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An algorithm of solving linear boundary value
problem for the Fredholm integro-differential equation

with impulse effects

Anar T. Assanova1,a, Zhanbolat M. Ubaida1,2,b

1Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
2al-Farabi Kazakh National University, Almaty, Kazakhstan
a e-mail: assanova@math.kz, be-mail: janbo97.01@mail.ru

Communicated by: Dulat Dzhumabaev
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Abstract. Based on parameterization method an algorithm of solving boundary value problem for the

Fredholm integro-differential equation with impulse effects is proposed. Numerical implementation of

the algorithm is offered.

Keywords. Fredholm integro-differential equation with impulse effects, parameterization method, fourth

order Runge-Kutta method, Simpson method.

1 Introduction

In this paper, we study a linear two-point boundary value problem for the Fredholm
integro-differential equation with impulse effects at fixed times:

dx

dt
= A(t)x+ ϕ(t)

T∫
0

ψ(τ)x(τ)dτ + f(t), t 6= θj , j = 1, 2, t ∈ (0, T ), x ∈ Rn, (1)

B0x(0) + C0x(T ) = d0, d0 ∈ Rn, (2)

B1x(θ1 − 0) + C1x(θ1 + 0) = d1, d1 ∈ Rn, (3)

B2x(θ2 − 0) + C2x(θ2 + 0) = d2, d2 ∈ Rn, (4)

where 0 = θ0 < θ1 < θ2 < θ3 = T , (n × n)-matrices A(t), ϕ(t), ψ(t), and n-vector-function
f(t) are piecewise continuous on [0, T ] with possible discontinuities at the points t = θj ,
j = 1, 2.

2010 Mathematics Subject Classification: 34A37, 34B37, 34K28, 34K45, 45J05.
Funding: This research is supported by Ministry of Education and Science of Republic Kazakhstan Grants

No. AP05132486 and AP05131220.
c© 2019 Kazakh Mathematical Journal. All right reserved.
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Let PC([0, T ], θ1, θ2, R
n) be the space of vector-functions x(t), piecewise continuous

on [0, T ] with possible discontinuities on t = θ1, t = θ2, and the norm be ||x||1 =
max
i=1,3

sup
t∈[θi−1;θi)

||x(t)||.

The solution of the problem (1)–(4) is a piecewise continuously differentiable function
x(t) ∈ PC([0, T ], θ1, θ2, R

n) satisfying integro-differential equation (1), boundary condition
(2) and conditions of impulse effects (3), (4).

Integro-differential equations frequently arise in applications being the mathematical mod-
els of some processes in physics, biology, chemistry, economy, etc. Their role in the study of
processes with aftereffects was noted in monographs [3], [4], and the overview of early works
devoted to the initial and boundary value problems for the integro-differential equations was
provided as well. Periodic and boundary value problems for impulsive integro-differential
equations were studied by numerous authors. For the various aspects of the qualitative
theory and approximate methods for the integro-differential equations without or with the
impulse effects, and their applications we refer to [1]–[13]. By parameterization method [14]
linear boundary value problem for the Fredholm integro-differential equation with impulse
effects was studied in [10]. This method is based on the dividing an interval [0, T ] into N
parts and introducing additional parameters. While applying the method to the problem
for impulsive integro-differential equations, the necessity of solving an intermediate problem
also arises. The intermediate problem here is a special Cauchy problem for the system of
integro-differential equations with parameters. But unlike the intermediate problems of above
mentioned methods, the special Cauchy problem is always uniquely solvable for sufficiently
small partition step. This property of the intermediate problem allows to establish in [10]
the necessary and sufficient conditions for the solvability and the unique solvability of the
problem considered.

The goal of this paper is to specify numerical algorithms for finding a solution of the
linear boundary value problem for the Fredholm integro-differential equation with impulse
effects. To reach the goal we use parameterization method [14].

A partition of an interval [0, T ] into 3 parts with the points θj , j = 1, 2, we denote by
∆3(θ) : [0, T ) = [0, θ1) ∪ [θ1, θ2) ∪ [θ2, T ). The restriction of the function x(t) to the r-th
interval [θr−1, θr) is denoted by xr(t), i.e. xr(t) = x(t), t ∈ [θr−1, θr), r = 1, 2, 3.

Introducing parameters λ1 = x1(0), λ2 = x2(θ1), λ3 = x3(θ2) and making the replacement
of the function

u1(t) = x1(t)− λ1, t ∈ [0, θ1),

u2(t) = x2(t)− λ2, t ∈ [θ1, θ2),

u3(t) = x3(t)− λ3, t ∈ [θ2, T ),

Kazakh Mathematical Journal, 19:1 (2019) 6–19



8 Anar T. Assanova, Zhanbolat M. Ubaida

we obtain the system of integro-differential equations with parameters:

du1
dt

= A(t)[u1 + λ1] + ϕ(t)

[ θ1∫
0

ψ(τ)[u1(τ) + λ1]dτ

+

θ2∫
θ1

ψ(τ)[u2(τ) + λ2]dτ +

T∫
θ2

ψ(τ)[u3(τ) + λ3]dτ

]
+ f(t), t ∈ [0, θ1), (5)

du2
dt

= A(t)[u2 + λ2] + ϕ(t)

[ θ1∫
0

ψ(τ)[u1(τ) + λ1]dτ

+

θ2∫
θ1

ψ(τ)[u2(τ) + λ2]dτ +

T∫
θ2

ψ(τ)[u3(τ) + λ3]dτ

]
+ f(t), t ∈ [θ1, θ2), (6)

du3
dt

= A(t)[u3 + λ3] + ϕ(t)

[ θ1∫
0

ψ(τ)[u1(τ) + λ1]dτ

+

θ2∫
θ1

ψ(τ)[u2(τ) + λ2]dτ +

T∫
θ2

ψ(τ)[u3(τ) + λ3]dτ

]
+ f(t), t ∈ [θ2, T ), (7)

initial conditions at the beginning points of subintervals:

u1(0) = 0, (8)

u2(θ1) = 0, (9)

u3(θ2) = 0, (10)

the boundary condition:

B0λ1 + C0λ3 + C0 lim
t→T−0

u3(t) = d0, (11)

and conditions of impulse effects:

B1λ1 +B1 lim
t→θ1−0

u1(t) + C1λ2 = d1, (12)

B2λ2 +B2 lim
t→θ2−0

u2(t) + C2λ3 = d2. (13)

Kazakh Mathematical Journal, 19:1 (2019) 6–19



An algorithm of solving linear boundary value problem ... 9

The solution to the boundary value problem (5)–(13) is a pair (λ∗, u∗[t]) with λ∗ =
(λ∗1, λ

∗
2, λ
∗
3) ∈ R3n and u∗[t] = (u∗1(t), u

∗
2(t), u

∗
3(t)), where the functions u∗1(t), u

∗
2(t), u

∗
3(t) are

continuous on [θ0, θ1), [θ1, θ2), [θ2, θ3), respectively, satisfy the system of integro-differential
equations (5)–(7), initial conditions (8)–(10) and additional conditions (11)–(13) with λ1 =
λ∗1, λ2 = λ∗2, λ3 = λ∗3.

The problem (5)–(10) is called the special Cauchy problem for the system of integro-
differential equations with parameters.

Using the fundamental matrix Xr(t) of the differential equation dx
dt = A(t)x on [θr−1, θr],

we reduce the special Cauchy problem for the system of integro-differential equations with
parameters (5)–(10) to the equivalent system of integro-differential equations:

u1(t, λ) = X(t)

t∫
0

X−1(τ)

[
A(τ)λ1 + ϕ(τ)

( θ1∫
0

ψ(s)[u1(s) + λ1]ds

+

θ2∫
θ1

ψ(s)[u2(s) + λ2]ds+

T∫
θ2

ψ(s)[u3(s) + λ3]ds

)
+ f(τ)

]
dτ, t ∈ [0, θ1), (14)

u2(t, λ) = X(t)

t∫
θ1

X−1(τ)

[
A(τ)λ2 + ϕ(τ)

( θ1∫
0

ψ(s)[u1(s) + λ1]ds

+

θ2∫
θ1

ψ(s)[u2(s) + λ2]ds+

T∫
θ2

ψ(s)[u3(s) + λ3]ds

)
+ f(τ)

]
dτ, t ∈ [θ1, θ2), (15)

u3(t, λ) = X(t)

t∫
θ2

X−1(τ)

[
A(τ)λ3 + ϕ(τ)

( θ1∫
0

ψ(s)[u1(s) + λ1]ds

+

θ2∫
θ1

ψ(s)[u2(s) + λ2]ds+

T∫
θ2

ψ(s)[u3(s) + λ3]ds

)
+ f(τ)

]
dτ, t ∈ [θ2, T ). (16)

Further, we consider the auxiliary Cauchy problems for ordinary differential equations on
subintervals:

dz

dt
= A(t)z + P (t), z(0) = 0, t ∈ [0, θ1), (17)

dz

dt
= A(t)z + P (t), z(θ1) = 0, t ∈ [θ1, θ2), (18)

Kazakh Mathematical Journal, 19:1 (2019) 6–19



10 Anar T. Assanova, Zhanbolat M. Ubaida

dz

dt
= A(t)z + P (t), z(θ2) = 0, t ∈ [θ2, T ), (19)

where P (t) is a square matrix or vector of the dimension n, continuous on [0, θ1], [θ1, θ2] or
[θ2, T ].

Their solutions we denote by a1(P, t), a2(P, t) and a3(P, t), respectively. Now, we set

µ =

θ1∫
0

ψ(s)u1(s)ds+

θ2∫
θ1

ψ(s)u2(s)ds+

T∫
θ2

ψ(s)u3(s)ds,

ψ̂1 =

θ1∫
0

ψ(s)ds, ψ̂2 =

θ2∫
θ1

ψ(s)ds, ψ̂3 =

T∫
θ2

ψ(s)ds,

and re-write the system of integro-differential equations (14)–(16) as follows:

u1(t, λ) = a1(A, t)λ1 + a1(ϕ, t)(µ+ ψ̂1λ1 + ψ̂2λ2 + ψ̂3λ3) + a1(f, t), t ∈ [0, θ1), (20)

u2(t, λ) = a2(A, t)λ2 + a2(ϕ, t)(µ+ ψ̂1λ1 + ψ̂2λ2 + ψ̂3λ3) + a2(f, t), t ∈ [θ1, θ2), (21)

u3(t) = a3(A, t)λ3 + a3(ϕ, t)(µ+ ψ̂1λ1 + ψ̂2λ2 + ψ̂3λ3) + a3(f, t), t ∈ [θ2, T ). (22)

Multiplying both sides of (20)–(22) by ψ(s), integrating on subintervals [0, θ1], [θ1, θ2] and
[θ1, T ], summing up both sides, we obtain the system of linear algebraic equations with respect
to µ:

µ = ψ̂1(A)λ1 + ψ̂1(ϕ)[µ+ ψ̂1λ1 + ψ̂2λ2 + ψ̂3λ3] + ψ̂1(f)

+ψ̂2(A)λ2 + ψ̂2(ϕ)[µ+ ψ̂1λ1 + ψ̂2λ2 + ψ̂3λ3] + ψ̂2(f) + ψ̂3(A)λ3

+ψ̂3(ϕ)[µ+ ψ̂1λ1 + ψ̂2λ2 + ψ̂3λ3] + ψ̂3(f),

where

ψ̂1(P ) =

θ1∫
0

ψ(s)a1(P, s)ds, ψ̂2(P ) =

θ2∫
θ1

ψ(s)a2(P, s)ds,

ψ̂3(P ) =

T∫
θ2

ψ(s)a3(P, s)ds.

We re-write this expression in the following form

µ = G(∆3)µ+D1(∆3)λ1 +D2(∆3)λ2 +D3(∆3)λ3 + g(f,∆3), (23)
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with (n× n)-matrices
G(∆3) = ψ̂1(ϕ) + ψ̂2(ϕ) + ψ̂3(ϕ),

D1(∆3) = [ψ̂1(A) + ψ̂1(ϕ)ψ̂1 + ψ̂2(ϕ)ψ̂1 + ψ̂3(ϕ)ψ̂1],

D2(∆3) = [ψ̂2(A) + ψ̂1(ϕ)ψ̂2 + ψ̂2(ϕ)ψ̂2 + ψ̂3(ϕ)ψ̂2],

D3(∆3) = [ψ̂3(A) + ψ̂1(ϕ)ψ̂3 + ψ̂2(ϕ)ψ̂3 + ψ̂3(ϕ)ψ̂3],

and vectors of the dimension n:

g(f,∆3) = [ψ̂1(f) + ψ̂2(f) + ψ̂3(f)].

We represent the system (23) in the next form:

[I −G(∆3)]µ = D1(∆3)λ1 +D2(∆3)λ2 +D3(∆3)λ3 + g(f,∆3), (24)

where I is an identity matrix of the dimention n.
Further, we assume that the matrix I −G(∆3) is invertible and

[I −G(∆3)]
−1 = M(∆3).

Then, from (24) we obtain the following expression for determining µ:

µ = M(∆3)D1(∆3)λ1 +M(∆3)D2(∆3)λ2

+M(∆3)D3(∆3)λ3 +M(∆3)g(f,∆3). (25)

The special Cauchy problem (5)–(10) is equivalent to the system of integro-differential
equations (14)–(16). By virtue of the kernel degeneracy, this system is equivalent to the
system of algebraic equations (25) with respect to µ ∈ Rn. Substituting the right-hand side
of (25) into equations (14)–(16), instead of µ, and taking into account the notation, we get
the representation of functions ur(t, λ), r = 1, 2, 3, via λj , j = 1, 3:

u1(t, λ) = a1(A, t)λ1 + a1(ϕ, t)(M(∆3)D1(∆3)λ1

+M(∆3)D2(∆3)λ2 +M(∆3)D3(∆3)λ3

+M(∆3)g(f,∆3) + ψ̂1λ1 + ψ̂2λ2 + ψ̂3λ3) + a1(f, t), t ∈ [0, θ1), (26)

u2(t, λ) = a2(A, t)λ2 + a2(ϕ, t)(M(∆3)D1(∆3)λ1

+M(∆3)D2(∆3)λ2 +M(∆3)D3(∆3)λ3 +M(∆3)g(f,∆3)

+ψ̂1λ1 + ψ̂2λ2 + ψ̂3λ3) + a2(f, t), t ∈ [θ1, θ2), (27)

u3(t, λ) = a3(A, t)λ3 + a3(ϕ, t)(M(∆3)D1(∆3)λ1
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+M(∆3)D2(∆3)λ2 +M(∆3)D3(∆3)λ3 +M(∆3)g(f,∆3)

+ψ̂1λ1 + ψ̂2λ2 + ψ̂3λ3) + a3(f, t), t ∈ [θ2, T ). (28)

Substituting the right-hand side of (26)–(28) into the boundary condition (11) and the con-
ditions of impulse actions (12) and (13), we obtain the following system of linear algebraic
equations with respect to parameters λj , j = 1, 3:

B0λ1 + C0λ3 + C0[a3(A, T )λ3 + a3(ϕ, T )(M(∆3)D1(∆3)λ1

+M(∆3)D2(∆3)λ2 +M(∆3)D3(∆3)λ3 + ψ̂1λ1 + ψ̂2λ2 + ψ̂3λ3)]

= d0 − C0[a3(ϕ, T )M(∆3)g(f,∆3) + a3(f, T )], (29)

B1λ1 +B1[a1(A, θ1)λ1 + a1(ϕ, θ1)(M(∆3)D1(∆3)λ1

+M(∆3)D2(∆3)λ2 +M(∆3)D3(∆3)λ3 + ψ̂1λ1 + ψ̂2λ2 + ψ̂3λ3)]

+C1λ2 = d1 −B1[a1(ϕ, θ1)M(∆3)g(f,∆3) + a1(f, θ1)], (30)

B2λ2 +B2[a2(A, θ2)λ2 + a2(ϕ, θ2)(M(∆3)D1(∆3)λ1

+M(∆3)D2(∆3)λ2 +M(∆3)D3(∆3)λ3 + ψ̂1λ1 + ψ̂2λ2 + ψ̂3λ3)]

+C2λ3 = d2 −B2[a2(ϕ, θ2)M(∆3)g(f,∆3) + a2(f, θ2)]. (31)

The system (29)–(31) can be written as

Q∗(∆3)λ = −F∗(∆3), λ ∈ R3n, (32)

where

Q∗(∆3)λ =

 Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 λ1
λ2
λ3

 ,

with
Q11 = B0 + C0[a3(ϕ, T )(M(∆3)D1(∆3) + ψ̂1)],

Q12 = C0[a3(ϕ, T )(M(∆3)D2(∆3) + ψ̂2)],

Q13 = C0 + C0[a3(A, T ) + a3(ϕ, T )(M(∆3)D3(∆3) + ψ̂3)],

Q21 = B1 +B1[a1(A, θ1) + a1(ϕ, θ1)(M(∆3)D1(∆3) + ψ̂1)],

Q22 = B1[a1(ϕ, θ1)(M(∆3)D2(∆3) + ψ̂2)] + C1,

Q23 = B1[a1(ϕ, θ1)(M(∆3)D3(∆3) + ψ̂3)],

Q31 = B2[a2(ϕ, θ2)(M(∆3)D1(∆3) + ψ̂1)],

Q32 = B2 +B2[a2(A, θ2) + a2(ϕ, θ2)(M(∆3)D2(∆3) + ψ̂2)],
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Q33 = B2[a2(ϕ, θ2)(M(∆3)D3(∆3) + ψ̂3)] + C2,

and

−F∗(∆3) =

 −F1

−F2

−F3


with

−F1 = d0 − C0[a3(ϕ, T )M(∆3)g(f,∆3) + a3(f, T )],

−F2 = d1 −B1[a1(ϕ, θ1)M(∆3)g(f,∆3) + a1(f, θ1)],

−F3 = d2 −B2[a2(ϕ, θ2)M(∆3)g(f,∆3) + a2(f, θ2)].

The linear boundary value problem for the Fredholm integro-differential equation with
impulse effects (1)–(4) is solvable if the system of algebraic equation (32) is solvable [10, p.
1188].

Numerical solution to the problem (1)–(4) we find by the following algorithm.

Step 1. Choose N1, N2, N3 and divide subintervals [0, θ1), [θ1, θ2) and [θ2, T ) into 2N1, 2N2

and 2N3 parts, respectively.

Solving the problem (17)–(19) by fourth order Runge-Kutta method for P (t) =
A(t), P (t) = ϕ(t), P (t) = f(t), we obtain (n × n)-matrices ai(A, t), ai(ϕ, t), i = 1, 3,
and n-vector-function ai(f, t), i = 1, 3, respectively.

Step 2. Multiply each (n×n)-matrices a1(P, t), a2(P, t) and a3(P, t) to (n×n)-matrix ψ(t),
and using Simpson’s method, we evaluate the following integrals:

ψ̂1(A) =

θ1∫
0

ψ(s)a1(A, s)ds, ψ̂2(A) =

θ2∫
θ1

ψ(s)a2(A, s)ds,

ψ̂3(A) =

T∫
θ2

ψ(s)a3(A, s)ds,

ψ̂1(ϕ) =

θ1∫
0

ψ(s)a1(ϕ, s)ds, ψ̂2(ϕ) =

θ2∫
θ1

ψ(s)a2(ϕ, s)ds,

ψ̂3(ϕ) =

T∫
θ2

ψ(s)a3(ϕ, s)ds, (33)
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ψ̂1(f) =

θ1∫
0

ψ(s)a1(f, s)ds, ψ̂2(f) =

θ2∫
θ1

ψ(s)a2(f, s)ds,

ψ̂3(f) =

T∫
θ2

ψ(s)a3(f, s)ds,

ψ̂1 =

θ1∫
0

ψ(s)ds, ψ̂2 =

θ2∫
θ1

ψ(s)ds, ψ̂3 =

T∫
θ2

ψ(s)ds.

Summing up the definite integrals (33), we obtain (n× n)-matrices:

G(∆3) = ψ̂1(ϕ) + ψ̂2(ϕ) + ψ̂3(ϕ).

If the matrix I −G(∆3) is invertible, then we find its inverse matrix and represent it in the
form [I −G(∆3)]

−1 = M(∆3). From the equalities (20)–(22) we define (n× n)-matrices:

D1(∆3) = ψ̂1(A) + [ψ̂1(ϕ) + ψ̂2(ϕ) + ψ̂3(ϕ)] · ψ̂1,

D2(∆3) = ψ̂2(A) + [ψ̂1(ϕ) + ψ̂2(ϕ) + ψ̂3(ϕ)] · ψ̂2,

D3(∆3) = ψ̂3(A) + [ψ̂1(ϕ) + ψ̂2(ϕ) + ψ̂3(ϕ)] · ψ̂3,

and vector of the dimension n:

g(f,∆3) = ψ̂1(f) + ψ̂2(f) + ψ̂3(f).

Step 3. Write the system of linear algebraic equations with respect to parameters:

Q∗(∆3)λ = −F∗(∆3), λ ∈ R3n. (34)

Solving the system (34), we find λ∗ = (λ∗1, λ
∗
2, λ
∗
3) ∈ R3n.

Step 4. By the equalities:

µ∗ = M(∆3)D1(∆3)λ
∗
1 +M(∆3)D2(∆3)λ

∗
2 +M(∆3)D3(∆3)λ

∗
3 +M(∆3)g(f,∆3),

we find µ∗ ∈ Rn and then solve the Cauchy problems:

dx

dt
= A(t)x+ E∗(t), x(0) = λ∗1, t ∈ [0, θ1], (35)

dx

dt
= A(t)x+ E∗(t), x(θ1) = λ∗2, t ∈ [θ1, θ2], (36)
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dx

dt
= A(t)x+ E∗(t), x(θ2) = λ∗3, t ∈ [θ2, T ], (37)

where

E∗(t) = ϕ(t)(µ∗ + ψ̂1λ
∗
1 + ψ̂2λ

∗
2 + ψ̂3λ

∗
3) + f(t).

We find that x∗1(t), x
∗
2(t), x

∗
3(t) are the numerical solution to the Cauchy problems (35),

(36), (37), respectively,
Vector x∗(t) composed by x∗1(t), x

∗
2(t) and x∗3(t) on the corresponding intervals, is a

solution to the problem (1)–(4).

Example. Solve the linear two-point boundary value problem for the two integro-
differential equations with impulse effects:

dx

dt
= A(t)x+ ϕ(t)

1∫
0

ψ(τ)x(τ)dτ + f(t), t ∈ (0, 1), t 6= 0.2, t 6= 0.6, (38)

Bx(0) + Cx(1) = d0, d0 ∈ R2, (39)

B1x(0.2− 0) + C1x(0.2 + 0) = d1, d1 ∈ R2, (40)

B2x(0.6− 0) + C2x(0.6 + 0) = d2, d2 ∈ R2, (41)

where T = 1, θ1 = 0.2, θ2 = 0.6,

A(t) =

(
1 t
t2 t3

)
, ϕ(t) =

(
2 t− 1

3 t2 + 1

)
, ψ(t) =

(
t+ 1 2

1 t2 − 1

)
,

B0 =

(
1 0

0 1

)
, C0 =

(
−1 0

0 −1

)
, B1 =

(
1 2

2 1

)
, C1 =

(
0 1

2 1

)
,

B2 =

(
2 0

0 1

)
, C2 =

(
1 3

0 2

)
, I =

(
1 0

0 1

)
,

d0 =

(
−4

−3

)
, d1 =

( −13
25

93
25

)
, d2 =

(
509
25

139
25

)
,

f1(t) =

(
−18029·t

187500 − t · (t+ 1)− t2 − 1530721
187500

−t2(t2 − 1)− 393029·t2
187500 − t

3 · (t+ 1)− 843101
46875

)
,

f2(t) =

(
−580529·t

187500 − t · (t
2 − 2)− 2093221

187500

2t− t3 · (t2 − 2)− 393029·t2
187500 − t

2 · (t+ 3)− 889976
46875

)
,
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f3(t) =

(
−18029·t

187500 − t · (t+ 3)− t2 − 2093221
187500

−t2 · (t2 + 2)− 393029·t2
187500 − t

3 · (t+ 3)− 843101
46875

)
,

with impulse effects at the points t = 0.2 and t = 0.6 .
The exact solution to the problem (38)–(41) has the form:

x(t) =



x1(t) =

(
x11(t)
x12(t)

)
=

(
t2 − 1
t+ 1

)
, t ∈ [0, 0.2);

x2(t) =

(
x21(t)
x22(t)

)
=

(
t+ 3
t2 − 2

)
, t ∈ [0.2, 0.6);

x3(t) =

(
x31(t)
x32(t)

)
=

(
t2 + 2
t+ 3

)
, t ∈ [0.6, 1].

