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An algorithm of solving linear boundary value
problem for the Fredholm integro-differential equation
with impulse effects

Anar T. Assanoval®, Zhanbolat M. Ubaidal??
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Abstract. Based on parameterization method an algorithm of solving boundary value problem for the
Fredholm integro-differential equation with impulse effects is proposed. Numerical implementation of

the algorithm is offered.

Keywords. Fredholm integro-differential equation with impulse effects, parameterization method, fourth

order Runge-Kutta method, Simpson method.

1 Introduction

In this paper, we study a linear two-point boundary value problem for the Fredholm
integro-differential equation with impulse effects at fixed times:

d
& = A+ ol /w P+ f(1), LA 0,5 = 1,2, € (0,T), se R, (1)
BQSE(O) + C(].%‘(T) =dy, doe€ R", (2)
Bl.%'(01 0) + 011'((91 + 0) =di, di € Rn, (3)
Bgm(eg - O) + 0223(92 + 0) =dy, dy € R", (4)
where 0 = 6y < 01 < 02 < 03 =T, (n x n)-matrices A(t), ¢(t), ¥(t), and n-vector-function

f(t) are piecewise continuous on [O,T] with possible discontinuities at the points ¢ = 6;,
j=1,2.

2010 Mathematics Subject Classification: 34A37, 34B37, 34K28, 34K45, 45J05.
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An algorithm of solving linear boundary value problem ... 7

Let PC([0,T1],61,62,R") be the space of vector-functions z(t), piecewise continuous
on [0,7] with possible discontinuities on ¢ = 6;, t = 63, and the norm be ||z||; =
max sup ||z(t)]].
i=1,3t€(6;-1;6:)

The solution of the problem (1)—(4) is a piecewise continuously differentiable function
x(t) € PC([0,T],01,62, R™) satistying integro-differential equation (1), boundary condition
(2) and conditions of impulse effects (3), (4).

Integro-differential equations frequently arise in applications being the mathematical mod-
els of some processes in physics, biology, chemistry, economy, etc. Their role in the study of
processes with aftereffects was noted in monographs [3], [4], and the overview of early works
devoted to the initial and boundary value problems for the integro-differential equations was
provided as well. Periodic and boundary value problems for impulsive integro-differential
equations were studied by numerous authors. For the various aspects of the qualitative
theory and approximate methods for the integro-differential equations without or with the
impulse effects, and their applications we refer to [1]-[13]. By parameterization method [14]
linear boundary value problem for the Fredholm integro-differential equation with impulse
effects was studied in [10]. This method is based on the dividing an interval [0, 7] into N
parts and introducing additional parameters. While applying the method to the problem
for impulsive integro-differential equations, the necessity of solving an intermediate problem
also arises. The intermediate problem here is a special Cauchy problem for the system of
integro-differential equations with parameters. But unlike the intermediate problems of above
mentioned methods, the special Cauchy problem is always uniquely solvable for sufficiently
small partition step. This property of the intermediate problem allows to establish in [10]
the necessary and sufficient conditions for the solvability and the unique solvability of the
problem considered.

The goal of this paper is to specify numerical algorithms for finding a solution of the
linear boundary value problem for the Fredholm integro-differential equation with impulse
effects. To reach the goal we use parameterization method [14].

A partition of an interval [0,77] into 3 parts with the points 6;,j = 1,2, we denote by
A3z(0) : [0,T) = [0,61) U [01,62) U[f2,T). The restriction of the function z(t) to the r-th
interval [#,_1,6,) is denoted by z,(t), i.e. z,(t) = z(t), t € [0p_1,0,), 7 =1,2,3.

Introducing parameters Ay = x1(0), A2 = 22(61), A3 = x3(02) and making the replacement
of the function

ui(t) = x1(t) — A, t€10,6y),

UQ(t) = .leg(t) — )\2, t e [91,92),

’LLg(t) = xg(t) — A3, tE€ [QQ,T),

KAZAKH MATHEMATICAL JOURNAL, 19:1 (2019) 6-19



8 Anar T. Assanova, Zhanbolat M. Ubaida

we obtain the system of integro-differential equations with parameters:

01
% = A(t)[u1 + A1) + () [/Qp(T)[ul(T) + \dr
0

02 T
+/¢(T)[u2(7) + )\Q]dT-f—/’lﬁ(T)[u;J,(T) +)\3]d7} + f(t), te€]0,6y),
01 02

01

— A(t)[uz + M) + 0 (0) [ o)+ alar

0

duz
dt

05 T
+/¢(T)[u2(7') + AoldT + /w(T)[u;;(T) + Ag]dT:| + f(t), telbh,02),
01 02

01
% = A(t)[us + As] + (1) [/%Z)(T)[W(T) + \]dT
0

02 T
+/¢(7)[u2(7)+A2]d7+/¢(7)[U3(T)+/\3]d7} +f(t), tel0,T),
01 02

initial conditions at the beginning points of subintervals:

(75} (0) = 0,
’LL2(91) = 0,
U3((92) = O,

the boundary condition:

BoA1 + Corz + Cp lim wus(t) = dp,
t—1T—-0

and conditions of impulse effects:

B+ Blt lim ul(t) + C1 Ao = ds,

~>91*0

BoXo + B2t lim O’LLQ(t) + Co A3 = ds.

—02—

KAZAKH MATHEMATICAL JOURNAL, 19:1 (2019) 6-19



An algorithm of solving linear boundary value problem ... 9

The solution to the boundary value problem (5)-(13) is a pair (A\*,u*[t]) with A\* =
(A5, A5, 03) € R3™ and uw*[t] = (uf(t),u3(t), ui(t)), where the functions uj(t), uj(t), uj(t) are
contmuous on [0y, 01), [01,02), [02,03), respectively, satisfy the system of integro-differential
equations (5)—(7), initial conditions (8)—(10) and additional conditions (11)—(13) with A\; =
AT, A2 =A%, A3 =A%

The problem (5)—(10) is called the special Cauchy problem for the system of integro-
differential equations with parameters.

Using the fundamental matrix X, (¢) of the differential equation dt = A(t)x on [0,_1,0,],
we reduce the special Cauchy problem for the system of integro-differential equations with
parameters (5)—(10) to the equivalent system of integro-differential equations:

:Xt)/tX_l(T)[ A1+ (T (/¢ [u1(s) + A\1]ds
0

/¢ [ug(s )+/\2ds+/w [us(s) + Asld >+f( ):|d7’,t€[0,(91), (14)
01

s / X0 A0+ o) ([ ol + vl

0

2 T
+ / 0(3)[uas) + Aolds + / (5) s (5) +>\3]ds> + f(T)] dr. L€ [0h,0:),  (15)

t 61
ug(t,\) = X (t) /Xl(T) [A(T)/\g + (1) < / P(s)[ui(s) + Ai]ds
02 0

02 T
+ [0 uate) + alds + [0t + Agus) n f<7>] dr, te B T).  (16)
01 02

Further, we consider the auxiliary Cauchy problems for ordinary differential equations on
subintervals:

% = A(t)z+ P(t), 2(0)=0, te€]0,6y), (17)
% — A(t)z+ P(t), 2(61) =0, t€[f,62). (18)

KAZAKH MATHEMATICAL JOURNAL, 19:1 (2019) 6-19



10 Anar T. Assanova, Zhanbolat M. Ubaida

dz
dt
where P(t) is a square matrix or vector of the dimension n, continuous on [0, 6;], [61,602] or
[02,T].
Their solutions we denote by a1 (P,t),a2(P,t) and as(P,t), respectively. Now, we set

= A(t)z + P(t), 2(0:) =0, te[0s,T), (19)

01 02 T
u—/w(s)ul(s)ds—i-/w(s)uQ(s)ds—i—/w(s)%(s)ds,
0 01 02
01 02 T
7;1 - ¢(5)d83 7&2 - w(s)d& Q/JS - /w(s)d&
0 61 02

and re-write the system of integro-differential equations (14)—(16) as follows:
ur(t; A) = ar(A, A + ar (0, 8) (1 + 1 d + ko +4s)s) + ar(f, 1), t€0,61),  (20)

ug(t, N) = a2(A,)A2 + az (@, 1) (1 + ¥1h1 + ko +shs) + az(f, 1), t€[01,02),  (21)
U3(t) = QB(Aat)Afﬂ +a3(807t)(ﬂ+@21)\1 +"$2)\2 —|—1};3)\3) +a3(fa t)7 le [927T) (22)
Multiplying both sides of (20)—(22) by 9 (s), integrating on subintervals [0, 61], [01, 2] and

[01, T], summing up both sides, we obtain the system of linear algebraic equations with respect
to u:

p=P1(A)A1 +P1(p) [+ P1Ar + hade + P3As] + i (f)

o (A) Ao + o (@) 1+ Y1 + Dok + Phsg] + ha(f) + 1h3(A)As

+h3 ()1 + D1 A1 + doda + P3hs] + U3 (f),

where
91 92
D (P) = / b(s)ar (P, s)ds, da(P) = / ¥(s)as(P, )ds
0 0

T
P)= /w(s)ag(P, s)ds
0>

We re-write this expression in the following form

p=G(Asz)pu+ D1(Az) A1 + D2(Az) A2 + D3(Az)As + g(f, As), (23)

KAZAKH MATHEMATICAL JOURNAL, 19:1 (2019) 6-19



An algorithm of solving linear boundary value problem ... 11

with (n x n)-matrices

and vectors of the dimension n:

9(f,A3) = [ (f) + da(f) + ds(f)]-
We represent the system (23) in the next form:
[I — G(As)]u = D1(Asg) A1 + D2(As) A2 + D3(As)As + g(f, As), (24)

where [ is an identity matrix of the dimention n.
Further, we assume that the matrix I — G(As3) is invertible and

[T — G(A3)]™r = M(A3).
Then, from (24) we obtain the following expression for determining p:
n= M(Ag)Dl (Ag))\l + M(Ag)DQ(Ag))\Q

+M(A3)D3(Asz) 3 + M(A3z)g(f, As). (25)

The special Cauchy problem (5)—(10) is equivalent to the system of integro-differential
equations (14)-(16). By virtue of the kernel degeneracy, this system is equivalent to the
system of algebraic equations (25) with respect to p € R™. Substituting the right-hand side
of (25) into equations (14)—(16), instead of y, and taking into account the notation, we get
the representation of functions u, (¢, \), r=1,2,3, via \j, j=1,3:

ur(t,\) = a1 (A, )1 + a1 (e, ) (M(A3) Dy (As) A\
+M(A3)Dy(As)Ag + M(A3)Ds(As)As
M (A3)g(f, Az) + U1 A1 + Padg + P3hs) + ai(f,t), te€[0,601), (26)
Us(t, ) = as(A, £)Aa + as (e, £)(M(A3) D1 (Ag)\
+M(A3)Da(A3)As + M(As)D3(Ag)As + M(As3)g(f, As)
+1AL + P2de + U3hs) + as(f.t), t € [01,02), (27)
us(t, \) = as(A, t)As + as(p, )(M(A3) Dy (As) A\

KAZAKH MATHEMATICAL JOURNAL, 19:1 (2019) 6-19



12 Anar T. Assanova, Zhanbolat M. Ubaida

+M(A3)Da(Az) A2 + M(A3)D3(Az)As + M(Asz)g(f, As)
F A+ hoda + P3N3) + az(f,t), te€ [0, T).

(28)

Substituting the right-hand side of (26)—(28) into the boundary condition (11) and the con-
ditions of impulse actions (12) and (13), we obtain the following system of linear algebraic

equations with respect to parameters \;, j =1, 3:

BoAi + CoAz + Colaz(A, T)A3 + az(p, T)(M(A3z) D1 (As) M\

+M(A3)D2(As)Az + M(A3)D3(As) Az + i A1 + 1hada + 13A3)]

=do — Co[dg((p, T)M(A?))g(fa AS) + a3(f7 T)]v
B\ + B; [a1 (A, 91))\1 “+ a1 ((,0, 91)(M(A3)D1 (Ag))\l

+M(A3)Da(As)Aa + M(A3)D3(A3)A3 + 1 A1 + ks + P33)]

+C1A2 = di — Bilai(p, 61) M (As3)g(f, As) + ar(f, 61)],
Bo)Xs + By [ag(A, 02))\2 + a2<90, 92)(M(A3)D1(A3))\1

+M(A3)Da(A3)As + M(As)D3(Ag)As + i A1 + Pado + sAs)]

+CA3 = dy — Balaa(p, 02) M(A3)g(f, Az) + az(f, 02)].
The system (29)—(31) can be written as

Q.(A3)\ = —F,(A3), \e R,

Qu Q12 Qi3 A
Q«(A3)A = | Q21 Q22 Q23 X |,
Q31 Q32 Q33

where

with
Q11 = Bo + Colas(, T)(M(A3)D1(As) + 1)),

Q2 = Colas(, T)(M(As) Da(As) + )],
Q13 = Co + Colas(A, T) + as(, T)(M(A3) D3(A3) + 13)],
Q21 = B + Bifai(A, 01) + a1 (0, 01) (M (D3) D1 (A3) + 1)),
Qa2 = Bilai(p, 61)(M(A3)Da(A3) + 1ho)] + Ch,
Q23 = Bilai(, 01)(M(A3)D3(A3) + 3)],
Q31 = Balas (e, 02)(M(A3)Dy(As) + 1)),
Q32 = By + Bylaa(A, 02) + as(p, 02) (M (A3)Da(As) + )],

(30)

(31)

(32)
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Q33 = Balaa(p, 02)(M(A3) D3(A3) + 1h3)] + Cs,

and
—F
—F(A3) = | —F
—Fy

with

—Fy = do — Colaz(p, T)M (A3)g(f, Az) + az(f, T)],
—Fy = di — Bifai(p,61) M (A3)g(f, As) + a1 (f, 01)],
—F3 = dy — Balaz(p, 02) M (A3)g(f, As) + az(f, 02)].

The linear boundary value problem for the Fredholm integro-differential equation with
impulse effects (1)—(4) is solvable if the system of algebraic equation (32) is solvable [10, p.
1188].

Numerical solution to the problem (1)—(4) we find by the following algorithm.

STEP 1. Choose Ny, N2, N3 and divide subintervals [0, 61), [01, 62) and [f2,T) into 2N1, 2N,
and 2Nj3 parts, respectively.

Solving the problem (17)-(19) by fourth order Runge-Kutta method for P(t) =
A(t), P(t) = ¢(t), P(t) = f(t), we obtain (n x n)-matrices a;(A,t), a;(¢,t), ¢ = 1,3,
and n-vector-function a;(f,t), ¢ = 1,3, respectively.

STEP 2. Multiply each (n x n)-matrices a1 (P,t),az(P,t) and as(P,t) to (n x n)-matrix 1(t),
and using Simpson’s method, we evaluate the following integrals:

01 02
) = [eearAsds, da() = [l
0 01
T
J3(A) = / (s)as(A, 5)ds,
02
01 02
da(p) = / b(s)ar(p, )ds, o) = / (s)as(ep, 5)ds,
0 01
T
da(p) = / (s)as(p, 8)ds, (33)
02
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14 Anar T. Assanova, Zhanbolat M. Ubaida

01 02
hu(f) = / b(s)ar(f,s)ds, () = / (s)an(f, )ds
0 01
T
Ja(f) = / b(s)as(f, s)ds,
02
01 02 T
1[)1 = [ ¥(s)ds, 1])2 = [ Y(s)ds, 3= /1[)(8)(15
0 01 02

Summing up the definite integrals (33), we obtain (n x n)-matrices:

G(A3) = P1(p) + U2(p) + ¥3(yp).

