. Its idea is that only branchings are
important, while any lengthy segment without branchings may be reduced.
Part (a) in Fig. 6.1 represents a natural tree D C 2<* marking it with bold
lines in the set 2<%, while Part (b) demonstrates the binary tree D = Tree(D)
obtained by reducing any lengthy segment of D without branchings.

Turn to a formal specification.

Let D C 2<% be a natural tree. We are in a position to describe an operation
of tree transformation

n2c: D~ D = Tree(D), (6.8)

It is called the compactification operation. Define a mapping A : D — N
inductively as follows (this function may be partial):

D) = 0; (6.9)

, if E0eD A elégD,
L(A (&), if 0,21 € D;

, if 02D A eleD,
R(A(e)), if €0,el1 e D.

After that, we put D = Tree(D) =g, A(D). It is possible to check that the set
Tree(D) is indeed a compact binary tree.
We now pass to effectiveness of the operation.

LEmMMA 6.3. Transformation n2c¢ is effective under the relative indices in
computation with an oracle A. More precisely: there are partial computable
functions e(x) and h(x), such that, for any natural n, if n is a relative
characteristic index of a natural tree D, both e(n) and h(n) are defined;
moreover, the numbers m = e(n) and my = h(n) satisfy the following
properties:

(a) m is a relative c.e. index of the target tree D; i.e., D = Tree(D) = D2,

(b) my is a relative index of the function N(), cf. (6.9), i.e., A(x) = i ().

Proof. Immediately, from definition of the operation D +— Tree(D) that is
effective under corresponding indices in computation with an oracle. Mention
that the values of e(n) and h(z) do not depend on A because these functions
are built based on a relative version of s-m-n-Theorem. O
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(0,0) (0,1) D (L0 1,y D 5 6
\(0>/ (1)/ 1 \2/
@ T w \/
@ 0

Fig. 6.1. Transformation scheme of a natural tree in compact tree

Describe a natural correspondence between the natural and compact trees.

Let D be an arbitrary natural tree and D be a compact tree, such that
D is related to D by the compactification operation n2¢. This transformation
defines a correspondence (6.9) between the trees

A: D2 p, (6.10)

such that @ is mapped by X in 0, each separate non-branching path of the
natural tree D (linking two subsequent branchings) is mapped by A to an
element a € D~Dend(D) of the compact tree D, and each non-branching path
of the tree D (from a branching element to infinity) is mapped by A in an
element a € D N Dend(D).

Moreover, the following general properties are held:

LEMMA 6.4. The mapping X pointed out in (6.9) bijectively maps the maximal
chains of D in the maximal chains of D; moreover, tsolated chains of D are
mapped in finite chains of D. Particularly, the following relations are held:

(a) m is finite < T is isolated, whenever ®# = X(7) for T € II(D),

(b) D is atomic if and only if D is atomic,

(c) rank(m) = rank(7), whenever m = X(7) for 7 € 11(D),

(d) Rank(D) = Rank(D),

(e) D is superatomic if and only if D is superatomic.

Proof. Immediately, from the definition of the transformation operations n2c¢
given in (6.8).
Lemma 6.4 is proven. 0
To unify the terminology, in the case of natural trees, we often use an
alternative term a finite chain instead of an isolated chain.
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Transformations (6.6) and (6.7) provide a natural method of presentation of
Boolean algebras. Main disadvantage of natural trees is that only characteristic
indices are available for them, not c.e. indices. On the other hand, main
advantage of compact trees is that both c.e. indices and c.e. indices over an
oracle are available for compact trees; however, compact trees have a more
complicated relation with Boolean algebras.

7 A STATEMENT PRESENTING THE CANONICAL CONSTRUCTION

In this section, we present a main statement of the canonical construction.
Here, £2(m) means parametric Stone space with an index m, it is defined in
(1.6). Further, D2 means a c.e. tree with an inder s in computation with an
oracle A, see (3.4).

THEOREM 7.1. [CANONICAL CONSTRUCTION, BASIC VERSION| Effectively in a pair
of natural numbers m, s and a Gédel number g for a finite rich signature o, one
can construct a finitely aziomatizable model-complete theory F = Fc(m, s, o)
of signature g together with a computable sequence of sentences O, n € N, of
signature o, such that the family of extensions of F defined for each A C N by

FIA] = FU{0;]i € A} U {=0;]7 € N\ A}, (7.1)

satisfies the following properties (presenting the canonical semantic layer MILC
in Part 3, and the canonical basic semantic layer MIL in Part 3(a-f)):

1. For any A C N, the theory F[A] is either complete or contradictory.

2. The theory F[A], A CN, is consistent if and only if A € 2(m).

3. For an arbitrary A € 2(m), the following assertions hold:

(a) theory F[A] has a prime model if and only if the tree Df s atomic,

() a prime model of theory F|A|, if it exists, is strongly constructivizable if
and only if the set A is computable and the family of chains Hfi”(Df)
s computable,

(c) a prime model of theory F|A|, if it exists and is strongly constructi-
vizable, has the algorithmic dimension 1 if and only if the tree Df 18
computable,

@ theory F[A] has a countable saturated model if and only if the thee Df
18 superatomic,

(e) a countable saturated model of theory F|A], if it exists, is strongly
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constructivizable if and only if the set A is computable and the family
of chains II(DZY) is computable,
(£) theory F|A] is w-stable if and only if the tree Df s superatomic.
An entry Fc(m, s) is used instead of Fc(m, s, o) when o is clear from context.

Proof: See detailed proof in [1] Ch. 3. O

In addition, we mention three following statements

{F[A]| A € 2(m)} is the set of all complete extensions of F, (7.2)
F[A] is decidable < A is computable, for all A € 2(m), (7.3)
F[A] F 513,'(90, RN 9a<z)) s A |: B, for all A€ Q(m), (74)

they are simple corollaries of Part 1 and Part 2 of Theorem 7.1.

Part 1 together with Part 2 ensures that {F[A] | A € 2(m)} is a set
of complete extensions of theory F. By construction, F[A] # F[A'] for all
A, A" € 2(m) such that A # A’. Let F' be an arbitrary complete extension
of F. Obviously, F[Ag] C F’ is satisfied for some Ay C N. Since theory F’ is
consistent and complete, F[Ag] must be consistent. By Part 1 we conclude that
Ag € 2(m). Thus F[Ag] and F” are complete theories of the same signature
s.t. F[Ag] C F'. This ensures their coincidence F[Ag] = F'. Thereby, property
(7.2) indeed holds.

Prove (7.3). Suppose that A € £2(m) is computable. Then F'[A4] is complete
and computably axiomatizable. Therefore, this theory is decidable by Janiczack
Theorem. In the opposite case, if the set A € 2(m) is not computable, the
reduction i € A & T[A| F 0; shows that theory F[A] cannot be decidable.

Now, we turn to proof of (7.4). By construction, we have

1, ifie A

0, ifidA, (75)

TIA] & 0%, with o = {

where ¢! = ¢, and ¢° = —p. Lemma 1.12 in [11], Ch.4, Sec.3 states that, for
all ag, ... s Qla(y) € {0,1}

«

X5, X (Be(Xos -, Xaw) ) (7.6)

with a =the value of Py(aw, ..., aq)). By substituting 0; instead of X; in
(7.6) and combining with (7.5), we obtain for all A € £2(m) and ap, ..., Qq) €
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{0,1}
FIA] = B0, - - ., Oar)) )a, with o = the value of "A |= Br”.

Thereby, the desired statement (7.4) is indeed satisfied.

Notice that, the first integer parameter m in Theorem 7.1 is an index
for the space component controlling Stone space of the target theory, while
the second parameter s is an index controlling model-theoretic properties of
complete extensions of the theory (explanation of the notations: m represents
the main index, while s represents a secondary index).

& MAIN STATEMENT OF THE CANONICAL-MINI CONSTRUCTION

We formulate the main statement of this paper.

THEOREM 8.1. [CANONICAL-MINI CONSTRUCTION| Let T' be an arbitrary com-
putably aziomatizable theory and o be a finite rich signature. Effectively in
a weak c.e. index to of T, we can construct a finitely axiomatizable theory
F =TFc®(T,0) of signature o together with a computable isomorphism between
their Tarski-Lindenbaum algebras p @ L(T) — L(F) preserving the following
layer of model-theoretic properties (called the canonical-mini semantic layer,
denoted by MIL®):

(a) existence of a prime model, its strong constructivizability, and the value

of its algorithmic dimension (relative to strong constructivizations);

(b) existence of a countable saturated model, and its strong construc-
tivizability.
Proof. Our aim is to derive the claim of Theorem 8.1 from the main statement
of the canonical construction Fc(m, s), cf. Theorem 7.1. First, we are going to
choose, effectively from tp, a pair of integer parameters (m,s); then we will
show that the theory T'=Fc(m, s, o) satisfies the desired properties.

We assume that 7T is a computably axiomatizable theory defined by a weak
c.e. index ty. Index £y allows us to organize an effective enumeration of the set
of sentences provable in T'; particularly, we can build an effective enumeration
of signature gg C ¢ of theory T". By using the dynamic method for signatures,
cf. Lemma 0.2, fix a Gédel numbering

®;, i €N, (81)
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of the set of sentences SL(op). Obviously, the sequence (8.1) represents a
generating set for the Tarski-Lindenbaum algebra £(7T').