Divide subintervals [0, 0.2), [0.2, 0.6) and [0.6, 1) with step h = 0.05. Here (2 × 2)-matrix
I −G(∆3) is invertible and

[I −G(∆3)]
−1 =

(
−1.049316025 −0.3119116102

−0.1247687963 0.7928199221

)
.

(6× 6)-matrix Q∗(∆3) and vector F∗(∆3) ∈ R6 have the form:

Q∗(∆3)=



1.40550 0.45770 1.13054 1.01511 −0.02679 0.88644
0.39900 1.71426 1.19129 1.50651 1.32230 0.45965
0.71926 1.38386 −1.43662 −0.39688 −1.95500 −1.76272
1.92849 0.54091 0.58176 −0.13811 −1.87638 −1.53179
−0.79901 −0.69781 0.82982 −1.22241 −1.83742 0.77322
−0.34735 −0.55520 −0.92495 −0.14342 −1.42744 0.58381


and F∗(∆3) =

(
−3.80829, −6.95006, 14.11433, 9.19795, −3.59985, 4.15359

)′
.

The solution to the system of linear algebraic equations is λ = −(Q−1 · F ),
λ = (−1, 0.99999, 3.20000,−1.95999, 2.35999, 3.59999)′ .

Using the values λ, we find µ: µ =

(
0.6468002443

0.1205816063

)
.

There is a numerical solution to the problem (38)–(41) with the proximity 5.7 · 10−7, i.e.
max sup

t∈[0,1]
||x(t) − x∗(t)|| ≤ 5.7 · 10−7, where x∗(t) is the numerical solution to the problem

(38)–(41).
As we can see, the numerical algorithm proposed is effective and allows us to obtain the

numerical solution to the linear boundary value problem for the Fredholm integro-differential
equation with impulse effects of higher order accuracy.
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Below in Figures 1–3, we give the results obtained by Mathcad 15:

Figure 1 – Graphs of the exact and numerical solutions to the problem (38)-(41) on the interval

[0, 0.2]. The blue solid and purple dotted lines correspond to the

exact and numerical solutions, respectively

Figure 2 – Graphs of the exact and numerical solutions to the problem (38)-(41) on the interval [0.2, 0.6]

Kazakh Mathematical Journal, 19:1 (2019) 6–19



18 Anar T. Assanova, Zhanbolat M. Ubaida

Figure 3 – Graphs of the exact and numerical solutions to the problem (38)-(41)

on the interval [0.6, 1]
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Асанова А.Т., Убайда Ж.М. ИМПУЛЬС ӘСЕРЛI ФРЕДГОЛЬМ ИНТЕГРАЛДЫҚ-
ДИФФЕРЕНЦИАЛДЫҚ ТЕҢДЕУI ҮШIН СЫЗЫҚТЫ ШЕТТIК ЕСЕПТI ШЕШУ
АЛГОРИТМI

Импульс әсерлi Фредгольм интегралдық-дифференциалдық теңдеуi үшiн сызықты
шеттiк есептi шешудiң параметрлеу әдiсiне негiзделген алгоритмi ұсынылған. Алго-
ритмнiң сандық жүзеге асырылуы келтiрiлген.

Кiлттiк сөздер. Импульс әсерлi Фредгольм интегралдық-дифференциальдық теңдеуi,
параметрлеу әдiсi, төртiншi реттi Рунге-Кутта әдiсi, Симпсон әдiсi.

Асанова А.Т., Убайда Ж.М. АЛГОРИТМ РЕШЕНИЯ ЛИНЕЙНОЙ КРАЕВОЙ ЗА-
ДАЧИ ДЛЯ ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ФРЕДГОЛЬМА С
ИМПУЛЬСНЫМИ ВОЗДЕЙСТВИЯМИ

На основе метода параметризации предложен алгоритм решения линейной краевой
задачи для интегро-дифференциального уравнения Фредгольма с импульсными воздей-
ствиями. Представлена численная реализация алгоритма.

Ключевые слова. Интегро-дифференциальное уравнение Фредгольма с импульсными
воздействиями, метод параметризации, метод Рунге-Кутта четвертого порядка, метод
Симпсона.
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Abstract. Periodical boundary value problem for the Van der Pol differential equation is solved by

parametrization’s method. Interval is divided into 2 parts, the values of the solution at the left-end

points of the subintervals are considered as additional parameters and original problem is reduced to the

boundary value problem with parameters. Using solutions to the Cauchy problems for the differential

equations with parameters, boundary condition, and the continuity condition at the dividing point, a

system of nonlinear algebraic equations with respect to introduced parameters is composed. Explicit form

of this system exists in exceptional cases. However, for the given parameters, the values of functions,

which present left-hand sides of the system, and their derivatives by parameters, we can find by solving

the Cauchy problems for ordinary differential equations on the subintervals. We find solutions to the

Cauchy problems by forth order Runge-Kutta method. The solution of the composed system is found

by Newton’s method.

Keywords. Boundary value problem, Van der Pol equation, parametrization’s method, fourth order

Runge-Kutta method, Newton’s method.

We consider a periodical boundary value problem for the Van der Pol differential equation:

d2y

dt2
= ε(1− y2)dy

dt
+ y − εp cos(ωt+ α) + g(t), t ∈ (0, T ), y ∈ R, (1)

y(0) = y(T ),

y′(0) = y′(T ),

2010 Mathematics Subject Classification: 34G20, 44B05, 45J05, 47G20.
Funding: The work is supported by the grant project AP05132486 (2018-2020) from the Ministry of

Science and Education of the Republic of Kazakhstan.
c© 2019 Kazakh Mathematical Journal. All right reserved.



An algorithm of solving nonlinear boundary value problem ... 21

where y is a position coordinate, which is a function of the time t, ω is an angular frequency,
ε is a scalar parameter indicating the non-linearity and the strength of damping, g(t) is a
function continuous on [0, T ].

Differential equation (1) was introduced in 1920 to describe the oscillation of triode in
the electrical circuit [1]. The Van der Pol equation has a long history of being used in both
the physical [2] and biological [3] sciences.

Boundary value problems for ordinary differential equations have been studied by numer-
ous authors (see [5]– [16] and references cited therein).

By introducing an unknown vector function x(t) =

(
x1(t)
x2(t)

)
, where x1(t) = y(t) and

x2(t) = y′(t), we obtain the system of nonlinear ordinary differential equations:

dx1
dt

= x2, t ∈ (0, T ), (2)

dx2
dt

= −x1 + ε(1− x21)x2 − εp cos(ωt+ α) + g(t), t ∈ (0, T ), (3)

with boundary conditions:

x1(0) = x1(T ), (4)

x2(0) = x2(T ). (5)

Assume that f1(t, x1, x2) = x2, f2(t, x1, x2) = −x1 + ε(1− x21)x2 − εp cos(ωt+ α) + g(t) and
write down the system of nonlinear ordinary differential equations (2), (3) in the form:

dx

dt
= f(t, x), t ∈ (0, T ), x ∈ R2, ||x|| = max

i=1,2
|xi|.

In this paper the periodical boundary value problem for the Van der Pol equation is solved
by the method proposed in [4].

Let C([0, T ], R2) be a space of continuous functions x : [0, T ] → R2 with the norm
||x||1 = max

t∈(0,T )
||x(t)||. A solution to the problem (2)–(5) is a continuously differentiable on

(0, T ) function x(t) ∈ C([0, T ], R2) satisfying the nonlinear differential equations (2), (3) and
the periodical boundary conditions (4), (5).

Let ∆2 be the partition of the interval [0, T ] into two parts with the points: 0 = θ0 <
θ1 < θ2 = T .

Denote by C([0, T ],∆2, R
4) the space of function systems x[t] = (x(1)(t), x(2)(t)), where

functions x(r) : [θr−1, θr) → R2 are continuous and have the finite left-sided limits
lim

t→θr−0
x(r)(t), r = 1, 2, with the norm ||x[·]||2 = max

r=1,2
sup

t∈[θr−1,θr)
||x(r)(t)||.

Let x(t) be a solution to the problem (2)–(5) and let x(1)(t), x(2)(t) be its restric-
tions to subintervals [θ0; θ1), [θ1; θ2), respectively. Then the system of two functions x[t] =
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(x(1)(t), x(2)(t)) belongs to C([0, T ],∆2, R
4) and its elements x(1)(t), x(2)(t) satisfy the sys-

tem of nonlinear ordinary differential equations:

dx(1)

dt
= f(t, x(1)), t ∈ [θ0, θ1), x(1) ∈ R2, (6)

dx(2)

dt
= f(t, x(2)), t ∈ [θ1, θ2), x(2) ∈ R2, (7)

the boundary condition:
x(1)(θ0) = lim

t→θ2−0
x(2)(t), (8)

and the continuity condition:
lim

t→θ1−0
x(1)(t) = x(2)(θ1). (9)

Introducing parameters λ(1) = x(1)(θ0), λ(2) = x(2)(θ1) and making the substitutions
u(1)(t) = x(1)(t)−λ(1), u(2)(t) = x(2)(t)−λ(2) in (6)–(9), we obtain a new system of nonlinear
differential equations with parameters:

du(1)

dt
= f(t, u(1) + λ(1)), t ∈ [θ0, θ1), (10)

du(2)

dt
= f(t, u(2) + λ(2)), t ∈ [θ1, θ2), (11)

initial conditions at the left-end points of subintervals:

u(1)(θ0) = 0, (12)

u(2)(θ1) = 0, (13)

the boundary condition
λ(1) − λ(2) − lim

t→θ2−0
u(2)(t) = 0, (14)

and the continuity condition

λ(1) + lim
t→θ1−0

u(1)(t)− λ(2) = 0. (15)

A solution to boundary value problem (10)–(15) is a pair (λ∗, u∗[t]) with elements
λ∗ = (λ∗(1), λ

∗
(2)) ∈ R

4 and u∗[t] = (u∗(1)(t), u
∗
(2)(t)) ∈ C([0, T ],∆2, R

4), where the functions

u∗(1)(t), u
∗
(2)(t) satisfy the system of nonlinear differential equations (10), (11) and additional

conditions (14), (15) with λ(1) = λ∗(1), λ(2) = λ∗(2) and the initial conditions (12), (13).

We suppose that the Cauchy problems with parameters on subintervals (10), (12) and
(11), (13) have the unique solutions u(1)(t, λ(1)) and u(2)(t, λ(2)), respectively. Substituting
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corresponding solutions of the Cauchy problems into the boundary and continuity conditions
we receive the following system of nonlinear algebraic equations with respect to introduced
parameters λ(1), λ(2):

λ(1) − λ(2) − lim
t→θ2−0

u(2)(t, λ(2)) = 0, (16)

λ(1) + lim
t→θ1−0

u(1)(t, λ(1))− λ(2) = 0. (17)

We rewrite system (16), (17) as follows:

Q∗(∆2, λ) = 0, λ ∈ R4. (18)

To find λ∗, that satisfies (18), we use Newton’s method. Newton’s method is an iterative
method and requires an initial guess λ(0) ∈ R4. We find it by solving the linear boundary
value problem obtained from our boundary value problem by ε = 0:

dx1
dt

= x2, (19)

dx2
dt

= −x1 − εp cos(ωt+ α) + g(t), (20)

x1(0) = x1(T ), (21)

x2(0) = x2(T ). (22)

If x(0)(t) =

(
x
(0)
1 (t)

x
(0)
2 (t)

)
is the solution to the linear boundary value problem (19)–(22), then

the vector λ(0) =

(
λ
(0)
(1)

λ
(0)
(2)

)
∈ R4 is defined by the equalities λ

(0)
(1) =

(
x
(0)
1 (θ0)

x
(0)
2 (θ0)

)
and λ

(0)
(2) =(

x
(0)
1 (θ1)

x
(0)
2 (θ1)

)
.

In Newton’s method the transfer equation has the form:

λ(n+1) = λ(n) + ∆λ(n), n = 0, 1, ... ,

where ∆λ(n), n = 0, 1, ..., is a solution to the system of linear algebraic equations:

∂Q∗(∆2, λ
(n))

∂λ
∆λ(n) = −Q∗(∆2, λ

(n)), (23)

with the Jacobian matrix

∂Q∗(∆2, λ
(n))

∂λ
=


I −I −

∂u(2)(θ2, λ
(n)
(2) )

∂λ(2)

I +
∂u(1)(θ1, λ

(n)
(1) )

∂λ(1)
−I

 . (24)
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To find the value of Q∗(∆2, λ) for the given λ = λ(n), we solve the Cauchy problems (10),

(12) and (11), (13) with parameters λ(1) = λ
(n)
(1) and λ(2) = λ

(n)
(2) , respectively. If we denote

by u(1)(t, λ
(n)
(1) ) and u(2)(t, λ

(n)
(2) ) solutions to problems (10), (12) and (11), (13), then these

functions satisfy the following relations:

du(1)(t, λ
(n)
(1) )

dt
= f(t, u(1)(t, λ

(n)
(1) ) + λ

(n)
(1) ), t ∈ [θ0, θ1), (25)

u(1)(θ0, λ
(n)
(1) ) = 0, (26)

du(2)(t, λ
(n)
(2) )

dt
= f(t, u(2)(t, λ

(n)
(2) ) + λ

(n)
(2) ), t ∈ [θ1, θ2), (27)

u(2)(θ1, λ
(n)
(2) ) = 0. (28)

In order to determine
∂u(1)(θ1, λ

(n)
(1) )

∂λ(1)
, we differentiate (25), (26) by λ(1):

∂

∂λ(1)

(du(1)(t, λ(n)(1) )

dt

)
= f ′x(t, u(1)(t, λ

(n)
(1) ) + λ

(n)
(1) ) ·

[∂u(1)(t, λ(n)(1) )

∂λ(1)
+ I

]
,

t ∈ [θ0, θ1),

∂u(1)(θ0, λ
(n)
(1) )

∂λ(1)
= 0.

And similarly differentiating (27), (28) by λ(2), we get:

∂

∂λ(2)

(du(2)(t, λ(n)(2) )

dt

)
= f ′x(t, u(2)(t, λ

(n)
(2) ) + λ

(n)
(2) ) ·

[∂u(2)(t, λ(n)(2) )

∂λ(2)
+ I

]
,

t ∈ [θ1, θ2),

∂u(2)(θ1, λ
(n)
(2) )

∂λ(2)
= 0.

Thus if we denote by

z(1)(t) =
∂u(1)(t, λ

(n)
(1) )

∂λ(1)
, A

(n)
(1) (t) = f ′x(t, u(1)(t, λ

(n)
(1) ) + λ

(n)
(1) ), t ∈ [θ0, θ1),
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and

z(2)(t) =
∂u(2)(t, λ

(n)
(2) )

∂λ(2)
, A

(n)
(2) (t) = f ′x(t, u(2)(t, λ

(n)
(2) ) + λ

(n)
(2) ), t ∈ [θ1, θ2),

then matrix functions z(1)(t) and z(2)(t) are the solutions to the Cauchy problems for the
matrix linear ordinary differential equations on subintervals:

dz(1)

dt
= A

(n)
(1) (t)z(1)(t) +A

(n)
(1) (t), t ∈ [θ0, θ1), (29)

z(1)(θ0) = 0, (30)

dz(2)

dt
= A

(n)
(2) (t)z(2)(t) +A

(n)
(2) (t), t ∈ [θ1, θ2), (31)

z(2)(θ1) = 0, (32)

with the (2× 2)-matrices

A
(n)
(1) (t) =

(
0 1

−1− 2εx
(n)
(1)1(t)x

(n)
(1)2(t) ε(1− (x

(n)
(1)1(t))

2)

)
, t ∈ [θ0, θ1),

A
(n)
(2) (t) =

(
0 1

−1− 2εx
(n)
(2)1(t)x

(n)
(2)2(t) ε(1− (x

(n)
(2)1(t))

2)

)
, t ∈ [θ1, θ2),

where x
(n)
(1) (t) = λ

(n)
(1) + u(1)

(
t, λ

(n)
(1)

)
and x

(n)
(2) (t) = λ

(n)
(2) + u(2)

(
t, λ

(n)
(2)

)
.

Description of the algorithm.

Step 1. We solve the Cauchy problems (10), (12) and (11), (13) on the closed subintervals

[θ0, θ1] and [θ1, θ2], respectively. Using their solutions u(1)(t, λ
(n)
(1) ), u(2)(t, λ

(n)
(2) ), n = 0, 1, ...,

we find

Q∗(∆2, λ
(n)) =

(
λ
(n)
(1) − λ

(n)
(2) − u(2)(θ2, λ

(n)
(2) )

λ
(n)
(1) + u(1)(θ1, λ

(n)
(1) )− λ

(n)
(2)

)
, n = 0, 1, ... .

Step 2. Compute (2× 2)-matrices A
(n)
(1) (t), A

(n)
(2) (t), n = 0, 1, ..., for each closed subintervals.

Solving (29), (30) and (31), (32) on the closed subintervals [θ0, θ1] and [θ1, θ2] by forth order
Runge-Kutta method, we find z(1)(θ1), z(2)(θ2) and according to formula (24) construct the
Jacobian matrix

∂Q∗(∆2, λ
(n))

∂λ
=


I −I −

∂u(2)(θ2, λ
(n)
(2) )

∂λ(2)

I +
∂u(1)(θ1, λ

(n)
(1) )

∂λ(1)
−I

, n = 0, 1, ... .
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Step 3. Solve the system of linear algebraic equations (23):

∂Q∗(∆2, λ
(n))

∂λ
∆λ(n) = −Q∗(∆2, λ

(n)), n = 0, 1, ... ,

and find ∆λ(n), n = 0, 1, ....

Step 4. Determine vector λ(n+1) by the equality λ(n+1) = λ(n) + ∆λ(n), n = 0, 1, ... .

Example. Consider the system of nonlinear ordinary differential equations:

dx1
dt

= x2, (33)

dx2
dt

= −x1 + ε(1− x21)x2 − εp cos(ωt+ α) + g(t) (34)

with the boundary conditions:
x1(0) = x1(T ), (35)

x2(0) = x2(T ). (36)

Here T = 1, ω = 2π, α = 0, p = 1, ε = 0.5, g(t) = −4π2cos(2πt) + cos(2πt) + 2πε(1 −
cos2(2πt))sin(2πt)− εpcos(ωt+ α).

The partition point and the initial guess: θ = 1
2 , λ

(0) =


0.999999999926279
−0.342961455410546
−0.999999999926273
0.342961455410548

, the

exact solution x∗(t) =

(
cos(2πt)
−2πsin(2πt)

)
.

Iteration 1:

∂Q∗(∆2, λ
(0))

∂λ
=


1 0 −0.87758256 −0.47942553
0 1 0.47942553 −0.87758256

0.87758256 0.47942553 −1 0
−0.47942553 0.87758256 0 −1

 ,

Q∗(∆2, λ
(0)) =


−0.173522158394070
−0.625737662994771
−0.173522158394068
−0.625737662994775

 ,

∆λ(0) =


0.006872550672743
0.335022572146646
−0.006872550672749
−0.335022572146652

 , λ(1) =


1.006872550599022
−0.007938883263900
−1.006872550599022
0.007938883263896

 .
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Iteration 2:

∂Q∗(∆2, λ
(1))

∂λ
=


1 0 −0.87758256 −0.47942553
0 1 0.47942553 −0.87758256

0.87758256 0.47942553 −1 0
−0.47942553 0.87758256 0 −1

 ,

Q∗(∆2, λ
(1)) =


0.009710178637406
−0.018336554471911
0.009710178637405
−0.018336554471907

 · 10−3,

∆λ(1) =


−0.007196134842402
0.007928569401626
0.007196134842409
−0.007928569401622

 · 10−4, λ(2) =


0.999676415756619
−0.000010313862274
−0.999676415756612
0.000010313862274

 .

In iteration 7, we have:

∂Q∗(∆2, λ
(2))

∂λ
=


1 0 −0.87758256 −0.47942553
0 1 0.47942553 −0.87758256

0.87758256 0.47942553 −1 0
−0.47942553 0.87758256 0 −1

 ,

Q∗(∆2, λ
(2)) =


−0.124380110655409
0.031595249310507
−0.124380103994071
0.031595266241408

 · 10−7,

∆λ(2) =


0.662238688153718
0.000820966056705
−0.662238323313117
−0.000821011841771

 · 10−8, λ(3) =


0.999999999265294
−0.000000002419266
−0.999999999265277
0.000000002419262

 .

In Table 1, we give the numerical solution to the problem (33)–(36) which is obtained by

solving ordinary differential equations (6) and (7) with the initial conditions x(θ0) = λ
(7)
(1) and

x(θ1) = λ
(7)
(2), respectively using forth order Runge-Kutta method.

Kazakh Mathematical Journal, 19:1 (2019) 20–30



28 D.S. Dzhumabaev, D.E. Mursaliyev, A.S. Sergazina, A.A. Kenjeyeva

Table 1 – Numerical solution and true error

t x(1)(t) |x∗(1)(t)− x(1)(t)| x(2)(t) |x∗(2)(t)− x(2)(t)|
0 0.9999999992 0.73470585·10−9 -0.0000000024 2.41926569·10−9

0.1 0.8090169936 0.70465189·10−9 -3.6931636619 0.99506358·10−9

0.2 0.3090169942 0.15180812·10−9 -5.9756643300 0.54867754·10−9

0.3 -0.3090169938 0.54566057·10−9 -5.9756643332 3.72425201·10−9

0.4 -0.8090169932 1.15572973·10−9 -3.6931636628 1.83278814·10−9

0.5 -0.9999999992 0.73472261·10−9 0.0000000024 2.41926303·10−9

0.6 -0.8090169936 0.70466854·10−9 3.6931636619 0.99506269·10−9

0.7 -0.3090169942 0.15182477·10−9 5.9756643300 0.54867754·10−9

0.8 0.3090169938 0.54564386·10−9 5.9756643332 3.72425112·10−9

0.9 0.8090169932 1.15571330·10−9 3.6931636628 1.83278325·10−9

1 0.9999999984 1.55654689·10−9 -0.0000000022 2.21050329·10−9
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Джумабаев Д.С., Мурсалиев Д. Е., Сергазина А.С., Кенжеева А.А. ВАН ДЕР ПОЛЬ
ДИФФЕРЕНЦИАЛДЫҚ ТЕҢДЕУI ҮШIН СЫЗЫҚТЫ ЕМЕС ШЕТТIК ЕСЕПТI ШЕ-
ШУ АЛГОРИТМI

Ван-дер-Поль дифференциалдық теңдеуi үшiн периодты шеттiк есеп параметрлеу
әдiсiмен шешiледi. Аралық екi бөлiкке бөлiнедi, шешiмнiң iшкi аралықтардың сол жақ
шеткi нүктелерiндегi мәндерi қосымша параметрлер ретiнде қарастырылады, ал берiл-
ген есеп параметрлi шеттiк есепке келтiрiледi. Параметрлi Коши есептерiнiң шешiмдерiн,
шекаралық шартты және бөлу нүктесiндегi үзiлiссiздiк шартын қолданып енгiзiлген па-
раметрлерге қатысты сызықты емес алгебралық теңдеулер жүйесi құрылады. Бұл жүй-
енi айқын түрде сирек жағдайларда ғана жазуға болады. Алайда берiлген параметрлер
үшiн жүйенiң сол жақ бөлiгiндегi функциялардың мәндерiн, және олардың параметрлер
бойынша туындыларын жай дифференциалдық теңдеулер үшiн iшкi аралықтарда Ко-
ши есептерiн шешу арқылы таба аламыз. Коши есептерiнiң шешiмдерiн төртiншi реттi
Рунге-Кутта әдiсiмен табамыз. Құрылған жүйенiң шешiмi Ньютон әдiсiмен табылады.