If the matrix I — G(A3) is invertible, then we find its inverse matrix and represent it in the
form [I — G(A3)]~! = M(A3). From the equalities (20)—(22) we define (n x n)-matrices:

Di(A3) = $1(A) + () + da(0) + ¥3(9)] - n,

Ds(A3) = Pa(A) + [1(p) + Pa(p) + U3(9)] - o,
D3(Az) = 3(A) + [1(p) + va() + P3(9)] - s,

and vector of the dimension n:

~ A~ ~

g(f, Az) = P1(f) + P (f) + 3(f).

STEP 3. Write the system of linear algebraic equations with respect to parameters:
Q+(A3)N = —F,(A3), e R (34)

Solving the system (34), we find \* = (A}, A5, \5) € R3™.
STEP 4. By the equalities:

p* = M(A3)D1(Az)A] + M(A3)Da(A3)A5 + M(A3)D3(As) A3 + M(As3)g(f, As),

we find p* € R™ and then solve the Cauchy problems:

% = A(t)x + E*(t), z(0)=X], te[0,61], (35)
% = A(t)a + E*(t), 2(61) = N5, € [61,65), (36)
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% = A(t)z+ EX(t), 2(8) = N t€ [0, 7T, (37)

where

E*(t) = o(t) (1" + V1A + o) + 1sA3) + f(2).

We find that x7(t), z5(t), «5(t) are the numerical solution to the Cauchy problems (35),
(36), (37), respectively,

Vector x*(t) composed by z7i(t), z5(t) and z%(t) on the corresponding intervals, is a
solution to the problem (1)—(4).

EXaAMPLE. Solve the linear two-point boundary value problem for the two integro-
differential equations with impulse effects:

1

%_ D+ ot /w Ddr+ (1), tE(0,1), t£02, 406, (38)
0

Bz(0) + Cz(1) = dy, do € R, (39)

B12(0.2 — 0) + C12(0.24 0) = dy, d; € R?, (40)

Box(0.6 — 0) + Cox(0.6 +0) = dy, dy € R?, (41)

where T = 1, 91 = 0.2, 92 = 06,

Al < 1 ¢ > ) 2 t—1 o) t+1 2
- t2 t?’ ) @ — 3 t2—{—1 ) — 1 t2—1 )
1 0 -1 0 1 2 0 1
By = , Co= , By = , C1 = ;
0 1 0 -1 2 1 2 1
2 0 1 3 1 0
B2: 702: 7I: ’
01 0 2 0 1
AN (EN
dO:(_?))adl:( 93 >7d2:<139>7
25 25

fi(t) = ( ~ 187300 1 (t"’; 1) —t* - 5 ) |
(12— 1) — BB0E 34y 1) _ 8100
fo(t) = ( e 0 2_ 2) — Terson ) ;
20— 7 (17 - 2) — 2 — 17 - (1 + 3) — e
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16 Anar T. Assanova, Zhanbolat M. Ubaida

f3(t) =

18029-¢ 2 2093221
T 187500 t (t + 3) -t = 187500
")

. (t2 + 2) _393029-t2 3. (t + 3) 843101

187500 46875

with impulse effects at the points t = 0.2 and t = 0.6 .
The exact solution to the problem (38)—(41) has the form:

21(t) = < 2;8 ) - ( tj;f > t€10,0.2);
z(t) = { wot) = Z;Eg > = ( ;*_32 ) t €[0.2,0.6);

| ()= ( ii;g; > _ ( t;i; ) t e [0.6,1].

Divide subintervals [0,0.2),[0.2,0.6) and [0.6,1) with step h = 0.05. Here (2 x 2)-matrix
I — G(A3) is invertible and

1= G(Ag)] ! (—1.049316025 —0.3119116102>
_G(A) = |

—0.1247687963  0.7928199221
(6 x 6)-matrix Q.(A3) and vector F,(A3) € R have the form:

1.40550 0.45770  1.13054  1.01511 —0.02679 0.88644
0.39900  1.71426  1.19129  1.50651 1.32230  0.45965
0.71926  1.38386 —1.43662 —0.39688 —1.95500 —1.76272
1.92849  0.54091  0.58176 —0.13811 —1.87638 —1.53179

—0.79901 -0.69781 0.82982 —1.22241 —1.83742 0.77322
—0.34735 —0.55520 —0.92495 —0.14342 —-1.42744 0.58381

and F,(Ag) = ( —3.80829, —6.95006, 14.11433, 9.19795, —3.59985, 4.15359 )/.
The solution to the system of linear algebraic equations is A = —(Q~! - F),

A = (—1,0.99999, 3.20000, —1.95999, 2.35999, 3.59999)’ .

0.6468002443 )

Q* (A3) -

0.1205816063
There is a numerical solution to the problem (38)—(41) with the proximity 5.7 - 1077, i.e.

max sup ||z(t) — z*(¢)|] < 5.7- 1077, where z*(¢) is the numerical solution to the problem
te(0,1]

(38)—(41).

As we can see, the numerical algorithm proposed is effective and allows us to obtain the
numerical solution to the linear boundary value problem for the Fredholm integro-differential
equation with impulse effects of higher order accuracy.

Using the values A, we find pu: pu = <
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Below in Figures 1-3, we give the results obtained by Mathcad 15

X

xp(t)=t+1

x,(8) =% —1

1
0.05

Figure 1 — Graphs of the exact and numerical solutions to the problem (38)-(41) on the interval
[0, 0.2]. The blue solid and purple dotted lines correspond to the

exact and numerical solutions, respectively

X () =t + 3

]
-

=

i3

0

Figure 2 — Graphs of the exact and numerical solutions to the problem (38)-(41) on the interval [0.2, 0.6]
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[

-LW

M

2k -

")

Figure 3 — Graphs of the exact and numerical solutions to the problem (38)-(41)
on the interval [0.6, 1]
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Abstract. Periodical boundary value problem for the Van der Pol differential equation is solved by
parametrization's method. Interval is divided into 2 parts, the values of the solution at the left-end
points of the subintervals are considered as additional parameters and original problem is reduced to the
boundary value problem with parameters. Using solutions to the Cauchy problems for the differential
equations with parameters, boundary condition, and the continuity condition at the dividing point, a
system of nonlinear algebraic equations with respect to introduced parameters is composed. Explicit form
of this system exists in exceptional cases. However, for the given parameters, the values of functions,
which present left-hand sides of the system, and their derivatives by parameters, we can find by solving
the Cauchy problems for ordinary differential equations on the subintervals. We find solutions to the
Cauchy problems by forth order Runge-Kutta method. The solution of the composed system is found
by Newton's method.
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We consider a periodical boundary value problem for the Van der Pol differential equation:

d2y

d
i e(1- yZ)—y +y —epcos(wt +a) + g(t),t € (0,T), y € R, (1)

dt
y(0) = y(T),
y'(0) = y/(T),
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where y is a position coordinate, which is a function of the time ¢, w is an angular frequency,
¢ is a scalar parameter indicating the non-linearity and the strength of damping, g(t) is a
function continuous on [0, 7.

Differential equation (1) was introduced in 1920 to describe the oscillation of triode in
the electrical circuit [1]. The Van der Pol equation has a long history of being used in both
the physical [2] and biological [3] sciences.

Boundary value problems for ordinary differential equations have been studied by numer-
ous authors (see [5]- [16] and references cited therein).

l’l(t)
xa(t)

x2(t) = y'(t), we obtain the system of nonlinear ordinary differential equations:

By introducing an unknown vector function z(t) = ( )7 where z1(t) = y(t) and

d,Il
— = t T 2
dt L2, € (O’ )7 ( )
Z2 — i +e(l— 2tz — epeos(wt +a) +g(t), L€ (0,T), (3)
with boundary conditions:
.1)1(0) = xl(T)7 (4)
.732(0) = .%'Q(T). (5)

Assume that fi(t,z1,79) = m2, fo(t, 71, 72) = —x1 + (1 — 23) 22 — epcos(wt + ) + g(t) and
write down the system of nonlinear ordinary differential equations (2), (3) in the form:

d
o =), te(0.1), e B, lal| = max|a)

In this paper the periodical boundary value problem for the Van der Pol equation is solved
by the method proposed in [4].

Let C([0,7T], R?) be a space of continuous functions x : [0,7] — R? with the norm
[|z|l1 = max ||z(t)||. A solution to the problem (2)-(5) is a continuously differentiable on

(0, T) function z(t) € C([0,T], R?) satisfying the nonlinear differential equations (2), (3) and
the periodical boundary conditions (4), (5).

Let Ay be the partition of the interval [0,7] into two parts with the points: 0 = 0y <
91 < 92 =T.

Denote by C([0,T], Az, R*) the space of function systems z[t] = (2(1)(t), z(2)(t)), where

functions z¢y : [0p-1,0,) — R? are continuous and have the finite left-sided limits
lim x4 (t), r = 1,2, with the norm [[z[ ]2 = max  sup [z (t)]]-
t=6-—0 r:172t€[97‘—179r)

Let x(t) be a solution to the problem (2)-(5) and let z(;)(t), x(2)(t) be its restric-
tions to subintervals [fo;61), [01;602), respectively. Then the system of two functions z[t] =
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(m(1)(t), (2)(t)) belongs to C([0,T], Ag, R*) and its elements r(1)(t), T(2)(t) satisfy the sys-
tem of nonlinear ordinary differential equations:

dfzil) = f(t,zw), t € [60,01), v € B2, (6)
dflf) = f(t,z(2)), t € [01,62), x(2) € R?, (7)
the boundary condition:
z(1y(6o) = tiiefio () (t), (8)
and the continuity condition:
i a0y (t) = ) (01). (9)

Introducing parameters Ay = z(1)(h), A2) = 7(2)(¢1) and making the substitutions
uy(t) = 1) () — A1), u@)(t) = 2(2)(t) — A2) in (6)—(9), we obtain a new system of nonlinear
differential equations with parameters:

dU(l)

at = f(¢, Uy + )\(1)), te [00, 1), (10)
dU(g)

e ftu@) +Aw), t el 02), (11)

initial conditions at the left-end points of subintervals:

ue1y(0o) = 0, (12)
Uy (01) = 0, (13)
the boundary condition
A ~Ag) —, lim ug) (t) =0, (14)
and the continuity condition
A li t) — Ay = 0. 1
(1) +t_>1011n_ou(1)( ) =A@ =0 (15)

A solution to boundary value problem (10)—(15) is a pair (A*,u*[t]) with elements
A= (>‘>(k1)’>‘z<2)) € R* and u*[t] = (uzkl)(t), Ufy) (t)) € C([0,T)], Az, R*), where the functions
uZ‘l)(t), Uy (t) satisfy the system of nonlinear differential equations (10), (11) and additional
conditions (14), (15) with Ay = A1y A@) = Afy) and the initial conditions (12), (13).

We suppose that the Cauchy problems with parameters on subintervals (10), (12) and
(11), (13) have the unique solutions wu(1)(t, A(1y) and u)(t, A(2)), respectively. Substituting
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corresponding solutions of the Cauchy problems into the boundary and continuity conditions
we receive the following system of nonlinear algebraic equations with respect to introduced
parameters A1), A(2):

A ~Ae) —, lim ue(tAe) =0, (16)
N a6 ) A =0 o)

We rewrite system (16), (17) as follows:
Q+(A2,\) =0,\ € R%. (18)

To find A*, that satisfies (18), we use Newton’s method. Newton’s method is an iterative
method and requires an initial guess A(?) € R*. We find it by solving the linear boundary
value problem obtained from our boundary value problem by ¢ = 0:

o, (19)

% = —x1 — epcos(wt + a) + g(t), (20)
21(0) = &1(T), (21)

22(0) = 22(T). (22)

A0 0) 2" (6o) (0)
the vector A0 = g(l)g € R' is defined by the equalities )\(1) = %0) and )\(2) =
)\(2) x5 (6o
7 (6)
2 (6)
In Newton’s method the transfer equation has the form:
AL = 2\ L AN = 0,1,
where AX™ n =0,1, ..., is a solution to the system of linear algebraic equations:
(n)
PQALL AT A\ = (20,0, (23)
with the Jacobian matrix
(n)
7 I aU(Q) (92, )\(2) )
oA Ay (01, A™)
(YL Aq)
I+ —F -1
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To find the value of Q,(Ag, \) for the given A = A(")| we solve the Cauchy problems (10),
(12) and (11), (13) with parameters ;) = )\El)) and )\(2) = >\§2)) respectively. If we denote

by U(l)(t,)\g?))) and U(Q)(t,AEg’))) solutions to problems (10), (12) and (11), (13), then these

functions satisfy the following relations:

d’LL(I) (t )\( ))

P M1
S = (AT + A, t e 8o, 00),

U@ )(GO,AE ))) 0,

(n)
d’LL(Q)(t,)\ 2 ) n n
A O f(t U2 )(t AEQ))) +)\E2))), te [91,92),

dt
(n)y _
U(z) (01, )\(2)) =0.
_Ouy (O A) . .
In order to determine ——————, we differentiate (25), (26) by A¢):

8)\(1)

(n)
0 (dU( )(t’)\(l)

)
(n) (n)y . 1
a)\(l) dt ) f (t ’U,(l)(t /\(1)) )\( )) 8/\(1) +I s

S [90, 01),

duyy (0o, AET;)
And similarly differentiating (27), (28) by A(2), we get:

=0.

(n)
0 du(2)(ta /\(2)) , (n) (n)
8>\(2)< dt ) = falt e Ag) + ) - | =53 T )

t e [91, (92),

8U(2)(91, )\E;))) B
Thus if we denote by

zy(t) = T(l)7

AL = 1t uay (AT + A0, € [0, 0),
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and

721) n n
2o)(t =%)”, AL (1) = Filtue) (8 05) +AG)), t € [01,62),

then matrix functions z()(t) and z)(t) are the solutions to the Cauchy problems for the
matrix linear ordinary differential equations on subintervals:

dz 1 n n
= AR (=) (1) + AL D), t € [60,00), (29)
z(1)(00) =0, (30)
dz 2 n
2 = A (0200 + AR (1), t € [61,62), (31)
2(2)(61) =0, (32)
with the (2 x 2)-matrices
A(t) = (n? (n) € [60,61),
1) —-1- 2837(1)1(t)a:(1)2(t) e(1— (1)1
AR(t) = @ € [01,02),
2) -1- 26x(2)1(t)x(2)2(t) e(1— (2)1 ’
(M) 3y — () (n) (n) (n) |
where z ;) (t) = Ay T U (t, )\(1)) and 1:(2)( )= Agy +ue )(t )\
Description of the algorithm.
STEP 1. We solve the Cauchy problems (10), (12) and (11), (13) on the closed subintervals
[0o,01] and [01, 0], respectively. Using their solutions u)(t, )\E?))) u(9)(t, )\gZ))) =0,1,..,

we find

) )
O (0,

Q*(A27)\(n)) ( é )) @ ( () ’ % g)a n= 0717"' .
A T e O A0)) = A

STEP 2. Compute (2 X 2)-matrices AE?)) (1), AE;)) (t), n=0,1,..., for each closed subintervals.
Solving (29), (30) and (31), (32) on the closed subintervals [fp, 01] and [#1, 2] by forth order
Runge-Kutta method, we find z(1)(61), 2(2)(f2) and according to formula (24) construct the

Jacobian matrix

7 I 8U(2) (02, )\Eg)))
Q. (Ag, \(M) _ O\ (2) _ 01
N ury (01, A1) ’ o
[ 7 I
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STEP 3. Solve the system of linear algebraic equations (23):

O\

and find AN, n=0,1,....