Chotce of the parameter m. Since T is computably axiomatizable, the set of
sentences {*P; | T Pi(Po, ..., Po(y))} is computably enumerable. Therefore,
we can find, effectively from 1o, an integer m € N such that

Yo =am B | THPiPo,... . Pa))} = {Pi|ieWn} (8.2)

Thereby, the first parameter m is chosen.
Notice that, relation (8.2) ensures the following equality:

T=2%. (8.3)
For an arbitrary set A C N, we denote:
TIA| =T + 34[A], where X [A] ={®;|ic AyU{—~P;|jeN~A}. (84)
Obviously, the following property is satisfied:
(V complete extension T'of T)(IA S N)(T[A] € T"). (8.5)
Inductively by the length of a formula, it is possible to prove that

AT E (Bi(@o, .., D))", with (8.6)
o = the value of “A |=Py(Xo, ..., Xyp))”, € {0,1},

where ! = ¥ and ¥° = ¥, cf. Lemma 1.12 in [11] Ch.1, Sec.4. By adding all
formulas of the form (8.6) with oz = 1 (provable from 3';[A]), we obtain a new
presentation for the theory

T[A]| =T + X1]A|, where (8.7)
alA] = {Bi(Po, - -, Pa)) | A= Bl Ao, - .., Xoga) }-

Moreover, we obviously have

ShIA] € 5| Al. (8.8)
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The following dependencies also take place:

YolAl U XslA] = FL(00), Xa|AlN Sa|A] = @, where (8.9)
So[A] = {B(Po, ..., Pagj)) | AV Byi(Xo, ..., Xagi))}-

By construction, we have either 3; € 3[A| or =B; € X5[A] for each i € N.
Thereby, presentation (8.7) ensures that

T|A] is a complete theory whenever it is consistent. (8.10)

Additionally, relation (8.9) ensures validity of the following property:
(VA € 2(m))|T[Al - Bi(Po, ..., Pawy) © A= Bl Ao, ..., Xar)) |- (8.11)
Let us prove that the following relation holds for the sets introduced above:
Ae Q(m) S I C EQ[A] (8.12)

First, we assume that A € 2(m). Consider an arbitrary ¢ € 3. By (8.2),
we have & = Py, (Do, ..., Pa,)) for some kg € Wp,. Since A € 2(m) by
assumption, by virtue of definition (1.6), we conclude that (Vk € Wp,) A |= .
Taking into account the fact that kg € Wy, we obtain A |= P, (Ab, . . ., Xapre))s
thus, by definition (8.7), we have By, (Po, ..., Pawky)) € X2[A] that gives the
desired inclusion ¢ € Y5[A].

Now, assume that Yo C 35[A]. For all 4 satisfying T F i(Po, . . ., Do),
by (8.3), we obtain By(Po, . . ., Pagy) € Yb; by assumption, we have T;(Po, . . .,
Do) € o[ Al; therefore, A |= Py(Ap, ..., Xy)) by (8.7). Applying again (8.2)
we conclude that (Vi)[i € W(m) = A |= Bi(X, ..., Xaw)] that gives the
desired inclusion A € £2(m) by definition (1.6).

Thus, (8.12) is indeed satisfied.

Now, we are going to show that

(a) Ae 2(m) = TI[A] is consistent and complete, (8.13)
) A& 2(m) = TI[A] is contradictory.

We consider two following cases.
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Case 1: A € £2(m). From (8.7), we have T'[A] = T + >5[ A]. Consider a
finite set A = {Wy,..., %1} C X3A]. We are going to show that 7"+ A is
consistent. Let ¥ be conjunction Yy A.. A% _;1. From ¥; € Y5[A], i < t, by rule
(8.7), we obtain ¥ € 5[ A]. By (8.9), we have =¥ € Y[ A], thus —¥ & X,[Al.
By (8.3) and (8.12), we have T = X C Xs[A]; thus, =¥ ¢ T. From this, we
conclude that T'+ W is consistent; thereby, T'+ A is consistent as well. Applying
Maltsev’s Compactness Theorem, we obtain that theory T'[4] is consistent. By
virtue of (8.10), this theory is complete.

Case 2: A & £2(m). In this case, by (8.3) and (8.12), we obtain 7" Z Y| A].
Let ¥ be a sentence in T~ [A]. By (8.9), we have ¥ € 5[ A]; thus, =¥ € Y[ A]
by virtue of (8.9). As a result, we obtain ¥ € T' C T|A] and —¥ € Js[A] C
T[A]. This shows that the theory T'|A] is contradictory.

Thereby, both implications (8.13)(a) and (8.13)(b) are indeed satisfied.

Applying (8.5) and (8.13), we obtain the following principal property:

{T[A] | A € 2(m)} is the set of all complete extensions of T. (8.14)

This property shows that the set 2(m) plays the role of a parametric
presentation for Stone space of the theory T under consideration.
We also mention the following relation taking place for all A € £2(m):

T|A] is decidable < A is computable. (8.15)

Indeed, if A is computable, the theory (8.4) is computably axiomatizable and
complete. By Janiczack Theorem, T'[A] is decidable. Conversely, the relation

ieA & T|Al F @, foradlieN,

shows that A is computable whenever T'[A] is decidable, for all A € 2(m).
Thereby, (8.15) is established.
The following more common property takes place:

there is an integer so s. t. function @i (1) is characteristic for (8.16)
Nom(T'[A]) for all A € £2(m); moreover, so can be found effectively
from to (by definition, sg is a relative characteristic index of T[A]).

Prove this statement. We use notations found in [4] Sec.9.2. For finite sets
Dy, D, C N of natural numbers, we introduce a notation for the following
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primitive propositional formula:

SBu,v: /\ X; A /\ —|Xj.

€Dy Jj€D,

Let A be an arbitrary subset of N and ¥ be a sentence of signature of theory
T. By virtue of (8.14), theory T[A] is complete for all A in £2(m). This means
that either ¥ or =¥ are provable in theory T'[A]. Based on presentation of
axioms for T'[A] in the form (8.4), we obtain that there is a pair of finite sets
D, and D, with D,,N D, = @ and a Boolean value o € {0, 1} satisfying the
following relation

T+ (Bu,o(Po, . .. s Da(uw)) = o), (8.17)

where ¥¥ = - and ¢! = .

By construction, theory 7" is computably axiomatizable. Therefore, the set
R of all sequences (u,v, NomW, a) satisfying condition (8.17) is computably
enumerable. Find an integer sg such that

Ws, = R = {{u,v,Nom¥, o) | u, v, ¥, and « satisfy (8.17)}. (8.18)

By definitions in [4] Sec.1.8, the number s¢ is exactly a Goédel number of the
Turing machine M enumerating the set R. Obviously, such a machine is built
effectively from an index of theory T'. Thus, we can state that

a value of the index sq is found effectively from tg. (8.19)
From (8.17) and (8.18) we obtain the following presentation

TIAl - ¥* & (Ju,v)|(u,v,Nom¥,a) € R A D, CA A D, CN~AJ.

(8.20)
Consider the passage to a normalized set Wy, — W), where both the term
'normalized’ and the function p(x) is defined in [4] Sec.9.2. By definitions (8.17)
and (8.18), the set W, = R is regular relative to the cases with consistent
theory T[A], i.e., the value of a depending on ¥ in the left-hand side expression
in (8.17) is uniquely determined whenever A € (2(m); as for the cases A ¢
2(m), the value of v in (8.17) with given ¥ does not matter for our purposes.
By construction, the normalization procedure may not change ’'correct’ cases
involved in relation (8.17) with A € £2(m). Thus, we obtain finally the following
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new form of the relation which is a simple reformulation of (8.20), for all

¥ e SL(o), A € 2(m), and a € {0,1}:

TIA] F ¥* & (Fu,v)[{u,v,Nom¥, a) € W,y A Dy SA A D, CNNAJ.

(8.21)
On the other hand, we have the following standard presentation for computa-
bility with an oracle, cf. [4] Sec.9.2:

el () = & (Gu,v)[w,v,t,0) € Wy A Dy ©A N Dy CNNAJ. (8.22)

Combining relations (8.21) and (8.22) together, we obtain the following sum-
mary statement:
TIA F ¥* & ¢ (Nom¥) = a, (8.23)

for all ¥ € SL(o), A € 2(m), o € {0, 1}, that is exactly what is required for
(8.16); moreover, an additional statement (8.19) is also established showing
effectiveness of the presentation (8.16).

Chotce of the parameter s. Main aim of the parameter s is to control
model theoretic-properties within the layer M1L°. To choose s, we are going to
manipulate with the Tarski-Lindenbaum algebras Li(7T'|A]) of the theory T A]
under formulas with k free variables xg,x1,...,2p_1 for 1 <k < w.

We are in a position to organize a computation with a pair of input
parameters A and k, where A plays the role of an oracle, while k is a
positive integer. A scheme below specifies both parameters and objects in this
computation:

An input parameter A C N, a working parameter k € N~ {0}; (8.24)
Scheme of transformation :

A — by rule (8.4)

TIA] +— by rule (6.2)

Lp(TIAD), 1 <k<w by rule (6.7)

DWIA] = tree(Li(T[A]), 1 <k <w by rule (6.8)

DH[A] = Tree(DU€> [A), 1<k <w by rule (3.9)

Result (final gathering) : D|A] = ®1<k<wD<k> [A].
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Objects involved in the computation form a chain of transformations from a
given theory T'[A] to its Tarski-Lindenbaum algebras L (7| A]), then, to normal
trees, further, to compact trees, and finally, to the direct sum of the obtained
sequence of compact binary trees. The right-hand side of the scheme points out
rules providing the transformations at each stage. Notice that, in the chain of
transformations as a whole, the set A C N plays the role of a free parameter,
while k plays the role of a temporary bounded parameter; k disappears at the
final stage having performed the role of an index in the sum operation of a
sequence of compact binary trees.

Hereafter, we denote by ./\/l]‘;1 a Turing machine having Go6del number p in
computation with an oracle A C N, cf. [4] Sec.9.2, while ./\/l]‘;l( ..) means a
result of computation on this machine with the pointed out input parameters.