Кiлттiк сөздер. Шеттiк есеп, Ван дер Поль теңдеуi, параметрлеу әдiсi, төртiншi реттi
Рунге-Кутта әдi Ньютон әдiсi.
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Джумабаев Д.С., Мурсалиев Д.Е., Сергазина А.С., Кенжеева А.А. АЛГОРИТМ
РЕШЕНИЯ НЕЛИНЕЙНОЙ КРАЕВОЙ ЗАДАЧИ ДЛЯ ДИФФЕРЕНЦИАЛЬНОГО
УРАВНЕНИЯ ВАН ДЕР ПОЛЯ

Периодическая краевая задача для дифференциального уравнения Ван-дер-Поля ре-
шается методом параметризации. Интервал делится на 2 части, значения решения в
левых конечных точках подинтервалов рассматриваются как дополнительные парамет-
ры, а исходная задача сводится к краевой задаче с параметрами. Используя решения
задач Коши для дифференциальных уравнений с параметрами, граничное условие и
условие непрерывности в точке деления, составляется система нелинейных алгебраиче-
ских уравнений по введенным параметрам. В явном виде эту систему удается записать
в исключительных случаях. Однако для заданных параметров значения функций, ко-
торые представляют левые части системы, и их производные по параметрам мы можем
найти, решая задачи Коши для обыкновенных дифференциальных уравнений на подин-
тервалах. Решения задач Коши мы находим методом Рунге-Кутты четвертого порядка.
Решение составленной системы находится методом Ньютона.

Ключевые слова. Краевая задача, уравнение Ван дер Поля, метод параметризации,
метод Рунге-Кутты четвертого порядка, метод Ньютона.
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Abstract. In this work, we consider spectral problems for the Sturm - Liouville differential operator

−u′′(x) + q(x)u(x) = λu(x) on (0, 1) with periodic and antiperiodic boundary conditions u′(0) =

±u′(1), u(0) = ±u(1). The Riesz basis property of the system of root functions of such problems is

proved in the case of a potential q(x) that is summable on an interval, when it satisfies the symmetry

condition q(x) = q(1 − x).

Keywords. Sturm-Liouville differential operator, boundary value problem, well-posedness, Green’s func-

tion, eigenfunctions, eigenvalues.

1 Introduction

We consider two spectral problems for the Sturm-Liouville operator with periodic (θ = 0)
and antiperiodic (θ = 1) boundary conditions:

Lθu ≡ −u′′(x) + q(x)u(x) = λu(x), x ∈ (0, 1), (1){
U1(u) ≡ u′(0)− (−1)θu′(1) = 0,

U2(u) ≡ u(0)− (−1)θu(1) = 0, θ = 0, 1.
(2)

By Lθ we denote a closure in L2(0, 1) of the operator given by the differential expression
(1) on a linear manifold of functions u ∈ C2[0, 1] satisfying the boundary conditions (2).

It is easy to justify that the operator Lθ is a linear operator on L2(0, 1) defined by (1)
with the domain

D(Lθ) =
{
u ∈W 2

2 (0, 1) : U1(u) = 0, U2(u) = 0
}
.
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For the elements u ∈ D(Lθ) we understand the action of the operator Lθu = −u′′(x) +
q(x)u(x) in a sense of almost everywhere on (0, 1).

By an eigenvector of the operator Lθ corresponding to an eigenvalue λ0 ∈ C, we mean
any non-zero vector u0 ∈ D(Lθ) which satisfies the equation:

Lθu0 = λ0u0. (3)

By an associated vector of the operator Lθ of order m (m = 1, 2, . . .) corresponding to the
same eigenvalue λ0 and the eigenvector u0, we mean any function um ∈ D(Lθ) which satisfies
the equation:

Lθum = λ0um + um−1. (4)

The vectors {u0, u1, . . .} are called a chain of the eigenvectors and associated vectors of the
operator Lθ corresponding to the eigenvalue λ0.

The eigenvalues of the operator Lθ will be called eigenvalues of the problem (1)–(2).
The eigen- and associated vectors of the operator Lθ will be called eigen- and associated
functions (EAF) of the problem (1)–(2). The set of all eigen- and associated functions (they
are collectively called root functions) corresponding to the same eigenvalue λ0 forms a root
linear manifold. This manifold is called a root subspace.

It is well known that with a real-valued potential q(x), both problems under consideration
are self-adjoint. The boundary conditions (2) are Birkhoff regular, but not strongly regular [1,
chapter 2]. Therefore, for complex-valued q(x), the EAF system of the problem is complete
and minimal in L2(0, 1). The eigenvalues of the problem are asymptotically arranged in pairs.
From [2], [3] it follows that two-dimensional subspaces, composed of EAF, corresponding to
pairwise close eigenvalues form a Riesz basis in L2(0, 1).

The works [4], [5], [6] are devoted to the study of conditions on q(x), under which EAF
of periodic problems form the usual Riesz basis.

In the work [4] for q(x) ∈ C4[0, 1], q(0) 6= q(1) the Riesz basis property of root vectors in
L2(0, 1) is proved.

In the work [5] the basis property conditions in L2(0, 1) of EAF systems in terms of the
order of decreasing Fourier coefficients of a function

q(x) ∈Wm
1 (0, 1), q(l)(0) = q(l)(1), l = 0, 1, ...,m− 1.

are found.

In [6] for the case q(x) ∈ W p
1 (0, 1), q(l)(0) = q(l)(1) = 0, l = 0, 1, ..., s − 1, s ≤ p, it is

proved the Riesz basis criterion in L2(0, 1) of EAF system in terms of the order of decreasing
Fourier coefficients of the functions

q(x), Q(x) =

∫ x

0
q(t)dt, S(x) = Q2(x).
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The main aim of this paper is to justify the Riesz basis property of the EAF system of
the periodic and antiperiodic problems (1), (2) with the symmetric potential q(x) = q(1−x).

Note that the symmetry condition of the potential is essential for the spectral properties of
boundary value problems. In the work [7] the dependence of the spectrum on the coefficients
of the boundary conditions for an even-order differential operator with a certain symmetry of
the coefficients of the operator was investigated. There it was first shown that under certain
conditions on the coefficients of the equation, the spectrum of the operator does not depend
on some coefficients of the boundary condition. In particular, as a result, it was shown that
the spectrum of the problem for the equation (1) with boundary conditions

u(0) = bu(1), u′(0) = u′(1), (5)

with the symmetric coefficient q(x) = q(1− x), does not depend on the coefficient b 6= −1 of
the boundary condition (5) and coincides with the spectrum of the periodic boundary value
problem (problems (1), (2) with θ = 0).

In the work [8] it is shown that all Volterra boundary value problems for equation (1) are
given by the conditions

u(0) = αu(1), u′(0) = −αu′(1)

with α2 6= 1. With α 6= 0 the symmetry condition q(x) = q(1 − x) is a criterion for the
Volterra property of this problem.

The spectral properties of problems with non-reinforced regular boundary conditions are
the subject of research by many mathematicians. From recent papers, [9]– [14], we note
that some new results are obtained for spectral problems and their applications are given in
problems for partial differential equations.

The main result of this paper is formulated as a theorem.

Theorem 1. If q(x) ∈ L1(0, 1) and q(x) = q(1−x) for almost all x ∈ (0, 1), then the system
of eigen- and associated functions of problem (1), (2) is Riesz basis in L2(0, 1).

2 On the symmetry of the root functions of Dirichlet and Neumann problems

For the equation (1) consider the Dirichlet problem

u(0) = 0, u(1) = 0, (6)

and the Neumann problem
u′(0) = 0, u′(1) = 0. (7)

Lemma 1. If q(x) ∈ L1(0, 1) and q(x) = q(1−x), then all eigen- and associated functions of
the Dirichlet problem (1), (6) and the Neumann problem (1), (7) possess one of the properties
of symmetry:

u(x) = u(1− x) or u(x) = −u(1− x) for all x ∈ [0, 1]. (8)

Kazakh Mathematical Journal, 19:1 (2019) 31–38



34 Tynysbek Sh. Kal’menov, Nurbek Kakharman, Makhmud A. Sadybekov

Proof. We will conduct the proof only for the Dirichlet problem. The proof of the Neumann
problem is similar. Let λDk be eigenvalues of the Dirichlet problem (1), (6) of multiplicity
mD
k + 1, to which there correspond the normalized eigenfunctions vk0(x) and (maybe) chains

of adjoined functions vkj(x), j = 1,mD
k :

LDvk0 = λDk vk0 , LDvkj = λDk vkj + vkj−1.

Denote

v±kj = vkj(x)± vkj(1− x).

It may turn out that v+kj(x) ≡ 0 or v−kj(x) ≡ 0. But not at the same time. It is obvious that
all these functions satisfy one of the symmetry conditions (8).

It is easy to see that the functions v+k0(x) and v−k0(x) are solutions of the Dirichlet problem

Lv(x) = λDk v(x), x ∈ (0, 1); v(0) = 0, v(1) = 0.

Those of them that are not identical with zero are eigenfunctions. Since the Dirichlet problem
cannot have two (linearly independent) eigenfunctions corresponding to one eigenvalue, there
is only one eigenfunction v+k0(x) or v−k0(x). And it satisfies one of the symmetry conditions
(8). If λDk is a multiple eigenvalue of the Dirichlet problem, then the corresponding functions
v+kj (or v−kj) form a chain of associated to v+k0 (respectively to v−k0) functions. Obviously, they

have the same symmetry property from (8), as the function v+k0 (respectively v−k0).

We show that there is no EAF, that does not possess any of the symmetry properties (8).
Consider the system of functions{

v+kj(x), v−ni(x), j = 0,mD
k , i = 0,mD

n

}
k,n∈N

. (9)

Some of these functions may turn out to be zero, but we do not pay attention to this. We
prove that system (9) is complete in L2(0, 1). Indeed, suppose g(x) ∈ L2(0, 1) is orthogonal
to all functions of system (9). Then

0 = (v±kj , g) =

∫ 1

0
v±kj(x)g(x)dx =

∫ 1

0
[vkj(x)± vkj(1− x)] g(x)dx

=

∫ 1

0
vkj(x)g(x)± vkj(1− x)g(x)dx =

∫ 1

0
vkj(x)g(x)dx±

∫ 1

0
vkj(1− x)g(x)dx.

If we let x→ 1− x, then note that∫ 1

0
vkj(1− x)g(x)dx =

∫ 0

1
vkj(x)g(1− x)d(1− x) =

∫ 1

0
vkj(x)g(1− x)dx
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then

0 =

∫ 1

0
vkj(x)

[
g(x)± g(1− x)

]
dx, k ∈ N, j = 0,mD

k .

Since the system
{
vkj(x), j = 0,mD

k

}
k∈N

is complete in L2(0, 1), then g(x) ± g(1− x) = 0

⇒ g(x) = 0 for all x ∈ (0, 1), which proves the completeness of system (9) in L2(0, 1). The
system (9) remains complete when removing identically zero functions from it. All nonzero
functions of the system (9) are EAF of the Dirichlet problems (1), (6). Since this system of
functions is complete in L2(0, 1), the problem has no other EAF. All elements of the system
(9) possess one of the symmetry properties (8). Lemma 1 is proved.

3 Proof of the main theorem

Let
{
vkj(x), j = 0,mD

k

}
k∈N

be a EAF system of Dirichlet problems (1), (6), possessing

symmetry property

v(x) = (−1)θv(1− x), for every x ∈ [0, 1], (10)

and let λDk be their own eigenvalues; and let
{
wni(x), i = 0,mN

n

}
n∈N

be a EAF system of

Neumann problems (1), (7), possessing symmetry property

w(x) = −(−1)θw(1− x), for every x ∈ [0, 1], (11)

and let λNn be eigenvalues of the Neumann problem corresponding to them.

By direct calculation it is easy to verify that the functions vkj(x) and wni(x) are the EAF
of the original problem (1), (2), corresponding to the eigenvalues λDk and λNn , respectively.
If we show that the system{

vkj(x), wni(x), j = 0,mD
k , i = 0,mN

n

}
k,n∈N

(12)

is complete in L2(0, 1), then problem (1), (2) has no other EAF.

The space L2(0, 1) is divided into a direct sum of two subspaces: a spaces L+
2 (0, 1) of

functions, possessing symmetry property (10), and a space L−2 (0, 1) of functions, possessing
symmetry property (11). By virtue of the proven Lemma 1 the system {vkj(x)}k∈N is com-

plete in L+
2 (0, 1), and the system {wni(x)}n∈N is complete in L−2 (0, 1). Therefore, system

(12) is complete in L2(0, 1). Therefore, the problem does not have an EAF of other kind.

Thus, the EAF system (12) of the periodic problem (1), (2) consists only of EAF of the
Dirichlet problem, possessing symmetry property (10), and of EAF of the Neumann problem
with the symmetry property (11). Obviously, the system {vkj(x)}k∈N forms the Riesz basis

in L+
2 (0, 1), and the system {wni(x)}n∈N forms the Riesz basis in L−2 (0, 1). Therefore, the
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EAF system of the periodic problem (1), (2) forms the Riesz basis in L2(0, 1). The theorem
is proved.

Since the Dirichlet and Neumann problems are strongly regular, they can have only a
finite number of associated functions. Therefore, from the course of the proof of the theorem
we obtain

Corollary 1. If q(x) ∈ L1(0, 1) and q(x) = q(1 − x), then the periodic boundary value
problems (1), (2) may have no more than a finite number of associated functions.

It is interesting that Lemma 1 has a converse.

Lemma 2. If q(x) ∈ L1(0, 1) and all EAF of the periodic problem (1), (2) or of the Dirichlet
problem (1), (6) or of the Neumann problem (1), (7) have one of the properties of symmetry
(8), then q(x) = q(1− x).

Proof. Take only the odd EAF ukj(x), that is, having the property of symmetry ukj(x) +
ukj(1− x) = 0. They satisfy the equation

−u′′kj(x) + q(x)ukj(x) = λkukj(x) + ukj−1(x), 0 < x < 1.

Integrating it over the interval 0 < x < 1, we find∫ 1

0
q(x)ukj(x)dx = 0.

Since the odd EAF {ukj(x)} are complete in the subspace of odd functions from L2(0, 1),
then q(x) is an even function. Lemma 2 is proved.
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Кәлменов Т.Ш., Қахарман Н., Садыбеков М.А. СИММЕТРИЯЛЫ ПОТЕНЦИАЛ-
ДЫ ПЕРИОДТЫ ШТУРМ-ЛИУВИЛЛЬ ЕСЕБIНIҢ ТҮБIРЛIК ФУНКЦИЯЛАРЫ ТУ-
РАЛЫ

Бұл мақалада (0, 1) кесiндiсiнде u′(0) = ±u′(1), u(0) = ±u(1) периодты және анти-
периодты шекаралық шартты −u′′(x) + q(x)u(x) = λu(x) Штурм–Лиувилль дифферен-
циалдық операторы үшiн спектралды есептер қарастырылған. Қарастырылып отырған
есептiң аралықта қосындылатын q(x) потенциалы q(x) = q(1 − x) симметрия шартын
қанағаттандыратын болса, оның түбiрлiк (меншiктi және қосалқы) функциялары Рисс
базисi болатыны дәлелденген.

Кiлттiк сөздер. Лаплас операторы, шеттiк есеп, Самарский-Ионкин тектес есеп, қи-
сындылық, Грин функциясы, меншiктi функциялар, меншiктi мәндер.
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Кальменов Т.Ш., Кахарман Н., Садыбеков М.А. О КОРНЕВЫХ ФУНКЦИЙ ПЕРИ-
ОДИЧЕСКОЙ ЗАДАЧИ ШТУРМА-ЛИУВИЛЛЯ С СИММЕТРИЧНЫМ ПОТЕНЦИ-
АЛОМ

В этой статье рассматривается спектральные задачи для дифференциального опера-
тора Штурма-Лиувилля −u′′(x) + q(x)u(x) = λu(x) на отрезке (0, 1) с периодическими и
антипериодическими краевыми условиями u′(0) = ±u′(1), u(0) = ±u(1). Доказана базис-
ность Рисса системы корневых (собственных и присоединенных) функций рассматривае-
мых задач в случае суммируемого на интервале потенциала q(x), когда он удовлетворяет
условию симметрии q(x) = q(1− x).

Ключевые слова. Оператор Лапласа, краевая задача, задача типа Самарского-
Ионкина, Корректность, пункция Грина, собственные функции, собственные значения.
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Abstract. This work is devoted to the solvability of some non-classical boundary value problems for

the polyharmonic equation. These problems generalize the Dirichlet and Neumann problems for the

polyharmonic equation. The considered problems are nonlocal boundary value problems of Bitsadze-

Samarskii type. The investigated problems are solved by reducing them to the Dirichlet problem and the

Neumann type problems. Theorems on the existence and the uniqueness of the problem’s solution are

proved and exact solvability conditions are received. We obtain necessary and sufficient conditions for

the solvability of the Neumann type problem for the polyharmonic equation in the unit ball. By applying

Green’s functions, as well as the statement of the existence of a solution to the Dirichlet problem, the

obtained integral representations for the solutions are constructed.

Keywords. Polyharmonic equation, nonlocal problem, involution, Dirichlet problem, Neumann type

problem, uniqueness, existence.

1 Introduction

Nonlocal boundary value problems for elliptic equations in which boundary conditions are
given in the form of a connection between the values of the unknown function and its deriva-
tives at various points of the boundary, are called the problems of the Bitsadze-Samarskii
type [1]. Numerous applications of the nonlocal boundary value problems for elliptic equa-
tions in problems of physics, the engineering, and other branches of the science are described
in detail in [2], [3]. Solvability of nonlocal boundary value problems for the elliptic equations
is discussed in [4]–[8]. Boundary value problems with involution for elliptic equations of the
second and fourth orders, as a special case of nonlocal problems, are considered in [9]–[13].
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Let Ω = {x ∈ Rn : |x| < 1} be the unit ball, n ≥ 2, and let ∂Ω be the unit sphere. For any
point x = (x1, x2, · · · , xn) ∈ Ω we consider the point x∗ = Cx, where C is a real orthogonal
matrix CCT = E. Suppose also that there exists a natural l ∈ N such that C l = E.

Let m ≥ 1, αk be some real numbers, p take one of the meanings p = 0 or p = 1, Dk
ν =

∂k

∂νk
,

k ≥ 1, ν be the unit vector of the outward normal to ∂Ω, and let D0
ν = I be the unit operator.

In this paper we study the following nonlocal boundary value problem

(−∆)mu(x) = f(x), x ∈ Ω, (1)

Dk+p
ν u(x) + αkD

k+p
ν u(x∗) = gk(x), x ∈ ∂Ω, k = 0, 1, ...,m− 1. (2)

By a solution of the problem (1), (2) we mean a function u(x) ∈ C2m(Ω) ∩ Cm+p−1(Ω̄)
satisfying conditions (1), (2) in the classical sense. In the case αk = 0 when p = 0 we
obtain the well-known Dirichlet problem [14] and, when p = 1 we have the Neumann type
problems [15], [16].

2 Auxiliary statements

First we note that if x ∈ Ω, or x ∈ ∂Ω, then x∗ = Cx ∈ Ω, or x∗ = Cx ∈ ∂Ω,
respectively, since the transformation of the space Rn by the matrix C preserves the norm
|x∗|2 = |Cx|2 = (Cx,Cx) = (CTCx, x) = |x|2.

The case x∗ = −x investigated in [9]–[13] is a particular case of the situation considered
here since for C = −E we have CCT = −E(−E) = E and l = 2.

It is obvious that the transformation made by the matrix C can be also a rotation in the
space Rn, for example, if C = C1

ϕ1
C2
ϕ2
· · ·Cn−2

ϕn−2
, where

Ciϕ =


Ei 0 0 0
0 cosϕ − sinϕ 0
0 sinϕ cosϕ 0
0 0 0 En−i−2

 ,

Ei is the unit i× i matrix and i = 1, n− 2. This is so since CT = Cn−2
−ϕn−2

· · ·C2
−ϕ2

C1
−ϕ1

and

hence CCT = C1
ϕ1
C2
ϕ2
· · ·Cn−2

ϕn−2
Cn−2
−ϕn−2

· · ·C2
−ϕ2

C1
−ϕ1

= E.
Consider the operator

ICu(x) = u(Cx) = u(x∗).

In view of what has been said above, this operator is defined on functions u(x), x ∈
Ω. We also consider the operator Λu =

n∑
i=1

xiuxi(x) that is homogeneous, preserves the

polyharmonicity of function u(x), and has the property Dm
ν u|∂Ω = Λ[m]u|∂Ω, where Λ[m] =

Λ(Λ−1) . . . (Λ−m+1) [15]. Let Cicol and Cirow be the i-th column and i-th row of the matrix
C, respectively.
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We prove two simple lemmas. Let u(x) be a twice continuously differentiable function in
Ω.

Lemma 1. Operators Λ and IC are commutative ΛICu(x) = ICΛu(x), and also the equality
∇IC = ICC

T∇ holds, and operators ∆ and IC are also commutative.

Proof. We can write the operator Λ in the form Λu = (x,∇)u. Since

∂

∂xi
ICu(x) =

∂

∂xi
u(Cx) =

∂

∂xi
u((C1

row, x), . . . , (Cnrow, x))

=
n∑
j=1

cjiICuxj (x) = (Cicol, IC∇u(x)) = IC(Cicol,∇)u(x), (3)

then

ΛICu(x) = Λu(Cx) =
n∑
i=1

xi
∂

∂xi
u(Cx) =

n∑
i=1

xi
(
Cicol, IC∇u(x)

)
=

(
n∑
i=1

xiC
i
col, IC∇u(x)

)
= (Cx, IC∇u(x)) = IC(x,∇u(x)) = ICΛu(x).

Further, due to the formula (3), we find

∂2

∂x2
i

ICu(x) =
∂

∂xi
IC(Cicol,∇)u(x) = IC(Cicol,∇)2u(x)

and therefore

∆ICu(x) =

n∑
i=1

IC(Cicol,∇)
2
u(x) = IC

∣∣((C1
col,∇), . . . , (Cncol,∇)

)∣∣2u(x)

= IC
∣∣CT∇∣∣2u(x) = IC(CT∇, CT∇)u(x) = IC(CCT∇,∇)u(x) = IC∆u(x).

At last,
∇ICu(x) = IC((C1

col,∇), . . . , (Cncol,∇))u(x) = IC(CT∇)u(x).

Lemma is proved.

Corollary. If the function u(x) is polyharmonic in Ω, then the function u(x∗) = ICu(x) is
also polyharmonic in Ω.

Indeed, due to Lemma 1, ∆mu(x) = 0⇒ ∆mICu(x) = IC∆mu(x) = 0.

Lemma 2. The operator 1 + αIC , when (−α)l 6= 1 is invertible and the operator

Jα =
1

1− (−α)l

l−1∑
k=0

(−α)kIkC (4)
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is inverse to 1 + αIC .

Proof. It is easy to see that(
l−1∑
k=0

(−α)kIkC

)
(1 + αIC)u(x) =

(
l−1∑
k=0

(−α)kIkC −
l∑

k=1

(−α)kIkC

)
u(x)

=
(
E − (−α)lI lC

)
u(x) = (1− (−α)l)u(x).

Thus, if (−α)l 6= 1, then we can divide both sides of the equality by 1− (−α)l and hence
the operator Jα is inverse to 1 + αIC . Lemma is proved.