A)\(n) = _Q*(A2a )\(n)),n =0,1,...,

STEP 4. Determine vector A1) by the equality A*tD = XM 4 AN =0,1, ... .

ExAMPLE. Consider the system of nonlinear ordinary differential equations:

dl’l
haind U,
dt 2,
dl’Q 2
T +e(1 — z7)xe — epcos(wt + a) + g(t)

with the boundary conditions:
21(0) = z1(T),

x2(0) = zo(T).

Here T = 1,w = 2m, a = 0,p = 1, ¢ = 0.5, g(t) = —4n2cos(2mt) + cos(2mt) + 2mwe(1 —

cos?(2mt))sin(2nt) — epcos(wt + a).

0.999999999926279
—0.342961455410546
—0.999999999926273

0.342961455410548

The partition point and the initial guess: 0 = %, A0 =

(Lo ).

exact solution x*(t)

Iteration 1:

1 0 —0.87758256 —0.47942553

Q. (A2, Ny 0 1 0.47942553  —0.87758256
O\ ~ | 0.87758256  0.47942553 ~1 0
—0.47942553  0.87758256 0 -1

—0.173522158394070
—0.625737662994771
—0.173522158394068 | ’
—0.625737662994775

Q+(22, 20 =

0.006872550672743 1.006872550599022
ANO) 0.335022572146646 A1 — —0.007938883263900
—0.006872550672749 |’ —1.006872550599022
—0.335022572146652 0.007938883263896

, the
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Iteration 2:

1 0 —0.87758256  —0.47942553
Q. (Ao, Ay 0 1 0.47942553  —0.87758256
oA ~ | 0.87758256  0.47942553 ~1 0 ’
—0.47942553  0.87758256 0 ~1

0.009710178637406
—0.018336554471911
0.009710178637405
—0.018336554471907

Q. (g, XV = 1073,

—0.007196134842402 0.999676415756619
0.007928569401626 —0.000010313862274

= 21074 2@ =
A 0.007196134842409 | 10 A —0.999676415756612
—0.007928569401622 0.000010313862274
In iteration 7, we have:
1 0 —0.87758256  —0.47942553
0Q. (A2, N2y 0 1 0.47942553  —0.87758256
O\ ~ | 0.87758256  0.47942553 -1 0 ’
—0.47942553  0.87758256 0 -1

—0.124380110655409
0.031595249310507
—0.124380103994071
0.031595266241408

Q*(Ag,)\@)) — 1077,

0.662238688153718 0.999999999265294
0.000820966056705 | 108 \®) — —0.000000002419266
—0.662238323313117 ’ —0.999999999265277
—0.000821011841771 0.000000002419262

AN®) =

In Table 1, we give the numerical solution to the problem (33)—(36) which is obtained by
solving ordinary differential equations (6) and (7) with the initial conditions z(6p) = )\8 and

xz(01) = )\gg, respectively using forth order Runge-Kutta method.
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TABLE 1 — Numerical solution and true error

] e0® [0 00| @l [0 @)

0 0.9999999992 | 0.73470585-10~? | -0.0000000024 | 2.41926569-10~*
0.1 | 0.8090169936 | 0.70465189-109 | -3.6931636619 | 0.99506358-10*
0.2 | 0.3090169942 | 0.15180812-10~9 | -5.9756643300 | 0.54867754-10~7
0.3 | -0.3090169938 | 0.54566057-107 | -5.9756643332 | 3.72425201-10°
0.4 | -0.8090169932 | 1.15572973-1079 | -3.6931636628 | 1.83278814-10~7
0.5 | -0.9999999992 | 0.73472261-109 | 0.0000000024 | 2.41926303-10~7
0.6 | -0.8090169936 | 0.70466854-10~9 | 3.6931636619 | 0.99506269-10~7
0.7 | -0.3090169942 | 0.15182477-10~9 | 5.9756643300 | 0.54867754-10~7
0.8 | 0.3090169938 | 0.54564386-10~9 | 5.9756643332 | 3.72425112-10~7
0.9 | 0.8090169932 | 1.15571330-109 | 3.6931636628 | 1.83278325-10*

1 0.9999999984 | 1.55654689-10~? | -0.0000000022 | 2.21050329-10~*
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Jxymabaes J1.C., Mypcanues /1. E., Ceprazuna A.C., Kemxkeesa A.A. BAH JIEP I1OJIb
JNOPEPEHIIMAJIJIBIK TEH/IEYI YIITH ChI3bIKTHI EMEC ITETTIK ECEITT ITE-
1Y AJITOPUTMI

Ban-nep-Ilonp muddepenimaaapk TeHaeyl VIMiH TEPUOATHI MIETTIK eCell IapaMeTpliey
omiciMen mremiyieni. Apasibik €Ki 6esikke OeJiHeni, MeniMHiH Kl apaabIKTapIbIH, COJI XKaK,
IIeTKI HyKTeJepiHaeri MoHAepl KOCBIMIIA IapaMeTpJiep pPeTiHe KapacThIPhLIAIbl, aj bepis-
T'eH ecell TapaMeTPJIi IMeTTiK ecernke KenTipineni. [Tapamerpsi Komu ecenrepinin mernrimaepin,
IeKaPaJIbIK MaPTTHI 2KoHe 00Ty HyKTeCiHAeri y3iaicci3 ik MapThiH KOIAHBII €HTi31ITeH Ta-
pameTpJiepre KaThICThI ChI3BIKTBI €MeC aJiredpaJsiblK, TeHJIeyIep Kyiieci Kypbuiaiapl. Byt xyii-
eHl alfKbIH TYypJle CUpEK Karmailap/ia rana »Kasyra 60jaabl. Ajaiiga Oepiiarer mapaMerpJep
VIIiH XKYyHeHiH cos »kakK Oeirinmeri QyHKIUAIapIbIH MOHIEPIH, YKoHE 0JIAP/IbIH TapaMeTpep
OOWBIHITIA TYBIHIBLIAPBIH 2Kail quddepeHnuaiibK TeHaeyaep YImin imki apaabikrapia Ko-
I eCeNTePiH MIelnty apKbLIbl Taba ajgambi3. Ko ecenrepinin menriMaepin TOpTIiHII peTTi
Pynre-Kyrra onicimen Tabambiz. Kypouiran xKyitenis, memivi HoioTon oficiMen Tabbuiab.

Kinrrix ceznep. lertik ecen, Ban mep Ilosb Teneyi, napamerpJiey o/ici, TopTiHim perTi
Pynre-KyrTta o511 HbtoToH oici.
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Jxymabaes J1.C., Mypcamues [I.E., Cepraszuna A.C., Kemxkeesa A.A. AJI'OPUTM
PEHNIEHNYA HEJIMHENHOI KPAEBOW 3AJAYN /I JUODPEPEHINMAJIBHOTO
YPABHEHNUA BAH JTEP I1OJIA

[Tepuoandaeckast KpaeBast 3aa9a 1151 JuddepeHnaabLuoro ypasaeaust Ban-mep-Ilosst pe-
[raeTcs MeTOIOM mapamerpusalun. NHTepBan meanTcss Ha 2 YacTH, 3HAUEHUS] PEIEHUS B
JIEBBIX KOHEUYHBIX TOYKAX ITOJUHTEPBAJIOB PACCMATPUBAIOTCA KaK JOMOJTHUTEIbHBIE ITapaMeT-
PBI, & MCXOJIHAA 3ajada CBOIUTCA K KpaeBoi 3ajade ¢ mapamerpamu. VICmonb3ys perreHust
zagad Komm s auddepeHnuabHbIX YPaBHEHHWI ¢ mapaMeTpaMy, 'PAaHUIHOE YCJIOBUE U
YCJIOBHE HEIPEPBIBHOCTH B TOUKE JIeJIEHUsI, COCTABJISIETCSI CUCTEMa, HEeJIMHEHHBIX ajredpamde-
CKX ypPaBHEHMII IO BBEJICHHBIM ITapaMeTpaM. B sIBHOM Bujie 3Ty CHUCTEMY VIA€TCS 3aIUCATD
B HCKJIIOYUTEIbHBIX ciaydasax. OaHAKO /sl 3aJaHHBIX [TapaMeTPOB 3HadeHus (DyHKIMA, KO-
TOPBIE TIPEICTABIISIOT J€Bble YACTH CUCTEMbBI, M UX MPOU3BOJHBIE IO TAPAMETPAM MBI MOXKEM
HaiiTu, pemas 3aga4dn Koy i1t 0OBIKHOBEHHBIX Jud DepeHnalbHbIX yPABHEHNA Ha ITOITH-
TepBajax. Pemenns 3amga4d Komu Mbr Haxogum MetooMm Pyure-KyTThl 1eTBEPTOro MOpSIIKa.
Perierine cocraBieHHOM crCTEMbI HAXOAUTCA MeTOIO0M HbIoTOHA.

Kirouesbre cioBa. Kpaepasi 3ayiada, ypasaenne Ban nep Ilojist, MeTos mapamerpusanuu,
meton Pyrre-KyTrer werBepToro mopsigka, meron Hoioromna.
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Abstract. In this work, we consider spectral problems for the Sturm - Liouville differential operator
—u’(z) + q(x)u(z) = Au(z) on (0,1) with periodic and antiperiodic boundary conditions v’ (0) =
+u/(1), u(0) = +u(1). The Riesz basis property of the system of root functions of such problems is
proved in the case of a potential ¢(x) that is summable on an interval, when it satisfies the symmetry

condition ¢(z) = ¢(1 — z).

Keywords. Sturm-Liouville differential operator, boundary value problem, well-posedness, Green's func-

tion, eigenfunctions, eigenvalues.

1 Introduction

We consider two spectral problems for the Sturm-Liouville operator with periodic (6 = 0)
and antiperiodic (# = 1) boundary conditions:

Lou = —u"(z) + q(z)u(z) = Mu(x), x € (0,1), (1)

{m(u) = /(0) — (—-1)%/(1) = 0,

Us(u) = u(0) — (—=1)%u(1) =0, 6=0,1. (2)

By Lg we denote a closure in L2(0,1) of the operator given by the differential expression
(1) on a linear manifold of functions u € C2[0, 1] satisfying the boundary conditions (2).
It is easy to justify that the operator Ly is a linear operator on Ly(0,1) defined by (1)
with the domain
D(Lg) = {u € W3(0,1) : Uy(u) = 0, Us(u) =0} .
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For the elements u € D(Lg) we understand the action of the operator Lou = —u”(x) +
q(z)u(z) in a sense of almost everywhere on (0,1).

By an eigenvector of the operator Ly corresponding to an eigenvalue Ay € C, we mean
any non-zero vector ug € D(Lg) which satisfies the equation:

Lg’u,() = /\0U0. (3)

By an associated vector of the operator Ly of order m (m = 1,2,...) corresponding to the
same eigenvalue \g and the eigenvector ug, we mean any function wu,, € D(Lgy) which satisfies
the equation:

Loty = MoUm + Upp—1.- (4)

The vectors {ug, u1, ...} are called a chain of the eigenvectors and associated vectors of the
operator Ly corresponding to the eigenvalue Ag.

The eigenvalues of the operator Ly will be called eigenvalues of the problem (1)—(2).
The eigen- and associated vectors of the operator Ly will be called eigen- and associated
functions (EAF) of the problem (1)—(2). The set of all eigen- and associated functions (they
are collectively called root functions) corresponding to the same eigenvalue )¢ forms a root
linear manifold. This manifold is called a root subspace.

It is well known that with a real-valued potential g(x), both problems under consideration
are self-adjoint. The boundary conditions (2) are Birkhoff regular, but not strongly regular [1,
chapter 2|. Therefore, for complex-valued ¢(z), the EAF system of the problem is complete
and minimal in L3(0,1). The eigenvalues of the problem are asymptotically arranged in pairs.
From [2], [3] it follows that two-dimensional subspaces, composed of EAF, corresponding to
pairwise close eigenvalues form a Riesz basis in Ly(0, 1).

The works [4], [5], [6] are devoted to the study of conditions on ¢(x), under which EAF
of periodic problems form the usual Riesz basis.

In the work [4] for g(x) € C4]0,1], ¢(0) # q(1) the Riesz basis property of root vectors in
L5(0,1) is proved.

In the work [5] the basis property conditions in Ly(0,1) of EAF systems in terms of the
order of decreasing Fourier coefficients of a function

g(z) e Wi"(0,1), q(0)=¢"(1), 1=0,1,....,m—1.

are found.

In [6] for the case ¢(z) € WP(0,1), dD0)=¢W1)=0,1=0,1,....,5 =1, s < p, it is
proved the Riesz basis criterion in L9 (0, 1) of EAF system in terms of the order of decreasing
Fourier coefficients of the functions

4(@), Q) = /quu)dt, S(z) = QX(x).
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The main aim of this paper is to justify the Riesz basis property of the EAF system of
the periodic and antiperiodic problems (1), (2) with the symmetric potential ¢(z) = ¢(1 —z).

Note that the symmetry condition of the potential is essential for the spectral properties of
boundary value problems. In the work [7] the dependence of the spectrum on the coefficients
of the boundary conditions for an even-order differential operator with a certain symmetry of
the coefficients of the operator was investigated. There it was first shown that under certain
conditions on the coefficients of the equation, the spectrum of the operator does not depend
on some coeflicients of the boundary condition. In particular, as a result, it was shown that
the spectrum of the problem for the equation (1) with boundary conditions

u(0) = bu(1), /'(0) = v/(1), ()

with the symmetric coefficient ¢(x) = ¢(1 — z), does not depend on the coefficient b # —1 of
the boundary condition (5) and coincides with the spectrum of the periodic boundary value
problem (problems (1), (2) with § = 0).

In the work [8] it is shown that all Volterra boundary value problems for equation (1) are

given by the conditions

uw(0) = au(l), 4 (0) = —au'(1)
with @ # 1. With a # 0 the symmetry condition q(z) = ¢q(1 — x) is a criterion for the
Volterra property of this problem.

The spectral properties of problems with non-reinforced regular boundary conditions are
the subject of research by many mathematicians. From recent papers, [9]-[14], we note
that some new results are obtained for spectral problems and their applications are given in
problems for partial differential equations.

The main result of this paper is formulated as a theorem.