By statement (8.16), theory T[A] is presented by a computable function
@i (1) defined by an index sy € N in computation with an oracle A.
By definition, cf. [4] Sec.9.2, this means that machine M (2) computes
characteristic function of the theory T[A] whenever A € £2(m). Using M2 (2)
as a subroutine, we can build a new Turing machine ./\/l;fl1 such that ./\/lf1 (k,x)
computes characteristic function of the natural tree D®[A] for all A €
2(m). While programming for ./\/lf17 we have to use internal details of the
transformation procedure from the Tarski-Lindenbaum algebras to natural
trees described in (6.7). In turn, the machine ./\/lf1 can be extended to a Turing
machine ./\/1;42 such that ./\/lf2 (k,2) enumerates compact binary tree D®)[A];
i.e., we have DW[A] = {t | M4 (k,t) |} for all A € 2(m). While programming
for Mfw we have to use internal details of the transformation procedure from
natural trees to compact trees described in (6.8). Finally, the machine ./\/If2
can be extended to a Turing machine M% (having a Gédel number s) such
that M (x) enumerates compact binary tree D[A] that was obtained at the
final stage of the chain (8.24); i.e., the following equality takes place for all
A e 2(m):

DlA] = {t| MA@ 1},

On the other hand, we have {t | MZ2(t) |} = W in accordance with the
definition given in [4] Sec.9.3. Thus we obtain the following equalities for all

A€ 2(m):

DAl = @1, DP[A] = {t| MAQ) |} = WA (8.25)
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Since set WA in (8.25) coincides with a tree D[A], closure of WA up to a
compact binary tree must coincide with the set WA itself; thus, from definition
(3.4), we obtain that D = WA, From this, together with (8 25), we obtain

finally
DI = @ 1w DWIA], for all A € 2(m). (8.26)

Argumentation above shows that s is found effectively from a week c.e. index
to of the source theory T

Thereby, the second parameter s is also chosen.

To this end, we have found a pair of integer parameters (m, s). Based on
these parameters, we construct a finitely axiomatizable theory F' = Fc(m, s, o).
Now, our aim is to define a computable isomorphism g : £(T) — L(F). Main
idea is based on the fact that Stone spaces (7.2) and (8.14) of theories F' and
T are defined via the same parametric space £2(m).

In accordance with Theorem 7.1, there is a computable sequence of
sentences 0;, ¢ € N, defined in theory Fc(m, s) that satisfies all conditions posed
in the formulation of the canonical construction. Using generating sequence
(8.1) for L(T), first, we define a partial mapping

P 05 i €N, (8.27)

The following chain of equivalences takes place for any ; € FRM(c°), i € N:

T F Bi(Po,...,Pq) & immediately
(VI € SU(T) ) T" = Bi(Do, ..., Pap)) & by (8.14)
(VA € 2(m)) T[A] = Bi(Po, ..., Pau) © by (8.11)
(VAe2(m) A EB < by (7.4)

(VA € £2(m)) Fc(m, s)[A] & Bibo, ..., 0uu) < by (7.2)
(VF' € St(Fc(m, s)) ) F' + Bi(bo, .. S 0ap)) © immediately
IF(C(m, S) F 513,'(90, NN 9a<z))

Thereby, Lemma 2.2 is applicable ensuring that the mapping (8.27) can

be extended to a computable isomorphism between the Tarski-Lindenbaum

algebras
w: L(T) — L(F). (8.28)
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Moreover, 1 maps any complete extension T[A], A € 2(m), of theory T
in corresponding complete extension Fc(m, s)[A] of the target theory F =
Fc(m, s). Let us show that u preserves all model-theoretic properties within
the semantic layer M1L°.

In the chains of transformations below, initially, we pass from a complete
theory to its Tarski-Lindenbaum algebra under formulas with k free variables
by rule (6.2) for all k; then we pass to a natural binary tree by rule (6.7); after
that, we apply the compactification operation passing to a compact binary
tree by rule (6.8). Finally, we gather all these compact trees together and
analyze the family of chains of the summary tree confirming preservation of
the model-theoretic property under consideration. Appropriate parts of Claim
0.3 are used presenting known criteria of existence of prime and countable
saturated models as well as characterization of their algorithmic complexity.
Both structural and algorithmic properties of the transformations ct2Ly, b2n,
and n2c are also used, which are presented in Lemma 6.1, Lemma 6.2, and
Lemma 6.3, as well as in Lemma 6.4.

First, we consider the property of existence of a prime model. Based on
the Vaught criteria presented in Claim 0.3 (a), we have the following chain of
equivalences:

T|A] has a prime model < (8.29)
(Vk € N~ {0}) ( Tarski-Lindenbaum algebra Li(T[A]) is atomic) <

(Vk € N~ {0}) (DW[A] is atomic) <

(Vk € N~ A{0}) (DW[A] is atomic) <

D is atomic &

Fc(m, s)[A] has a prime model.

Now, we turn to the property of strong constructivizability of a prime
model. Assume that theory 7T'|A] has a prime model . The case when A is
not computable is trivial because, in this case, by (7.3) and (8.15), both theories
T|A] and Fc(m, s)[A] are undecidable; thereby, each of them does not have a
s.c. prime model. Now, we consider the opposite case when A is computable.
Since T'[A] is supposed to have a prime model, all parts in the chain (8.29)
must be satisfied. Based on these assumptions together with Claim 0.3 (b), we
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have the following chain of equivalences:

T[A] has a strongly constructivizable prime model <
MN is strongly constructivisable <
the family of principal types realized in N is computable <
the sequence IT*°(DW[A]), k e N~ {0}, is strongly computable; i.e.,
there is a sequence of numerations vy - N — DW[A] such that the set
{{k,n,t) | t € v(n)} is computable <
the sequence IIT"™(D®[A]), k € N\{0}, is computable; i.e.,
there is a sequence of numerations vy - N — DW[A] such that the set
{tk,n,t) | t € ve(n)} is computably enumerable <
I (DAY is computable <
Fc(m, s)[A] has a strongly constructivizable prime model.
(8.30)

Further, we consider the property of algorithmic dimension of a prime
model. Assume that a prime model N of theory T[A] exists and is strongly
constructivizable. In this case, the theory T'[A] is decidable; thus, by (8.15),
the set A must be computable; moreover, all parts in the chains of equivalences
(8.29) and (8.30) mast be satisfied. Based on these assumptions together with
Claim 0.3(c), we have the following chain of equivalences:

T[A] has a strongly constructivizable prime model of the dimension 1 &
N has the algorithmic dimension 1 &

the family of atomic formulas of Th(M) is computable <

the family of atomic nodes in DW|[A], k € N\ {0}, is computable <
the family of dead-ends in D®[A], k € N~{0}, is computable <

the family of dead-ends in Df s computable &

Fc(m, s)[A] has a strongly constructivizable prime model of the dimension 1.

Now, we turn to the property of existence of a countable saturated model.
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Based on Claim 0.3(d), we have the following chain of equivalences:

T|A] has a countable saturated model < (8.31)
(Vk € N~ {0}) ( Tarski-Lindenbaum algebra Li(T[A]) is superatomic) <

(Vk € N~{0}) <D<k> [A] is superatomic) &

(Vk € N~ {0}) (DW[A] is superatomic) <

D is superatomic <

Fc(m, s)|A] has a countable saturated model.

Finally, we turn to the property of strong constructivizability of a countable
saturated model. Assume that theory T[A]| has a countable saturated model
M. The case when A is not computable is trivial because, in this case, by
(7.3) and (8.15), both theories T'[A| and Fc(m, s)[A] are undecidable; thereby,
each of them does not have a s.c. countable saturated model. Now, we consider
the opposite case when A is computable. Since T'[4] is supposed to have a
countable saturated model, all parts in the chain (8.31) must be satisfied.
Based on these assumptions together with Claim 0.3 (¢), we have the following
chain of equivalences:

T|A] has a strongly constructivizable countable saturated model <
M is strongly constructivisable <

the family of all types realized in M is computable &

the sequence II(DW[A]), k € N~{0}, is strongly computable; i.e.,
there is a sequence of numerations vy, : N — DW[A] such that the set
{{k,n, ) | t € v(n)} is computable &

the sequence II(D™[A]), k € N~{0}, is computable; i.c.,

there is a sequence of numerations vy, : N — D®[A] such that the set
{{k,n,t) | t € vg(n)} is computably enumerable <

(D2 is computable <

Fc(m, s)[A] has a strongly constructivizable countable saturated model.
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This shows that, the obtained isomorphism g indeed preserves all model-
theoretic properties within the layer M1L°.

Proof of Theorem 8.1 is complete. O
CONCLUSION

In this work, we describe a construction called canonical-mini that actually
represents a mini-version of the universal construction. It is defined by a
standard formulation for the universal construction supporting not so large
layer of model-theoretic properties. Moreover, the canonical-mini construction
turns out to be much simpler for understanding in comparison with any normal
version of the universal construction.

High complexity of the universal construction represents a certain psycho-
logical barrier while studying results obtained on the base of this construction.
The fact of availability of a mini-version of the universal construction that is
more accessible for studying reduces this barrier. As for the results concerned
with particular collections of model-theoretic properties, for such a result, we
need to apply a suitable version of the universal construction that supports this
set of properties. In the other case of results of a common character, a subject
of the statement is the layer of properties controlled by an available version of
the universal construction. In this case, without spending big efforts, we can
first consider this result based on the mini-version of the universal construction.
Subsequently, by attracting some stronger (however, more complicated) version
of the universal construction, we will be able to extend this result up to the
infinitary semantic layer ML or maybe its large enough part.

A few open questions.

QUESTION 9.1. Is there a routine consequence of the canonical construction
presenting a weak release of the universal construction of finitely axiomatizable
theories that can control the property “theory is w-stable’™?