3 Dirichlet and Neumann type problems

In this section we study the following problem:

(−∆)mv(x) = ϕ(x), x ∈ Ω, (5)

Dk+p
ν v(x)|∂Ω = ψk(x), x ∈ ∂Ω, k = 0, 1, ...,m− 1, (6)

where p = 0 or p = 1.
The following statements are true.

Theorem 1 [14]. Let p = 0, 0 < λ < 1, ϕ(x) ∈ Cλ(Ω̄), ψk(x) ∈ Cλ+m−1−k(∂Ω), k =
0, 1, ...,m−1. Then a solution of the problem (5), (6) exists, is unique and belong to the class
Cλ+2m(Ω) ∩ Cλ+m−1(Ω̄).

Theorem 2 [16]. Let p = 1, ϕ(x) ∈ C1(Ω̄), ψk(x) ∈ Ck(∂Ω), k = 0, 1, ...,m − 1. Then for
the solvability of the problem (5), (6) the following condition is necessary and sufficient∫

∂Ω

m∑
k=1

(−1)k+1

(
2m− k − 1
k − 1

)
(2m− 2k − 1)!!ψk(x)dSx

+

∫
Ω

(
|x|2 − 1

)m−1

(2m− 2)!!
ϕ(x)dx = 0. (7)

If the solution of the problem exists, then it is unique up to a constant.

4 Uniqueness

In this section we investigate the uniqueness of the solution of the problem (1), (2). The
following proposition is true.

Theorem 3. Let (−αk)l 6= 1, and a solution of the problem (1), (2) exists. Then
1) if p = 0, then the solution of the problem is unique;
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2) if p = 1, then the solution of the problem is unique up to a constant.

Proof. To prove the uniqueness of the solution of problem (1), (2), consider a function u(x)
which is a solution of the homogeneous problem (1), (2) (all right-hand sides in the problem
are zero). If the problem (1), (2) has at least two solutions, such a function exists. It is clear
that u(x) is a polyharmonic function, satisfying the following homogeneous conditions

Dk+p
ν u(x) + αkD

k+p
ν u(x∗)

∣∣∣
∂Ω

= Λ[k+p](1 + αkIC)u(x)
∣∣∣
∂Ω

= 0, k = 0, 1, ...,m− 1. (8)

Since (−αk)l 6= 1, then applying the operators Jαk
from (4) to the equality (8) and using

Lemma 1, we get

0 = Jαk
Λ[m+p](1 + αkIC)u(x) = Λ[m+p]Jαk

(1 + αkIC)u(x) = Λ[m+p]u(x)

= Dk+p
ν u(x), x ∈ ∂Ω,

or
Dk+p
ν u(x)

∣∣∣
∂Ω

= 0.

Therefore, if u(x) is the solution of the homogenous problem (1), (2), then it is also the
solution of the homogeneous problem (5), (6). Then, due to uniqueness of the solution of the
Dirichlet problem (the case p = 0), we obtain the uniqueness of the solution of the problem
(1), (2). Similarly, by the statements of Theorem 2, we obtain the remaining statements of
this theorem. Theorem is proved.

5 Existence

In this section we present a statement on the existence of the solution of the problem (1),
(2).

Theorem 4. Let (−αk)l 6= 1, k = 0, 1, ...,m − 1, and f(x), gk(x), k = 0, 1, ...,m − 1, be
smooth enough functions. Then

1) if p = 0, then a solution of the problem (1), (2) exists and is unique;
2) if p = 1, and αk 6= −1, k = 0, 1, ...,m− 1, then the necessary and sufficient condition

for the solvability of the problem (1), (2) has the form∫
∂Ω

m∑
k=1

(−1)k+1

(
2m− k − 1
k − 1

)
(2m− 2k − 1)!!

1 + αk
gk(x)dSx

+

∫
Ω

(
|x|2 − 1

)m−1

(2m− 2)!!
f(x)dx = 0. (9)
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If the solution exists, then it is unique up to a constant.

Proof. Consider the auxiliary Dirichlet problem

(−∆)mv(x) = f(x), x ∈ Ω, (10)

Dk+p
ν v(x) = Jαk

gk(x), x ∈ ∂Ω, k = 0, 1, ...,m− 1, (11)

where the operator Jαk
is defined in (4). We check that its solution v(x) is also a solution of

the considered problem (1), (2). Indeed, the function v(x) satisfies the equation (1). Applying
the operator 1 + αkIC to the condition (11) and using Lemmas 1 and 2, we get

gk(x) = (1 + αkIC)Jαk
gk(x) = (1 + αkIC)Dk+p

ν v(x)|∂Ω

= (1 + αkIC)Λ[k+p]v(x)|∂Ω = Λ[k+p](1 + αkIC)v(x)|∂Ω

= Dk+p
ν (1 + αkIC)v(x)|∂Ω = Dk+p

ν v(x) + αkD
k+p
ν v(x∗)|∂Ω,

where x ∈ ∂Ω, i.e. the condition (2) holds. So, the function v(x) is the solution of the
problem (1), (2), and, if v(x) exists, then the problem (1), (2) is solvable.

The case when the solution of the problem (10), (11) does not exist but u(x) exists, is
impossible. Indeed, let u(x) be a solution of the equation (10). Applying the operator Jαk

to the condition (2) and using Lemmas 1 and 2, we have

Jαk
gk(x) = Jαk

(Dk+p
ν u(x) + αkD

k+p
ν u(x∗))|∂Ω

= Jαk
Dk+p
ν (1 + αkIC)u(x)|∂Ω = Jαk

Λ[k+p](1 + αkIC)u(x)|∂Ω

= Λ[k+p]Jαk
(1 + αkIC)u(x)|∂Ω = Λ[k+p]u(x) = Dk+p

ν u(x)|∂Ω,

where x ∈ ∂Ω, i.e. condition (11) holds. Hence, u(x) is the solution of the problem (10),
(11), which contradicts to the assumption. Problems (1), (2) and (10), (11) are solvable
simultaneously. Smoothness of the functions Jαk

gk(x) and gk(x) are the same.
Using Theorems 1 and 2, we can find the solvability conditions of the problem (10), (11).

Obviously these conditions will be the solvability conditions of the problem (1), (2).
1) Let p = 0. In this case, by Theorem 1, for any functions on the right-hand sides of the

problem with a given smoothness its solution exists and is unique.
2) Let p = 1. In this case, by Theorem 2, the necessary and sufficient solvability condition

of the problem (10), (11) is the integral equality∫
∂Ω

m∑
k=1

(−1)k+1

(
2m− k − 1
k − 1

)
(2m− 2k − 1)!!Jαk

gk(x)dSx

+

∫
Ω

(
|x|2 − 1

)m−1

(2m− 2)!!
f(x)dx = 0. (12)
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Let us transform the integral on the right-hand side of (12).

Lemma 3. Let the function ϕ(x) be continuous on ∂Ω and C be an orthogonal matrix, then∫
∂Ω

ϕ(Cx) dSx =

∫
∂Ω

ϕ(x) dSx.

Proof. Let the function w(x) be a solution of the Dirichlet problem for the Laplace equation
in Ω with condition w(x)|∂Ω = ϕ(x), x ∈ ∂Ω. Then the function w(Cx) is a solution of
the Dirichlet problem for the Laplace equation in Ω with the condition w(Cx)|∂Ω = ϕ(Cx),
x ∈ ∂Ω. Therefore, due to the Poisson’s formula, we have∫

∂Ω

ϕ(Cx) dSx =

∫
∂Ω

w(Cx) dSx = ωnw(0) =

∫
∂Ω

ϕ(x) dSx,

where ωn is the area of the unit sphere. Lemma is proved.
Using Lemma 3, the condition αk 6= −1, and taking into account that the natural degree

of the orthogonal matrix is an orthogonal matrix as well, we find∫
∂Ω

Jαk
gk(x) dSx =

1

1− (−αk)l
l−1∑
q=0

(−αk)q
∫
∂Ω

IqCgk(x) dSx

=
1

1− (−αk)l
l−1∑
q=0

(−αk)q
∫
∂Ω

gk(C
qx) dSx =

1

1− (−αk)l
l−1∑
q=0

(−αk)q
∫
∂Ω

gk(x) dSx

=
(1 + αk)

(1 + αk)(1− (−α− k)l)

l−1∑
q=0

(−αk)q
∫
∂Ω

gk(x) dSx =

∫
∂Ω

gk(x)

1 + αk
dSx.

This implies that the condition (12) can be transformed to the form (9). Theorem is
proved. �

6 Representation of the solution

In this section we give a method of constructing solutions of the problem (1), (2) with
homogeneous boundary conditions.

Theorem 5. Let gk(x) = 0, k = 0, 1, ...,m− 1. Then
1) if p = 0, then the solution of the problem (1), (2) can be represented in the form

u(x) =

∫
Ω

GD(x, y)f(y) dy,
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where GD(x, y) is the Green’s function of the Dirichlet problem for the polyharmonic equation
(1) in Ω;

2) if p = 1 and (9) holds, then the solution of the problem (1), (2) can be represented in
the form

u(x) =

1∫
0

v(sx)

s
ds+ C, (13)

where C is an arbitrary constant and v(x) is a solution of the following Dirichlet problem

(−∆)mv(x) = (Λ + 2m) f(x), x ∈ Ω;

Dk
νv(x)

∣∣∣
∂Ω

= 0, k = 0, 1, ...,m− 1, v(0) = 0.
(14)

Proof. The auxiliary problem (10), (11), whose solution coincides with the solution of the
problem (1), (2) (see the proof of Theorem 3), with the help of properties of the operator Λ
takes the form

(−∆)mv(x) = f(x), x ∈ Ω,

Λ[k+p]v(x)|∂Ω = 0, k = 0, 1, ...,m− 1.

1) Let p = 0, then in this case the auxiliary problem is the Dirichlet problem and its
solution coincides with the solution of the problem (1), (2) (see. [17]):

v(x) = u(x) =

∫
Ω

GD(x, y)f(y) dy. (15)

2) Let p = 1. Boundary conditions for the auxiliary problem take the form

Λ[k+1]v(x)|∂Ω ≡
∂kv(x)

∂νk
|∂Ω = 0, k = 0, 1, ...,m− 1.

Let us apply the operator Λ + 2m to the polyharmonic equation of the problem. Due
to the equality ∆kΛu = (Λ + 2k)∆ku and denoting w = Λv, for w(x), we get the following
Dirichlet problem (14):

(−∆)mw(x) = (Λ + 2m)f(x), x ∈ Ω,

w(x)|∂Ω = 0, Λ[k]w(x)|∂Ω = 0, k = 1, 2, ...,m− 1.

By the formula (15) we find

w(x) =

∫
Ω

GD(x, y)(Λ + 4)f(y) dy.
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As in [16] equation w = Λv in the class of smooth functions v(x) has a solution only if
w(0) = 0, and this solution can be written in the form

u(x) =

1∫
0

w(sx)

s
ds+ C.

Theorem is proved.
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Карачик В.В., Турметов Б.Х. ПОЛИГАРМОНИЯЛЫҚ ТЕҢДЕУ ҮШIН КЕЙБIР
БЕЙЛОКАЛ ШЕТТIК ЕСЕПТЕРДIҢ ШЕШIЛIМДIЛIГI ЖӘЙЛI

Бұл жұмыс полигармониялық теңдеу үшiн кейбiр классикалық емес шеттiк есептер-
дiң шешiлiмдiгi мәселесiне арналған. Бұл есептер полигармониялық теңдеу үшiн Дирих-
ле және Нейман есептерiн жалпылайды. Қарастырылатын есептер Бицадзе-Самарский
тектес бейлокал шеттiк есептер болып табылады. Зерттелетiн есептер оларды Дирих-
ле есебiне және Нейман түрiндегi есепке келтiру арқылы шешiледi. Есептiң шешiмiнiң
бар және жалғыз болуы туралы теоремалар дәлелденген. Бiрлiк шарда полигармония-
лық теңдеу үшiн Нейман түрiндегi шеттiк есептiң шешiлiмдiлiгiнiң қәжеттi және жет-
кiлiктi шарттары анықталған. Грин функцияларын қолдана отырып, сондай-ақ Дирихле
есебiнiң шешiмiнiң бар болуы туралы тұжырымды пайдалана отырып, қарастырылған
есептердiң шешiмдерi үшiн интегралдық кейiптемелер алынған.

Кiлттiк сөздер. Полигармониялық теңдеу, бейлокал есеп, инволюция, Дирихле есебi,
Нейман түрiндегi есеп, жалғыздық, бар болу.
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Карачик В.В., Турметов Б.Х. О РАЗРЕШИМОСТИ НЕКОТОРЫХ НЕЛОКАЛЬ-
НЫХ КРАЕВЫХ ЗАДАЧ ДЛЯ ПОЛИГАРМОНИЧЕСКОГО УРАВНЕНИЯ

Данная работа посвящена вопросам разрешимости некоторых неклассических крае-
вых задач для полигармонического уравнения. Эти задачи обобщают задачи Дирихле и
Неймана для полигармонического уравнения. Рассматриваемые задачи являются нело-
кальными краевыми задачами типа Бицадзе-Самарского. Исследуемые задачи решают-
ся путем сведения их к задаче Дирихле и задаче типа Неймана. Доказаны теоремы о
существовании и единственности решения задачи. Получены необходимые и достаточ-
ные условия разрешимости задачи типа Неймана для нелокального полигармонического
уравнения в единичном шаре. Применяя функции Грина, а также утверждение о суще-
ствовании решения задачи Дирихле, получены интегральные представления для реше-
ний рассматриваемых задач.

Ключевые слова. Полигармоническое уравнение, нелокальная задача, инволюция, за-
дача Дирихле, задача типа Неймана, единственность, существование.

Kazakh Mathematical Journal, 19:1 (2019) 39–49



Kazakh Mathematical Journal ISSN 2413–6468

19:1 (2019) 50–58

Reversed Hardy-Littlewood-Sobolev inequality on
homogeneous Lie groups

Aidyn Kassymov1,2,3,a, Durvudkhan Suragan4,b

1Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
2Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Belgium

3Al-Farabi Kazakh National University, Almaty, Kazakhstan
4Department of Mathematics, Nazarbayev University, Nur-Sultan, Kazakhstan

a e-mail: kassymov@math.kz, be-mail: durvudkhan.suragan@nu.edu.kz

Communicated by: Niyaz Tokmagambetov

Received: 07.05.2019 ? Accepted/Published Online: 31.05.2019 ? Final Version: 31.05.2019

Abstract. In this short note, we prove the reversed Hardy-Littlewood-Sobolev inequality on homo-

geneous Lie groups. Proof of this inequality is based on reversed Young’s inequality and reversed

Marcienkiewicz interpolation theorem.

Keywords. Hardy-Littlewood-Sobolev inequality, Reversed Hardy-Littlewood-Sobolev inequality, frac-

tional integral, homogeneous Lie group.

1 Introduction

In their pioneering paper [1], Hardy and Littlewood proved the following theorem:

Theorem 1. Let 1 < p < q <∞ and u ∈ Lp(0,∞) with 1
q = 1

p + λ− 1, then

‖Tλu‖Lq(0,∞) ≤ C‖u‖Lp(0,∞), (1)

where C is a positive constant independent of u. Here Tλ is the one dimensional fractional
integral operator on (0,∞) given by

Tλu(x) =

∫ ∞
0

u(y)

|x− y|λ
dy, 0 < λ < 1. (2)

The multidimensional extention of (2) is

Iλu(x) =

∫
RN

u(y)

|x− y|λ
dy, 0 < λ < N. (3)

Then, the corresponding generalisation of the Hardy-Littlewood inequality was proved by
Sobolev in [2]:

2010 Mathematics Subject Classification: 22E30, 43A80.
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Theorem 2. Let 1 < p < q <∞, u ∈ Lp(RN ) with 1
q = 1

p + λ
N − 1. Then

‖Iλu‖Lq(RN ) ≤ C‖u‖Lp(RN ), (4)

where C is a positive constant independent of u.

Later, in [3] Stein and Weiss obtained the following two-weight Hardy-Littlewood-Sobolev
inequality, which is also known as the Stein-Weiss inequality.

Theorem 3. Let 0 < λ < N , 1 < p < ∞, α < N(p−1)
p , β < N

q , α + β ≥ 0 and 1
q =

1
p + λ+α+β

N − 1. If 1 < p ≤ q <∞, then

‖|x|−βIλu‖Lq(RN ) ≤ C‖|x|αu‖Lp(RN ), (5)

where C is a positive constant independent of u.

So, in the papers [4], [5] and [6], authors showed reversed Hardy-Littlewood-Sobolev
inequality on the Euclidean space RN .

Theorem 4. For any 1 ≤ N < λ, N
λ < p < 1 and q given by

1

q
=

1

p
− λ

N
, (6)

there exists a constant C = C(n, λ, p) > 0, such that for all nonnegative u ∈ Lp(RN ),

‖Iλu‖Lq(RN ) ≥ C‖u‖Lp(RN ). (7)

Nowadays, there is a number of studies related to this subject on RN . We refer the above
excellent presentations [4], [5] and [6] as well as references therein for further discussions.

At the same time, there is another layer of intensive research over the years related to the
Hardy-Littlewood-Sobolev inequalities in subelliptic settings. As expected, the subelliptic
Hardy-Littlewood-Sobolev inequality was obtained on the most important example of the
Heisenberg group by Folland and Stein in [7] (see, also [8]). In this case, we also note that
the optimal constant for the inequality is given by Frank and Lieb in [9] (in the Euclidean
case this was done earlier by Lieb in [10]). Futhermore, in this direction systematic studies
of different functional inequalities on (general) homogeneous Lie groups were initiated by the
paper [11]. Also, Hardy-Littlewood-Sobolev inequality in homogeneous Lie groups is proved
in [12]. We refer to the open access book [13] for further discussions in this direction.

Let us consider Riesz operator in the following form:

Iγu(x) =

∫
G

u(y)

|y−1x|γ
dy. (8)
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The main result of this paper is as follows:

• Reversed Hardy-Littlewood-Sobolev inequality: Let G be a homogeneous Lie
group with 1 ≤ Q < α, Q

α < p < 1, such that

1

q
=

1

p
− α

Q
. (9)

Then we have
‖IQ−αu‖Lq(G) ≥ C‖u‖Lp(G), (10)

where C is a positive constant independent of u.

2 Reversed Hardy-Littlewood-Sobolev inequality

In this section we prove the reversed Hardy-Littlewood-Sobolev inequality on homoge-
neous Lie groups. In order to do it, first we present reversed Young inequality on homogeneous
Lie groups.

Let us recall that a Lie group (on RN ) G with the dilation

Dλ(x) := (λν1x1, . . . , λ
νNxN ), ν1, . . . , νn > 0, Dλ : RN → RN ,

which is an automorphism of the group G for each λ > 0, is called a homogeneous (Lie)
group. For simplicity, throughout this paper we use the notation λx for the dilation Dλ.
The homogeneous dimension of the homogeneous group G is denoted by Q := ν1 + . . .+ νN .
Also, in this note we denote a homogeneous quasi-norm on G by |x|, which is a continuous
non-negative function

G 3 x 7→ |x| ∈ [0,∞), (11)

with the properties

i) |x| = |x−1| for all x ∈ G,

ii) |λx| = λ|x| for all x ∈ G and λ > 0,

iii) |x| = 0 iff x = 0.

Moreover, the following polarisation formula on the homogeneous Lie groups will be used in
our proofs: there is a (unique) positive Borel measure σ on the unit quasi-sphere S := {x ∈
G : |x| = 1}, so that for every f ∈ L1(G) we have∫

G
f(x)dx =

∫ ∞
0

∫
S
f(ry)rQ−1dσ(y)dr. (12)

The quasi-ball centred at x ∈ G with radius R > 0 can be defined by

B(x,R) := {y ∈ G : |x−1y| < R}. (13)
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Note that the standart Lebesque measure on RN coincides with the Haar measure on the
homogeneous Lie group G. We refer to [14] for the original appearance of such groups, and
to [13] for a recent comprehensive treatment.

Let us recall that for a measurable function f on G with 0 < p < ∞, for weak Lp norm
we define

‖f‖LpW := inf{z > 0 : m{|f | < t} ≤ zp

tp
}.

In the case p < 0 we define weak Lp norm in the following form

‖f‖LpW := sup{z > 0 : m{|f | < t} ≤ z

tp
}.

Definition 1. For q < 0 < p < 1, we say operator L is of the weak-type (p, q), if there exists
a constant C(p, q) > 0, such that for all u ∈ Lp(G),

m{x : |Lu(x)| < ζ} ≤ C(p, q)

(‖u‖Lp(G)

ζ

)q
, ∀ζ > 0.

Proposition 1. (Proposition 2.5, [4]) Let L be a linear operator which maps any nonnegative
function to a nonnegative function. For a pair of numbers (p1, q1), (p2, q2) satisfying qi <
0 < pi < 1, i = 1, 2, p1 < p2 and q1 < q2, if L is of weak-types (p1, q1) and (p2, q2) for all
nonnegative functions, then for any ξ ∈ (0, 1), and

1

p
=

1− ξ
p1

+
ξ

p2
,

1

q
=

1− ξ
q1

+
ξ

q2
,

L is reversed strong-type (p, q) for all nonnegative functions, that is,

‖Lu‖Lq(G) ≥ C‖u‖Lp(G),

where C = C(p1, p2, q1, q2, γ) > 0.

Theorem 5. Let G be a homogeneous Lie group. Let 0 < p < 1 and q, r < 0 be such that

1 +
1

q
=

1

p
+

1

r
,

and let f, g be nonnegative functions. Then we have

‖f ∗ g‖Lq(G) ≥ ‖f‖Lp(G)‖g‖Lr(G). (14)

Proof. By the definition with 1
q + 1

p′ + 1
r′ = 1, pq + p

r′ = 1, rq + r
p′ = 1, and by using reversed

Hölder’s inequality, we calculate

f ∗ g(x) =

∫
G
f(x)g(y−1x)dy =

∫
G
f
p
r′ (y)f

p
q (y)g

r
q (y−1x)g

r
p′ (y−1x)dy
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≥
(∫

G
fp(y)dy

) 1
r′
(∫

G
gr(y−1x)dy)

) 1
p′
(∫

G
fp(y)gr(y−1x)dy

) 1
q

= ‖f‖
p
r′
Lp(G)‖g‖

r
p′

Lr(G)

(∫
G
fp(y)gr(y−1x)dy

) 1
q

. (15)

It implies ∫
G

(f ∗ g(x))qdx ≤ ‖f‖
pq
r′
Lp(G)‖g‖

qr
p′

Lr(G)

(∫
G

∫
G
fp(y)gr(y−1x)dydx

)

= ‖f‖
pq
r′
Lp(G)‖g‖

qr
p′

Lr(G)‖f‖
p
Lp(G)

(∫
G
gr(y)dy

)
= ‖f‖qLp(G)‖g‖

q
Lr(G). (16)

Then finally,
‖f ∗ g‖Lq(G) ≥ ‖f‖Lp(G)‖g‖Lr(G). (17)

It completes the proof. �
Now we state the reversed Hardy-Littlewood-Sobolev inequality on G.

Theorem 6. Let G be a homogeneous Lie group with 1 ≤ Q < α, Q
α < p < 1 and

1

q
=

1

p
− α

Q
. (18)

Then,
‖IQ−αu‖Lq(G) ≥ C‖u‖Lp(G), (19)

where C is a positive constant independent of u.

Proof. For the prove of this theorem we will use Marcinkiewicz interpolation theorem. We
show first:

m{x : |IQ−αu| ≤ ζ} ≤ C
(‖u‖Lp(G)

ζ

)q
, ζ > 0. (20)

Let us rewrite the Riesz operator in the following form:

IQ−αu(x) = K ∗ u(x) = |x|α−Q ∗ u(x) = K1 ∗ u(x) +K2 ∗ u(x),

where

K1(x) :=

{
|x|α−Q, if |x| ≤ θ,
0, if |x| > θ,

and K2(x) :=

{
|x|α−Q, if |x| > θ,

0, if |x| ≤ θ.
(21)

Then, we have

m{x : |K ∗ u(x)| < 2ζ} ≤ m{x : |K1 ∗ u(x)| < ζ}+m{x : |K2 ∗ u(x)| < ζ}, (22)
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where m is the Haar measure on G. It is enough to prove inequality (20) with 2ζ instead of ζ
in the left-hand side of the inequality. Without loss of generality we can assume ‖u‖Lp(G) = 1.