Theorem 1. If q(x) € L1(0,1) and q(z) = q(1 — z) for almost all z € (0,1), then the system
of eigen- and associated functions of problem (1), (2) is Riesz basis in L2(0,1).

2 On the symmetry of the root functions of Dirichlet and Neumann problems
For the equation (1) consider the Dirichlet problem
u(0) =0, wu(l) =0, (6)

and the Neumann problem
u'(0) =0, u'(1)=0. (7)

Lemma 1. Ifq(z) € L1(0,1) and q(z) = q(1 —x), then all eigen- and associated functions of
the Dirichlet problem (1), (6) and the Neumann problem (1), (7) possess one of the properties
of symmetry:

u(z) =u(l —x) or  u(x)=—u(l-—2x) forall  x€]0,1]. (8)
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Proof. We will conduct the proof only for the Dirichlet problem. The proof of the Neumann
problem is similar. Let AP be eigenvalues of the Dirichlet problem (1), (6) of multiplicity
mP + 1, to which there correspond the normalized eigenfunctions vyo(z) and (maybe) chains

of adjoined functions vij(z), j =1, mP:
D D
Lpvko = Mg vgo s Lpvkj = A\ Ukj + vkj—1-

Denote

vkij = vj(x) £ (1 — ).

It may turn out that U;Lj (x) =0or vk_](x) = 0. But not at the same time. It is obvious that
all these functions satisty one of the symmetry conditions (8).
It is easy to see that the functions v}};(z) and vy () are solutions of the Dirichlet problem

Lo(z) = APv(x), z € (0,1); v(0)=0, v(1)=0.

Those of them that are not identical with zero are eigenfunctions. Since the Dirichlet problem
cannot have two (linearly independent) eigenfunctions corresponding to one eigenvalue, there
is only one eigenfunction v}, (z) or vy, (z). And it satisfies one of the symmetry conditions
(8). If AP is a multiple eigenvalue of the Dirichlet problem, then the corresponding functions
v,:rj (or vk_]) form a chain of associated to vy, (respectively to v;,) functions. Obviously, they
have the same symmetry property from (8), as the function v,:ro (respectively v,).

We show that there is no EAF, that does not possess any of the symmetry properties (8).
Consider the system of functions

{Uljj(x% ,Urji(w% j = 07mkD7 1= Ovmr?}

9)

kneN

Some of these functions may turn out to be zero, but we do not pay attention to this. We
prove that system (9) is complete in L2(0,1). Indeed, suppose g(z) € L2(0,1) is orthogonal
to all functions of system (9). Then

1 L 1
0= (v, g) = /0 vk (2)g(@)dz = /O o () % vy (1 — 2)] g(@)dx

1 o L 1 - 1
= /0 vgj(r)g(x) £ g (1 — x)g(x)dr = /0 vgj(x)g(v)dx i/o vk (1 —2)g(x)de.

If we let x — 1 — z, then note that

1 7 0 1
/0 v (1 = )g(@)do = / ok (2)g(1 — 2)d(1 — x) = /0 vk (2)g(1 — 2)da
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then

0= /01 v () [g(a:) +g(1 —m)} dr, k€N, j :W.

Since the system {vkj(x),j = O,mkD}]C v is complete in L3(0,1), then g(z) £ g(1 —z) =0
€

= g(x) = 0 for all € (0,1), which proves the completeness of system (9) in L2(0,1). The
system (9) remains complete when removing identically zero functions from it. All nonzero
functions of the system (9) are EAF of the Dirichlet problems (1), (6). Since this system of
functions is complete in Ly(0,1), the problem has no other EAF. All elements of the system
(9) possess one of the symmetry properties (8). Lemma 1 is proved.

3 Proof of the main theorem

Let {vkj(x),j = O,mkD}k v be a EAF system of Dirichlet problems (1), (6), possessing
€
symmetry property

v(z) = (-1)%(1 — ), for every z €[0,1], (10)

and let )\kD be their own eigenvalues; and let {wm(x),i =0,ml } N be a EAF system of
ne
Neumann problems (1), (7), possessing symmetry property

w(z) = —(=1)%w(1 — z), for every x €1[0,1], (11)

and let A be eigenvalues of the Neumann problem corresponding to them.
By direct calculation it is easy to verify that the functions vy;(x) and wy;(z) are the EAF

of the original problem (1), (2), corresponding to the eigenvalues AP and A%, respectively.
If we show that the system
{vkj(w), wpi(x), j = O,mkD7 i = O,mflv}k’neN (12)

is complete in Ly(0,1), then problem (1), (2) has no other EAF.

The space Lo(0,1) is divided into a direct sum of two subspaces: a spaces Lj (0,1) of
functions, possessing symmetry property (10), and a space L; (0, 1) of functions, possessing
symmetry property (11). By virtue of the proven Lemma 1 the system {vy;(z)}, 5 is com-
plete in L3 (0,1), and the system {wpi(z)},c is complete in L; (0,1). Therefore, system
(12) is complete in Ly(0,1). Therefore, the problem does not have an EAF of other kind.

Thus, the EAF system (12) of the periodic problem (1), (2) consists only of EAF of the
Dirichlet problem, possessing symmetry property (10), and of EAF of the Neumann problem
with the symmetry property (11). Obviously, the system {vg;(x)}, .5 forms the Riesz basis
in L3 (0,1), and the system {wy;(z)},cx forms the Riesz basis in L; (0,1). Therefore, the
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EAF system of the periodic problem (1), (2) forms the Riesz basis in L2(0,1). The theorem
is proved.

Since the Dirichlet and Neumann problems are strongly regular, they can have only a
finite number of associated functions. Therefore, from the course of the proof of the theorem
we obtain

Corollary 1. If q(x) € Li1(0,1) and q(z) = q(1 — z), then the periodic boundary value
problems (1), (2) may have no more than a finite number of associated functions.

It is interesting that Lemma 1 has a converse.

Lemma 2. Ifq(z) € L1(0,1) and all EAF of the periodic problem (1), (2) or of the Dirichlet
problem (1), (6) or of the Neumann problem (1), (7) have one of the properties of symmetry
(8), then g(z) = q(1 — ).

Proof. Take only the odd EAF wuy;(x), that is, having the property of symmetry ug;(x) +
ugj(1 —x) = 0. They satisfy the equation

—uy; (@) + q(@)urj(r) = Mpug () + upj—1(z), 0 <z < 1.

Integrating it over the interval 0 < z < 1, we find

1
[ at@yus(wyiz =o.
0

Since the odd EAF {uy;(x)} are complete in the subspace of odd functions from L(0, 1),
then ¢(z) is an even function. Lemma 2 is proved.
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Kommernos T.II1., Kaxapman H., CanpibekoB M.A. CUMMETPUAJIBI I[TIOTEHIINAJI-
bl TIEPNOATHI ITYPM-JINYBUJIJIb ECEBIHIH TYBIPJIIK @YHKIWAJIAPHI TY-
PAJIBI

Byn makanana (0,1) kecingicinge u'(0) = £u/(1), u(0) = +u (1) nepuoxrsl KoHe aHTH-
nepuoAThl mekapasblk maprrel —u’ (x) + ¢(x)u(z) = Au(z) rypy—/Inysums auddepen-
[UAJJIBIK OLEPATOPbI YIMIH CHEKTPAJIBI €CENTep KapacThIpblIral. KapacThbIpbUIbIT OTHIPFaH
ecenTiy apaJblKTa KOCBIHAbLIATHH ¢(z) norennumansl ¢(x) = ¢(1 — x) cuMMerpust mApTHIH
KaHAraTTAHILIPATHIH 60JIca, OHBIH TYOIpJIiK (MeHIIKTI »KoHe Kocasukbl) dbyHKIusIapsl Pucc
basuci 60JIATHIHDBI JIDJIETICHTeH.

Kinrrix cesnep. Jlamnac omeparopsl, mettik ecen, Camapckuit-lMlorkun TekTec ecen, Ku-
CHIHIBLIBIK, ['puH (DYHKIUSICHI, MEHIKTI (DYHKIIUSIAD, MEHIITIKTI MOHJIED.
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Kansmenos T.I1., Kaxapman H., Cagpioexos M.A. O KOPHEBBIX ®YHKIINN ITEPU-
OJMNYECKON 3AJAYN IITYPMA-INYBIJLJISA C CUMMETPUYHBIM IIOTEHIIN-
AJIOM

B 910it craThe paccMaTpuBaeTCs ClieKTpabHbIe 3a1a491 Jyist 1uddepeHnnagIbsHoro onepa-
ropa lIrypma-JInysumnsa —u” (x) 4+ q(z)u(z) = Au(z) na orpeske (0,1) ¢ nepuognueckumu u
anTuIeprouIeckuMu KpaesbiMu yesosusamu v’ (0) = +u/(1), u(0) = £u(1). Jokasana 6a3mc-
HoCTb Prcca cucrembl KOpHEBBIX (COBCTBEHHBIX U IIPHCOEIMHEHHBIX) (DYHKIMI paccMaTpuBae-
MBIX 337129 B CJIy4ae CyMMUPYEMOro Ha MHTepBaJie IoTeHIpasa ¢(), Korja ol yI0BIeTBOPSIeT
yesoButo cummerpun ¢(x) = (1 — x).

Kirouespre cioBa. Omepatop Jlamraca, kpaepast 3aiada, 3amada Ttuma CaMapcKoro-
Nonkuna, KoppekrHocts, nyukius ['puna, cobcTBeHHbIe (DYHKIUN, COOCTBEHHBIC 3HAYUEHUS.
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Abstract. This work is devoted to the solvability of some non-classical boundary value problems for
the polyharmonic equation. These problems generalize the Dirichlet and Neumann problems for the
polyharmonic equation. The considered problems are nonlocal boundary value problems of Bitsadze-
Samarskii type. The investigated problems are solved by reducing them to the Dirichlet problem and the
Neumann type problems. Theorems on the existence and the uniqueness of the problem’s solution are
proved and exact solvability conditions are received. We obtain necessary and sufficient conditions for
the solvability of the Neumann type problem for the polyharmonic equation in the unit ball. By applying
Green's functions, as well as the statement of the existence of a solution to the Dirichlet problem, the

obtained integral representations for the solutions are constructed.

Keywords. Polyharmonic equation, nonlocal problem, involution, Dirichlet problem, Neumann type

problem, uniqueness, existence.

1 Introduction

Nonlocal boundary value problems for elliptic equations in which boundary conditions are
given in the form of a connection between the values of the unknown function and its deriva-
tives at various points of the boundary, are called the problems of the Bitsadze-Samarskii
type [1]. Numerous applications of the nonlocal boundary value problems for elliptic equa-
tions in problems of physics, the engineering, and other branches of the science are described
in detail in [2], [3]. Solvability of nonlocal boundary value problems for the elliptic equations
is discussed in [4]-[8]. Boundary value problems with involution for elliptic equations of the
second and fourth orders, as a special case of nonlocal problems, are considered in [9]-[13].
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Let Q = {x € R" : || < 1} be the unit ball, n > 2, and let 92 be the unit sphere. For any
point x = (21,29, ,x,) €  we consider the point z* = Cz, where C is a real orthogonal
matrix CCT = E. Suppose also that there exists a natural [ € N such that C' = E .
0
Ok’
k > 1, v be the unit vector of the outward normal to 92, and let DY = I be the unit operator.
In this paper we study the following nonlocal boundary value problem

Let m > 1, oy, be some real numbers, p take one of the meanings p = 0 orp = 1, D¥ =

(=A8)"u(z) = f(z), e, (1)

DEFPy(z) + g, DEYPu(z*) = gp(), 2 € 00,k =0,1,...,m — 1. (2)

By a solution of the problem (1), (2) we mean a function u(z) € C?™(Q) N C™P~1(Q)
satisfying conditions (1), (2) in the classical sense. In the case a, = 0 when p = 0 we
obtain the well-known Dirichlet problem [14] and, when p = 1 we have the Neumann type
problems [15], [16].

2 Auxiliary statements

First we note that if x € Q, or z € 09, then z* = Cx € Q, or z*¥ = Cz € 01,
respectively, since the transformation of the space R™ by the matrix C' preserves the norm
|z*|? = |Cz|? = (Cx,Cx) = (CTCx,2) = |z|%

The case z* = —z investigated in [9]-[13] is a particular case of the situation considered
here since for C = —E we have CCT = ~E(—F) = E and | = 2.

It is obvious that the transformation made by the matrix C' can be also a rotation in the
space R", for example, if C = 0;10302 e 02;22, where

E; 0 0 0
o= 0 cose —singp 0
® 0 sing cosy 0 ’
0 0 0 E,_io
E; is the unit ¢ x ¢ matrix and ¢ = 1,n — 2. This is so since CT = C” 2 ...0?2 ' and

—p2~—p1
n n—2
hence CCOT = Cl C2 C'%_QQC_w C’%mClm
Consider the Operator
Icu(z) = u(Cx) = u(z™).

In view of what has been said above, this operator is defined on functions u(x),z €

n
2. We also consider the operator Au = ) wju,, (x) that is homogeneous, preserves the

polyharmonicity of function u(z), and has the property D™ u|pq = Al™u|sq, where Al =
A(A—=1)...(A—m+1) [15]. Let C’, and C?,,, be the i-th column and i-th row of the matrix
C, respectively.
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We prove two simple lemmas. Let u(z) be a twice continuously differentiable function in
Q.

Lemma 1. Operators A and Ic are commutative Alcu(x) = IcAu(x), and also the equality
Vic = IcCTV holds, and operators A and Ic are also commutative.

Proof. We can write the operator A in the form Au = (z, V)u. Since

S Tou(r) = 5 -u(C) = 5 ul(Chys ) (Cls )
= 3" et (2) = (Cl IV u(w) = Tl Vi), G
then )
Alcu(z) = Au(Cx) le Z:c, Ceots I Vu(z))

=1

= (Z xiCéol,ICVu(z:)> = (Cz, IcVu(z)) = Io(z, Vu(z)) = IcAu(z).
Further, due to the formula (3), we find

0? 0

@ICU@) = O,

7

Ie(Cop, VYu(z) = Io(Copr, V) ?u()

and therefore

AICU ZIC Ccol7v) ( _IC‘( colav)7-~'7( ?OZ,V))|2U(.%)

i=1
- IC\CTv\Qu(x) = I6(CTV, 0TV )u(z) = Ic(CCTV, Vu(z) = IcAu(z).
At last,
Vicu(x) = Ic((Cly, V), - -, (Cly, V))u(e) = Io(CTV)u(x).

Lemma is proved.

Corollary. If the function u(x) is polyharmonic in Q, then the function u(z*) = Icu(x) is
also polyharmonic in €.
Indeed, due to Lemma 1, A™u(z) =0 = A" Icu(z) = IcA™u(z) = 0.

Lemma 2. The operator 1 + alg, when (—a)! # 1 is invertible and the operator

1
Jy= —— —a)k1k 4
I (o) ];)( )G (4)
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1s tnverse to 1 + alc.

Proof. It is easy to see that

-1 -1 l

(Z ) 1+ alc)u(z) = (Z ) I = (- IC)“ z)
k=0 k=1

_ (E _ (_a)lﬂc) u(w) = (1 — (—a)yu(z).