QUESTION 9.2. Is there a release of the universal construction of finitely
axiomatizable theories controlling some model-theoretic property p that is not
included in the infinitary semantic layer MQL?
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[eperarekna M.I. OMBEBAII KYPBIJIBIMHBIH, oJICI3 TYPITATBIH
YCBIHATBIH AKBIPJIBI AKCUOMAJIAVIIBI TEOPUAJTAPIBIH, KA-
HOHABIK MUHU KYPLIJIBIMBI

7KyMbIcTa, aKBIPJbl aKCHOMAJAYIhl TEOPUANaP/bIH, KAHOHIBIK KYPBIIbI-
MBIHBIH, KOJITa Dap HYCKACLIHa cyieHe OTLIPHII, 613 KaHOHIBIK MUHH KYPhLILIM
JIETl aTajaThlH OChl KYPBIIBIMHBIH 6esiriyii 6ip oJ/icipeTiiTeH TYPIATBHIH IIBIFa-
paMbI3. IIIBIKKaH KYPBIJIBIM TEOPHSIBIK-MOJIENBIIK KACHETTEPIIH CATBICTHIP-
MaJIbl Typ/Jie KIlmripiM (JIereHMeH, TpUBHAIIBI €MeC) CeMaHTHKABIK, KabaThiH
DGaKbLIall OTBIPLIN, AKLIPJbl aKCHOMAJIAYIIhl TEOPHSIaPILIH oMOebal Kypbl-
JIBIMBIHBIH JaFIbLILI TYKBIPBIMAaMachiH neaenren. Ocbiral 6alilaHbICThI, Ka-
HOHJBIK MUHH KYPBIIBIM 9MOe0anThI-IMKIKAHOHIBIK KYPBLIBIM JI€Il T aTalybl
MYMKiH. KaHOHILIK MUHH KYPBLILIM HHMPHHATAPIILI CEMaHTHKABIK, KabaTTHIH
KaHgaiiga 6ip imKikabaThlln cyilemenmeiinl koHe oMbeball KypbLILIMHBIH, TYCi-
HyTe KOJalJbl opl eoyip KapamaibiM JpJieleyMeH THIMIL TYpJle e3relnesie-
HEeTiH, YKeHIJIAeTIITeH HYCKACKIHLIH, POJIIH aTKapa aja lb.

[Meperareknn M.I" KAHOHUYECKA A MUHU KOHCTPYKIUA KO-
HEYHO AKCUOMATHU3UPYEMBIX TEOPUN TPEJICTABJIAIOLIAS
CJIABYIO BEPCUIO YHUBEPCAJIbHON KOHCTPYKLIUU

B pabore, onupasichk Ha CYHMIECTBYIONIYIO BEPCHIO KAHOHUYECKOH KOHCTPYK-
U KOHEYHO aKCHOMATH3MPYEMBIX TEOPHUIl, MbI BBIBOJIUM HEKOTOPYIO ocJiab-
JieHHY10 (PopMy 9Todl Ke KOHCTPYKIMH KOTOpasi HA3BIBAETCs KAHOHHYECKOUH
MuHEN KoHCTpyKiueil. [Toydentasi KOHCTPYKITUS UMEET CTAHIAPTHYIO PopMy-
JINPOBKY YHUBEPCAJBbHONH KOHCTPYKIIMU KOHEYHO aKCHOMATU3NUPYEMbIX TEOPHit,
KOHTPOJIUPYIOIUX CPAaBHUTETHHO HeGOIBINOM (TeM He MeHee, HETPHBHAJBLHBII )
CEMaHTUYIECKNH CJI0f TEOPeTUKO-MOJeNbHLIX CBOUCTB. BBUAY 3TOrO, KaHOHU-
YecKas MUHU KOHCTPYKITHS TaKyKe MOXKeT ObITh Ha3BaHa yHUBEPCAJbHOU-IO/I-
KaHOHWYecKol KoHcTpyKnnell. KanonnvecKkass MUHU KOHCTPYKITHs, TOJIePIKA-
BalOITasi HEKOTOPbIH MOJIC/10i HHMUHATAPHOTO CEMAHTHYECKOTO CJIOsI, MOXKET
BBLINIOJIHATH POJIb YIPOIIEHHONH BEPCUM YHUBEPCAJIbHON KOHCTPYKIIMH, BBITOJI-
HO OTJIMYAETCS OT HOCTe Hel CyIecTBEHHO Hojiee MPOCTHIM U JOCTYIIHBIM JIJIsi
MMOHUMAHUA JIOKA3aTe/IbCTBOM.
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RECENT ACHIEVEMENTS IN CHI-SQUARED TYPE
GOODNESS-OF-FIT TESTING

During last ten years much have been done for the theory and applications of
widely used modified chi-squared type goodness-of-fit tests. In this account we
briefly consider the main achievements in that direction emphasizing the input
made by researchers from the Institute for Mathematics and Mathematical
Modeling of the Ministry of Education and Science of the Republic of
Kazakhstan.
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1 HISTORY AND INTRODUCTION

The famous chi-squared goodness-of-fit test has been discovered by Karl

Pearson in 1900. If observations are grouped over r disjoined intervals A; and
(n)

denoting N, observed frequencies corresponding to a multinomial scheme
and np;(0) expected, the Pearson’s sum is written
r () 2
2 (N; ™ —nps(9)) ()T gyvr(n)
) 0)V(0) )
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where V(™(8) is a vector of standardized frequencies with components

o(0) = (N™ — npi(0))/(npi(0)V/2, i =1,...,r, 0 € ©® C R".

K2 K2

If the number of observations n — oo, the statistic (1) will follow in the limit
the chi-squared probability distribution with r—1 degrees of freedom. We know
that this remarkable result is true only for a simple null hypothesis, when a
hypothetical distribution is specified uniquely (a parameter @ is considered
to be known). Up to 1934 Pearson believed that the limit distribution
of the statistic (1) will be the same if unknown parameters of the null
hypothesis are replaced by estimates based on a sample. In view of this it
is of interest to reproduce the citation of Plackett [1], p.69, concerning the
E.S. Pearson’s opinion: "I knew long ago that KP (Karl Pirson) used the
‘correct’ degrees of freedom for (a) difference between two samples and (b)
multiple contingency tables. But he could not see that x? in curve fitting
should be got asymptotically into the same category". Plackett explained
that this crucial mistake of Pearson aroused due to Karl’s assumption "that
individual normality implies joint normality". Fisher [2] clearly showed that
the number of degrees of freedom of the Pearson’s test must be reduced
by the number s of parameters estimated by a sample. To this point it
must be added that Fisher’s result is true if and only if parameters are
estimated by the vector of frequencies (minimizing Pearson’s chi-squared sum,
using multinomial maximum likelihood estimates (MLEs), or by any other
asymptotically equivalent procedure (see, e.g., [3], p.74)). Such estimates
based on a vector of frequencies, which is not in general the vector of
sufficient statistics, are not asymptotically efficient. Nowadays the Pearson’s
test with unknown parameters replaced by estimates 6., based on the vector
of frequencies is known as Pearson-Fisher (PF) test

r (n) N
3o =3 n;?gzgen»z = VUL (0,)V ™ (B,). (2)
i—1 \Yn

Dzhaparidze and Nikulin [4] proposed a modification of the standard Pearson’s
statistic (DN test) valid for any square root of n consistent estimate 6, of an
unknown parameter

U(0,) = VIT(0,)(T - B,(BIB,) 'B)V™(0,), (3)
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where B,, is an estimate of the matrix B with elements

df(x,0

. /
- Vpi(0) Ja, 005

where f(x,0) is a hypothetical probability density function. This test being
asymptotically equivalent to the Pearson-Fisher statistic in many cases is
not powerful for equiprobable cells (see [5]) but is rather powerful if an
alternative hypothesis is specified and one uses the Neyman-Pearson classes
for constructing the vector of frequencies.

Even after Fisher’s clarification many statisticians thought that applying
Pearson’s test one may use estimates (e.g., MLE) based on non-grouped (raw)
data. Chernoff and Lehmann [6] showed that replacing unknown parameters
in (1) by their MLEs based on non-grouped data would dramatically change
the limit distribution of Pearson’s sum. In this case it will follow a distribution
that in general depends on unknown parameters and, hence, cannot be used
for testing. In our opinion what is difficult to understand for those who apply
chi-squared tests is that an estimate is a realization of a random variable with
its own probability distribution and that a particular estimate can be too far
from the actual unknown value of a parameter or parameters.

Thus a problem of deriving a test statistic which limiting distribution will
not depend on parameters aroused. Several researchers showed that for location
and scale families with proper chosen random cells the limit distribution of
Pearson’s sum will not depend on unknown parameters depending only on the
null hypothesis. Being distribution free such tests can be used in practice, but
for each specific null distribution one has to evaluate corresponding critical
values. So, two ways of constructing distribution free Pearson’s type tests
considered are: to use proper estimates of unknown parameters (e.g., based
on grouped data), or to use specially constructed grouping intervals. Another
possible way is to modify the Pearson’s sum such that its limit probability
distribution would not depend on unknowns. Later it was shown that the
limit distribution of a vector of standardized frequencies with any efficient
estimator (e.g., MLE or the best asymptotically normal (BAN) estimator)
instead of unknown parameter would be multivariate normal and will not
depend on the fact that boundaries of cells are fixed or random. Nikulin [7]
using the above results and a very general theoretical approach (nowadays

bi; )dm, 1=1,...,r, j=1,...,5,
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known as Wald’s method) solved the problem in full for any continuous and
discrete probability distribution if one will use grouping intervals based on
predetermined probabilities to fall into a cell. One year later Rao and Robson
[8] using an heuristic approach obtained the same result for a particular case
of the exponential family of distributions. Formally their result

Y13(8,) = X2 (0,) + VU (0,)B (T, — Jgn) ' BLV(6,,), (4)

where J,, and J g, = B,ECBn are estimators of Fisher information matrices J for
non-grouped and J, for grouped data correspondingly, is identically equal to
that of Nikulin [7]. The statistic (4) can also be presented as

Y12(6,) = VT (0,) (1 - B,J;'BL) 7'V (8,). (5)

The statistic (4) or (5), suggested first by Nikulin for testing the normality,
will be referred to in the sequel as Nikulin-Rao-Robson (NRR) test. Nikulin
assumed that only efficient estimates of unknown parameters (e.g., MLEs based
on non-grouped data or BAN estimates) are used for testing.