By taking β1 ∈ ( Q
Q−α , 0), we have

Q+ (α−Q)β1 ≥ Q+ (α−Q)
Q

Q− α
= Q−Q = 0,

finally, Q+ (α−Q)β1 ≥ 0.
By using this and Theorem 5, we get

‖K1 ∗ u‖Lr1 (G)

≥

(∫
0<|x|≤θ

1

|x|(Q−α)β1
dx

) 1
p′
(∫

0<|x|≤θ

1

|x|(Q−α)β1
dx

) 1
r1

‖u‖Lp(λ)

= C

(∫ θ

0
rQ−1r−β1(Q−α)dr

) 1
β1

= Cθ
Q−β1(Q−α)

β1 , (23)

where 1
p + 1

β1
= 1

r1
+ 1, with β1 ∈ ( Q

Q−α , 0), r1 < 0. Let 0 < σ <∞, f ∈ Lσ(λ) and by using
Chebychev’s inequality with τ > 0, we have

m{x : |f(x)| > τ} ≤

∫
|f(x)|>τ |f(x)|σdx

τσ
≤
‖f‖σLσ(G)

τσ
, (24)

then

m{x : |f(x)|−1 < 1

τ
} ≤
‖f‖σLσ(G)

τσ
, (25)

and by changing f(x) = 1
g(x) and ζ = 1

τ , we obtain

m{x : |g(x)| < ζ} ≤
‖g−1‖σLσ(λ)(

1
ζ

)σ =

∫
G g
−σ(x)dx

ζ−σ
. (26)

By taking −σ = r, we have

m{x : |g(x)| < ζ} ≤
∫
G g
−σ(x)dx

ζ−σ
=
‖g‖rLr(G)

ζr
. (27)

Then with r1 < 0, we have

m{x : |K1 ∗ u(x)| ≤ ζ} ≤ C
‖K1 ∗ u‖r1Lr1 (λ)

ζr1
≤ C θ

r1(Q−β1(Q−α))
β1

ζr1
. (28)
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Similarly, by using Theorem 5, we have

‖K2 ∗ u‖Lr2 (G) ≥

(∫
θ≤|x|

1

|x|β2(Q−α)
dx

) 1
p′ (∫

G

1

|x|β2(Q−α)
dx

) 1
r2

‖u‖Lp(G)

≥ CθQ−β2(Q−α), (29)

where 1
p + 1

β2
= 1

r2
+ 1, with β2 ≤ Q

Q−α , r2 < 0. Then,

m{x : K2 ∗ u(x) ≤ ζ} ≤ C θ
r2(Q−β2(Q−α))

β2

ζr2
. (30)

By choosing θ = ζ
p

αp−Q , 1
p + 1

βi
= 1 + 1

ri
, i = 1, 2, and by the assumption we compute

rip

pα−Q

(
Q

βi
+ α−Q

)
− ri =

rip

pα−Q

(
Qp− riQ+ αpri

pri

)
− ri

=
Qp− rid+ αpri

pα−Q
− ri =

Qp− riQ+ αpri − αpri +Qri
pα−Q

= − pQ

Q− αp
= −q, (31)

for i = 1, 2. By using this fact with θ = ζ
p

αp−Q , we get

m{x : |K ∗ u(x)| > 2ζ} ≤ m{x : |K1 ∗ u(x)| > ζ}+m{x : |K2 ∗ u(x)| > ζ}

≤ C

θ r1(Q−β1(Q−α))β1

ζr1
+
θ
r2(Q−β2(Q−α))

β2

ζr2

 =
C

ζq
. (32)

Finally, we have

m{x : IQ−αu ≤ ζ} ≤ C
(‖u‖Lp(G)

ζ

)q
, ζ > 0. (33)

By using Definition 1 and Proposition 1 we have reversed Hardy-Littlewood-Sobolev inequal-
ity.

The proof of Theorem 6 is complete. �
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Касымов А., Сураган Д. БIРТЕКТI ЛИ ТОПТАРЫНДАҒЫ ХАРДИ-ЛИТТЛВУД-
СОБОЛЕВ КЕРI ТЕҢСIЗДIГI

Бұл қысқа мақалада, бiз Харди-Литтлвуд-Соболев керi теңсiздiгiн бiртектi Ли топ-
тарында дәлелдедiк. Бұл теңсiздiктiң дәлелдеуi Янг керi теңсiздiгi мен Марцинкевичтiң
керi интерполяциялық теоремасына негiзделген.

Кiлттiк сөздер. Харди-Литтлвуд-Соболев теңсiздiгi, Харди-Литтлвуд-Соболев керi
теңсiздiгi, бөлшектiк интеграл, бiртектi Ли тобы.

Касымов А., Сураган Д. ОБРАТНОЕ НЕРАВЕНСТВО ХАРДИ-ЛИТТЛВУД-
СОБОЛЕВА НА ОДНОРОДНЫХ ГРУППАХ ЛИ

В этой короткой заметке, мы доказали обратное неравенство Харди-Литтлвуд-
Соболева на однородных группах Ли. Доказательство этого неравентсва было основано
на обратном неравенстве Янга и обратной интерполяционной теореме Марцинкевича.

Ключевые слова. Неравенство Харди-Литтлвуд-Соболева, обратное неравенство
Харди-Литтлвуд-Соболева, дробный интеграл, однородное группа Ли.
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Abstract. The inverse two-phase spherical Stefan problem for unknown boundary heat flux is solved

by the method of the heat polynomials. Side by side with obtaining an exact solution, two methods

for obtaining an approximate solution, collocation and variational methods, convenient for engineering

applications are presented and compared. It is shown that both methods give very good approximation

even for using only several points. However, the collocation method gives better result for the initial

stage of heating, while the variational method is more preferable for the large values of the Fourier

criterion. The approximation error estimate is obtained using the principle of maximum for the heat

equation. The application of the obtained results for the calculation of the electrical arc heat flux at

the contact opening is presented.

Keywords. Stefan problem, heat polynomials, heat flux, melting zone.

1 Introduction

The method of integral error functions and heat polynomials for solving heat equation
in a domain with free boundary enables one to obtain the solution in the form handy for
engineering application. The solution of the spherical Stefan problem with the boundary heat
flux condition using this method is considered in [1]. It was shown that a given boundary
function can be approximated by the linear combination of the system of the integral error
functions inerfc(x), n = 0, 1, 2, ..., and the first five terms of this combination are sufficient
to obtain the error less than 1%. It means according to the maximum principle for the heat
equation that the error of approximation of the final solution has the same error. Then this
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approach was successfully applied for solving different Stefan type problems. One of the most
important problems in the theory of phenomena in electrical contacts is determining the arc
heat flux entering into electrodes. The experimental measuring the dynamics of this flux is
very difficult, and sometimes the mathematical modeling only is capable to obtain required
information [2]. The mathematical model describing the process of the interaction of the
electrical arc with electrodes and the dynamics of their melting is based on the spherical
Stefan problem, and if we want to define the arc heat flux, the inverse spherical Stefan
problem should be considered [3].

2 Mathematical Model

The inverse Stefan problem consists in determining the arc heat flux P (t) and the tem-
perature distribution θ(r, t) in the molten contact hemisphere r0 < r < r + α(t), if α(t) is
given from the measurement. If the arc burning period is 0 ≤ t ≤ t0 and the final radius of
the molten zone at t = ta is ra, then the dynamics of the arc radius increasing at the melting
can be approximated by the formula

α(t) = r0 + α0

√
t α0 = (ra − r0)/

√
t0. (1)

The heat equation for the melting zone can be written in the form

∂θ

∂t
= a2

(
∂2θ

∂r2
+

2

r

∂θ

∂r

)
r0 < r < α(t), 0 < t < ta. (2)

The initial and boundary conditions are

θ
∣∣
t=0

= 0, (3)

−λ∂θ
∂r

∣∣∣∣
r=r0

= P (t) (4)

and on the interface of the phase transformation

θ(α(t), t) = θm, (5)

−λ∂θ
∂r

∣∣∣∣
r=α(t)

= Lγ
dα

dt
, (6)

where θm is the melting temperature, α, L, γ are coefficients of the heat conductivity, latent
heat of melting and density, respectively.

To simplify the calculation we can introduce the new dimensionless time t1 = t/ta, then
the time interval of arcing changes to 0 < t1 < 1. Thus we can take ta = 1 at once in (2).
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This problem for the spherical heat equation can be reduced to the ordinary one-
dimensional equation by the substitutions

θ =
u

r
, r − r0 = x, β(t) = α(t)− r0. (7)

Then the problem transforms to the form

∂u

∂t
= a2

∂2u

∂x2
, 0 < x < β(t), 0 < t < ta, (8)

θ
∣∣
t=0

= 0, (9)

−λ
[
r0
∂u

∂x
− u
] ∣∣∣∣

x=0

= r20P (t), (10)

u(β(t), t) = Um, (11)

−λ
[
β(t)

∂u

∂x
− u
] ∣∣∣∣

x=β(t)

= β2(t)Lγ
dβ

dt
. (12)

The solution of this problem can be represented in the form:

u(x, t) =

∞∑
n=0

Anv2n(x, t) +

∞∑
n=0

Bnv2n+1(x, t), (13)

where

v2n(x, t) =

n∑
k=0

(2n)!a2kx2n−2k

k!(2n− 2k)!
tk, v2n+1(x, t) =

n∑
k=0

(2n+ 1)!a2kx2n−2k+1

k!(2n− 2k + 1)!
tk, (14)

are heat polynomials satisfying (8) at arbitrary coefficients An, Bn, which should be chosen
to satisfy the boundary conditions. We represent the unknown heat flux in the form

P (t) =

l∑
k=0

Pkt
k. (15)

From the conditions (9), (10) we have the following system of equations for An, Bn:

m∑
n=0

An

n∑
k=0

(2n)!a2kα2n−2k
0

k!(2n− 2k)!
tn +

m∑
n=0

Bn

n∑
k=0

(2n+ 1)!a2kα2n−2k+1
0

k!(2n− 2k + 1)!
tn+

1
2 = Um, (16)

m∑
n=0

An

n∑
k=0

(2n)!a2kα2n−2k
0

k!(2n− 2k)!
tn +

m∑
n=0

Bn

n∑
k=0

(2n+ 1)!a2kα2n−2k+1
0

k!(2n− 2k + 1)!
tn+

1
2
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= − 1

λ
Lγα3

0

√
t

2
+ Um. (17)

To evaluate unknown coefficients we use two methods: variational and collocation.

3 Variational Method

Similarly, like in [4], we take m = 5, Um = 0 and the basic points t = ti = 2i
10 , i =

0, 1, 2, 3, 4, 5. To satisfy approximately the condition (16) we consider the functional:

J =

∫ 1

0

(
5∑

n=0

An

n∑
k=0

(2n)!a2kα2n−2k
0

k!(2n− 2k)!
tn +

5∑
n=0

Bn

n∑
k=0

(2n+ 1)!a2kα2n−2k+1
0

k!(2n− 2k + 1)!
tn+

1
2

)2

dt.

The minimum of this functional can be found from the equation

∂J

∂Am
= 2

∫ 1

0

(
5∑

n=0

Anv2n(β(t), t) +
5∑

n=0

Bnv2n+1(β(t), t)

)
v2m(β(t), t)dt = 0, m = 0, 5,

where

v2n(β(t), t) =
n∑
k=0

(2n)!a2kα2n−2k
0

k!(2n− 2k)!
tn, v2n+1(β(t), t) =

n∑
k=0

(2n+ 1)!a2kα2n−2k+1
0

k!(2n− 2k + 1)!
tn+

1
2 ,

5∑
n=0

AnCnm = −Dm, m = 0, 5, (18)

Cnm =

∫ 1

0
v2n(β(t), t)v2m(β(t), t)dt, Dm =

∫ 1

0

5∑
n=0

Bnv2n+1(β(t), t)v2m(β(t), t)dt, m = 0, 5.

Solving the system (18) with respect to An from (18) and substituting the result into the
expression (17) we get

J =

∫ 1

0

(
5∑

n=0

Bnw(n, t)− f(t)

)2

dt, (19)

where

w(k, t) =

5∑
m=0

Amv̄2k(m,β(t), t) + v̄2k+1(m,β(t), t),

v̄2k(m,β(t), t) =

k∑
n=0

(2k)!a2k(2k − 2m)α2k−2m
0

m!(2k − 2m)!
tk,
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v̄2k+1(m,β(t), t) =

k∑
n=0

(2k + 1)!a2k(2k − 2m+ 1)α2k−2m+1
0

m!(2k − 2m+ 1)!
tk+

1
2 ,

f(t) =
1

λ
Lγα3

0

√
t

2
.

From the condition of maximum of (19) we have

∂J

∂Bm
= 2

∫ 1

0

(
5∑

n=0

Bnw(n, t)− f(t)

)
w(m, t)dt = 0, m = 0, 5, (20)

5∑
k=0

EkmBm = Fm, m = 0, 5, (21)

where

Ekm =

∫ 1

0
w(k, t)w(m, t)dt, Fm =

∫ 1

0
f(t)w(m, t)dt, m = 0, 1, ..., k.

From the expression (21) we get the following results:

B0 = −0.784; B1 = −0.062; B2 = 0.046 B3 = −9.712× 10−3;

B4 = 6.788× 10−4; B5 = −1.391× 10−5.

Similarly, from the expression (16) we obtain:

A0 = 0.058; A1 = 0.904; A2 = −0.389; A3 = 0.071;

A4 = −4.716× 10−3; A5 = 9.516× 10−5.

Now we should define the coefficients for the heat flux in the expression (15). The corre-
sponding variational functional for the condition (10) is

J =

∫ 1

0

(
5∑

m=0

Pmt
n + g(t)

)2

dt, (22)

where

g(t) = − λ
r20

[
5∑

m=0

Am
(
v′2m(r0, t)− v2m(r0, t)

)
+

5∑
m=0

Bm(v′2n+1(r0, t)− v2m+1(r0, t))

]
,

v′2m(r0, t) =

m∑
k=0

(2m)!a2kr2m−2k0

k!(2m− 2k)!
tk,
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v′2m+1(r0, t) =
n∑
k=0

(2m+ 1)!a2kr2m−2k+1
0

k!(2m− 2k + 1)!
tk,

v2m(r0, t) =
m∑
k=0

(2m)!a2kr2m−2k0

k!(2m− 2k)!
tk, v2m+1(r0, t) =

m∑
k=0

(2m+ 1)!a2kr2m−2k+1
0

k!(2m− 2k + 1)!
tk.

The minimum of (22) gives the equation

∂J

∂Pm
= 2

∫ 1

0

(
5∑

n=0

Pnt
n + g(t)

)
tmdt = 0,

5∑
n=0

PnGnm = −Hm, m = 0, 5, (23)

where

Gnm =

∫ 1

0
tn+mdt, Hm =

∫ 1

0
g(t)tmdt, m = 0, 5.

From the expression (23) we have the following results:

P0 = −0.009; P1 = 0.085; P2 = −2.38; P3 = 6.572;

P4 = −7.406; P5 = 2.872.

The results of testing for a = 1, α0 = 1, r0 = 1, L = 1, γ = 1, Um = 1 depict in Fig. 1 the
approximated function

V (t) = − λ
r20

[
5∑

n=0

An
(
v′2n(r0, t)− v2n(r0, t)

)
+

5∑
n=0

Bn(v′2n+1(r0, t)− v2n+1(r0, t))

]

and the exact solution

P (t) =
5∑

n=0

Pnt
n, (23)

which can be obtained by solving the direct Stefan problem [5], [6], [7], [8].
One can see the ideal coincidence of the exact and approximated solutions.

4 Collocation Method

Let us take for testing m = 5 the basic points t = ti = 2i
10 , i = 0, 1, 2, 3, 4, 5, a = 1, α0 =

1, r0 = 1, L = 1, γ = 1, Um = 0. Then we get the following values for An and Bn:

A1 = 0.878; A2 = −0.051; A3 = −0.069;
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Figure 1 – Approximated and the exact heat fluxes

A4 = 9.957× 10−3; A5 = −3.073× 10−4,

B1 = −1.448; B2 = −0.514; B3 = −0.05,

B4 = −1.041× 10−3; B5 = 1.383× 10−5.

From the condition (10) we have the following results:

P1 = 1.212; P2 = −6.219; P3 = 18.288;

P4 = −21.378; P5 = 8.597.

The Fig. 2 depicts the approximate function

V (t) = − λ
r20

[
5∑

n=1

An
(
v′2n(r0, t)− v2n(r0, t)

)
+

5∑
n=1

Bn(v′2n+1(r0, t)− v2n+1(r0, t))

]

and the original function P (t) =
∑5

n=0 Pnt
n taking for the corresponding direct Stefan prob-

lem.
The greatest error of approximation is in the neighborhood of zero and one. The error of

approximation is approximately 2%.

5 Experimental Verification

Let us compare the results of approximation with the exact solution and experimental
data presented in [9]. The contact material is AgCdO, the initial radius of the arc spot on
the contact surface r0 = 10−4m , the current I = 1.5kA , the voltage U = 42V , the arc
duration ta = 12µs. Then we have the coefficients of the original function

P1 = 1.755× 108; P2 = −6.17× 107; P3 = −8.254× 108;
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Figure 2 – Approximated V (t) and the exact P (t) heat fluxes

P4 = −1.673× 109 P5 = −9.292× 108.

Fig. 3 shows that the approximation and the original functions are identical everywhere
without errors.

Figure 3 – The domain Ωx,t in the case II
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Харин С.Н., Наурыз Т., Джаббарханов Х. ЕКI ФАЗАЛЫҚ СФЕРАЛЫҚ СТЕФАН
ЕСЕБIН ЖЫЛУЛЫҚ ПОЛИНОМДАРДЫ ПАЙДАЛАНА ОТЫРЫП ШЕШУ

Белгiсiз шекаралық жылу ағыны үшiн керi екi фазалық сфералық Стефан есебi жы-
лулық полиномдар әдiсiмен шешiледi. Нақты шешiммен қоса, жуықтап шешудiң инже-
нерлiк есептер үшiн қолайлы болатын екi әдiсi – вариациялық әдiс пен коллокациялық
әдiс, ұсынылған және салыстырылған. Екi әдiсте, бар болғаны тек бiрнеше нүктелердi ға-
на пайдаланғанның өзiнде өте жақсы жақындатуды көрсетедi. Дегенмен, коллокациялық
әдiс жылудың бастапқы сатысында жақсы нәтиже берсе, вариациялық әдiс Фурье кри-
терийiнiң үлкен мәндерi үшiн қолайлырақ болып отыр. Жылу өткiзгiштiк теңдеуi үшiн
аппроксимация қателiгiнiң бағалауы максимум қағидатын пайдалану арқылы алынған.
Алынған нәтижелердiң контактiни ажырату кезiндегi электр доғасының жылу ағынын
есептеуге қолданысы ұсынылды.

Кiлттiк сөздер. Стефан есебi, жылулық полиномдар, жылу ағыны, балқу аймағы.
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Харин С.Н., Наурыз Т., Джаббарханов Х. РЕШЕНИЕ ДВУХФАЗНОЙ СФЕРИЧЕ-
СКОЙ ЗАДАЧИ СТЕФАНА С ИСПОЛЬЗОВАНИЕМ ТЕПЛОВЫХ ПОЛИНОМОВ

Обратная двухфазная сферическая задача Стефана для неизвестного граничного
теплового потока решается методом тепловых полиномов. Наряду с точным решени-
ем представлены и сопоставлены два метода приближенного решения - коллокационный
и вариационный, удобные для инженерных задач. Показано, что оба метода дают очень
хорошее приближение даже для использования только нескольких точек. Однако метод
коллокации дает лучший результат для начальной стадии нагрева, тогда как вариа-
ционный метод более предпочтителен для больших значений критерия Фурье. Оценка
погрешности аппроксимации получена с использованием принципа максимума для урав-
нения теплопроводности. Представлено применение полученных результатов для расчета
теплового потока электрической дуги при размыкании контакта.

Ключевые слова. Задача Стефана, тепловые полиномы, тепловой поток, зона плав-
ление.
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Abstract. Fredholm integro-differential equation with nonlinear differential part and linear integral

term with degenerate kernel is considered on a finite interval. The interval is divided into N parts

and the values of a solution to the nonlinear integro-differential equation at the left-end points of

subintervals are introduced as additional parameters. The desired function is replaced by the sums

of new unknown functions and additional parameters in the corresponding subintervals. The original

integro-differential equation is reduced to the special Cauchy problem for the system of nonlinear integro-

differential equations with parameters. The special Cauchy problem as the Cauchy problem for Fredholm

integro-differential equations is not always solvable. Therefore, the questions of the existence of a

solution to the special Cauchy problem at the fixed values of parameters are studied. To this end Arzela’s

theorem on compactness of a set of continuous functions on closed intervals is used. Conditions for the

existence of a solution to the special Cauchy problem are established.

Keywords. Nonlinear Fredholm integro-differential equation, special Cauchy problem, parametrization’s

method, iterative method, compact set.

In [1]–[4] parametrization method is applied to study and solve the linear Fredholm
integro-differential equations and boundary value problems for them. The interval is di-
vided into N parts, values of desired function at the beginning points of subintervals are
considered as additional parameters and the original integro-differential equation is reduced
to a system of integro-differential equations with parameters, where unknown functions sat-
isfy the initial conditions on the subintervals. At the fixed values of the parameters we get the
special Cauchy problem for the system of linear integro-differential equations. The solutions
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to the special Cauchy problem are used in solving boundary value problems for the Fredholm
integro-differential equations.

In the present paper, it is considered the nonlinear Fredholm integro-differential equation

dx

dt
= f(t, x) +

m∑
k=1

ϕk(t)

∫ T

0
ψk(τ)x(τ)dτ, t ∈ [0, T ], x ∈ Rn, (1)

where (n× n)-matrices ϕk(t), ψk(τ), k = 1,m, are continuous on [0, T ], f : [0, T ]×Rn → Rn

is continuous; ‖x‖ = max
i=1,n

|xi|.

Denote by C
(
[0, T ], Rn

)
the space of continuous functions x : [0, T ]→ Rn with the norm

‖x‖1 = max
t∈[0,T ]

‖x(t)‖. A solution to Eq.(1) is a continuously differentiable on (0, T ) function

x(t) ∈ C
(
[0, T ], Rn

)
, which satisfies the equation for any t ∈ [0, T ].

Let ∆N be a partition of the interval [0, T ) into N parts: [0, T ) =
N⋃
r=1

[tr−1, tr), and xr(t)

be the restriction of the function x(t) to the r-th interval, i.e. xr(t) = x(t), t ∈ [tr−1, tr),
r = 1, N.

We consider the value of functions xr(t) at the beginning points of the subintervals as
additional parameters, and make the substitution ur(t) = xr(t) − λr, r = 1, N, on each
r-th interval. Then system (1) is reduced to the special Cauchy problem for the system of
nonlinear integro-differential equations with parameters

dur
dt

= f(t, ur + λr) +

m∑
k=1

ϕk(t)

N∑
j=1

∫ tj

tj−1

ψk(τ)[uj(τ) + λj ]dτ, t ∈ [tr−1, tr), (2)

ur(tr−1) = 0, r = 1, N. (3)

In [6], sufficient conditions for the existence of a unique solution to the special Cauchy
problem for nonlinear Fredholm integro-differential equations are obtained. An algorithm for
finding a solution to the special Cauchy problem for nonlinear integro-differential equations
and a numerical implementation of the proposed algorithm are developed in [7]. Note that
in these papers it is required that the lengths of subintervals be small.

The purpose of this paper is to establish conditions for the existence of a solution to the
special Cauchy problem (2), (3) for any partition of the interval [0, T ].