Thus, if (—a)! # 1, then we can divide both sides of the equality by 1 — (—a)’ and hence
the operator J, is inverse to 1 + alo. Lemma is proved.

3 Dirichlet and Neumann type problems

In this section we study the following problem:
(—A)™0(x) = p(a), =€, (5)

DEPu(a)|on = Yk(x), = €09Qk=0,1,..,m—1, (6)
where p =0 or p = 1.
The following statements are true.

Theorem 1 [14]. Letp =0, 0 < XA < 1, p(z) € CMNQ), Yp(x) € CM™MI7F(9Q), k =
0,1,...,m—1. Then a solution of the problem (5), (6) exists, is unique and belong to the class
C)\+2m(Q) N C'/\er*l(f)).

Theorem 2 [16]. Let p = 1, p(z) € CH(Q), Yi(x) € CK(Q), k =0,1,...,m — 1. Then for
the solvability of the problem (5), (6) the following condition is necessary and sufficient

/Z s ( ka_—kl_ L )(2m — 2k — 1))y (x)dS,

aq k=1

_ 1)m71

p
+/(‘(2|m_2)!!g0(x)dx = 0. (7)
Q

If the solution of the problem exists, then it is unique up to a constant.

4 Uniqueness

In this section we investigate the uniqueness of the solution of the problem (1), (2). The
following proposition is true.

Theorem 3. Let (—ay)! # 1, and a solution of the problem (1), (2) exists. Then
1) if p =0, then the solution of the problem is unique;
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2) if p =1, then the solution of the problem is unique up to a constant.

Proof. To prove the uniqueness of the solution of problem (1), (2), consider a function u(z)
which is a solution of the homogeneous problem (1), (2) (all right-hand sides in the problem
are zero). If the problem (1), (2) has at least two solutions, such a function exists. It is clear
that u(z) is a polyharmonic function, satisfying the following homogeneous conditions

DEPy () + oy, DETPu(2*) -

A1 4 apIo)u(z) =0 k=0,1,...,m—1. (8)

Since (—ay)! # 1, then applying the operators J,, from (4) to the equality (8) and using
Lemma 1, we get

0 = Jo, A1+ g do)u(e) = AL, (1 + aplo)u(z) = A HPly(a)

= DFFPy(z), x € 9,

or
DEtP =0.
v rul)|

Therefore, if u(z) is the solution of the homogenous problem (1), (2), then it is also the
solution of the homogeneous problem (5), (6). Then, due to uniqueness of the solution of the
Dirichlet problem (the case p = 0), we obtain the uniqueness of the solution of the problem
(1), (2). Similarly, by the statements of Theorem 2, we obtain the remaining statements of
this theorem. Theorem is proved.

5 Existence

In this section we present a statement on the existence of the solution of the problem (1),
(2).
Theorem 4. Let (—ay)! # 1,k = 0,1,....,m — 1, and f(x), gp(x),k = 0,1,....,m — 1, be
smooth enough functions. Then

1) if p=0, then a solution of the problem (1), (2) exists and is unique;

2)ifp=1, and ag; # =1,k = 0,1,...,m — 1, then the necessary and sufficient condition
for the solvability of the problem (1), (2) has the form

k+1<2m k—1 >(2m—2k—1)!!
le

g d
0

m—1

(Jz|* = 1)
—I—/ ( 2’m _12 f(z)dz = 0. (9)
Q
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If the solution exists, then it is unique up to a constant.

Proof. Consider the auxiliary Dirichlet problem
(=A)™v(z) = f(z), zeQ, (10)
DEYPy () = Jo gr(x), =€ 0Q,k=0,1,...,m—1, (11)

where the operator J,, is defined in (4). We check that its solution v(z) is also a solution of
the considered problem (1), (2). Indeed, the function v(x) satisfies the equation (1). Applying
the operator 1 + aylc to the condition (11) and using Lemmas 1 and 2, we get

gi(z) = (1 + aple) Ja,gi(z) = (1 + arle) DEPo(x)] o0
= (1 + o) AFFPly(2) o = AFFPL(1 4+ apIo)u(2)]an
= DEYP(1 + o Ic)v(z)|an = DETPo(x) + ap DETPo(2*)|sq,

where z € 09, i.e. the condition (2) holds. So, the function v(z) is the solution of the
problem (1), (2), and, if v(x) exists, then the problem (1), (2) is solvable.

The case when the solution of the problem (10), (11) does not exist but u(x) exists, is
impossible. Indeed, let u(x) be a solution of the equation (10). Applying the operator J,,
to the condition (2) and using Lemmas 1 and 2, we have

oy, 9k(@) = Jo,, (DY Pu() + ar DY Pula”))|og

= Jo DETP(1 + aglo)u(z) oo = Ja, AFTPI(1 + agIo)u(z) o0
= ALY (1 + aplo)u(z)]og = AFPlu(z) = DEYPu(z)| a0,

where x € 09, i.e. condition (11) holds. Hence, u(z) is the solution of the problem (10),
(11), which contradicts to the assumption. Problems (1), (2) and (10), (11) are solvable
simultaneously. Smoothness of the functions J,, gx(x) and gi(z) are the same.

Using Theorems 1 and 2, we can find the solvability conditions of the problem (10), (11).
Obviously these conditions will be the solvability conditions of the problem (1), (2).

1) Let p = 0. In this case, by Theorem 1, for any functions on the right-hand sides of the
problem with a given smoothness its solution exists and is unique.

2) Let p = 1. In this case, by Theorem 2, the necessary and sufficient solvability condition
of the problem (10), (11) is the integral equality

/ zmj (—1)k+1 ( 2mk‘_’“1‘ 1 )(Qm — 2k — 1)V, gu(2)dS,

z 2 q\ym—1
+ / U(Q‘m_ll)!!f(az)dm = 0. (12)
Q
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Let us transform the integral on the right-hand side of (12).

Lemma 3. Let the function p(x) be continuous on 02 and C' be an orthogonal matriz, then

/90(C$) S, = /go(:z) dsS,.

o0 o0

Proof. Let the function w(x) be a solution of the Dirichlet problem for the Laplace equation
in 2 with condition w(x)|sn = ¢(x), x € 02. Then the function w(Cz) is a solution of
the Dirichlet problem for the Laplace equation in © with the condition w(Cx)|sq = ¢(Cx),
x € 0f). Therefore, due to the Poisson’s formula, we have

[etcayas, = [w(cz)ds, = wuwo) = [ ow)ds..

o0 o0 o0N

where w,, is the area of the unit sphere. Lemma is proved.
Using Lemma 3, the condition o # —1, and taking into account that the natural degree
of the orthogonal matrix is an orthogonal matrix as well, we find

-1
/ P A—— ST / I8.gx(z) dS,

89 = (aw) = o0

-1

= % Z (—o,)? /gk;(Cq:U) dSp = —— Z (—ag)? /gk(x) dSy
o0 =

1- C‘Qk) q=0

-1

(1+ o) gk(z)
- (—an)? [ gi(z)dS, = | 222 gs,.
1+ o)1 — (—a— k) ; g aég’“ 64 1+ o

This implies that the condition (12) can be transformed to the form (9). Theorem is
proved. [

6 Representation of the solution

In this section we give a method of constructing solutions of the problem (1), (2) with
homogeneous boundary conditions.

Theorem 5. Let gp(z) =0,k =0,1,....,m — 1. Then
1) if p =0, then the solution of the problem (1), (2) can be represented in the form

u(z) = / G (e, y) () dy,
Q
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where Gp(x,y) is the Green’s function of the Dirichlet problem for the polyharmonic equation
(1) in Q;

2)if p=1 and (9) holds, then the solution of the problem (1), (2) can be represented in
the form

1
u(z) = / “i‘”) ds+C, (13)
0

where C is an arbitrary constant and v(x) is a solution of the following Dirichlet problem

(—A)™(x) = (A+2m) f(x), z € Q;

D%@mm:Qk:QL“ﬂn—mezQ

(14)

Proof. The auxiliary problem (10), (11), whose solution coincides with the solution of the
problem (1), (2) (see the proof of Theorem 3), with the help of properties of the operator A

takes the form
(=A)™(x) = f(z), z € Q,

A[k+p]v($)‘89 = 07 kj = 07 17 ...,m - ]-

1) Let p = 0, then in this case the auxiliary problem is the Dirichlet problem and its
solution coincides with the solution of the problem (1), (2) (see. [17]):

o) = u(w) = [ Gple.9)F(w) dy (15)
Q
2) Let p = 1. Boundary conditions for the auxiliary problem take the form
OFv(x)
k+1 — _ _
Al ]’U(x)|aQ: ok lon =0,k =0,1,....m — 1.

Let us apply the operator A + 2m to the polyharmonic equation of the problem. Due
to the equality A¥Au = (A + 2k)AFu and denoting w = Av, for w(z), we get the following
Dirichlet problem (14):

(=A)"w(x) = (A4 2m) f(x), x € Q,

w(z)]on = 0, AlFlw(z)so =0, k=1,2,....,m—1.
By the formula (15) we find

w(z) = / Gl 1)(A+4)f(3) dy.
Q
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As in [16] equation w = Awv in the class of smooth functions v(x) has a solution only if
w(0) = 0, and this solution can be written in the form

1
u(z) = / w(ssx) ds + C.
0

Theorem is proved.
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Kapaunk B.B., Typmeros B.X. [IOJJTMTAPMOHUSI/IBIK TEH/IEY YIIIH KEBIP
BENJIOKAJI IIETTIK ECENITEPIIH, MIEIIIIIMILIITT KO

Byn 2KyMbIC MOUTapMOHUSJIBIK, TEHJIEY YIINH Keibip KJIaCCUKAJbIK, eMeC MEeTTIK ecenTep-
JIH enmiIiMIiri Mocestecine apHasraH. Byt ecenrep MoMrapMOHUSIIBIK, TeHaey yimia Jlupux-
Jjie ykoHe Heiiman ecernrepin xasmbuiaiiisl. KapacteipbuiaTeia ecenrep burnanze-Camapckmin
TeKTec OesIoKaJI IIeTTIK ecenTep OOJIBIT TaObLIaIbl. 3epTTeseTiH ecenTep ojapabl Jupux-
Jjie ecebine 2xkone Heitman TypiHzeri ecenke KeJaTipy apKpuibl mermmiei. Ecenriy menriMiniyg
bap 2KoHe YKaJFbI3 O0IYhI TypaJjbl TeopeMaJsap Io/e/IeHren. Bipik mapga moaurapMOoHusi-
JIBIK, TeHyiey yiriHn Heliman Typiejeri meTTiK ecenTiH MemIiMIIIINHIH KOXKeTTi KoHe »KeT-
KUTIKTI mapTTapbl anblkTaaral. ['pun GyHKIMAIapblH KOJITaHa OTBIPHII, COHTal-ak, Jupuxiie
ecebiHiH mrentiMiaig 6ap 60JIybl TYypPaJIbl TYXKBIPBIMIbBI MaiiaaaHa OTBIPBII, KapaCTbIPLLITaH
ecerrTep/Iig, MmentiMepl YITiH HTerpaIIbK KelinTemMeliep aJIbIHFaH.

Kirrrix cezaep. [lonmurapmonusiibik, TeH ey, beiyiokas ecen, waBotonus, Jlupuxie ecebi,
Heitman Typinzgeri ecen, »KaJrbI3bIK, 6ap 60I1y.
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Kapaunk B.B., Typmeros B.X. O PABPEIHIMIMOCTI HEKOTOPBIX HEJIOKAJIb-
HBIX KPAEBBIX 3AZAY J1JIA ITOJIUTAPMOHNYECKOI'O YPABHEHIM A

Jlannas paboTa MOCBAIEHa BOIIPOCAM Pa3PEIIMMOCTA HEKOTOPBIX HEKJIACCHYECKUX Kpae-
BBIX 3324 JIJIs TIOJIUTAPMOHUYIECKOTO YPAaBHEHUS. DTH 3a1a4u 0000maoT 3agaun Jupuxie u
Heiimana mjist moturapMOHUYECKOTO ypaBHeHus. PaccMarpuBaeMble 3aa91 SIBJISIOTCS HEJIO-
KaJIbHBIMU KpaeBbIMU 3aadamu Tuiia bunaaze-Camapckoro. Mcciesyemble 3a1a4u pemaioT-
cd IyTeM cBellenus ux K 3asade upuxie u 3amade tuna Hefimana. /loxkazaHnbl TeopeMbl O
CYIIECTBOBAHUU ¥ €JIMHCTBEHHOCTU perreHus 3aja4u. [losyuensr HeoOXo/iuMble U JIOCTATOY-
HbIE YCJIOBUA PA3pennMocTu 3a1a4u Tuita HefiMana 1718 HeJIOKAJIHLHOTO ITOJIUTAPMOHUIECKOTO
ypaBHeHUs B eimHudHoM Iape. [Ipumenss dyukiun ['puna, a Takyke yTBepXKieHnue o CyIie-
CTBOBAHUU pellleHnusd 3a7auu Jupuxie, moaydeHbl HHTErPAJIbHbIE IPEJICTABACHUS JIJI Pele-
HUII pacCMaTpuBaeMbIX 331a4.

KmrogeBrre ciroa. [losmmrapMoandecKoe ypaBHeHUE, HeJIOKaJIbHas 3aa49a, WHBOJIIOINA, 3a-
nada dupuxie, 3amada tuna Helimana, e TMHCTBEHHOCTD, CYIIeCTBOBAHUE.
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Abstract. In this short note, we prove the reversed Hardy-Littlewood-Sobolev inequality on homo-
geneous Lie groups. Proof of this inequality is based on reversed Young's inequality and reversed

Marcienkiewicz interpolation theorem.

Keywords. Hardy-Littlewood-Sobolev inequality, Reversed Hardy-Littlewood-Sobolev inequality, frac-

tional integral, homogeneous Lie group.

1 Introduction

In their pioneering paper [1], Hardy and Littlewood proved the following theorem:

Theorem 1. Let 1 < p < ¢ < oo and u € LP(0,00) with % = % + A —1, then

| Txull a,00) < Cllwll (0,00 (1)

where C' is a positive constant independent of uw. Here T is the one dimensional fractional
integral operator on (0,00) given by

Tyu(z) = /oo W) g o<a<t 2)
o lz—yP
The multidimensional extention of (2) is
IAu(ﬂz):/RN |;L_(y;|)\dy, 0<A<N. (3)
Then, the corresponding generalisation of the Hardy-Littlewood inequality was proved by
Sobolev in [2]:
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Reversed HLS inequality 51

Theorem 2. Let 1 < p < ¢ < oo, u € LP(RY) with%: + 2 —1. Then

1
P

[xull Loy < Cllull o ey, (4)
where C' is a positive constant independent of u.

Later, in [3] Stein and Weiss obtained the following two-weight Hardy-Littlewood-Sobolev
inequality, which is also known as the Stein-Weiss inequality.

Theorem3.Let0<)\<N,1<p<oo,a<M,B<ﬁ a—i—ﬂZOand%:

P q’
Ly Mol 1 If1<p<q<oo, then

2~ Iyt oy < Clllz|ull o), (5)
where C' is a positive constant independent of u.