Hsuan and Robson [9] showed that a modified statistic would be quite
different in case of using moment type estimators (MMEs) of unknown
parameters. They succeeded in deriving the limit covariance matrix for
standardized frequencies v;(0y,), where 0, is the MME of @ and proving the
theorem that a corresponding Wald’s quadratic form will follow in the limit
the chi-squared distribution. Hsuan and Robson provided the test statistic
explicitly for the exponential family of distributions when MMIs coincide with
MLEs, thus confirming already known result of Nikulin. Hsuan and Rohson
were unable to derive the general modified test based on MMEs 6,, explicitly.
This was done later by Mirvaliev [10]. Taking into account the input of Hsuan
and Robson and Mirvaliev, we suggest calling this test as a Hsuan-Robson-
Mirvaliev (HRM) statistic

Moore [11] based on Wald’s approach suggested a general recipe for
constructing modified chi-squared tests for any square root of n consistent
estimator, which actually is a slight generalization of Nikulin’s idea, since it
includes also the case of fixed grouping cells, which is not important because
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nobody knows a’priory how to partite the sample space onto fixed cells if
probability distribution to be tested is unknown. Moore has not specified those
tests for a particular \/n - consistent estimator, but has noted that a resulting
Wald’s quadratic form does not depend on the way of limit covariance matrix
inverting.

The important input to the theory of modified chi-squared goodness-of-
fit tests has been done by McCulloch [12] and Mirvaliev [10] who considered
two types of a decomposition of tests. The first is a decomposition of a test
on a sum of the DN statistic and asymptotically independent on the DN test
additional quadratic form. Denoting W2(8) = V7T (9)B(BTB)~ BTV (9)
and P2(0) = VWT(9)B(J — J,)~'BTV()(8) the decomposition of the NRR
statistic (4) in case of MLEs will be

Y12(6,) = U(0,) + (W2(8) + P2(6,)), (7)

where U2(8,,) is independent on (W2(8) + P2(8,)), and on W2(8). The
decomposition of the HRM statistic (6) is

Y2,(0n) = U3(0n) + (W3(0) + R (0n) — Q(0n)), (8)

where U2(8,,) is independent on (W2(8) + R2(0,) — Q2%(0,,)), but is asym-
ptotically correlated with W,2(0). The second way decomposes a modified test
on a sum of classical Pearson’s test and a correcting term, which makes it chi-
squared distributed in the limit, and independent on unknown parameters (see
(4) and (6)). This representation for NRR statistic was first used by Nikulin.
The case of MMEs was first investigated by Mirvaliev. The decomposition of
a modified chi-squared test on a sum of the DN statistic and an additional
term is of importance because the DN test based on non-grouped data is
asymptotically equivalent to the Pearson-Fisher’s (PF) statistic for grouped
data. Hence, that additional term takes into account the Fisher’s information
lost due to grouping. Later it was shown (Voinov et al [5]) that the DN part
like the PF test is in many cases insensitive to an alternative hypothesis in case
of equiprobable cells (fixed or random) and would be sensitive to it for, e.g.,
non-equiprobable Neyman-Pearson classes. For equiprobable cells this suggests
using the difference between a modified statistic and the DN part that will be
the most powerful in case of equiprobable cells (McCulloch [12], Voinov et al

[5])-

MATEMATUYECKUI *KYPHAJ 2014. Tom 14. Ne 8 (53)



Recent achievements in chi-squared type goodness-of-fit testing 95

Ronald Fisher noted that "in some cases it is possible to separate the
contributions to x? made by the individual degrees of freedom, and so to
test the separate components of a discrepancy". Cochran [13] wrote "that the
usual x? tests are often insensitive, and do not indicate significant results when
the null hypothesis is actually false" and suggested to "use a single degree of
freedom, or a group of degrees of freedom, from the total x2", to obtain more
powerful and appropriate test. The problem of an implementation of the idea of
Fisher and Cochran was that decompositions of Pearson’s sum and modified
test statistics were not known at that time. Voinov [14] obtained explicitly
a decomposition of Pearson-Fisher’s and Dzhaparidze-Nikulin’s statistics. A
parametric decomposition of the NRR and HRM statistics were obtained by
Voinov et al [15] explicitely.

Voinov and Pya [16] introduced new vector-valued goodness-of-fit tests
(based, e.g., on above discussed components of statistics or on any combination
of parametric and non-parametric tests) that in some cases provide a gain in
power for specified alternatives.

2 EQUIVALENCE OF THE NRR AND HRM TESTS

Consider the exponential family of distributions with density

S
f(@;0) = h(z)exp > 027 +V(0) 3, v € X TR, (9)
j=1
where X is open in R, X = {x: f(x;0) > 0}, and 8 € ® C R*. The family
in (9) contains, e.g., such distributions as Poisson, exponential, normal, and
many others. Assume that the support X does not depend on 8, the s x s
matrix with elements
9%V (0)
Hji————= 4j=1,...
3 89189] » 4] ’ » S
is positive definite on ©, and the population moments m;(0) = Eg(X7), j =
1,...,s, exist.
Differentiating the equality [, _, f(x;0)dx = 1 with respect to 6; we get

of(x;0) ' ov(e)

zeX

MATEMATUYECKUA KYPHAN 2014. Tom 14. Ne 8 (53)



96 V.G. Voinov

ov(0)

It follows that moments of the distribution in (9) are m;(0) = — 5%, J =
a .(.Jz)(rgl.sider a HRM statistic
Y23(0,) = X2(00) + B (0n) — Qn (), (10)
where
R%(6,) = VT (9,)C(V — CcTC)y-r'cTv(a,), (11)

Q%(6,) = VWT(6,)A(C - BK~'V)L'(C - BK'V)TAV™(0,), (12)

n

C is r x s matrix with elements

1
Cn(6) - [t oyia—p@mo) |, a3
pi(0) \ J
7
jg=1...,r k=1,...,s,
V is the s x s matrix with elements Vi; = m;;(0) —m;(0)m;(0), i,5 =1,...,s,

matrix A being A = I —qq’ + C(V — CTC)"'CT, K is a s x s matrix
with elements K;; = [2°0f(x;0)/00;dx, i,j = 1,...,s, and L is V + (C —
BK~'V)TA(C - BK~'V).

In 2004 Voinov and Pya [17] proved the following

THEOREM 1. Assume conditions stated abovg hold. Then, for the exponential
family of distributions in (9) the NRR Y12(0,,) and HRM Y?22(0,) statistics
are identical.

Proof. The complete proof of the identity Y12(8,) = Y22(8,,) is given, e.g., in
[18], p. 102.

Since for the exponential family of distributions in (9) MMEs can typically
be constructed easier than MLEs, then due to the identity Y12(6,,) = Y22(8,,)
one may use the statistic in (4) or in (5) that computationally is much simpler
than to use the statistic in (10) with too many matrices manipulations.
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3 COMPONENTS OF CHI-SQUARED TESTS

Decompositions of different chi-squared type tests that are important
for constructing the most power tests are based on the specific linear
transformation described, e.g. in [18], p.14.

Let Z = (Zy,...,Z,)T be a random vector such that EZ = 0, E(ZZ") =
D = (d;;), the rank R(D) of D being k£ < r. Denote

dz<]) = COV(ZZ'7 Z(j)), d(z)] = COV(Z(Z'), Zj), i,j = 1, ceey k.
Consider the linearly transformed vector 8y = (01, ... ,6:)7 with components

8. — 1 ];;i—l Z(z’—l)
V| Di—1|| Dy diry 2

The components of §(; are all normalized and uncorrelated, i.e. Edy) =
0, E{848x" } = I, where I is the ¢ xt identity matrix, and E&;0; = 0, i # j.

Ji=1,...,0, t=1,...,R(D). (14)

THEOREM 2. The following decomposition of the quadratic form ZZ)Dt_lZ(t)
holds:

ZDi ' Zy =01+ + 07, t =1,..., R(D). (15)

COROLLARY 1. Let a v x r matriz D be non-negative definite of rank k. Then

-1
RDR! =1I,, R'R = ( %pr 8 ) —D",

where R = (Rg:0), and Ry is a lower triangular matriz with elements

rii = (Dl /DD Y2, i =1, k,

rij = —rudy;_p(Di)j, j = 1,0 1. (16)
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In (16) (D;); denotes the j-th column of the leading sub-matrix of order
i x ¢ of the matrix D.

The detailed proof of these important results is given, e.g., in the book [18],
pp- 15-16.

The explicit decompositions of PF (2), DN (3), NRR (5), and HRM (8)
tests are all based on the Theorem 2. Decompositions of PF and DN statistics
obtained in [14] can be formulated as follows.

THEOREM 3. Under the usual reqularity conditions, the following decomposi-
tion of the DN statistic holds:

Ug(én) - 5%(én) et 53—3—1(én)7 (17)

where components 5,(én) are independently distributed as X3 in the limit.

The explicit formulas for §;(0,,) are provided, e.g., in [18], p.23.