Let C
(
[0, T ],∆N , R

nN
)

denote the space of function systems u[t] =(
u1(t), u2(t), . . . , uN (t)

)
, where ur : [tr−1, tr) → Rn is continuous and has the finite

left-sided limit lim
t→tr−0

ur(t) for any r = 1, N, with the norm
∥∥u[·]

∥∥
2

= max
r=1,N

sup
t∈[tr−1,tr)

‖ur(t)‖.

The solution to the special Cauchy problem (2), (3) at the fixed λ = λ∗ =(
λ∗1, λ

∗
2, . . . , λ

∗
N

)
∈ RnN is a function system u[t, λ∗] =

(
u1(t, λ

∗), u2(t, λ
∗), . . . , uN (t, λ∗)) ∈
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C
(
[0, T ],∆N , R

nN
)
, whose components ur(t, λ

∗), r = 1, N , are continuously differentiable on
their domains and satisfy the system of integro-differential equations (2) with λ = λ∗ and
initial conditions (3).

We choose a vector λ(0) =
(
λ
(0)
1 , λ

(0)
2 , . . . , λ

(0)
N

)
∈ RnN and define a piecewise constant

vector function x0(t) on [0, T ] by the equalities x0(t) = λ
(0)
r , t ∈ [tr−1, tr), r = 1, N, x0(T ) =

λ
(0)
N .

Let ρλ > 0, and

S
(
λ(0), ρλ

)
=
{
λ = (λ1, λ2, . . . , λN ) ∈ RnN : ‖λr − λ(0)r ‖ < ρλ, r = 1, N

}
,

G0(ρ) =
{

(t, x) : t ∈ [0, T ], ‖x− x0(t)‖ < ρ
}
.

To solve the boundary value problem we need the values of lim
t→tr−0

ur(t), r = 1, N. So, we

consider the special Cauchy problem for the system of nonlinear integro-differential equations
with parameters on closed subintervals

dvr
dt

= f(t, vr + λr) +
m∑
k=1

ϕk(t)
N∑
j=1

∫ tj

tj−1

ψk(τ)[vj(τ) + λj ]dτ, t ∈ [tr−1, tr], (4)

vr(tr−1) = 0, r = 1, N. (5)

Denote by C̃
(
[0, T ],∆N , R

nN
)

the space of function systems v[t] =(
v1(t), v2(t), . . . , vN (t)

)
, where vr : [tr−1, tr] → Rn is continuous for all r = 1, N, with

the norm
∥∥v[·]

∥∥
3

= max
r=1,N

max
t∈[tr−1,tr]

‖vr(t)‖.

It is obvious that if the function systems u[t, λ] =
(
u1(t, λ), u2(t, λ), . . . , uN (t, λ)

)
, and

v[t, λ] =
(
v1(t, λ), v2(t, λ), . . . , vN (t, λ)

)
, are solutions to problems (2), (3) and (4), (5), re-

spectively, then
ur(t, λ) = vr(t, λ), t ∈ [tr−1, tr),

lim
t→tr−0

ur(t, λ) = vr(tr, λ), r = 1, N.

For fixed parameter λ̂ ∈ S
(
λ(0), ρλ

)
, we get

dvr
dt

= f(t, vr + λ̂r) +
m∑
k=1

ϕk(t)
N∑
j=1

∫ tj

tj−1

ψk(τ)
[
vj(τ) + λ̂j

]
dτ, t ∈ [tr−1, tr], (6)

vr(tr−1) = 0, r = 1, N. (7)

Let ρv > 0 and

S
(
0, ρv

)
=
{
v[t] = (v1(t), v2(t), . . . , vN (t)) ∈ C̃

(
[0, T ],∆N , R

nN
)

: ‖v[·]‖3 < ρv
}
.
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We solve problem (6), (7) by the iterative method. We take v(0)[t] = (0, 0, . . . , 0) as
an initial approximation for the solution to problem (6), (7) and successive approximations
determined by the solutions to the special Cauchy problems for the system of linear integro-
differential equations

dvr
dt

= F (t, v(ν−1)r (t), λ̂) +
m∑
k=1

ϕk(t)
N∑
j=1

∫ tj

tj−1

ψk(τ)vj(τ)dτ, t ∈ [tr−1, tr], (8)

vr(tr−1) = 0, r = 1, N, (9)

where

F (t, v(ν−1)r (t), λ̂) = f(t, v(ν−1)r (t) + λ̂r) +

m∑
k=1

ϕk(t)

N∑
j=1

∫ tj

tj−1

ψk(τ)dτλ̂j ,

t ∈ [tr−1, tr], r = 1, N, ν = 1, 2, ... . (10)

By v̂(ν)[t] =
(
v̂
(ν)
1 (t), v̂

(ν)
2 (t), . . . , v̂

(ν)
N (t)

)
we denote the solution to the special Cauchy

problem (8), (9).
Let C

(
[tr−1, tr], R

n
)

be the space of continuous functions vr : [tr−1, tr] → Rn with the
norm ‖vr‖ = max

t∈[tr−1,tr]
‖vr(t)‖, r = 1, N.

For the fixed function system v(ν−1)[t] =
(
v
(ν−1)
1 (t), v

(ν−1)
2 (t), . . . , v

(ν−1)
N (t)

)
∈

C̃
(
[0, T ],∆N , R

nN
)
, ν = 1, 2, . . . , problem (8), (9) turns into the special Cauchy problem

for the system of linear integro-differential equations

dwr
dt

= Fr(t, λ̂) +
m∑
k=1

ϕk(t)
N∑
j=1

∫ tj

tj−1

(τ)wj(τ)τ, t ∈ [tr−1, tr], (11)

wr(tr−1) = 0, r = 1, N, (12)

with Fr(t, λ̂) ∈ C
(
[tr−1, tr], R

n
)
.

We find the solution to the special Cauchy problem for the system of linear integro-
differential equations (11), (12) by the method proposed in [3, p. 345-346].

Since the fundamental matrix of the differential part is the identity matrix of the dimen-
sion n, the special Cauchy problem (11), (12) is equivalent to the system of integral equations
of the second kind

wr(t) =

∫ t

tr−1

Fr(τ, λ̂)dτ +

∫ t

tr−1

m∑
k=1

ϕk(τ)

N∑
j=1

∫ tj

tj−1

ψk(s)wj(s)dsdτ,

t ∈ [tr−1, tr], r = 1, N. (13)
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Set

ξk =
N∑
j=1

∫ tj

tj−1

ψk(s)wj(s)ds, k = 1,m,

and rewrite system (13) in the next form

wr(t) =

∫ t

tr−1

Fr(τ, λ̂)dτ +

∫ t

tr−1

m∑
k=1

ϕk(τ)dτξk, t ∈ [tr−1, tr], r = 1, N. (14)

Multiplying both sides of (14) by ψp(t), integrating on [tr−1, tr] and summing up over r,
we get the system of linear algebraic equations with respect to ξ = (ξ1, ξ2, . . . , ξm) ∈ Rnm

ξp =

m∑
k=1

Gp,k(∆N )ξk + gp(∆N ,F), p = 1,m, (15)

with (n× n)-matrices

Gp,k(∆N ) =
N∑
r=1

∫ tr

tr−1

ψp(τ)

∫ τ

tr−1

ϕk(s)dsdτ, p, k = 1,m,

and vectors of the dimension n

gp(∆N ,F) =

N∑
r=1

∫ tr

tr−1

ψp(τ)

∫ τ

tr−1

Fr(s, λ̂)dsdτ, p = 1,m. (16)

Using the matrices Gp,k
(
∆N

)
and the vectors gp

(
∆N ,Fr

)
, we construct the (nm ×

nm)-matrix G(∆N ) =
(
Gp,k(∆N )

)
, p, k = 1,m, and the vector g

(
∆N ,F

)
=(

g1(∆N ,F), g2(∆N ,F), . . . , gm(∆N ,F)
)
. We can rewrite system (15) in the form

[I −G(∆N )]ξ = g(∆N ,F), (17)

where I is the identity matrix of the dimension nm.
Assume that ∆N is a regular partition [2]. Then the matrix I −G(∆N ) is invertible and

its inverse we write in the form [I − G(∆N )]−1 =
(
Rk,p(∆N )

)
, k, p = 1,m, where Rk,p(∆N )

are square matrices of the dimension n. Now, a unique solution to Eq.(17) is determined by
the equalities

ξk =
m∑
p=1

Rk,p(∆N )gp(∆N ,F), k = 1,m. (18)

Let us introduce the following notation:

h = max
r=1,N

(tr − tr−1), (19)
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ϕk = max
r=1,N

max
t∈[tr−1,tr]

‖ϕk(t)‖, ψk = max
r=1,N

max
t∈[tr−1,tr]

‖ψk(t)‖, k = 1,m. (20)

Substituting the right-hand side of (18) for ξk in (14), we get the functions

wr(t, λ̂) =

∫ t

tr−1

m∑
k=1

ϕk(τ)
m∑
p=1

Rk,p(∆N )gp(∆N ,F)dτ

+

∫ t

tr−1

Fr(τ, λ̂)dτ, t ∈ [tr−1, tr], r = 1, N.

The function system

w[t, λ̂] =
(
w1(t, λ̂), w2(t, λ̂), . . . , wN (t, λ̂)

)
is a unique solution to the special Cauchy problem for the system of linear integro-differential
equations (11), (12) and the following estimate∥∥∥w[·, λ̂]

∥∥∥
3
≤ χ max

r=1,N
max

t∈[tr−1,tr]

∥∥∥Fr(t, λ̂)
∥∥∥ (21)

holds, where

χ =

[
1 +

Nh
2

2
max
p=1,m

ψp

m∑
k=1

m∑
p=1

max
t∈[tr−1,tr]

∥∥∥ϕk(t)∥∥∥∥∥∥Rk,p(∆N )
∥∥∥]h.

Theorem 1. Let the matrix I−G(∆N ) be invertible and the following conditions be fulfilled:

1) ‖f(t, x)‖ ≤M0, (t, x) ∈ G0(ρ), M0 is const;

2)

N∑
j=1

m∑
k=1

∥∥∥ϕk(t)∥∥∥
∥∥∥∥∥
∫ tj

tj−1

ψk(s)ds

∥∥∥∥∥ ≤M1, t ∈ [0, T ], M1 is const;

3) χ ·
(
M0 +M1 ·

(
ρλ +

∥∥λ(0)∥∥)) < ρv;

4) ρλ + ρv ≤ ρ.

Then, for any λ̂ ∈ S(λ(0), ρλ), the special Cauchy problem for the system of nonlin-
ear integro-differential equations (6), (7) has a solution v

[
t, λ̂
]

=
(
v̂∗1(t), v̂∗2(t), . . . , v̂∗N (t)

)
∈

S(0, ρv).

Proof. By using the iterative method proposed above, we find the sequence of function
systems

{
v̂(ν)[t]

}
, where

v̂(ν)[t] =
(
v̂
(ν)
1 (t), v̂

(ν)
2 (t), . . . , v̂

(ν)
N (t)

)
.
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It is easily seen that the functions v̂
(ν)
r (t) belong to C

(
[tr−1, tr], R

n
)
, ν = 1, 2, ... .

Using the elements of the function system v̂(ν)[t] at the fixed value of r we compose the
functional sequences{

v̂(ν)r (t)
}
, t ∈ [tr−1, tr], r = 1, N, ν = 1, 2, ... .

Consider the set Vr of the functions v̂
(ν)
r (t).

Formula (16) implies the following estimates

‖gp(∆N , F )‖ =

∥∥∥∥∥
N∑
r=1

∫ tr

tr−1

ψp(τ)

∫ τ

tr−1

F (s, v̂(ν−1)r (s), λ̂)dsdτ

∥∥∥∥∥
≤

N∑
r=1

∥∥∥∥∥
∫ tr

tr−1

ψp(τ)

∫ τ

tr−1

F (s, v̂(ν−1)r (s), λ̂)dsdτ

∥∥∥∥∥
≤

N∑
r=1

∫ tr

tr−1

∥∥∥∥∥ψp(τ)

∫ τ

tr−1

F (s, v̂(ν−1)r (s), λ̂)ds

∥∥∥∥∥dτ
≤

N∑
r=1

max
τ∈[tr−1,tr]

∥∥∥F (τ, v̂(ν−1)r (τ), λ̂)
∥∥∥∫ tr

tr−1

∥∥ψp(τ)
∥∥(τ − tr−1)dτ

≤ ψp max
r=1,N

max
τ∈[tr−1,tr]

∥∥∥F (τ, v̂(ν−1)r (τ), λ̂)
∥∥∥ N∑
r=1

(tr − tr−1)2

2
, p = 1,m. (22)

From (10), taking into account (20), we get

∥∥∥F (t, v̂(ν−1)r (t), λ̂)
∥∥∥ =

∥∥∥∥∥f(t, v̂(ν−1)r (t) + λ̂r) +
m∑
k=1

ϕk(t)
N∑
j=1

∫ tj

tj−1

ψk(τ)dτλ̂j

∥∥∥∥∥
≤
∥∥∥f(t, v̂(ν−1)r (t) + λ̂r)

∥∥∥+

∥∥∥∥∥
m∑
k=1

ϕk(t)
N∑
j=1

∫ tj

tj−1

ψk(τ)dτλ̂j

∥∥∥∥∥
≤
∥∥∥f(t, v̂(ν−1)r (t) + λ̂r)

∥∥∥+

∥∥∥∥∥
m∑
k=1

N∑
j=1

ϕk(t)

∫ tj

tj−1

ψk(τ)dτλ̂j

∥∥∥∥∥
≤
∥∥∥f(t, v̂(ν−1)r (t) + λ̂r)

∥∥∥+

N∑
j=1

m∑
k=1

∥∥∥ϕk(t)∥∥∥
∥∥∥∥∥
∫ tj

tj−1

ψk(τ)dτ

∥∥∥∥∥∥∥∥λ̂j∥∥∥
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≤
∥∥∥f(t, v̂(ν−1)r (t) + λ̂r)

∥∥∥+
N∑
j=1

m∑
k=1

∥∥∥ϕk(t)∥∥∥
∥∥∥∥∥
∫ tj

tj−1

ψk(τ)dτ

∥∥∥∥∥∥∥λ̂∥∥,
max
r=1,N

max
τ∈[tr−1,tr]

∥∥∥F (τ, v̂(ν−1)r (τ), λ̂)
∥∥∥ ≤ max

r=1,N
max

τ∈[tr−1,tr]

{∥∥∥f(t, v̂(ν−1)r (t) + λ̂r)
∥∥∥

+

N∑
j=1

m∑
k=1

∥∥∥ϕk(t)∥∥∥
∥∥∥∥∥
∫ tj

tj−1

ψk(τ)dτ

∥∥∥∥∥(∥∥λ̂− λ(0)∥∥+
∥∥λ(0)∥∥)}

≤ max
r=1,N

max
τ∈[tr−1,tr]

{∥∥∥f(t, v̂(ν−1)r (t) + λ̂r)
∥∥∥

+
N∑
j=1

m∑
k=1

∥∥∥ϕk(t)∥∥∥
∥∥∥∥∥
∫ tj

tj−1

ψk(τ)dτ

∥∥∥∥∥(ρλ +
∥∥λ(0)∥∥)}

≤M0 +M1 ·
(
ρλ +

∥∥λ(0)∥∥). (23)

By virtue of conditions of Theorem 1, estimates (22), (23) and notation (19), (20) we
have∥∥∥v(ν)r (t, λ̂)

∥∥∥ =

∥∥∥∥∥
∫ t

tr−1

m∑
k=1

ϕk(τ)

m∑
p=1

Rk,p(∆N )gp(∆N , F )dτ +

∫ t

tr−1

F (τ, v̂(ν−1)r (τ), λ̂)dτ

∥∥∥∥∥
≤

∥∥∥∥∥
∫ t

tr−1

m∑
k=1

ϕk(τ)

m∑
p=1

Rk,p(∆N )gp(∆N , F )dτ

∥∥∥∥∥+

∥∥∥∥∥
∫ t

tr−1

F (τ, v̂(ν−1)r (τ), λ̂)dτ

∥∥∥∥∥
≤
∫ t

tr−1

∥∥∥∥∥
m∑
k=1

ϕk(τ)

m∑
p=1

Rk,p(∆N )gp(∆N , F )

∥∥∥∥∥dτ +

∫ t

tr−1

∥∥∥F (τ, v̂(ν−1)r (τ), λ̂)
∥∥∥dτ

≤
∫ t

tr−1

m∑
p=1

m∑
k=1

∥∥∥ϕk(τ)Rk,p(∆N )
∥∥∥∥∥∥gp(∆N , F )

∥∥∥dτ +

∫ t

tr−1

∥∥∥F (τ, v̂(ν−1)r (τ), λ̂)
∥∥∥dτ

≤
∫ t

tr−1

m∑
p=1

m∑
k=1

∥∥∥ϕk(τ)Rk,p(∆N )
∥∥∥dτ · max

p=1,m

∥∥gp(∆N , F )
∥∥

+

∫ t

tr−1

∥∥∥F (τ, v̂(ν−1)r (τ), λ̂)
∥∥∥dτ ≤ ∫ t

tr−1

m∑
p=1

m∑
k=1

∥∥∥ϕk(τ)
∥∥∥∥∥∥Rk,p(∆N )

∥∥∥dτ
× max
p=1,m

ψp

N∑
r=1

(tr − tr−1)2

2
max
r=1,N

max
τ∈[tr−1,tr]

∥∥∥F (τ, v̂(ν−1)r (τ), λ̂)
∥∥∥
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+

∫ t

tr−1

∥∥∥F (τ, v̂(ν−1)r (τ), λ̂)
∥∥∥dτ ≤ cr, t ∈ [tr−1, tr], r = 1, N, (24)

where

cr =

[
1 +

Nh
2

2
max
p=1,m

ψp

m∑
p=1

m∑
k=1

max
t∈[tr−1,tr]

∥∥∥ϕk(t)∥∥∥∥∥∥Rk,p(∆N )
∥∥∥]

×h
[
M0 +M1 ·

(
ρλ +

∥∥λ(0)∥∥)].
Since the inequality

∥∥∥v̂(ν)r (t)
∥∥∥ ≤ cr holds for all t ∈ [tr−1, tr], the functions from the set

Vr are uniformly bounded on [tr−1, tr], r = 1, N.
Now we take the points t′r, t

′′
r ∈ [tr−1, tr], r = 1, N. If |t′r − t′′r | < δr, r = 1, N, then by

virtue of (21) and inequality (24) we have the inequality∥∥∥v̂(ν)r (t′′r)− v̂(ν)r (t′r)
∥∥∥ =

∥∥∥∥∥
∫ t′′r

t′r

F (τ, v̂(ν−1)r (τ), λ̂)dτ

+

∫ t′′r

t′r

m∑
k=1

ϕk(τ)
m∑
p=1

Rk,p(∆N )gp(∆N , F )dτ

∥∥∥∥∥ ≤ εr,
for all v̂

(ν)
r (t) on [tr−1, tr], where

εr = max
t∈[tr−1,tr]

[
1 +

Nh
2

2
max
p=1,m

ψp

m∑
k=1

m∑
p=1

max
t∈[tr−1,tr]

∥∥∥ϕk(t)∥∥∥∥∥∥Rk,p(∆N )
∥∥∥]

×
[
M0 +M1 ·

(
ρλ +

∥∥λ(0)∥∥)]|t′′r − t′r|, r = 1, N, ν = 1, 2, ... .

It follows that the functions from the set Vr, r = 1, N, are equicontinuous. By Arzela’s
theorem [5, p. 207], each set Vr, r = 1, N, is compact.

Since the set Vr is compact for each r = 1, N, we can select the subsequence v̂
(νl)
r (t),

which is uniformly convergent to v̂∗r (t) as l→∞ on [tr−1, tr] for all r = 1, N.
We construct the function system

v̂∗
[
t
]

=
(
v̂∗1(t), v̂∗2(t), . . . , v̂∗N (t)

)
.

Now let us show that the function system v̂∗
[
t
]

is a solution to the special Cauchy problem
(6), (7).

Since the functions v̂
(νl)
r (t) are defined by using proposed iterative method, the following

equality

v̂(νl)r (t) =

∫ t

tr−1

F (τ, v̂
(νl−1)
r (τ), λ̂)dτ +

∫ t

tr−1

m∑
k=1

ϕk(τ)

N∑
j=1

∫ tj

tj−1

ψk(s)v̂
(νl)
j (s)dsdτ,

Kazakh Mathematical Journal, 19:1 (2019) 69–81



78 Sandugash T. Mynbayeva

t ∈ [tr−1, tr], r = 1, N, (25)

is true.
In (25), passing to the limit as l→∞, we get

v̂∗r (t) =

∫ t

tr−1

F (τ, v̂∗r (τ), λ̂)dτ +

∫ t

tr−1

m∑
k=1

ϕk(τ)

N∑
j=1

∫ tj

tj−1

ψk(s)v̂
∗)
j (s)dsdτ,

t ∈ [tr−1, tr], r = 1, N. (26)

It is easily seen that v̂∗r (tr−1) = 0, r = 1, N. Differentiating both sides of (26), we obtain

dv̂∗r (t)

dt
= F (t, v̂∗r (t), λ̂) +

m∑
k=1

ϕk(t)

N∑
j=1

∫ tj

tj−1

ψk(s)v̂
∗)
j (s)ds,

t ∈ [tr−1, tr], r = 1, N.

Thus, the function system v[t, λ̂] = (v̂∗1(t), v̂∗2(t), . . . , v̂∗N (t)) is a solution to the special
Cauchy problem (6), (7). Theorem is proved.

Example. Consider the nonlinear Fredholm integro-differential equation

dx

dt
= ϕ(t)

∫ T

0
ψ(τ)x(τ)dτ + f(t, x), t ∈ [0, T ], x ∈ R2,

where T = 2, ϕ(t) =

( √
t −t

0 t
3

)
, ψ(τ) =

(
1 τ

2

τ 0

)
,

f(t, x) =

( √
t sinx1 + cos3x2 + 23t

12
−
√
t sin(t2 − 2)− 15

√
t

8
− cos3(t + 1)

t cos3x1 + 3
√
t sinx2 + t

36
− t cos(3t2 − 6)− 3

√
t sin(t + 1) + 1

)
, t ∈ [0, 1],

f(t, x) =

( √
t sinx1 + cos3x2 − t

12
−
√
t sin(2− t)− 15

√
t

8
− cos3(t2 + 1)

t cos3x1 + 3
√
t sinx2 + 73t

36
− t cos(6− 3t)− 3

√
t sin(t2 + 1)

)
, t ∈ [1, 2].

Let us divide the interval [0, T ) into two equal parts and by ∆2 denote the partition with
the points t0 = 0, t1 = 1, t2 = 2. Introducing parameters λ1 = x(0), λ2 = x(1) and making
the substitutions

v1(t) = x(t)− x(0), t ∈ [0, 1], v2(t) = x(t)− x(1), t ∈ [1, 2],

we obtain the special Cauchy problem

dvr
dt

= ϕ(t)

2∑
j=1

∫ tj

tj−1

ψ(τ)[vj(τ) + λj ]dτ + f(t, vr + λr), t ∈ [tr−1, tr], (27)
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vr(tr−1) = 0, r = 1, 2. (28)

Assume that ρλ = 10 and λ(0) =
(
(1, 0), (0,−1)

)
.

By the equalities x0(t) = λ
(0)
1 , t ∈ [0, 1], x0(t) = λ

(0)
2 , t ∈ [1, 2], we define a piecewise

constant function x0(t) on [0, 2]. Then we set G0(ρ) = {(t, x) : t ∈ [0, 2], ‖x− x0(t)‖ < ρ, ρ =
583}.