So, in the papers [4], [5] and [6], authors showed reversed Hardy-Littlewood-Sobolev
inequality on the Euclidean space RY.

Theorem 4. For any 1 < N < A, % <p<1andq given by

11 A

i p N ©

there exists a constant C = C(n, \,p) > 0, such that for all nonnegative u € LP(RY),
[ Dxull Loy = Cllull Lo @)y (7)

Nowadays, there is a number of studies related to this subject on RY. We refer the above
excellent presentations [4], [5] and [6] as well as references therein for further discussions.

At the same time, there is another layer of intensive research over the years related to the
Hardy-Littlewood-Sobolev inequalities in subelliptic settings. As expected, the subelliptic
Hardy-Littlewood-Sobolev inequality was obtained on the most important example of the
Heisenberg group by Folland and Stein in [7] (see, also [8]). In this case, we also note that
the optimal constant for the inequality is given by Frank and Lieb in [9] (in the Euclidean
case this was done earlier by Lieb in [10]). Futhermore, in this direction systematic studies
of different functional inequalities on (general) homogeneous Lie groups were initiated by the
paper [11]. Also, Hardy-Littlewood-Sobolev inequality in homogeneous Lie groups is proved
n [12]. We refer to the open access book [13] for further discussions in this direction.

Let us consider Riesz operator in the following form:

Ifyu(az):/ uly) dy. (8)

G ly x|
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The main result of this paper is as follows:

e Reversed Hardy-Littlewood-Sobolev inequality: Let G be a homogeneous Lie
group with 1 < @ < a, Q < p < 1, such that

«

1 1 «
qg p Q Q
Then we have
[Hg-atllLee) = Cllullr (), (10)

where C' is a positive constant independent of u.
2 Reversed Hardy-Littlewood-Sobolev inequality

In this section we prove the reversed Hardy-Littlewood-Sobolev inequality on homoge-
neous Lie groups. In order to do it, first we present reversed Young inequality on homogeneous
Lie groups.

Let us recall that a Lie group (on RY) G with the dilation

Dy(z) == (Axy,...,\"NxN), v1,...,0, >0, D, :RY 5 RV,

which is an automorphism of the group G for each A > 0, is called a homogeneous (Lie)
group. For simplicity, throughout this paper we use the notation Az for the dilation Dj.
The homogeneous dimension of the homogeneous group G is denoted by Q :=v1 +...+ vy.
Also, in this note we denote a homogeneous quasi-norm on G by |z|, which is a continuous
non-negative function

Gz~ |z| €]0,00), (11)

with the properties
i) |z| = |z~ for all x € G,
ii) [Azx| = A|z| for all z € G and A\ > 0,
iii) |z| = 0 iff z = 0.

Moreover, the following polarisation formula on the homogeneous Lie groups will be used in
our proofs: there is a (unique) positive Borel measure o on the unit quasi-sphere & := {z €
G : |z| =1}, so that for every f € L'(G) we have

/ f(z)dx = / / f(ry)r@tdo(y)dr. (12)
G 0 S
The quasi-ball centred at x € G with radius R > 0 can be defined by

B(z,R):={y € G: |z 'y| < R}. (13)

KAZAKH MATHEMATICAL JOURNAL, 19:1 (2019) 50-58



Reversed HLS inequality 53

Note that the standart Lebesque measure on RY coincides with the Haar measure on the
homogeneous Lie group G. We refer to [14] for the original appearance of such groups, and
to [13] for a recent comprehensive treatment.

Let us recall that for a measurable function f on G with 0 < p < oo, for weak LP norm
we define

P
1 £llzg, = inf{= > 0: m{|f| <t} < T},

In the case p < 0 we define weak LP norm in the following form
z
||f”L€V =sup{z > 0:m{|f| <t} < t?}'

Definition 1. For ¢ < 0 < p < 1, we say operator L is of the weak-type (p, q), if there exists
a constant C'(p, ¢q) > 0, such that for all u € LP(G),

||u||LP(G)

¢

Proposition 1. (Proposition 2.5, [4]) Let L be a linear operator which maps any nonnegative
function to a nonnegative function. For a pair of numbers (p1,q1), (p2,q2) satisfying q; <
0<p <1,i=1,2 p1 <p2and ¢ < q, if L is of weak-types (p1,q1) and (p2,q2) for all
nonnegative functions, then for any § € (0,1), and

1-¢ & 1 1-¢ ¢

= +7, — = _i_i’
n b2 q a1 a2

miz : |Lu(z)| < ¢} sc<p,q>( ) L VC > 0.

1
p
L is reversed strong-type (p,q) for all nonnegative functions, that is,
[ Lul| o) = CllullLe ()
where C = C(p17p27 q1, q257) > 0.

Theorem 5. Let G be a homogeneous Lie group. Let 0 < p <1 and q,r < 0 be such that
1 1 1
1+-=—-+4+-,
q p T

and let f,g be nonnegative functions. Then we have

If * gllza@) = 1fller@)llgllr@)- (14)

Proof. By the definition with % + 1% + % =1, g + L =1,Z+ L =1, and by using reversed

7,,/
Holder’s inequality, we calculate

f*g(x)Z/Gf(x)g(y1x)dy=/(}ff’(y)f§(y)gg(y196)9? (y~'z)dy
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1 1
g 7

sy () o)

11 ol ey ([ P z)dy) . (15)
It implies
o 1
[ xataras < 101 e loley ([, [ #2000 2y

= £l HQHLT(G [Baliomees (/@}g’“(y)dy) = 1% ) 19 2r - (16)

Then finally,
If *9lla) = I flle@)llgllLrc)- (17)
It completes the proof. O

Now we state the reversed Hardy-Littlewood-Sobolev inequality on G.

Theorem 6. Let G be a homogeneous Lie group with 1 < Q < «, % <p<1and

Ql»

1 1
q p

Then,
[Ho-atllLa@) = Cllull e @), (19)

where C' is a positive constant independent of u.

Proof. For the prove of this theorem we will use Marcinkiewicz interpolation theorem. We
show first:

q
mie lo-wl << 0 (2@ ¢ (20)

Let us rewrite the Riesz operator in the following form:
Ig-ou(z) = K xu(x) = |2|*79 s u(z) = Ky * u(z) + Kz u(x),

where

a=Q if <40 a=Qif >0
Kyi(x) = |$!. i el <8, Kolz) = \wl‘ , Af Ja] >0, (21)
0, if |z| > 6, 0, if |z| < 0.

Then, we have

m{z: | K *u(z)| < 2¢} <m{x: K *xu(x)] <} +m{z: |Kyxu(z)| < (Y, (22)
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where m is the Haar measure on G. It is enough to prove inequality (20) with 2¢ instead of ¢
in the left-hand side of the inequality. Without loss of generality we can assume ||ul|zr(g) = 1.

By taking 31 € (%, 0), we have

Q+(@-Qf2Q+(-Qgrt-=Q-Q=0,

finally, Q + (@ — Q)81 > 0.
By using this and Theorem 5, we get

[ K1+ ull ()

1

/ o ' / Loda) [[ul
> — 5 a4 — dx m
~ \Jo<jal<o |2|(@5 0<a|<o |€|(@B1 Lr()

1
0 B - —a
=C (/ TQ_IT_BI(Q_a)dr) 5 = C@Q 515(1(2 ), (23)
0

where I%+ % = % +1, with 81 € (&,0), r1 < 0. Let 0 < 0 < 00, f € L7(\) and by using
Chebychev’s inequality with 7 > 0, we have

S @17 1150

: < 24
mi: |[(@)] > ) < ORI @) (24)
e Ui
miz: |f(@)| ™ < 1) < 2@, (25)
and by changing f(z) = ﬁ and ( = =, we obtain
19170 g% (x)dx
mio s g(@)] < ¢} < S Jo = (26)
(4)
By taking —o = r, we have
Jeg7(@)dz 9l
mia : |g(@)| < ¢} < 2B = — X0 (27)
¢ ¢
Then with r; < 0, we have
r1(Q=B1(Q—a))
1B w7 R
m{z: |Ky xu(x)] <} < - 1(N) < z (28)
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Similarly, by using Theorem 5, we have

1
1 4 1 T
1#x a2 (/m. um@ ([ earte) " i

> CQQ—ﬁz(Q—a)’ (29)
where % + é = % + 1, with 8y < %, rg < 0. Then,

r2(Q=F2(Q=a))
Ba
(30)

m{z: Ko xu(zx) < (} < CT.

, 1 =1,2, and by the assumption we compute

+
Sl
I
[t
_|._

‘3‘,_.

By choosing 6 = Capp—q le

K74 <Q +a—Q> = paan (QP_T;?,JF apm) o

pa—Q \ Bi
_ Qp—rid + apr; e Qp — riQ + apr; —apr; + Qr;y _ pQ —q (31)
pa—Q ' pa—Q Q—ap ’

for ¢ = 1,2. By using this fact with 6 = CQPP—Q, we get
m{z: |K xu(z)| > 2¢} <m{x: |Ky xu(x)] >+ m{z: |Ky xu(z)] > (}

T1(Q*Bﬁ1(@*a)) 9T2(Q*%2(Q*a)) c
1 2
<C =z M - (32)

Finally, we have
q
U

m{x:IQau§C}§C'< c
By using Definition 1 and Proposition 1 we have reversed Hardy-Littlewood-Sobolev inequal-

g

ity.
The proof of Theorem 6 is complete.
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Kacemvos A., Cyparan /I. BIPTEKTI JIM TOIITAPBIHJIAYBI XAPJAU-JINTTJIBYI-
COBOJIEB KEPI TEHCI3AII']

Byn kpicka makaitaga, 6i3 Xapmau-Jlurrieyn-Cobostes kepi TeHcizmiria 6iprexri Jlu Ton-
TapbIHJIA JIOJIEJJIE/IK. ByJr TeHCci3miKTiH, gomeieyi AHr kepi TeHci3 iri MmeH MapiinHKeBIYTIH,
Kepi MHTEPHOJANIAIBIK TeOPEMACHIHA HET13/1eJINeH.

Kinrrik ceznep. Xapau-JIlurtasyn-CoboseB Tercizairi, Xapau-Jlurtiasyn-CoboseB Kepi
TeHCI3/iri, besmmekTiK naTerpaJ, 6iprekri JIu ToObLI.

KacoimoB A., Cyparan . OBPATHOE HEPABEHCTBO XAPIU-JIMTTJIBY/I-
COBOJIEBA HA OJHOPOIHBIX I'PVIIIIAX JIN

B »sroit KopoTkoif 3ameTke, MbI JOKa3aJu OOpaTHOE HEPaBEHCTBO Xapau-JIuTTiaBym-
CoboJieBa Ha OJHOPOMHBIX TpyIax Jlu. JlokazaTebCTBO 9TOr0 HEpaBEeHTCBa OBLJIO OCHOBAHO
Ha 0OpaTHOM HepapBeHCTBe ZIHra m oOpaTHON MHTEPHOJANMOHHON TeopeMe MapiuHKeBrIa.

Kimrouespre ciioBa. HepasencrBo Xapau-JlurriByn-CobosieBa, obparHoe HepaBeHCTBO
Xapau-JIurrieya-Cobostea, ApoOHBI HHTErpaJj, OSHOPOIHOE IpyIia JIu.
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Abstract. The inverse two-phase spherical Stefan problem for unknown boundary heat flux is solved
by the method of the heat polynomials. Side by side with obtaining an exact solution, two methods
for obtaining an approximate solution, collocation and variational methods, convenient for engineering
applications are presented and compared. It is shown that both methods give very good approximation
even for using only several points. However, the collocation method gives better result for the initial
stage of heating, while the variational method is more preferable for the large values of the Fourier
criterion. The approximation error estimate is obtained using the principle of maximum for the heat
equation. The application of the obtained results for the calculation of the electrical arc heat flux at

the contact opening is presented.

Keywords. Stefan problem, heat polynomials, heat flux, melting zone.

1 Introduction

The method of integral error functions and heat polynomials for solving heat equation
in a domain with free boundary enables one to obtain the solution in the form handy for
engineering application. The solution of the spherical Stefan problem with the boundary heat
flux condition using this method is considered in [1]. It was shown that a given boundary
function can be approximated by the linear combination of the system of the integral error
functions i"er fc(x), n =0,1,2,..., and the first five terms of this combination are sufficient
to obtain the error less than 1%. It means according to the maximum principle for the heat
equation that the error of approximation of the final solution has the same error. Then this
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approach was successfully applied for solving different Stefan type problems. One of the most
important problems in the theory of phenomena in electrical contacts is determining the arc
heat flux entering into electrodes. The experimental measuring the dynamics of this flux is
very difficult, and sometimes the mathematical modeling only is capable to obtain required
information [2]. The mathematical model describing the process of the interaction of the
electrical arc with electrodes and the dynamics of their melting is based on the spherical
Stefan problem, and if we want to define the arc heat flux, the inverse spherical Stefan
problem should be considered [3].

2 Mathematical Model

The inverse Stefan problem consists in determining the arc heat flux P(¢) and the tem-
perature distribution 6(r,t) in the molten contact hemisphere 1o < r < r + a(t), if «(t) is
given from the measurement. If the arc burning period is 0 < ¢t < ¢y and the final radius of
the molten zone at t = t, is 14, then the dynamics of the arc radius increasing at the melting
can be approximated by the formula

alt) =ro 4+ agVt a9 = (r4 —10) /10 (1)
The heat equation for the melting zone can be written in the form

20 2<a29 206

5t = ¢ 07"2+7“81“> ro<r<at), 0<t<t,. (2)

The initial and boundary conditions are

0|t:0 =0, (3)
00
S5 =ro (4)

and on the interface of the phase transformation

0(a(t),t) = Om, (5)
00 do
—Ag —att) = LV@» (6)

where 6, is the melting temperature, «, L, v are coefficients of the heat conductivity, latent
heat of melting and density, respectively.

To simplify the calculation we can introduce the new dimensionless time ¢; = t/t,, then
the time interval of arcing changes to 0 < ¢t; < 1. Thus we can take t, = 1 at once in (2).
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This problem for the spherical heat equation can be reduced to the ordinary one-
dimensional equation by the substitutions

0= %, r—ro=uz, p(t)=alt)—ro. (7)

Then the problem transforms to the form

ou 2 0%u
— = t t<ta,
5 = % 552 O<z<pt), 0<t< (8)
0],_, =0, (9)
ou
= [TO&E - u} . = 2P (t), (10)
u(B(t),t) = Un, (11)
ou dg
st | =g (12)
v =A(1) di
The solution of this problem can be represented in the form:
t) = Z Anv2n(x7 t) + Z an2n+1(x7 t)a (13)
n=0 n=0
where
n 2k p2n—2k L (20 + 1)la2kg2n -2k
k k
n( ;U2 ; 14
van(,t) ZO k'2n—2k Mmoo vt = ZO k'2n—2k+1) t (14)

are heat polynomials satisfying (8) at arbitrary coefficients A,,, B,,, which should be chosen
to satisfy the boundary conditions. We represent the unknown heat flux in the form

l
=> Pt (15)
k=0
From the conditions (9), (10) we have the following system of equations for A,, By:
a2k 202k 2%, 2n—2k+1
(2n + Dla* 1
Apy ¢ B, ¢ mta = 1
> Z % #3my B et =t
n=0 n=0 k=0
a2k a2n 2k o 2n=2k-+1
2n+ Dla 1
n n-+
> A, Z k, D 35 3L Gn o L
n=0 n=0 k=0
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1
=——Ln 3* U, 17

To evaluate unknown coefficients we use two methods: variational and collocation.