The PF and DN statistics are asymptotically equivalent and possess
the same decompositions. The only difference is that the DN test uses any
v/n-consistent estimators based on the raw data, and the PF test uses

estimators (e.g., MLEs 6,,) based on grouped data. That is why the following
decomposition of the PF test holds:

Xg(én) - 5%(971) +ee 53—3—1(971)-

Theorem 1 permits to decompose the NRR and the HRM quadratic forms
as

Yli(én) - 5%(971) + 57%—1(@71) (18)
and
Yzi(én) - 5%(971) +o 57%—1(971) (19)

respectively. Explicit formulas for 62(6,,) and 62(8,,) are given, e.g., in [18], pp.
38, and 100.

Decompositions (18) and (19) show that statistics Y'12(6,,) and Y22(8,,)
possess in the limit the chi-squared distribution with r — 1 degrees of freedom.
These facts can be considered as alternative proofs of the well-known results
obtained previously by other means.
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Another important feature of decompositions of test statistics is that they
permit to realize the idea of Cochran [13] (see Section 1). Some numerical
examples are given in [14].

4 VECTOR-VALUED TESTS

Vector-valued goodness-of-fit tests were introduced by Voinov and Pya [16].
It was shown that such tests may possess noticeably higher power than that
of components of a vector implemented independently.

Consider the following artificial example of testing a simple null hypothesis
versus a simple alternative:

Ho: P(X <2)=F(z), Hy: P(X <1z) = G(z).
Let Y, and Y2, be two independent statistics such that in the limit
P(Yi, < ylHo) = P(Yy, <ylHo) = P(xi <),

P(Yf;, <ylHa) = P(Yz, < ylHa) = P(xi(3.5) < y),

where 7 is the central chi-square random variable with 4 degrees of freedom,
and x3(3.5) is the non-central chi-square random variable with 4 degrees of
freedom and non-centrality parameter of 3.5.

Consider a two-dimensional vector-valued test V,, = (Y, Y2,)" with the
rejection region Sy of the intersection-type, i.e. S; = (Y, > y1) N (Y2, > y1).
Since Y72, and Y, are independent and identically distributed, the probability
of falling into S; under Hy will be

P{(Y?, > yi|Ho) N (Y, > y1|Ho)} =

= P(Y(, > y1|Ho) P(Ys, > y1|Ho) = of = a,

where v is the level of significance of any component Yii, t=1,2, and « is
the size (or type I error) of the vector-valued test V,,. Assume we wish to use
a = 0.05, then oy = 0.2236, in which case the critical value y; of Y3 random
variable will be y; = 5.69. In this case, the power of the vector-valued test V,

is determined as

P(V,, € Si|H,) = P(YZ, > 51 |Ho)P(YZ, > y1|H,) = 0.343.
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At the same time, power of each component of V,, for the same level of
significance o = 0.05 is

P(Y2, > yo|Ho) = P(Y2, > y2|H,) = 0.282,

where yo = 9.49. Thus, we see that the power of V,, is 1.216 times more than
that of the components Yii, i = 1,2, implemented independently.
Consider the vector-valued test V,, = (Y2,, Y2,)T with the rejection region
Sy of the union-type, i.e. Sz = (Y2, > y3) U (Y2, > y3). Suppose we set again
a = 0.05. Then
P(V,, € So|Ho) = P {(Y{, > yslHo) U (Ys, > ys|Ho) }

= P(Y{, > ys|Ho) + P(Ys, > ys|Ho) — P(YT, > ys|Ho)P(Ys, > ys|Ho)
= 201y — a2 = 0.05,

which means P(Y?2 > ys|Hp) = a2 = 0.02532, and so y3 = 11.1132. Since
P(Y2 > 11.1132|H,) = 0.19525, the power of V,, for the rejection region of
union-type is

P(V, € SalHy) = P {(Y2, > g3l H) U (Y2, > yslHa) )

= P(Y{%, > ys|Ha) + P(Yay, > ys|Ha)—P(Y{}, > ys|Ha) P(Ya, > ys|Ha) = 0.352,

which is 1.25 times more than the power of Y2, i = 1,2, implemented
individually.

This simple artificial example shows that the use of a two-dimensional
vector-valued test may result in an increase in power as compared to the power
of individual components of the vector-valued statistic. This effect becomes
even stronger for three-dimensional vector V,, = (Y2, Y22, Y2)T. For example,
the power of V,, for the rejection region of union-type is 1.415 times more than
the power of Y2, i = 1,2,3, implemented individually. Voinov and Pya [16]
showed also that different parametric and non-parametric statistics can be
combined in a vector.

Simulation studies showed that, when combining either correlated or
uncorrelated nonparametric or parametric tests with approximately the same
power, vector-valued tests may gain power when compared with the power of
components. Examples show that the power of vector-valued goodness-of-fit
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tests depends on the structure of the rejection region, correlation between the
components of the test, and dimensionality of the vector. Unfortunately, by
the date there is no theory of vector-valued tests, and, hence, there are no
recommendations on optimal structure of tests.

5 WALD’S METHOD CORRECTED

The general Wald’s method for constructing modified chi-squared goodness-
of-fit tests has been elaborated by Moore (Moore [19], Moore and Spruill
[20], and Moore [11]). In 2013 Voinov [21] discovered a serious mistake in
that theory showing that Wald’s type statistics will follow the central chi-
squared distribution if and only if the limit covariance matrix of standardized
frequencies will not depend on unknown parameters. In particular, it was shown
that the goodness-of-fit statistic developed by Moore and Stubblebine [22] does
not follow the chi-squared limit distribution, and, hence, cannot be used for
testing multivariate normality.

The Moore’s theory can be briefly summarized as follows. Let Xq,..., X,
be independent identically distributed random variables, and we intend to test
the composite null hypothesis Hy that the distribution function of X; belongs
to a parametric family of F'(x, @) continuous distribution functions, where 8 =
(01,...,0)T € ©® C R*. Chi-squared tests of fit for Hy are based on frequencies
N7, the number of observed values of Xj,..., X, that fall into r intervals I,
such that LNL =@ fori #jand L U---UL = RY, 4,5 = 1,...,r. Since
expected probabilities p;(6) = fIi dF(x,0) to fall into an i-th interval depend
on unknown parameter 6, it can be estimated from data by any y/n-consistent
estimator 6,, = 6,,(X1, ..., X,). Denote V<”>(0) the r-vector of standardized

frequencies with components Vim) = [N;n) — npi(0,)]/ [npi (02, i =
1,..., 7. Moore and Spruill [20] showed that the vector V(™ (8,,) asymptotically
follows a multivariate normal distribution N,(0,3), where 0 is a zero r-
vector and X2 is a positive definite covariance matrix. The covariance matrix X
essentially depends on the way of the parameter 8 estimation. Wald’s [23] idea
was as follows. Let X possess the N,.(u, X) distribution and is nonsingular of
rank r, then the quadratic form (X — )7 271X — ) will be distributed in the
limit as chi-squared with r degrees of freedom, x2 . Nikulin [7] was first who
used this idea, standardized frequencies, and MLE 6., of @ for testing univariate

normality when the matrix ¥ is singular of rank r — 1. At this point it is of
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importance to note that in this case the limit covariance matrix of standardized
frequencies is a certain matrix that does not depend on parameters. Moore [11]
generalized Wald’s approach and developed the method of the construction of
modified chi-squared goodness-of-fit tests valid for any \/n-consistent estimator
0,.

The Moore’s [11], p.134, theory is based on the

THEOREM 4. Assume that the limit distribution of V™ (8, follows N,(0, %)
with rank of 3 being r — 1, then the Wald’s method statistic Yn(0,) =
VIT(9, )2~V (8,,) is invariant under the choice of matriz generalized
inverse ;.. If Hy is true, the Y, (0,) will follow x2_, distribution in the limit.

In the proof of this theorem Moore [11], p.132, referred to his lemmas 1(b)
and 2(a). Consider the Lemma 1(b) of Moore [11] in more detail. The Khatri’s
Lemma 9 (Khatri [24], and Rao [25]) is formulated as below.

LEMMA 1. Lety : n x 1 be normal with mean zero and the covariance matriz
a’B and let the rank of B be r. Then, a necessary and sufficient condition for
y ' Gy/o? to be distributed as X% is G = B™, where G is a symmetric matriz.

It is of great importance to note that in this Lemma it is assumed that
the matrix B is certain, do not depending on unknowns. To apply this Lemma
for y = V(™)(8,) we have to set 02 = 1. From this it follows that the limit
covariance matrix of the vector of standardized frequencies should not depend
on 6. It follows also that in the Theorem 4 of Moore [11] we have to add a
necessary additional condition that the matrix 3 does not depend on 0 and
formulate it as

THEOREM 5. Assume that the limit distribution of V™ (8, follows N,(0, %)
with rank of 3 being r — 1, that the matrix X does not depend on 6,
then the Wald’s method statistic Y, (0,) = VT (0,)87V™(8,,) is invariant
under choice of 7. If Hy is true, the Y,(0y) will follow x2_, in the limit.

Proof. If one takes into account the necessary bold faced additional condition,
then the Theorem 5 immediately follows from Lemmas 1 and 2(a) of Moore
[11], p. 132.

Several examples of the application of the Theorem 5 for testing the
univariate null hypotheses, when the additional condition of Theorem 5 is
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hold automatically, have been given in Voinov [21]. The serious problem
aroused in an attempt to apply the NRR Wald’s type test for multivariate
normality developed by Moore and Stubblebine [22]. An inspection showed
that, for example, in two-dimensional case the limit covariance matrix 3 =
I— qq’ — BJ7'BT of the standardized frequencies Vn(@n) for equiprobable
cells can be written down as ¥ = I — qq? — BQBY, where q is the r-vector
with components 1/+/r, and

& dyds--- did,
rl40% 03, — 301103022 + 01o) | dody  d3--  dod,

(011092 — 0%,)?