Since
‖f(t, x)‖ ≤ 11.4, (t, x) ∈ G0(ρ),∥∥∥∥∥ϕ(t)

2∑
j=1

∫ tj

tj−1

ψ(s)ds

∥∥∥∥∥(ρλ +
∥∥λ(0)∥∥) ≤ 90.7,

and χ ≤ 5.7, conditions of Theorem 1 are satisfied.
Therefore, the special Cauchy problem (27), (28) has a solution v[t, λ̂] belonging to

S(0, ρu), ρu = 572 for any λ̂ ∈ S(λ(0), ρλ), ρλ = 10. If we take, for example, λ̂ =(
(−2, 1), (1, 2)

)
∈ S(λ(0), ρλ), then at the fixed value of parameters the special Cauchy

problem (27), (28) has the solution v[t, λ̂] = (v̂1(t), v̂2(t)) ∈ S(0, ρu) and v̂1(t) =

(
t2

t

)
,

v̂2(t) =

(
1− t
t2 − 1

)
.
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Мынбаева С.Т. СЫЗЫҚТЫ ЕМЕС ФРЕДГОЛЬМ ИНТЕГРАЛДЫҚ-
ДИФФЕРЕНЦИАЛДЫҚ ТЕҢДЕУЛЕР ЖҮЙЕСI ҮШIН АРНАЙЫ КОШИ ЕСЕБIНIҢ
ШЕШIМIНIҢ БАР БОЛУЫ

Ақырлы аралықта дифференциалдық бөлiгi сызықты емес және интегралдық бөлi-
гi сызықты болатын ерекшеленген ядролы Фредгольм интегралдық-дифференциалдық
теңдеуi қарастырылады. Аралық N бөлiкке бөлiнедi және сызықты емес интегралдық-
дифференциалдық теңдеудiң шешiмiнiң iшкi аралықтардың сол жақ шеткi нүктелерiн-
дегi мәндерi қосымша параметрлер ретiнде енгiзiледi. Iзделiндi функция сәйкес аралы-
қтарда белгiсiз функциялар мен қосымша параметрлердiң қосындыларымен алмасты-
рылады. Берiлген интегралдық-дифференциалдық теңдеу сызықты емес интегралдық-
дифференциалдық теңдеулер жүйесi үшiн параметрлi арнайы Коши есебiне келтiрiледi.
Фредгольм интегралдық-дифференциалдық теңдеуi үшiн Коши есебi сияқты, арнайы
Коши есебi де барлық уақытта шешiлiмдi бола бермейдi. Сондықтан параметрлердiң
белгiлi мәндерiнде арнайы Коши есебiнiң шешiмiнiң бар болуы мәселелерi зерттеледi. Ол
үшiн кесiндiде үзiлiссiз функциялар жиынының компактылығы туралы Арцела теоре-
масы қолданылады. Арнайы Коши есебiнiң шешiмiнiң бар болуының шарттары алынған.

Кiлттiк сөздер. Сызықты емес Фредгольм интегралдық-дифференциалдық теңдеуi,
арнайы Коши есебi, параметрлеу әдiсi, итерациялық әдiс, компакт жиын.
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Мынбаева С.Т. СУЩЕСТВОВАНИЕ РЕШЕНИЯ СПЕЦИАЛЬНОЙ ЗАДАЧИ КО-
ШИ ДЛЯ СИСТЕМЫ НЕЛИНЕЙНЫХ ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВ-
НЕНИЙ ФРЕДГОЛЬМА

На конечном интервале рассматривается интегро-дифференциальное уравнение
Фредгольма с нелинейной дифференциальной частью и линейной интегральной частью
с вырожденным ядром. Интервал делится на N частей и значения решения нелиней-
ного интегро-дифференциального уравнения в левых точках подинтервалов вводятся
в качестве дополнительных параметров. Искомая функция заменяется на суммы новых
неизвестных функций и дополнительных параметров в соответствующих подинтервалах.
Исходное интегро-дифференциальное уравнение сводится к специальной задаче Коши
для системы нелинейных интегро-дифференциальных уравнений с параметрами. Спе-
циальная задача Коши, как задача Коши для интегро-дифференциальных уравнений
Фредгольма, не всегда разрешима. В связи с этим исследуются вопросы существования
решения специальной задачи Коши при фиксированных значениях параметров. Для это-
го используется теорема Арцела о компактности множества непрерывных функций на
отрезках. Установлены условия существования решения специальной задачи Коши.

Ключевые слова. Нелинейное интегро-дифференциальное уравнение Фредгольма,
специальная задача Коши, метод параметризации, итерационный метод, компактное
множество.
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Abstract. This paper is devoted to description of self-adjoint extensions of an integro-differential

operator. We find symmetric integro-differential operators of order 2α (with 1
2
< α < 1). Indeed,

it is an analogue of the fractional Sturm-Liouville operator in some sense. Moreover, an analogue of

the Green’s formula for fractional order differential equations is established with further applications in

describing a class of self-adjoint operators. Finally, we discuss about global Fourier analysis and prove

some results on spectral properties of fractional order self-adjoint operators associated with Caputo-

Riemann-Liouville type derivatives.

Keywords. Integro-differential operator, Caputo derivative, Riemann-Liouville derivative, Self-adjoint

problem, Fractional order differential equation, Fractional Sturm-Liouville operator, Extension theory.

1 Introduction

In the theory of differential equations the charming role plays describing and studying self-
adjoint problems. One of the methods to describe them can be done by using the sufficiently
developed theory of self-adjoint extension, for example, see monographs [1], [2]. The Green’s
formula is one of the main moments in the theory of extensions and contractions. In this
paper the Green’s formula is established for a differential equation of the fractional order.
Moreover, we introduce the notion of a fractional differentiation of generalized functions.
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For clearity, we give a class of self-adjoint problems for a fractional analogue of the Sturm-
Liouville operator. Due to the physical applications the spectral properties of the fractional
operators are subject to intensive studies, especially, for the papers with applications [3]–[7].

One of the first investigations of the spectral properties of fractional differential equa-
tions is done by Dzhrbashyan [8]. After Dzhrbashyan’s paper mathematicians began to pay
attention to the properties of the special functions generated by the fractional differential
the equations. For this, we refer the reader to the papers [9]–[14] and references therein. In
general, fractional operators are not symmetric, and in all mentioned works non self–adjoint
problems are considered (also, see [15]). In the weighted class of continuous functions one
symmetric fractional order differential operator is described by Klimek and Agrawal [16]. In
this work we continue researches started in [17], and we attempt to establish an analogue
of the Green’s formula for fractional order differential equations with further applications in
describing a class of self–adjoint operators.

In this paper we deal with a fractional differential operator of the Caputo and Riemann-
Liouville type. Moreover, we are aiming at describing a class of self-adjoint problems associ-
ated with this fractional order differential equation in the Hilbert space. Indeed, it is found a
symmetric Caputo-Riemann-Liouville operator of order 2α (with 1

2 < α < 1). In appreciate
sense, it can be interpreted as an analogue of the classical Sturm-Liouville operator.

2 Main results

In what follows, we assume that 1
2 < α < 1. Now, let us consider

Lu(x) := Dα1 [Dα
0 [u]] (x) , 0 < x < 1. (1)

Here, our aim is to investigate spectral properties of operators generated by the fractional
order differential equation (1) in L2(0, 1). To start, we define an operator in the Hölder
classes. Consider the spectral problem

Lu(x) = λu(x), 0 < x < 1, (2)

in the space H2α+o
0 ([0, 1]) := {ϕ ∈ H2α+o([0, 1]) : ϕ(0) = 0, . . . , ϕ(m)(0) = 0}, where m =

[2α+o], and H2α+o([0, 1]) is the Hölder space with the parameter 2α+o. Here o is a sufficiently
small positive number such that o < 1−α. By other words, we deal with the following spaces:

H2α+o
0 ([0, 1]) := {ϕ ∈ H2α+o([0, 1]) : ϕ(0) = 0, ϕ′(0) = 0},

Hα+o
0 ([0, 1]) := {ϕ ∈ Hα+o([0, 1]) : ϕ(0) = 0},
Ho

0([0, 1]) := {ϕ ∈ Ho([0, 1]) : ϕ(0) = 0}.
From the book of Samko, Kilbas and Marichev [18, Chapter 1, Theorem 3.2] it follows

that the integro–differential operator L is bounded from H2α+o
0 ([0, 1]) to Ho

0([0, 1]). Hence,
the functionals

ξ−1 (u) := I1−α0 [u] (0) , ξ−2 (u) := I1−α0 [u] (1) ,
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ξ+1 (u) := Dα
0 [u] (0) and ξ+2 (u) := Dα

0 [u] (1) ,

are well-defined for all H2α+o
0 ([0, 1]). Denote by L0 an operator generated by the fractional

differential expression (1) with ”boundary” conditions

ξ−2 (u) = 0 and ξ+1 (u) = 0. (3)

Then due to the definitions and properties given by Appendix (see, [18, Chapter 1]) for

f ∈ H̃o
0([0, 1]) := {v ∈ Ho

0([0, 1]) :

∫ 1

0
v(s)s2αds = 0 and

∫ 1

0
v(s)s2α−1ds = 0}

an inverse operator to L0 has the form

L−10 f(x) = Iα0 I
α
1 f(x) :=

∫ 1

0
K(x, s)f(s)ds, 0 < x < 1,

as L−10 : H̃o
0 → H2α+o

0 , with the symmetric kernel K(·, ·) from L2(0, 1) ⊗ L2(0, 1). Since,

S := span{xk, k ∈ N} ⊂ Ho
0([0, 1]), and powers of the sets S and S̃ := {v ∈ S :

∫ 1
0 v(s)s2αds =

0 and
∫ 1
0 v(s)s2α−1ds = 0} are equal, then we conclude that a closure of the space H̃o

0([0, 1])

by the L2–norm is L2(0, 1). Hence, L−10 has a continuous continuation to a compact operator
in L2(0, 1). Compactness implies the fact that there exists non empty discrete spectrum with
the eigenfunctions forming an orthogonal basis in the space L2(0, 1).

Denote by λk, k ∈ N, eigenvalues of the spectral problem (2)–(3) in the ascending order
and by uk, k ∈ N, corresponding eigenfunctions, i.e.

Dα1 [Dα
0 [uk]] (x) = λkuk(x), 0 < x < 1,

ξ−2 (uk) = 0, ξ+1 (uk) = 0

for all k ∈ N. Thus, the domain of the operator L0

Dom(L0) := {u ∈ H2α+o
0 ([0, 1]) : ξ−2 (u) = 0, ξ+1 (u) = 0}

is not empty.
Now, we introduce the space of test functions C∞L0

([0, 1]) (for more details, see [19,20]) as
follows:

C∞L0
([0, 1]) :=

∞⋂
k=1

Dom(Lk0),

where Dom(Lk0) is a domain of Lk0. Here Lk0 stands for the k times iterated L0 with the
domain

Dom(Lk0) := {Lk−j−10 u ∈ Dom(L0), j = 0, 1, ..., k − 1}
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for k ≥ 2. Since the linear combination of all eigenfunctions is in C∞L0
([0, 1]), then the space of

test functions is not empty as a set. For further properties of the space C∞L0
([0, 1]) we refer to

the papers [19], [20], where the properties of the test functions based on a basis are studied.
The dual space to C∞L0

([0, 1]) we denote by D′L0
(0, 1) (the space of continuous functionals on

C∞L0
([0, 1])).

Now, we are in a way to define a fractional derivation of generalized functions. To begin,
note that for all u, v ∈ C∞L0

([0, 1]) we get

(Dα1 [Dα
0 u] , v) = (u,Dα1 [Dα

0 v]). (4)

Here, both sides exist in the classical sense.

Indeed, equality (4) follows by the direct computations of (Dα1 [Dα
0 u] , v). By the definition,

we have

(Dα1 [Dα
0 u] , v) = − 1

Γ(1− α)

∫ 1

0

∫ 1

x
(t− x)−α

d

dt
Dα

0 u(t)dtv(x)dx,

and by changing integration order, we obtain∫ 1

0

∫ 1

x
(t− x)−α

d

dt
Dα

0 u(t)dtv(x)dx

=

∫ 1

0

d

dt
Dα

0 u(t)

∫ t

0
(t− x)−αv(x)dxdt. (5)

Integrating by parts in the right-hand side of equation (5), we have

− 1

Γ(1− α)

∫ 1

0

d

dt
Dα

0 u(t)

∫ t

0
(t− x)−αv(x)dxdt

= −Dα
0 u(t)I1−α0 v(t)

∣∣∣1
0

+ (Dα
0 u,D

α
0 v)

= −Dα
0 u(t)I1−α0 v(t)

∣∣∣1
0

+ I1−α0 u(t)Dα
0 v(t)

∣∣∣1
0
−
∫ 1

0
I1−α0 u(t)

d

dt
Dα

0 v(t)dt.

By applying the property to
(
I1−α0 u, ddtD

α
0 v
)
, and due to the equivalent definitions of the

Caputo derivation [18, Chapter 1], we obtain(
I1−α0 u,

d

dt
Dα

0 v

)
= − (u,Dα1 [Dα

0 ] v) .

As the result, one takes the Green’s formula

(Dα1 [Dα
0 u] , v) = (u,Dα1 [Dα

0 ] v)
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+
2∑
i=1

[ξ−i (u)ξ+i (v)− ξ−i (v)ξ+i (u)]. (6)

Since u, v ∈ C∞L0
([0, 1]) the identity (6) implies (4).

Define an action of the operator L on a generalized function u ∈ D′L0
(0, 1). Put

(Lu, v) := (u,Dα1 [Dα
0 v]) (7)

for all v ∈ C∞L0
([0, 1]). The term (u,Dα1 [Dα

0 v]) exists due to the fact that v ∈ C∞L0
([0, 1]) and

also involves Dα1 [Dα
0 v] ∈ C∞L0

([0, 1]). Thus, the action of L introduced by the formula (7) is
well defined on the space of the generalized functions D′L0

(0, 1).
Now, we consider the following expression

Lu(x) := Dα1 [Dα
0 [u]] (x) , 0 < x < 1, (8)

in the space L2(0, 1). To define correctly L in L2(0, 1), we introduce the space W2α
2 (0, 1) as

a closure of H2α+o
0 ([0, 1]) by the norm

‖u‖W2α
2 (0,1) := ‖u‖L2(0,1) + ‖Dα1Dα

0 u‖L2(0,1).

Indeed, the space W2α
2 (0, 1) with the introduced norm is a Banach one. Moreover, it is the

Hilbert space with the scalar product

(u, v)W2α
2 (0,1) := (u, v) + (Dα1Dα

0 u,Dα1Dα
0 v).

We define Lm as an operator acting from L2(0, 1) to L2(0, 1) by formula (8) with the
domain

Dom(Lm) =
{
u ∈W2α

2 (0, 1) : ξ−1 (u) = ξ−2 (u) = ξ+1 (u) = ξ+2 (u) = 0
}
.

Also, introduce an operator LM : L2(0, 1) → L2(0, 1) generated by expression (8) with the
domain Dom(LM ) :=

{
u ∈W2α

2 (0, 1)
}

.
Now, we are in a position to formulate the main result of the manuscript.
In what follows, we introduce a class of (2x4)-matrices. This class will be helpful to define

boundary forms for Dα1 [Dα
0 [u]].

Definition 1. We say that the matrix

θ :=

(
θ11 θ12 θ13 θ14
θ21 θ22 θ23 θ24

)
is S–matrix, if it can be written in one of the following views:(

1 0 r c
0 1 − c d

)
,

(
d 1 0 r
c 0 1 d

)
,
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(
1 d r 0
0 c − d 1

)
,

(
r c 1 0
−c d 0 1

)
,

where r, c, d ∈ R. Here, the matrices(
θ11 θ12 θ13 θ14
θ21 θ22 θ23 θ24

)
,

(
θ11 θ12 θ13 θ14
γθ21 γθ22 γθ23 γθ24

)
for (γ 6= 0),

(
θ11 ± θ21 θ12 ± θ22 θ13 ± θ23 θ14 ± θ24
θ21 θ22 θ23 θ24

)
and (

θ21 θ22 θ23 θ24
θ11 θ12 θ13 θ14

)
are equivalent.

Theorem 1. Let θ be an S-matrix. Then an operator Lθ generated by

Dα1Dα
0 u(x) = f(x), 0 < x < 1,

for u ∈W2α
2 (0, 1) with ”boundary” conditions

θ11ξ
−
1 (u) + θ12ξ

−
2 (u) + θ13ξ

+
1 (u) + θ14ξ

+
2 (u) = 0,

θ21ξ
−
1 (u) + θ22ξ

−
2 (u) + θ23ξ

+
1 (u) + θ24ξ

+
2 (u) = 0,

is a self-adjoint extension of Lm in W2α
2 (0, 1).

Note that when α < 1/2 the statement of Theorem 1, briefly speaking, is not true.

3 Proof of Theorem 1

3.1. Preliminaries

Below we formulate necessary results on the operators Lm and LM .

Lemma 1. Kernel of the operator LM (KerLM ) consists of any linear combination of the
functions (x− ε)α∗ and (x− ε)α−1∗ for arbitrary ε ∈ [0, 1].

The proof of Lemma 1 follows from the statements of Properties A.2, A.3, A.4 and A.5.

Lemma 2. The equation Lmu = g has a solution u ∈ Dom(Lm) if and only if there exists a
function f ∈ L2(0, 1) such that for arbitrary v ∈ KerLM we have (f, v) = 0, or

R(Lm)⊕KerLM = L2(0, 1).
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Proof. Let f ∈ R(Lm). Then there is a function w ∈ L2(0, 1) such that for any v ∈ KerLM
we obtain

(f, v) = (Lmw, v) = (w,LMv) = 0.

Now, fix a function f ∈ L2(0, 1) with the property (f, v) = 0 for all v ∈ KerLM . Due to
the definition of LM there is a function g ∈ Dom(LM ) such that LMg = f. It is easy to see
that for arbitrary v ∈ KerLM we have

0 = (f, v) = (LMg, v) =
2∑
i=1

[ξ−i (v)ξ+i (g)− ξ−i (g)ξ+i (v)]. (9)

Finally, Lemma 1 implies that the kernel of the operator LM consists of the infinite number
of the linear independent functions. Thus, due to the arbitrariness of v from identity (9) we
obtain

ξ−i (g) = ξ+i (g) = 0, i = 1, 2.

Hence, f ∈ R(Lm). This completes the proof of the lemma. �

Corollary 1. Dom(Lm) is dense in L2(0, 1).

Proof. Let g ∈ L2(0, 1) be orthogonal to the lineal Dom(Lm). Find a function v as an
arbitrary solution of the equation LMv = g. Then for any u ∈ Dom(Lm) we get

0 = (u, g) = (u, LMv) = (Lmu, v).

Due to Lemma 2 we obtain v ∈ KerLM . Hence, g = LMv = 0. The corollary is proved. �

3.2. Proof of Theorem 1

By Definition [21] the operator Lm is hermit, since for any u, v ∈ Dom(Lm) we have

(Lmu, v) = (u, Lmv).

Moreover, due to Corollary 1 the operator Lm is symmetric. Thus, to show that Lθ is a
self–adjoint operator it is enough to have

Dom(Lθ) = Dom(L∗θ). (10)

The last one can be proven by the direct calculations taking into account formula (6).
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4 Global Fourier Analysis associated with Caputo–Riemann–Liouville type
Fractional Order Operators

4.1. Spectral properties of Lθ

Theorem 2. Let θ be as (
1 0 0 0
0 θ22 0 θ24

)
.

Then the following statements hold:
(i) L−1θ is a compact operator in L2(0, 1).
(ii) The spectrum of Lθ is real and discrete, and the system of eigenfunctions forms a

complete orthogonal basis of the space L2(0, 1).

Proof. (i) Indeed, the inverse operator can be represented in the form

L−1θ f(x) = − θ22
θ22 + θ24

xα

Γ(α)
Iα+1
1 f(0) + Iα0 I

α
1 f(x).

For θ22 = 0 we have

L−1θ f(x) = Iα0 I
α
1 f(x), 0 < x < 1.

Hence, it follows compactness of the operator L−1θ in L2(0, 1).
(ii) Compactness of L−1θ implies discreteness of the spectrum, and the system of eigen-

functions forms a complete orthogonal basis in L2(0, 1). From the self-adjoint property of Lθ
one obtains real validity of all eigenvalues [21]. �

Theorem 3. Let θ be in one of the following forms:(
1 0 0 0
0 1 0 0

)
,

(
1 0 0 0
0 0 0 1

)
, (11)

(
ρ 1 0 0
0 0 1 ρ

)
,

(
0 0 1 0
0 0 0 1

)
. (12)

Then for all ρ ∈ R the operator Lθ is positive in the space L2(0, 1).

Proof. To prove the theorem it is sufficient to show the inequality

(Dα1 [Dα
0 u] , u) ≥ 0.

Now, we calculate

(Dα1 [Dα
0 u] , u) = − 1

Γ(1− α)

∫ 1

0

∫ 1

x
(t− x)−α

d

dt
Dα

0 u(t)dt u(x)dx.
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By changing integration order, we get

− 1

Γ(1− α)

∫ 1

0

∫ 1

x
(t− x)−α

d

dt
Dα

0 u(t)dt u(x)dx

= − 1

Γ(1− α)

∫ 1

0

d

dt
Dα

0 u(t)

∫ t

0
(t− x)−αu(x)dxdt.

By integrating by parts in the right-hand side of the last integral, we obtain

− 1

Γ(1− α)

∫ 1

0

d

dt
Dα

0 u(t)

∫ t

0
(t− x)−αu(x)dxdt

= −Dα
0 u(t)I1−α0 u(t)

∣∣∣1
0

+ (Dα
0 u,D

α
0 u) .

As the result, we take the identity

Dα
0 u(t)I1−α0 u(t)

∣∣∣1
0

= 0,

which completes the proof. �

4.2. Schatten classes of L−1θ

The following assertion is proved by Delgado and Ruzhansky [26]: Let M be a closed
manifold of the dimension n. Let K ∈ Hµ(M × M) for some µ > 0. Then the integral
operator T on L2(M), defined by

(Tf)(x) =

∫
M

K(x, s)f(s)ds,

is in the Schatten classes Sp(L
2(M)) for p > 2n

n+2µ .
Now, we try to apply this result as follows:

Theorem 4. Let θ be in one of the following forms:(
1 0 0 0
0 1 0 0

)
,

(
1 0 0 0
0 0 0 1

)
, (13)(

0 1 0 0
0 0 1 0

)
,

(
0 0 1 0
0 0 0 1

)
. (14)

Then the inverse operator L−1θ on L2(0, 1), defined by

L−1θ f(x) =

1∫
0

K(x, s)f(s)ds,

is in the Schatten classes Sp
(
L2(0, 1)

)
, for p > 2

1+4α .
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Proof. Here, we give a full proof only for the case θ11 6= 0, θ24 6= 0, θ12 = θ13 = θ14 = θ21 =
θ22 = θ23 = 0. Other three cases can be proved similarly.

From Theorem 2 it is known, that

L−1θ f(x) = Iα0 I
α
1 f(x), 0 < x < 1.

Then the operator L−1θ can be represented as

L−1θ f(x) = Iα0 I
α
1 f(x) =

1∫
0

K(x, s)f(s)ds, 0 < x < 1,

where K(x, s) has the form

K(x, s) =
1

Γ2(α)

∫ 1

0
(x− τ)α−1∗ (s− τ)α−1∗ dτ

=
1

Γ2(α)

∫ max{x,s}

0
(x− τ)α−1(s− τ)α−1dτ.

Here

(z − ε)µ∗ =

{
0, z ≤ ε,
(z − ε)µ, z > ε.