3 Variational Method

Similarly, like in [4], we take m = 5, U,, = 0 and the basic points t = t; = 10, i =
0,1,2,3,4,5. To satisfy approximately the condition (16) we consider the functional:

[ (s

The minimum of this functional can be found from the equation

a2k 2n 2k

2
(2n 4 1)la2ka2n=2k+1
t" B, 0 t"*3 | dt.

+;) kzo K(2n — 2k + 1)!

5
OJ / (Z Anvgn ,t) + Z anzn+1 (,B(t), t)) Ugm(ﬁ(t), t)dt = 0, m = 0, 5,

OA =
where
n 2k 2n 2k n 2n+ 1 'a2k 2n—2l<:+1 )
AT 0 gyn "t
vzn(B Z;) F(2n = 21<; V(5 kz_o k(2n — 2k + 1)! ’

=
ot

(18)

ZA Com = —Dp, m=

1
C'nm:\/O U2n(6(t)at)v2m(ﬁ(t)at)dt’ Dm:/ ZBnUQn—H )U2m(18(t)7t)dt7 m = 0,5.

Solving the system (18) with respect to A, from (18) and substituting the result into the
expression (17) we get

1 /5 2
J:/O (;:()an(n,t)—f(t)> dt, (19)
where

5
= > Amboi(m, B(t),t) + Dapr1(m, B(t), 1),
m=0

) (2k)1a2k (2k — 2m) a2k —2m
. ! !

n—
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k 2k—2m+1
_ (2k + 1)1a?*(2k — 2m + 1)af g 1
t),t) = t
Oat1(m B(¢), 1) nzo ml(2k — 2m + 1)! B
1 Vit
f(t) = Y Lyaj -
From the condition of maximum of (19) we have
aJ L
o5 = 2/ > Buw(n,t) — f(t) | w(m,t)dt =0, m = 0,5, (20)
m 0 n=0
5

k=0

1 1
Ekm:/ w(k, Hw(m, t)dt, Fm:/ FOwm, Odt, m=0,1,... k.
0 0

From the expression (21) we get the following results:

where

By = —0.784; B; = —0.062; By =0.046 Bs=—9.712x 1073,
By =6.788 x 107% Bs; = —1.391 x 107°.
Similarly, from the expression (16) we obtain:
Ap=0.058; A; =0.904; Ay =—0.389; Az =0.071;
Ay = —4.716 x 1073, A5 = 9.516 x 1075.

Now we should define the coefficients for the heat flux in the expression (15). The corre-
sponding variational functional for the condition (10) is

1 5 2
J:/O (%Pmt +g(t)) dt, (22)

where
A 5 5
g(t) = T3 Z Am (Uém(’rO)t) V2m rOa + Z Bm /0277,4-1 T07t) - /UQerl(rOa t)) )
"o m=0 m=0
m 2m |a2k 2mf2ktk
’U T 5
2m (70, ¢ —  kl(2m — 2k)!
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Zn: (2m_|_ 1)!a2krgm72k+l L

/
Vg1 (o, t) = o —t
2o EI(2m — 2k +1)!

m 2k: 2m—2k

(2m)la
kl(2m — 2kz)

i 2m+1 |a2k 2m—2k’+1

tk
k(2m — o I

k
vam(ro,t t*, vomg1(ro,t

k=0 k=0

The minimum of (22) gives the equation

0. LS
8Pm:2/0 nz:;)Pnt +g(t) | t™dt =0,

ZP Gpm = —Hm, m=0,5, (23)

where

1 1
Gom = / t"tar,  H,, = / g)t™dt, m =0,5.
0 0
From the expression (23) we have the following results:
Py=—-0.009; P, =0.085; P»=-238; P3=06.572;

Py = —7.406; P; = 2.872.

The results of testing for a = 1,09 = 1,79 = 1, L =1, v = 1,U,, = 1 depict in Fig. 1 the
approximated function

5 5
A
V({t)=——>5 > Ap (Vhy(r0,t) = v2n(r0, 1)) + Y Bu(vhyy1(ro,t) — vany1(ro, t))
0 [n=0 n=0

and the exact solution .
= Put", (23)
n=0

which can be obtained by solving the direct Stefan problem [5], [6], [7], [8].
One can see the ideal coincidence of the exact and approximated solutions.

4 Collocation Method

Let us take for testing m = 5 the basic points t = t; = %, 1=0,1,2,3,4,5,a =1,a9 =

Lro=1,L=1,v=1,U, = 0. Then we get the following values for A,, and B:

A = 0.878; Ay = —0.051; A3 = —0.069;

KAZAKH MATHEMATICAL JOURNAL, 19:1 (2019) 59-68



The solution of the two-phase spherical Stefan problem ... 65

04

Vi)
L

-0z

t

Figure 1 — Approximated and the exact heat fluxes

Ay =9.957 x 1073, A5 = —3.073 x 1074,
Bi = —1.448; By = —0.514; B = —0.05,
By = —1.041 x 1073; Bs = 1.383 x 107°.

From the condition (10) we have the following results:
P =1.212; P, = —6.219; Py = 18.288:;

Py = —-21.378; P5 = 8.597.
The Fig. 2 depicts the approximate function

5 5
A
V(t) = _7“72 Z A, (Uén@"o, t) — ’Uzn(T’o, t)) -+ Z Bn(Uén_H(To, t) — Ugn+1(7“0, t))
0 [n=1 n=1

and the original function P(t) = 22:0 P,t" taking for the corresponding direct Stefan prob-
lem.

The greatest error of approximation is in the neighborhood of zero and one. The error of
approximation is approximately 2%.

5 Experimental Verification

Let us compare the results of approximation with the exact solution and experimental
data presented in [9]. The contact material is AgCdO, the initial radius of the arc spot on
the contact surface 19 = 10~*m , the current I = 1.5kA , the voltage U = 42V, the arc
duration t, = 12us. Then we have the coefficients of the original function

Py =1.755 x10%;, Py = —6.17 x 107; Py = —8.254 x 10%;
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t

Figure 2 — Approximated V() and the exact P(t) heat fluxes

Py = —1.673 x 10° P; = —9.292 x 108.

Fig. 3 shows that the approximation and the original functions are identical everywhere

without errors.

e

410
Vit) ////ﬁ
200) /

2210

Figure 3 — The domain €, ; in the case II

References

[1] Kharin S.N. The analytical solution of the two-face Stefan problem with boundary flux condition,
Mathematical Journal, 1 (2014), 55-75.

[2] Slade P. Electrical Contacts. Principles and Applications, Second Edition, CRC Press, (2014),
1-1268.

[3] Kharin S.N. The Mathematical Models of Phenomena in Electrical Contacts, The Russian

KAZAKH MATHEMATICAL JOURNAL, 19:1 (2019) 59-68



The solution of the two-phase spherical Stefan problem ... 67

Academy of Sciences, Siberian Branch, A.P. Ershov Institute of Informatics System, Novosibirsk,
(2017), 1-193.

[4] Kharin S.N., Sarsengeldin M.M., Nouri H. Analytical solution of two-phase spher-
ical Stefan problem by heat polynomials and integral error functions, AIP Conference
Proceedings 1759, 020031(2016);  https://doi.org/10.1063/1.4959645,  Available on line
http://dx.doi.org/10.1063/1.4959645.

[5] Sarsengeldin M., Kharin S.N. Method of the Integral error functions for the solution of
the one- and two-phase Stefan problems and its application, Filomat 31:4 (2017), 1017-1029.
https://doi.org/10.2298 /FIL1704017S, Available at: http://www.pmf.ni.ac.rs/filomat.

[6] Kharin S.N., Jabbarkhanov K. Method of the heat polynomials for the solution of free boundary
problems for the generalized heat equation, News of the International Kazakh-Turkish University. HA.
Yasavi, sir. Mathematics, physics, computer science, 4:1 (2018), 166-170.

[7] Merey. M. Sarsengeldin, Stanislav N. Kharin, Samat Kassabek, Zamanbek Mukambetkazin
Ezact Solution of the One Phase Stefan Problem, Filomat, 32:3 (2018), 985-990, Available at:
http://www.pmf.ni.ac.rs/filomat.

[8] Kavokin A.A., Nauryz T.A., Bizhigitova N.T. Ezact solution of two phase spherical Stefan
problem with two free boundaries, AIP Conference Proceedings, 1759:1 (2016), 020117.

[9] Merey M. Sarsengeldin, Abdullah S. Erdogan, Targyn A. Nauryz, Hassan Nouri An approach

for solving an inverse spherical two-phase Stefan problem arising in modeling of electric contact phe-
nomena, Mathematical Methods in the Applied Sciences, 41:2 (2018), 850-859.

Xapun C.H., Haypes T., xa66apxanos X. EKI ®ABAJIBIK COEPAJILIK CTE®AH
ECEBIH KBLIVJ/IBIK TTOJTMHOMIAPIBI TATIIAJIAHA OTBIPHII HIELTY

Beuriciz mekapaJiblk KblLTy afbIHBI VIITH Kepi eki ¢azanbik, cepanbik Credan ecedbi xKbi-
JIYJIBIK, TTOJIMHOMIAP oficiMen mremmiyieni. HakTer menriMmmen Koca, »KYBIKTAIT MIETY I H THKe-
HEPJIiK ecenTep YIIiH KOJIaiIbl 60/ IaThIH €Ki 9/1ici — BapUAITUSIJIBIK, OJ1iC TIeH KOJIJIOKAIUASIBIK,
9J1iC, YCHIHBIIFAH YK9HE CAJILICTLHIphLIFaH. EKi oficTe, bap 6osiraHbl Tek OipHeIe HyKTeIepIi Fa-
Ha TaliTaJlaHFaHHbIH ©31HIe OTe YKaKChl YKaKbIHIATY/IBI KopceTei. JlerenMen, KOITOKAIUSIIBIK,
9JIiC XKBLIYIbIH 0ACTAIIKbI CATBICHIHIIA YKAKChl HOTH2KE Oepce, BapuaIUsIbIK o/ic Pypbe Kpu-
TepuiliHiH yIKeH MOHIEpl VIIH KOJalIbIpak O0JIbII OThIp. 2KbIIy OTKI3TIIITIK TeHIeyl VI
AIIIPOKCUMAIIHST KaTeTriHiH 6ara/iaybl MAKCUMYM KAFUJIATHIH Mail/lajaHy apKbLIbl aJbIHFAH.
AbIHFAH HOTHIKEJEP/IiH, KOHTAKTIHN aXKBIPATY KEe3IHJIer! 3JIEKTP JOFACHIHBIH, KBTIy arbIHbIH
ecenTeyre KOJJIAHBICHI YCBIHBLIJIBL.

Kinrrik cesnep. Credan ecebi, KBUTYJIBIK, TOJTHHOMIAP, XKbLIY afblHbI, OAJKY aiiMarbl.
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Xapun C.H., Haypoiz T., Txxa66apxanos X. PEIIIEHIE JIBYX®A3HOII COEPNYE-
CKOI1 3AJJAYN CTE®AHA C UCIIOJIB30BAHMEM TEIIJIOBBIX ITOJIMHOMOB

Obparnast naByxdasnas chepudeckas 3amada Credana i HEM3BECTHONO I'PDAHUTHOIO
TEIJIOBOTO IOTOKA PEIIAaeTCd METOJIOM TEIJIOBBIX IMOJUHOMOB. Hapsily ¢ TOYHBIM pelreHu-
€M IIpe/ICTaBJIEHbI 1 COIIOCTAaBJIEHBI JIBa METO/ a HpI/I6JII/I}KeHHOFO perienusd - KOJIHOK&L[I/IOHHI)Iﬁ
1 BaPUAIMOHHBINA, yI00HbIE IJIs NHXKEHEPHBIX 3a1a4. IlokazaHo, 4To 06a MeToma JaloT OYeHb
Xopoiiee HpI/I6ﬂI/I)KeHI/Ie JdazKe J1J1gd UCIIOJIb30BaHudA TOJBKO HECKOJIbKHUX TOYEK. O,HH&KO MEeTO/,
KOJUIOKAIIUK JaeT JIYUIIUd pe3yjabTaT jis HadaJbHON CTaIud HarpeBa, TOrIa KakK BapHa-
[IHMOHHBINA MeToJ Gojiee MpeodTUTe eH i OOIbIINX 3HadeHnii Kpurepust Pypbe. Onenka
[TOTPENITHOCTH AIITPOKCHMAIIIH TIOJIYIE€HA C UCIOJIB30BAHUEM IPUHIIAIIA MAKCUMyMa JIJIsT YPaB-
HEHMS TEILJIOPOBOAHOCTH. [IpeicTaB/ieHO IPUMEHEHHE IOy YeHHBIX PE3Y/ILTATOB M1 pacdeTa
TEIIJIOBOT'O IIOTOKaA SHGKTpI/ILIeCKOﬁ AyTrn IIPpU paSMBIKAHUN KOHTaKTa.

Krouesnre cioBa. Samada Credana, TEIIOBbIE TOJMHOMBI, TEIJIOBOM OTOK, 30Ha, ILJIaB-
JIEHUE.
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Abstract. Fredholm integro-differential equation with nonlinear differential part and linear integral
term with degenerate kernel is considered on a finite interval. The interval is divided into N parts
and the values of a solution to the nonlinear integro-differential equation at the left-end points of
subintervals are introduced as additional parameters. The desired function is replaced by the sums
of new unknown functions and additional parameters in the corresponding subintervals. The original
integro-differential equation is reduced to the special Cauchy problem for the system of nonlinear integro-
differential equations with parameters. The special Cauchy problem as the Cauchy problem for Fredholm
integro-differential equations is not always solvable. Therefore, the questions of the existence of a
solution to the special Cauchy problem at the fixed values of parameters are studied. To this end Arzela's
theorem on compactness of a set of continuous functions on closed intervals is used. Conditions for the

existence of a solution to the special Cauchy problem are established.

Keywords. Nonlinear Fredholm integro-differential equation, special Cauchy problem, parametrization's
method, iterative method, compact set.

In [1]-[4] parametrization method is applied to study and solve the linear Fredholm
integro-differential equations and boundary value problems for them. The interval is di-
vided into N parts, values of desired function at the beginning points of subintervals are
considered as additional parameters and the original integro-differential equation is reduced
to a system of integro-differential equations with parameters, where unknown functions sat-
isfy the initial conditions on the subintervals. At the fixed values of the parameters we get the
special Cauchy problem for the system of linear integro-differential equations. The solutions
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to the special Cauchy problem are used in solving boundary value problems for the Fredholm
integro-differential equations.
In the present paper, it is considered the nonlinear Fredholm integro-differential equation

dz - T
X = Flta) + Zapk(t)/ Vu(P)a(r)dr, te0,T], xe R (1)
k=1 0
where (n x n)-matrices ¢g(t), Yr(7), k = 1, m, are continuous on [0,7], f : [0,7] x R" — R"
is continuous; ||z|| = max [x;|.