BQB' = .
dody  dedy  d?

where d;, i = 1,...,r, are constants that depend only on ends of grouping cells.
From the last equation we see that the limit covariance matrix X =I—qq’ —
BJ!'B7 of the standardized frequencies Vn(@n) for equiprobable cells depends
on unknown parameters of X, and, hence, due to the Theorem 5, the limit
distribution of the NRR statistic Y,,(8,) = V"T(0,)2-V®™(8,), where
is the estimator of 37, cannot follow in the limit the chi-squared probability
distribution y2_;, will depend on unknown parameters, and, hence, cannot be
used for testing in principle. A simulation study in [21] fully confirmed this.
From the above it became clear why Moore and Stubblebine [22], p.723, wrote
that it is computationally complicated to use NRR test for MVN (multivariate
normality) in practice.

6 NEW TESTS FOR THE TWO-DIMENSIONAL CIRCULAR AND GENERAL
MULTIVARIATE NORMALITY

MecCulloch [12] showed that a modified chi-squared test can be represented
as a sum of DN test U2 and asymptotically independent on it S2 statistic.
He noted also that S2 test for equiprobable grouping cells will possess higher
power than the initial modified test. Using a simulation study, Voinov et al
[5] showed that this effect works for many univariate tests. It was naturally to
expect that this rule will also work for multivariate tests.

Following Moore and Stubblebine [22] consider testing for bivariate circular
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normality. The hypothesized probability density function is

a9l0) = eroY e { s (@ m -], @0)

where 8 = (uq, o, 0 ) Using a random sample (X1,Y1),..., (Xpn,Y,) , the
MLEs of 11, 12, and % can be obtained as X = %Z 1 X5, Y = 1 ?_1Yj7
and
1 n B n
§2 =g A2 K =X Y (G Y
j=1 j=1

If ¢; = —2log(l —i/r), i=1,...,r—1, ¢, = +0o0, then the probability to fall
into a cell will be p;, = 1/7.
Denoting

T
- (N1n —n/7) (Nyn —n/7) N AT
o (Bt i

where Nj,, j = 1,...,r, is the number of distances [(X;— X)*+ (Yi—
Y)?] /52 that fall into the interval [c;_1,¢;),7 = 1,...,7, the NRR statistic is
easily derived as (see, e.g., [18], p.42)

, 2
afw o (Sn). w
—r Z v

i=1

where v; = 2 [(1—%)10{.{(1—%) — (1—’%)1053;(1—%)], t=1,...,r. In
this case the DN statistic is

r r 2 r
Uz =) N} - <Z NM> IRz (22)
i=1 i=1 i=1
Subtracting U2 from Y,? we get the new test for the two-dimensional circular
normality as
_ 2

C (i) s

i=1

(23)
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Our simulation study shows that for the null hypothesis in (20), and
the alternative to be the two-dimensional standard logistic distribution with
independent components, the power of S2 test in (23) almost does not depend
on 7, and is noticeably higher than the power of ¥,2 in (21). At the same time
we noticed that the DN test in (22) possesses almost no power.

Consider now a construction of a Wald’s type chi-squared goodness-of-fit
tests for the composite null hypothesis that a set X4, ..., X, of n independent
identically distributed (iid) p-dimensional random vectors does not contradict
the following joint probability density function

f(x]0) = (2m) P27 exp —%(X—M)Tﬁ_l(x—u) ) (24)

where p is a p-vector of means and 32 is a positive definite p x p covariance
matrix. Let a hypothesized vector of unknown parameters be

T
9:(,ul,...,,up70'1170'12,0'22,...,O'lj,O'Qj,...,O'jj,...,O'pp) .

The MLE 6,, of € is the vector (X, S)TA7 where X is the vector of sample means,
and S is the covariance matrix. Given 8,,, and constants 0 < ¢y < - - - <¢p =00,
where ¢; are i /7 points of x?(p) distribution, the r equiprobable (p;,(8,) = 1/r)

grouping cells were defined by Moore and Stubblebine [22] as
Ein(0n) ={X € RV 1,1 < (X =X)TSTHX - X) <5}, i=1,...,m

It was also shown in [22], p.720, that the limit covariance matrix of the vector
V(0,,) of standardized frequencies with components V; = (Ng, — n/7)//n/7,
where observed frequency Ny, is the number of random vectors X;,..., X,
falling into Em(@n)7 i=1,...,ris 2] = I—qq’ —BJ~!'B”. In this expression
B is the r x m matrix with elements By; = (p;(0))~'/20p:(0)/06;, i =
1,...,r7, 7 = 1,...,m, qis r-vector with entries 1/\/r, m = p+ p(p + 1)/2,
-1

and J = ( 20 Qo_l > is the Fisher information matrix for one observation.
Explicit expressions for the matrix Q are given in [26]. Using 3; and the
Theorem 4 of Section 5 Moore and Stubblebine [22], p.722, derived the NRR
statistic as

Yvﬂ?(én) - Vg(én)vn(én) + Vg(én)Bn(Jn - BZ:Bn)_lBZ:Vn(én): (25)
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where B,, and J,, are MLEs of B and J. Based on incorrect Theorem 4 with the
necessary condition omitted (see Section 5) Moore and Stubblebine [22], p.722,
erroneously decided that the NRR test in (25) will be invariant and distributed
in the limit as x2_;. In Section 5 we have shown that in two-dimensional case
the statistic in (25) will be chi-squared distributed only for a diagonal matrix
32 of the null hypothesis. Our intensive simulation study showed that for any
dimensionality p the statistic in (25) will be chi-squared distributed in the limit
if and only if X is a diagonal matrix.

We succeeded in deriving explicit expressions for NRR Y,2, DN U2, and S2
if 32 is a diagonal matrix of any dimensionality. They are:

2 Vid;)?
RN 4 .
Uz =Y V72— Zld2 O~ Vida)?, (27)
and

e S Sd

if dy = (P2 emeim1/2 _ (PPe=eil2yp 19 where by, = [p(p —2) ... (1)(2)]7 L if p is
even, and b, = (2/7)2[p(p —2)...(5)(3)] if p is odd (see [22], .720).

The above results for testing the MVN null hypothesis with a diagonal
covariance matrix X suggest the following procedure: 1) produce the Karhunen-
Loéve transformation of a sample data that will diagonalize a sample covariance
matrix, and 2) use the statistics Y2, U2, and S? as defined in formulas
(26), (27), and (28). Let ® = [e; ez---e,| be a matrix whose columns
ey, ey, - - - e, are orthogonal normalized eigen-vectors of S , then the Karhunen-
Loéve transformation will be Y; = ®7X;, ¢ = 1,...,n. From this it follows
that tests in (26), (27), and (28) with frequencies Nj,, i = 1,...,n, defined
by the number of observed vectors Yi,...,Y, that will fall into intervals
Ep(0,) ={Y € B : ;s < (Y -Y)S;HY -Y) < ¢}, i = 1,...,7,
where S, is the sample covariance matrix of Y1,...,Y,, can be used. So are
new tests for MVN suggested.
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A detailed derivation of the explicit expressions (26), (27), and (28) for
the new tests is given in [26]. Since the limit covariance matrix of V,,(8,,) does
not depend on unknown parameters of the hypothetical null MVN distribution,
then from the Theorem 5 of Section 5 it immediately follows that statistics (26),
(27), and (28) are invariant and, hence, can be used for hypotheses testing.

From the theory of quadratic forms it is known that if Y ~ N(u,3),
where X is a positive definite matrix, then the two quadratic forms YZAY
and Y'BY are distributed independently if AXB = 0. Since asymptotically
Vu(0,) ~ N(0,I — BJ7'BT), and

{1-BB'B) B} {1-BJ'BT}B[(J-BT'B)"' + B'B)"|BT} =0,

then independence of U2 and S2 follows, and, hence one may use S2 on its
own right. The detailed derivation of this result is given in [26].
In [26] we have shown also that under any alternative lim P(Y;? >
n—r o0

ng_l) = 1, where ng,r—l is a critical point of the chi-square distribution
with » — 1 df (degrees of freedom). In other words, the probability to fall into
rejection region under any alternative tends to one, if the sample size increases
unboundedly. From this it follows consistency of Y,2. Consistency of U? and
52 is proved analogously.

An intensive simulation study conducted in [26] showed that (at least
with respect to Pearson Type II alternative distribution, Student ¢ with 10
df, Khinchine, and several mixtures of normal multivariate distributions) the
power of S2, like in the univariate case, is significantly higher than that of U2
and is noticeably higher than that of Y2, It was shown also that the power of
S2 is comparable with the power of the well-known tests of Henze and Zirkler
[27], Royston [28], Székely and Rizzo [29], and Doornik and Hansen [30].

At the same time it has to be noted that the application of S2 test is much
simpler than implementations of tests introduced in [27-30]. This simplicity
is evident, because we have a simple explicit expression for S2 statistic that
follows in the limit the well known chi-squared distribution with one degree
of freedom, and so there is no need to conduct simulations to define critical
values of tests.

It has to be added also that the test S2 is much more stable as compared
to tests in [27-30], because the variance of it, which is 2, is always smaller than
that of other tests.

MATEMATUYECKUA KYPHAN 2014. Tom 14. Ne 8 (53)



108 V.G. Voinov

7 21-ST CENTURY’S MISUSING OF THE CLASSICAL PEARSON AND POWER-
DIVERGENCE TESTS

Moore and Stubblebine [22] considered a possibility to use the classical
Pearson’s test for testing the multivariate normality (MVN). Using the
fundamental result of Chernoff and Lehmann [6] they show that under the
null hypothesis of MVN the Pearson’s statistic with parameters estimated by
MLEs based on raw data for equiprobable fixed grouping cells will follow the
weighted sum of two independent chi-squared random variables with r — 2
and 1 degree of freedom, where r stands for the number of equiprobable fixed
grouping cells. This result has not been taken into consideration by Cardoso
De Oliveira and Ferreira [31], and Batsidis, Martin, Pardo, Zografos [32], who
consider tests for MVN based on unbiased estimates that are asymptotically
equivalent to MLEs. The authors of those papers erroneously decided that their
tests approximately follow the chi-squared distribution with r» — 1 degrees of
freedom in asymptotic.