The fact that L−1θ is inverse to Lθ implies that K(x, s) is the Green’s function of Lθ. Hence
K(x, s) belongs to the class W 2α

2 ((0, 1)× (0, 1)). Consequently, by the Delgado-Ruzhansky’s
theorem 4, we obtain that the integral operator L−1θ is in the Schatten classes Sp(L

2(0, 1))
for p > 2

1+4α . �

4.3. Global Analysis generated by Lθ

Here, we briefly discuss about the Global Analysis associated with the fractional order
differential operator Lθ. Indeed, by using the Global Fourier Analysis commuted with Lθ
developed in [19], [20], studied operators can be applied for solving problems of the sub-
diffusion, super-diffusion, anomaly diffusion, etc (for instance, see, [23]–[25]). We note that
the general case is developed in [26] with some applications given in [27] for the Landau
Hamiltonian. More general setting is offered in the recent papers [28], [30]. One is worth to be
mentioned that the theory of Pseudo-Differential Operators associated with fractional order
differential equations can be started. Moreover, investigations of the spectral problems for
fractional differential operators are helpful and important to enrich and develop the fractional
calculus.
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A. Fractional differentiation and its properties

In this Appendix, we define fractional integration and differentiation operators [18], [30],
[30].

Definition A.1. Let f be a function defined on the interval [0, 1]. Assume that the following
integrals exist

Iα0 [f ] (t) =
1

Γ (α)

t∫
0

(t− s)α−1 f (s)ds, t ∈ (0, 1],

and

Iα1 [f ] (t) =
1

Γ (α)

1∫
t

(s− t)α−1 f (s)ds, t ∈ [0, 1).

Then we call them the left and right Riemann-Liouville integral operators of the fractional
order α > 0, respectively.

Definition A.2. Define left-side and right-side Riemann-Liouville differential operators of
the fractional order α (0 < α < 1) by

Dα
0 [f ] (t) =

d

dt
I1−α0 [f ] (t)

and

Dα
1 [f ] (t) = − d

dt
I1−α1 [f ] (t),

respectively.

Definition A.3. For 0 < α < 1 we say that the actions

Dα0 [f ] (t) = Dα
0 [f (t)− f (0)]

and
Dα1 [f ] (t) = Dα

1 [f (t)− f (1)] ,

are left and right differential operators of the fractional order α (0 < α < 1) in the Caputo
sense, respectively.

Note that in monographs [18], [30], [31] there are studied different types of fractional
differentiations and their main properties. In what follows we formulate statements of nec-
essary properties of integral and integro-differential operators of the Riemann-Liouville type
and fractional Caputo operators.

Property A.1 [30, Pages 73, 76, 96]. Let 0 < α < 1. Assume that

f ∈ L1(0, 1), I1−α1 f, I1−α0 f ∈ AC[0, 1].
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Then the following equalities are true:

Iα0 I
β
0 f(x) = Iα+β0 f,

Iα1 I
β
1 f(x) = Iα+β1 f,

for all 0 < β < 1;

Iα1D
α
1 f(x) = f(x)− I1−α1 f(0)

(1− x)α−1

Γ(α)
,

Iα0D
α
0 f(x) = f(x)− I1−α0 f(0)

xα−1

Γ(α)
,

for x ∈ (0, 1).
Moreover, if f ∈ AC[0, 1], then we have

Iα0 Dα0 f(x) = f(x)− f(0),

Iα1 Dα1 f(x) = f(x)− f(1),

for all x ∈ [0, 1].
For any ε ∈ (0, 1) we denote

(x− ε)∗ =


0, x ≤ ε,

x− ε, x > ε.

Property A.2 [18, Page 87]. Let α > 0, β > 0, C ≡ const and

f = C
Γ(α+ β)

Γ(β)
(x− ε)β−1∗ .

Then we have
Iα0 f(x) = C(x− ε)α+β−1∗ ,

for 0 < x < 1.

Property A.3. Let 0 < α < 1. Then for all ε ∈ (0, 1) and any constant C the following
function

f(x) = C(x− ε)α−1∗ =


0, x ≤ ε,

C(x− ε)α−1 x > ε,

satisfies the equation
Dα

0 f(x) = 0, x ∈ (0, 1).
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Property A.4. Let 0 < α < 1. Then for arbitrary ε ∈ (0, 1) and a constant C the function

f(x) = Cθ(x− ε) =


0, x ≤ ε;

C, x > ε,

satisfies

Dα1 f(x) = 0, 0 < x < 1,

where θ(x) is the Heaviside function.

Property A.5. Let 0 < α < 1. Then

f(x) =
C

Γ(α)
(x− ε)α−1∗ +

1

Γ(α+ 1)
(x− ε)α∗ , C = const, 0 < x < 1,

satisfies the equation

Dα
0 f(x) = θ(x− ε), 0 < x < 1.

Property A.6 [31, Page 34]. Let u, v ∈ L2(0, 1) and 0 < α < 1. Then we have the formula
of integration by parts (

Iβ1 u, v
)

=
(
u, Iβ0 v

)
.

Here, by (·, ·) we denote the inner product of the Hilbert space L2(0, 1).

Let us formulate Theorem 3.2 of the book [18]:

Theorem A.1. Assume that ϕ ∈ Hγ([0, 1]), γ ≥ 0. Then the fractional integral Iα0 ϕ, α > 0,
has the form

Iα0 ϕ =

m∑
k=0

ϕ(k)(0)

Γ(α+ k + 1)
xα+k + ψ(x),

where m is the greatest integer such that m < γ; and ψ ∈ Hγ+α([0, 1]), if γ+α is not integer,
or if γ, α ∈ Z.
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Тоқмағамбетов Н., Төребек Б.Т. ИНТЕГРАЛДЫҚ-ДИФФЕРЕНЦИАЛДЫҚ ОПЕ-
РАТОРЛАРДАН ТУЫНДАҒАН ӨЗ-ӨЗIНЕ ТҮЙIНДЕС ОПЕРАТОРЛАР

Мақала интегралдық-дифференциалдық оператордың өз-өзiне түйiндес кеңейтулерiн
сипаттауға арналған. Ретi 2α (12 < α < 1) болатын симметриялы интегралдық-
дифференциалдық операторлар табылды. Бұл, шындығында белгiлi мағынада бөл-
шек реттi Штурм-Лиувилль операторының аналогы болып табылады. Сондай-ақ, бөл-
шек реттi дифференциалдық теңдеу үшiн Грин формуласының аналогы тағайындалып,
әрi қарай оның өз-өзiне түйiндес операторларды сипаттауға қолданылуы келтiрiлген.
Соңында глобалды Фурье талдауы талқыланған және Капуто-Риман-Лиувилль тектес
туындылармен байланысқан өз-өзiне түйiндес бөлшек реттi операторлардың спектрал-
дық қасиеттерi туралы кейбiр нәтижелер дәлелденген.

Кiлттiк сөздер. Интегралдық-дифференциалдық оператор, Капуто туындысы,
Риман-Лиувилль туындысы, өз-өзiне түйiндес есеп, бөлшек реттi дифференциалдық тең-
деу, бөлшек реттi Штурм-Лиувилль операторы, кеңейтулер теориясы.
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Токмагамбетов Н., Торебек Б.Т. САМОСОПРЯЖЕННЫЕ ОПЕРАТОРЫ, ПОРОЖ-
ДЕННЫЕ ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫМИ ОПЕРАТОРАМИ

Данная статья посвящена описанию самосопряженных расширений интегро-
дифференциального оператора. Найдены симметричные интегро-дифференциальные
операторы порядка 2α (где 1

2 < α < 1). Действительно, в некотором смысле это ана-
лог дробного оператора Штурма-Лиувилля. Кроме того, аналог формулы Грина для
дифференциальных уравнений дробного порядка установлен с дальнейшими приложени-
ями в описании класса самосопряженных операторов. Наконец, мы обсудим глобальный
анализ Фурье и докажем некоторые результаты о спектральных свойствах самосопря-
женных операторов дробного порядка, связанных с производными типа Капуто-Римана-
Лиувилля.

Ключевые слова. Интегро-дифференциальный оператор, производная Капуто, произ-
водная Римана-Лиувилля, самосопряженная задача, дифференциальное уравнение дроб-
ного порядка, дробный оператор Штурма-Лиувилля, теория расширений.
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Abstract. The paper presents an attempt to assess the transition of arc to glow discharge on the basis

of a comparison of selected theoretical indicators and these provided by the experiments. The evaluation

includes the dynamics change of the discharge volume during the opening of the contact. The tests

were carried out for a low voltage DC circuit with a discharge energy not exceeding 10J . Based on

the results obtained, appropriate practical conclusions were formulated regarding the need for further

consideration.

Keywords. Switching DC arc, low voltage and low power electric grid, arc-to-glow transition.

1 Introduction

The use of direct current in various areas shows increasing trend mainly due to the
increasing use of renewable energy sources. However, this forces manufacturers and users
to different approach to the application due to both the advantages and disadvantages of
DC compared to AC. One of the problem is to ensure effective breaking of the DC circuit
especially under inductive loads.

Tests carried out by authors in recent years have demonstrated the occurrence of the
previously unknown effect of spontaneous transition of the DC switching arc into glow dis-
charge [1]. This is a very positive effect because it significantly reduces contact erosion thereby
increasing their switching life. However, there are significant problems with explaining the
reasons of this effect due to the diversity, complexity and variability of physical phenomena
and their mutual interaction each other. This applies both to the surface conditions of the
contacts as well as the area of the contact space. The authors investigated this effect to
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the broadest limits possible, paying attention to the majority of factors affecting the dis-
charge phenomena. This applies to both the type of contact material, voltage and switching
current, type and pressure of protective gas inside the contact gap, contact opening speed,
etc. The tests were performed using, among others, fast photo registration and optical fiber
spectroscopy [2]. It allowed to draw specified conclusions, however, a small amount of data
does not allow for the practical implementation of this process under operation conditions.
No less, it can be concluded that for specified switching conditions this process is statistically
predictable, unfortunately it is not repeatable for following switching.

At the same time, the authors made the attempt to theoretical analysis of this phe-
nomenon via a mathematical description of this effect based on the experimental results.
The mathematical model has been developed that describes the dynamics of the transition
of a low-temperature electric arc plasma into a glow discharge. It is based on the system
of differential equations for temperature and electromagnetic fields, the solution of which is
found using the method of upper and lower functions. Based on Lyapunov’s theory and the
Hurwitz criteria, a system of inequalities is obtained for the parameters of the electric arc and
the material of the electrodes, which makes it possible to obtain criteria for instability and
bifurcation of voltage, current and temperature, which provide the required transition [3].
According to this the arc instability criteria can (for the given electric circuit R, L, C) be
formulated as follows:
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− 1 < 0. (3)

Where arc resistance RA:

RA =
UA

IA
(4)

and thermal (heat) constant

kA =
CA VArc TA

PA
(5)

are particularly important for the relation between the arc time tA and this of glowing tg
(VArc is arc volume, TA is arc temperature, PA is arc power, CA is heat capacity of the arc).
Unfortunately, the modeling of the arc transition into glowing is based on a large error due to
complex phenomena and mutually dependent parameters. Therefore, despite the extensive
experimental research, changes in transient cannot be determined precisely, mostly due to
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the lack of appropriate available high resolution measuring equipment. However, it should
be noted that for the given switching conditions, the electrical circuit parameters R, L, C
are already given. Selected physical quantities can be calculated from recorded waveforms of
current and voltage drop. Therefore, it is possible to estimate the value of the resistance (RA)
of the discharge (arc and glow) as well as the power PA provided to the electric discharge.
Next, when using the literature data regarding the average arc TA temperature and its heat
capacity CA, the thermal time constant kA of the arc can be estimated. For analysis the
value of the arc volume VA as well as its variation with time under contact opening has to be
taken into account. (It must be noted that in [3] only average arc volume was considered).
These values were estimated by the authors on the basis of the measurement of the change
in the length of the contact gap in time and its correlation with the results of measurements
of photo-registration of the discharge process.

Thus, using the set of inequalities (1)–(3) one can estimate the values of both RA and kA
for given switching conditions. Basing on (5) for the experimentally estimated values of the
arc volume and its temperature one can obtain the threshold power value of the arc, i.e. the
maximum value of the current at which interruption of the arc-to glow transition will take
place. Note, that if the arc resistance RA tends to infinity the kA value is close to the circuit
time constant (T = L/R).

The article attempts to define the limit parameters of the presented equations with refer-
ence to the measurement results obtained under testing. The test was carried out in a specially
designed and made for this purpose the test stand with hermetic chamber for round, plain
contacts (diameter 5mm and thickness of 1mm) made of CuCr composite material (made
by means of the electron beam technology [4], for different Cr content) in air under normal
pressure at room conditions (see Fig. 1). Voltage was fixed to be 110V , current about 0.5A
for the inductive time constant of the electric circuit equal to 40ms (discharge energy less
than 10 J) and contact gap around 4mm [2]. The average contact opening speed was around
0.125m/s.

2 Selection of the test results for analysis

The tests were performed for flat contacts (1) with the use of an insulating washer (2)
that prevents the arc from moving beyond the contact area (Fig. 1).

Due to the different progress of the phenomenon for the same switching conditions, three
different cases (waveforms) were selected for the analysis: only the arc discharge without
transient to glowing (Fig. 2), only the glow discharge (Fig. 3) and the arc discharge with
double transition into the glowing (Fig. 4).

Arc column radius rArc changes linearly from 1.5 · 10−5 to 2 · 10−3m.
Arc volume is:

VArc = Vcilinder(l, rArc) = π(rArc)
2l (6)
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Figure 1 – Appearance of the contact sample for testing

(1 – contact member, 2 – textolite washer, dimensions in mm)

Figure 2 – Arc current waveform i, contact voltage u and contact gap l variation during

interruption of DC inductive load (110V , 0.52A, L/R = 42ms, CuCr contacts materials)

Figure 3 – Discharge current waveform i, contact voltage u and contact gap l

variation during interruption of DC inductive load

(110V , 0.52A, L/R = 42ms, CuCr contacts materials), for only the glow appearance
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Figure 4 – Discharge current i, contact voltage waveform u and contact gap l

variation during interruption of DC inductive load (110V , 0.52A, L/R = 42ms,

CuCr contacts materials), for double transition of the switching arc into glowing

3 Estimation based on experiment

The assessment of the arc’s transition into glow discharge was carried out for three pre-
sented above cases based on measured and estimated waveforms of the discharge column
volume (arc) VArc, discharge resistance RA, and discharge power PA for two different radius
values rArcmin and rArcmax of the arc column (discharge). All data for estimation are included
in Table I.

Table 1 – Measured and theoretically estimated parameters for analysis

Parameters for analysis

supplied voltage U 110V
load current I 0.52A

load resistance R 211.538Ohms
load inductance L 8.931H
circuit capacity C 5.86855 · 10−8 F
arc temperature TA 6500K

arc volume VArc 5.0 · 10−19; 1.5 · 10−7m3

arc heat capacity CA 237.6 J/m3K

For the case of the existence of only arcing (see Fig. 2), the trends of variation of the
volume of the arc column, the resistance of the arc and the arc power with time under the
discharge are shown in Fig. 5–9, respectively. The possibility of meeting the transition
conditions (according to the equations (1)–(3)) for the arcing only as in Fig. 2 is illustrated
by Fig. 10 and 11.
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Figure 5 – Variation of the arc column VArc with time for different

arc radius (discharge as in Fig. 2)

Figure 6 – Variation of the arc resistance RA with time

(discharge as in Fig. 2, dotted for rArcmin = 1.5 · 10−5 m)

From the obtained waveforms it follows that for only arc appearance, both the resistance
of the arc and the power supplied to the arc are quite stable and show change at the end of
the discharge. However, the probability of meeting the logical conditions for the transition
is quite possible, especially for a small radius of the arc column rArcmin = 1.5 · 10−5m as
indicated by dots in Fig. 6 and Fig. 8. It can be seen that with the increase in the radius
value (rArcmax = 2 · 10−3m) the transition is theoretically possible only at the beginning of
the course (as indicated by dots in Fig. 7 and Fig. 9). It should be also noted that the
duration of the only arcing is the longest in comparison with the other runs.
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Figure 7 – Variation of the arc resistance RA with time

(discharge as in Fig .2, dotted for rArcmax = 2 · 10−3 m)

Figure 8 – Variation of the discharge power PA with time

(discharge as in Fig. 2, dotted for rArcmin = 1.5 · 10−5 m)

For the case of the appearance of only glowing (see Fig. 3), the variation of the volume
of the discharge column, the discharge resistance and the dissipated power with time under
the discharge are shown in Fig. 12–16, respectively. Whereas, possibility of meeting the
transition conditions (according to the equations (1)–(3)) for the glowing only as in Fig. 3 is
illustrated by Fig. 17 and 18.
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Figure 9 – Variation of the discharge power PA with time

(discharge as in Fig. 2, dotted for rArcmax = 2 · 10−3 m)

Figure 10 – Logical conditions (3/3 = 1; 2/3 = 0.67; 1/3 = 0.33; 0/3 = 0)

as a function of time and arc column radius rArc for discharge as in Fig. 2

During the tests, it was found that in the case of only glow discharge, the volume of the
discharge column is smaller than in the case of only an arc discharge. However, this value
increases with time, which is the result of the increase in the length of the contact gap under
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Figure 11 – Logical conditions with time and volume

of the arc VArc for discharge as in Fig. 2.

Figure 12 – Variation of the discharge column VArc

with time for different discharge radius (discharge as in Fig. 3)

opening. The discharge resistance indicates much higher value and is exponentially increasing
over time. The discharge power decreases practically linearly. The logical conditions for the
occurrence of the transition effect are met, but practically for small values of both the radius
and discharge volume. It should be emphasized here that the duration of the discharge is
much shorter in this case. The glow discharge disappears before the contact opens.
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Figure 13 – Variation of the discharge resistance RA

with time (discharge as in Fig. 3, dotted for rArcmin = 1.5 · 10−5 m)

Figure 14 – Variation of the discharge resistance RA

with time (discharge as in Fig.3, dotted for rArcmax = 2 · 10−3 m)

For the case of the double transition of the arc into glowing (see Fig. 4), the trends
of variation of the volume of the arc column, the resistance of the arc and the arc power
with time under the discharge are shown in Fig. 19–23, respectively. Whereas, possibility of
meeting the transition conditions (according to the equations (1)–(3)) for the double arc-glow
transition, as in Fig. 4 is illustrated by Fig. 24 and 25.
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Figure 15 – Variation of the discharge power PA

with time (discharge as inFig. 3, dotted for rArcmin = 1.5 · 10−5 m)

Figure 16 – Variation of the discharge power PA

with time (discharge as inFig. 3, dotted for rArcmax = 2 · 10−3 m)

The obtained measurements show that the volume of the discharge column is slightly
smaller compared to the arcing. The duration of the contact opening is also shorter. However,
the resistance at the transition points shows a significant increase. The course of power shows
similarity and arcing and fluorescent discharge. The transition conditions are ensured for a
small arc fault value. This possibility is also marked by dots on the power and resistance
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Figure 17 – Logical conditions (3/3 = 1; 2/3 = 0.67; 1/3 = 0.33; 0/3 = 0)

as a function of time and column radius rArc for discharge as in Fig. 3

Figure 18 – Logical conditions with time and volume

of the discharge VArc for discharge as in Fig. 3

waveforms as a function of time.
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Figure 19 – Variation of the discharge column VArc with time

for different discharge radius (discharge as in Fig. 4)

Figure 20 – Variation of the discharge resistance RA with time

(discharge as in Fig. 3, dotted for rArcmin = 1.5 · 10−5 m)

4 Conclusions

The tests carried out showed that under certain conditions of interrupting the low-power
inductive DC current, there is a spontaneous transition of the switching arc into glow dis-
charge. Controlling this phenomenon is however, very difficult due to complexity and mutual
interaction of physical phenomena both at the contact surfaces as well as inside the inter-
contact space. Mathematical stability criteria derived are practically useful provided that
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Figure 21 – Variation of the discharge resistance RA with time

(discharge as inFig. 3, dotted for rArcmax = 2 · 10−3 m)

Figure 22 – Variation of the discharge power PA with time

(discharge as inFig. 3, dotted for rArcmin = 1.5 · 10−5 m)

the values of nonlinear parameters in them are precisely determined. The research carried
out by the authors showed that although there is no repeatability of the phenomenon under
following breaking but it is theoretically possible to meet requirements of these conditions
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Figure 23 – Variation of the discharge power PA with time

(discharge as inFig. 3, dotted for rArcmax = 2 · 10−3 m)

Figure 24 – Logical conditions (3/3 = 1; 2/3 = 0.67; 1/3 = 0, 33; 0/3 = 0)

as a function of time and column radius rArc for discharge as in Fig. 3

(by, for example, decreasing discharge volume and its radius). However, it is necessary to
analyze theoretically and to examine practically as accurately as possible the thermal process
in transient states of breaking both at the surface of contacts as well as inside the contact gap
volume. Unfortunately, it requires the use of suitable high-resolution measuring equipment.
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Figure 25 – Logical conditions with time and volume of the discharge VArc

for discharge as in Fig. 3
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[1] Wísniewski G., Habrych M., Miedziński B. Approach to prediction the transition of a small
power low voltage switching arc into glowing, 20th International Symposium on Electrical Apparatus
and Technologies (SIELA): Proceedings: 3-6 June 2018, Bourgas, Bulgaria, Danvers, MA: IEEE,
(2018), 1-4. https://doi.org/10.1109/SIELA.2018.8447107.

[2] Miedzinski B., Wisniewski G., Kharin S.N., Nouri H., Grechanyuk M. Arc-to-glow tran-
sition approach for practical use in dc low-power, low-voltage electric grids, IEEE Trans-
actions on Components Packaging and Manufacturing Technology, 8:6 (2018), 932-938.
https://doi.org/10.1109/TCPMT.2018.2791480.

[3] Kharin S.N., Nouri H., Miedzinski B., Wisniewski G. Transient phenomena of arc to glow
discharge transformation at contact opening, Proc. of 21st Int. Conf. on Electric contacts, Zurich,
Switzerland, (2002), 425-431.
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of a small power, W: Električeskie kontakty i elektrody. Kiev: Institut Problem Materialovedeniâ im.

I. N. Franceviča NAN Ukrainy, (2014), 251-256. (Trudy Instituta Problem Materialovedeniâ im. I.
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Вишневский Г.В., Харин С.Н., Меджинский Б. ДОҒАНЫҢ СОЛҒЫН РАЗРЯДҚА
АУЫСУЫН ЭКСПЕРИМЕНТАЛДЫ НӘТИЖЕЛЕР НЕГIЗIНДЕ БОЛЖАУ ӘРЕКЕТI

Мақалада доғаның солғын разрядқа ауысуын таңдап алынған теориялық көрсеткiш-
тер мен эксперименттер деректерiн салыстыру негiзiнде бағалауға әрекет жасалды. Баға-
лау контактiнi ашқан кезде разряд көлемiнiң өзгеру динамикасын қамтиды. Сынақтар
разряд қуаты 10 Дж аспайтын тұрақты тоқтың төмен вольтты тiзбегi үшiн жүргiзiл-
дi. Алынған нәтижелер негiзiнде одан әрi қарай зерттеу қажеттiлiгiне қатысты сәйкес
практикалық қорытындылар тұжырымдалды.

Кiлттiк сөздер. Тұрақты тоқтың доғасын ауыстырып қосу, төмен кернеулi және аз
қуатты электр желiсi, доғаның солғын разрядқа ауысуы.

Вишневский Г.В., Харин С.Н., Меджинский Б. ПОПЫТКА ПРЕДСКАЗАТЬ ПЕ-
РЕХОД ДУГИ В ТЛЕЮЩИЙ РАЗРЯД НА ОСНОВЕ ЭКСПЕРИМЕНТАЛЬНЫХ РЕ-
ЗУЛЬТАТОВ

В статье предпринята попытка оценить возможность перехода дуги в тлеющий раз-
ряд на основе сравнения выбранных теоретических показателей и данных экспериментов.
Оценка включает в себя динамику изменения объема разряда при открытии контакта.
Испытания проводились для низковольтной цепи постоянного тока с энергией разряда
не более 10 Дж. На основе полученных результатов были сформулированы соответству-
ющие практические выводы относительно необходимости дальнейшего рассмотрения.

Ключевые слова. Переключение дуги постоянного тока, электрическая сеть низкого
напряжения и малой мощности, переход дуги в тлеющий разряд.
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