Consider a construction of a chi-squared type goodness-of-fit test for
the composite null hypothesis that a set Xy,...,X,, of n iid (independent
identically distributed) p-dimensional random vectors does not contradict the
joint probability density function (24). The unbiased estimator 6, of 0 is the
Victor (X,8)T, where X = 377 | Xj/n,and S = 37 |(X;—X)(X;—X)T/(n—
1).

Cardoso De Oliveira and Ferreira [31] considered the squared radii
7’]2' = (X] - X)Ts_l(X]’ - X), j = 1, RN

It is known that if X; follows (24), then statistics

n 2 i
b(X]):mT], j—l,,n, (29)
follow the beta-distribution with parameters p/2 and (n — p — 1)/2 (Gna-
nadesikan and Kettering [33]). Define grouping cells E;(6,) = {X € RF :
ci-1 < b(X;) < ¢}, i = 1,...,7, and expected cell probability p;(6,) =
fE(@ )f(x|9n)d:v. Let ends of equiprobable grouping cells be 0 = ¢g < ¢1 <

<o <ep=1,wherec;, i =1,...,7—1,is the i/r point of the beta-distribution
with above parameters. If V; denotes the number of b(X;), j =1,...,n, falling
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~ ~

in F;(0,), and, since the expected frequency equals to np;(8,) = n/r, then
the statistic of Cardoso De Oliveira and Ferreira [31] Z, that actually is the
classical Pearson’s sum, will be

Z = ir(Ni —n/r)?/n. (30)
=1

For brevity, in the sequel we shall denote this test as the CarFer’s statistic.
Note that N;, i = 1,...,n, depend on unbiased estimators X and S of p and
¥, and that those estimators are based on the non-grouped (raw) data.

Cardoso De Oliveira and Ferreira [31] have not taken into account this
fact as well as the Moore and Stubblebine [22] results about limiting null
distribution of (30) who have proved that this distribution is not chi-squared
but is a weighted sum of chi-squared random variables. Strictly speaking,
Moore and Stubblebine [22]| obtained their result for MLEs of g and ¥. But,
since in this case MLEs and unbiased estimators are asymptotically equivalent,
the Moore and Stubblebine [22] theory can also be applied for the statistic (30).
One needs only to derive correct weights for the sum of chi-squared random
variables.

Under the regularity conditions of Moore and Spruill [20], p.602, which hold
in our case, the r-vector Vn(@n) of standardized frequencies with components
Vi(8,) = (N; — n/r)//nfr, i = 1,...,r, follow asymptotically the r-
dimensional multivariate normal distribution N,(0, 33,) with O-vector of means
and the covariance matrix

>, =I1—qq’ —BJ'BT. (31)

Moore and Stubblebine [22], p.720, justified this result for MLEs of p and 3.
Since unbiased estimators of g and X are asymptotically equivalent to their
MLESs, the formula in (31) is valid in our case as well. Thus the asymptotic
null distribution of 7 is determined by the eigen-values of the matrix (31). The
rank of B and also rank of BJ™'B7 is 1. From the above it follows that eigen-
values of (31) are r — 2 1’s, one 0 and 0 < A < 1 which is nonzero eigen-value
of BJ™'B” . The explicit expression for A is given in [34] as

,
A=1 —27°pZd,2,
i=1
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where

—_1)2 _1NZ2 _
d; = {Cfﬁ exp (—%qq) — &P exp (—(n 2n1) czﬂ (n 1)Pbp7

2np/2

by = [p(p—2)...(4)(2)]7" if p is even, and b, = (2/7)2[p(p —2) ... (5)(3)]~"
if p is odd.

THEOREM 6. The limit null probability distribution function of the CarFer’s
statistic Z 1s

PO - e (wan) 1 (703) > 32)

where (s, x) = fom ts~le7tdt, s > 0, is the incomplete gamma-function.

Proof. Since eigen-values of 3, = I — qq! — BJ™'B? are r — 2 1’s, one 0
and 0 < A < 1, the limit null distribution of the CarFer’s quadratic form will
be the same as that of X + AY', where the probability density function of X
is f(x) = x2_p(x) = 2P 2% ”3/2/[ "=2/20((r —2)/2)], @ > 0, and the
probability density function of Y is f(y) = x3(y) = e~¥%/2/\/2wy, y > 0. Due
to the independence of X and Y the limit null probability distribution function
of Z will be

z/A

re -rzsa- [ [iwr dxdy/f dy/f

r+Ay<z

RGOk (é ﬂ) E <%2 5) e

The corresponding probability density function is

BEN)  (r=2 2\ X (1
f(”Ar((lr—z)/zﬂ( 2 ’5>+ Ve (5’ﬁ

The intensive simulation study performed in [34] clearly shows that the
limit distribution of the CarFer statistic Z actually follows (33), and not to
X2_, as it was announced in [31]. In our opinion, if the simple null hypothesis

),7">2. (33)
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were the beta-distribution with known parameters p/2 and (n —p—1)/2, then
indeed the statistic Z would follow in the limit the chi-squared probability
distribution with r—1 df. But the authors of [31] intended to test the hypothesis
(24) with unknown (hence, to be estimated by raw data) parameters of g and
3. Because of this, due to the theory of Chernoff and Lehmann [6], and Moore
and Stubblebine [22] the CarFer statistic Z cannot in principle follow the chi-
squared probability distribution with » — 1 df. Actually, the simulation study
in [34] shows that the limit distribution of Z in many practical situations can
be well approximated by the chi-squared probability distribution with r —2 df,
and not by x2_;.

Moreover, that simulation study showed that if the CarFer statistic Z will
be used correctly, e.g., with critical values defined by (33), then the power of
Z will still be much smaller than that of the well-known tests of Henze and
Zirkler [27], Royston [28], Székely and Rizzo [29], and Doornik and Hansen [30].
From all these it follows that the CarFer statistic Z cannot be recommended
for applications.

Based on results of [31] Batsidis et al. [32] suggest to use the family of
power divergence statistics

r 0,
wém 501 ((2

Z(\) =< 2 Elog g, A= —1, (34)
=1

N

A
—1), —00 <A< o0, A#£—1,0,

-
2ZOilog%, A=0,
i=1 ‘

where O; and FE; are the observed and expected frequencies for the i-
th equiprobable interval ¢ = 1,...,r. Particular values of a parameter A
correspond to: CarFer chi-squared test (A = 1) considered in detail before,
likelihood ratio test (A = 0), Freeman-Tukey statistic (A = —0.5), modified
chi-squared test (A = —2), and Cressie-Read statistic (A = 2/3). The authors
of Batsidis et al. [32], p. 2256 announced that under the same procedure as
in Section 7 the limiting null distribution of Z(\) will follow the chi-squared
distribution with r — 1 degrees of freedom. We have already shown that this
is not true if A = 1. The same conclusion can be made for other values of A.
To avoid theoretical work for deriving the limit null distributions of Z(\) for
different A, we investigated simulated critical values of Z(A) having compared
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them with those for the chi-squared distribution with » —2 and r — 1 degrees
of freedom. This study showed that the histograms of simulated values of Z(\)
are well approximated by the chi-squared distribution with » — 2 df (not r — 1
df as it was announced in Batsidis et al. [32], p. 2256). It was shown also
that the power of such power-divergence tests (at least with respect to some
alternatives close to MVN) is much lower than that for other well-known by the
date tests for MVN. Once again, we have to conclude that power-divergence
tests of Batsidis et al [32] cannot be considered as "necessary" and, hence, are
not recommended for applications.
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Bounos B.I. XU-KBAJAPAT TEKTEC KPUTEPUNJIEP KOMETIMEH
KEJICIM TECTIJIEVIETT KASIPT'T 2KETICTIKTEP

CoHFBI OH KbUIJIA KEH TYPAE HAlJaTaHATHIH X-KBAAPAT TEKTEC KEIiCiM-
HiH TYPJEHAIPIJIreH KPUTEPHUJIEPiHiH TeOPUACHl MEH KOJIJIAHBICTAPHI YVITIIH KOIl
HOpce kacaybl. By mosyaa 6i3 ockl GarbiTTarsl GacThl xKeTicTikTepai, Ka-
sakcran Pecnybiukacbl BisiM »koHe FbiibiM MUHHCTPJIINT Maremaruxa »KoHe
MaTeMATUKAABIK, MOJIENIIEY WHCTUTYTLIHBIH TaJBIMIADBIHLIH YAECiH aTanm Kep-
ceTe OTBIPHIT, KBICKAITA KAPACTHIPAMBI3.

Bounos B.I'. COBPEMEHHBIE JOCTU?KEHUA B TECTUPOBAHUUA
COTVIACH A C TTOMOLLBIO KPUTEPUEB TUITA X1-KBA IIPAT

B nocnenaune necaTh JleT MHOTO OBIO CIENaHO I TEOPHUM U IPUJIOZKE-
HUN MIHPOKO HCIOJAb3YEMBIX MOIMMDUIIHPOBAHHBIX KPUTEPUEB COLJIACHS THIIA
xu-KBaapar. B aroM 0630pe MBI KPAaTKO PACCMOTPHM OCHOBHBIE JTOCTHXKEHUSI
B 9TOM HAIPABJIEHUN, MOJIYEPKUBAs BKJIAM yYeHbIX VHCTHTYTA MATEMATHKE U
MaTEMATHYECKOTO MOJeupoBanus MunucrepcTsa obpa3opanus u Hayku Pec-
nybsuku Kazaxcran.
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