Denote by C’([O, T], R”) the space of continuous functions z : [0,7] — R™ with the norm
x|l = n%ax |z(t)|. A solution to Eq.(1) is a continuously differentiable on (0,7") function
te[0,T

z(t) € C(]0,T], R™), which satisfies the equation for any t € [0, T].
N
Let An be a partition of the interval [0,7) into N parts: [0,7) = U [tr—1, ), and z,(t)
r=1

be the restriction of the function z(t) to the r-th interval, i.e. z.(t) = z(t), t € [t,—1,t,),
r=1,N.

We consider the value of functions x,.(¢) at the beginning points of the subintervals as
additional parameters, and make the substitution u,(t) = x.(t) — A\, 7 = 1, N, on each
r-th interval. Then system (1) is reduced to the special Cauchy problem for the system of
nonlinear integro-differential equations with parameters

du,
dt

m N t;
Zf(t,ur+/\r)+zﬁﬂk(t)2/ Yr(7)[ui (1) + Njldr, t € [tr—1,t,), (2)
k=1 j=1"7ti—1

ur(trfl) =0, r=1,N. (3)

In [6], sufficient conditions for the existence of a unique solution to the special Cauchy
problem for nonlinear Fredholm integro-differential equations are obtained. An algorithm for
finding a solution to the special Cauchy problem for nonlinear integro-differential equations
and a numerical implementation of the proposed algorithm are developed in [7]. Note that
in these papers it is required that the lengths of subintervals be small.

The purpose of this paper is to establish conditions for the existence of a solution to the
special Cauchy problem (2), (3) for any partition of the interval [0, T7.

Let C([0,7],An,R™) denote the space of function systems ult] =
(u1(t), ua(t),...,un(t)), where u, : [t,—1,t,) — R™ is continuous and has the finite

left-sided limit lim wu,(¢) for any » = 1, N, with the norm Hu[]H2 = max sup |u,(2)].

t=tr—0 r=L,N tec trflytr)

The solution to the special Cauchy problem (2), (3) at the fixed A = \* =
( ’{,A;,...,A}‘V) € R™ is a function system u[t, \*] = (ul(t,/\*),uQ(t,)\*),...,uN(t,)\*)) €
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C ( [0,T], Ax, R™N ), whose components u,(t, \*), r = 1, N, are continuously differentiable on
their domains and satisfy the system of integro-differential equations (2) with A\ = A\* and
initial conditions (3).

We choose a vector \(0) = ()\go), )\;0), e A§3)> € R™ and define a piecewise constant
vector function xo(t) on [0, 7] by the equalities xo(t) = )\1(}))7 t€tr_1,ty), r=1,N, 2o(T) =
A,

Let py > 0, and

SO p)) = {x= (M, ha,. o, An) € RV 1[N = A0 < py, r =T, N},

Go(p) = {(tvx) te [OvTL ”l‘—x(](t ‘ < p}'

To solve the boundary value problem we need the values of , lim OUT( ), 7 =1,N. So, we
% —

consider the special Cauchy problem for the system of nonlinear integro-differential equations
with parameters on closed subintervals

m N t
d;;r = f(t,or + A\) + Z i (1) Z/ Y (T)[v; (1) + Ajldr, t € [tr—1, 1], (4)
k=1 j=171

vp(ty—1) =0, r=1,N. (5)

Denote by 5([0,T],AN,R"N ) the space of function systems [t
(vi(t), va(t),...,un(t)), where v, : [tr_1,t,] — R™ is continuous for all » = 1,N, with

the norm Hv[]H3 = r@%teﬁ??tr} l|vr(t)]]-

It is obvious that if the function systems u[t,\] = (ui(t, ), u2(t, A),...,un(t,\)), and
o[t A] = (vi(t, ), v2(t, A), ..., on(E, A)), are solutions to problems (2), (3) and (4), (5), re-
spectively, then

ur(t,A) = vp(E, ), t€ [tr_1,tr),
lim wu,(t,\) =v.(t;,A), r=1N.

t—t,—0

For fixed parameter e S()\( ),pA), we get

dv,
dt

= f(t, v+ \) Z/ k() [0(7) + Njldr, ¢ € [troa,ti], (6)

vp(tr—1) =0, 7r=1,N. (7)
Let p, > 0 and

(0, p0) = {vlt] £),02(1), ..., on (1)) € C([0,T), Aw, R™) : [[o[]lls < po}-
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We solve problem (6), (7) by the iterative method. We take v®[t] = (0,0,...,0) as
an initial approximation for the solution to problem (6), (7) and successive approximations
determined by the solutions to the special Cauchy problems for the system of linear integro-
differential equations

~ m N - pt;
d;:" = F(t,v" (1), \) + Z ©r(t) Z/ Yr(T)vi(T)dT,t € [tr_1,1,], (8)
k=1 j=17ti-1
'Ur(t'r‘—l) = 0, r= 1, N, (9)

where

m N t; R
Ft, o D(6),3) = f(t ol V(@) +3) + Y en() Y / U(7)drA;,
k=1 j=1"7ti-1

telt1,t], r=LN, v=12,... (10)

By 9W[t] = (ﬁgy) (t),i]é”) (t),... ,5](\';) (t)) we denote the solution to the special Cauchy
problem (8), (9).
Let C’([tr_l,t,«],R”) be the space of continuous functions v, : [t,_1,t,] — R™ with the

norm |lvy]| = max |v.(t)]|,r=1,N.
teltr—1,tr
For the fixed function system o®~D[t] = (UY_I)(t),véy_l)(t), . .,U](\l;_l) ) €

5([0,T],AN,R"N), v = 1,2,..., problem (8), (9) turns into the special Cauchy problem
for the system of linear integro-differential equations

d;l;r = Fr(t, N) + Z«pk(t) Z/J (Twji(r)r, t€ [tr1,t], (11)
k=1 j=1"ti-1
wy(ty—1) =0, r=1,N, (12)

with F.(t,A) € C([t,—1,t,], R").

We find the solution to the special Cauchy problem for the system of linear integro-
differential equations (11), (12) by the method proposed in [3, p. 345-346].

Since the fundamental matrix of the differential part is the identity matrix of the dimen-
sion n, the special Cauchy problem (11), (12) is equivalent to the system of integral equations
of the second kind

t R t m N oty
wy(t) = / Fr(r, N)dr + Z wr(T) Z/t Yr(s)w;(s)dsdr,
t j=1"ti-1

r—1 tr—1 k=1

te [tTflatT']a T:17N' (13)
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Set

N t;
6= [ wuieds, k=Tm,
j=17ti-1

and rewrite system (13) in the next form

t N t m
wy(t) = /t Fr(m, N)dr + t Z(pk(T)dek, t € [tr_1,t], r=1,N. (14)
r—1 r—1 =1

Multiplying both sides of (14) by 1,(t), integrating on [t,_1,t,| and summing up over r,

we get the system of linear algebraic equations with respect to £ = (£1,&2,...,&m) € R™™
m

&= Gpr(An)& + 9p(Ax, F), p=Tm, (15)
k=1

with (n x n)-matrices

N tr T
Graan) =3 [ wylr) [ pn(shdsdr, pk=Tom
r=1 t,,-71 t'rfl
and vectors of the dimension n

N tr T R
gp(AN, F) = Z Yp(T) Fr(s,Ndsdr, p=1,m. (16)

r=1 tr—1 tr—1

Using the matrices G (AN) and the vectors gp(AN,]-}), we construct the (nm x
nm)-matrix G(Ay) = (Gp,k(AN)), p,k = 1,m, and the vector g(AN,}") =
(91 (AN, F), g2(AN, F), ..., gm(An, F)). We can rewrite system (15) in the form

[ — G(AN)]E = g(An, F), (17)

where [ is the identity matrix of the dimension nm.

Assume that Ay is a regular partition [2]. Then the matrix I — G(Ay) is invertible and
its inverse we write in the form [I — G(AN)]™! = (Ry,(AN)), k,p = 1,m, where Ry ,(Ap)
are square matrices of the dimension n. Now, a unique solution to Eq.(17) is determined by
the equalities

&= Rip(AN)gp(AN, F), k=T m. (18)
p=1
Let us introduce the following notation:

h = max (t, —t,_1), (19)
r=1,N
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Pp= max max |gn(t)ll, ¥ = max max_[u(t)], k=T, m. (20)
r=1,N t€[tr—1,tr] r=1,N t€[tr—1,tr]

Substituting the right-hand side of (18) for { in (14), we get the functions

w(t,3) = / S oMY Riy(An)gp(An, Fldr
p=1

br-1 =1

t o~
+ ‘FT(T7 )‘)dTa te [trfl,tr}, r = 1,N.

tr—1

The function system
w[ta X] = (U}l (ta X)? w?(ta }‘\)7 SRRE) 'U}N(t, X))

is a unique solution to the special Cauchy problem for the system of linear integro-differential
equations (11), (12) and the following estimate

-~

Hw[-,)\] < x max max

H3 7‘:1,N te[t7'717t7“}

J—"T(t,X)H (21)

holds, where

a0 st 7

—2 m m
Nh —
1+ —— max max
2 p=1m ¥p z:l = tE€[tr—1,tr]

Theorem 1. Let the matriz I — G(Ay) be invertible and the following conditions be fulfilled:

1) ||f(t,x)|| < My, (t,z) € Go(p), My is const;

N m t;
J ZZHwka)HH / s

J=1 k=1
3) x - (Mo + M- (px+ H)‘(O)H)) < pu;

< My, t€[0,T], My is const;

4) px+ po < p.

Then, for any X € S(A(O),pA), the special Cauchy problem for the system of nonlin-
ear integro-differential equations (6), (7) has a solution v[t,\| = (V5 (t),05(¢),...,05(t)) €
S(0, py).

Proof. By using the iterative method proposed above, we find the sequence of function
systems {ﬁ” )[t] }, where

WM = (3 (), 55 (t), ..., o) (1)
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It is easily seen that the functions v( )( t) belong to C([tr,l,tr], R”), vr=12 ...

Using the elements of the function system 5(*)[t] at the fixed value of r we compose the
functional sequences

{@gy)(t)}a teftr—1,t], r=1,N, v=12 ..

Consider the set V, of the functions v )( t).
Formula (16) implies the following estimates

tr R
oA, F ) [ Peal ). Dsdr
N : . )
Z / F(s,0""V(s), \)dsdr
= tr—1 tr—1
N N R
Z/ Up(T )/ F(s,0"Y(s),\)ds||dr
= tr 1 tT,1
< F 4
<3 s, [ @D [ ol -
Nt — )2
P F(r,5% V() X (tr—tr1)” -
w I}Zi/TE[Itriaitr] (T7vr (7')7 )Hrzl 5 , D ,m ( )

From (10), taking into account (20), we get

HF(tﬁf«”_U(t)’X)H - "f(t’@ﬁu—l)(t)+XT)+i¢k(t)§:/tj U (T)dT A
k=1 j=1"ti-1

< [0 + 30| +

Z Z T)dT,

tjl

<||fea 0w + %)

ZZ% /1% 7)dr);

zzu@k / U(r)dr
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Al

R N m t;
<Jreat=rer s3]+ 35 ]| [* i
j=1 k=1 ti—1

max max
T‘=1,N TE [tr—l 7tr}

r=1,N Te[tr—lytr]

(S ku)}

< max max {Hf ()—l—/\)

r=1,N T€[tr—1,tr]
+§:Zm:H90k HH/ Yi(7)dr PH—H)\ H)}

§M0+M1'(P,\+H)\ H) (23)

By virtue of conditions of Theorem 1, estimates (22), (23) and notation (19), (20) we
have

F(r, o =1( ),X)Hgmax max {Hf V() +A,)

N m t;
+22Hsok<t>HH/ Un(r)dr
j=1 k=1 tj—1

)]

/ S il ZRkpAN Go(Aw, F)dr + / F(r, 2= V(r), Ndr

lel tr—1

/ Z‘Pk ZRM AN)gp(An, Fdr|| +

br—1 =1
m t
> ok ZRM (AN)gp(AN, F) dT+/
k=1 tr—l

<.
tr_1 =
S/t iiHwk(r)Rk,p(AN)Hng(AN,F)HdT+/ HFT 50D (7 HdT
br=1 p=1p=1
S/tf ZZH% T) Ry p(AN) Hd’l’ max ng Ay, F)
ro1

=1 k=1

F(r, o), 3 ar < /t iingk(T)HHRk,,,(AN)HdT
tr—1 p=1 =1

F(r, o (r), ) | dr

r

N 2
- (tr - tr—l)
X max Y E ——— max max
2 r=1,N TE€[tr—1,tr]
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t
+/ Pt @), Mar < teltl, r=TN, (24)
tr—1
where
NEZ B m m
= |1+ 5 mﬁd)pz max (’Dk(t)HHRkJ?(AN)H
p=1,m =1 k1 te[tr—1,tr]

xE[MO + M- (pr + HA@)H)]

Since the inequality

ﬁﬁu)(t)H < ¢, holds for all ¢ € [t,_1,t,], the functions from the set

V, are uniformly bounded on [t,_1,t,], r = 1, N.
Now we take the points t., ¢ € [t,_1,t;], r = 1,N. If |t|, — ¢!| < 0,, r = 1, N, then by

virtue of (21) and inequality (24) we have the inequality

+ // T Z wi(7) Z Ry p(AN)gp(An, F)dr

tr k=1 p=1

o -
/meﬂmww
t

/
T

< &r,

for all 3" (t) on [ty—_1,t], where

NEQ o m.om
1+ =N max wpzzte[ltnaxt |
p k=1 p=1 r—1,lr

()]st

€ = max
t€[tr—1,tr]

x[M0+M1 (pa+ HA(O)H)W Y, r=LN, v=12...

It follows that the functions from the set V,, » = 1, N, are equicontinuous. By Arzela’s
theorem [5, p. 207], each set V., r = 1, N, is compact.

Since the set V. is compact for each » = 1, N, we can select the subsequence @(,V’)(t),
which is uniformly convergent to v7(t) as [ — 0o on [t,_1,t,] for all r =1, N.

We construct the function system
T[] = @), ..., T(0)).
Now let us show that the function system v* [t] is a solution to the special Cauchy problem
(6), (7).
(v1)

Since the functions v, " (t) are defined by using proposed iterative method, the following
equality

; t m N t.
@EV’)(t):/ F(T,@(,Vl_l)(T),/\)dT‘f‘/ Z(‘Ok<’r)2/] wk(s)ﬁj(,l/l)(s)dsd’f,
j=1"ti1

tr—1 tr—1 k=1
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teltr_1,t,], r=1,N, (25)

is true.
In (25), passing to the limit as [ — oo, we get

tr—1 tr—1 k=1

t R t m N oty
(1) = / P Ndr+ [ S o)) / n ()07 (s)dsdr,
j=17ti-1

t e tr—1,t;], r=1,N. (26)
It is easily seen that v} (¢,_1) = 0, » = 1, N. Differentiating both sides of (26), we obtain

Sk R m N t
dv&t(t) S RO ED NN /t be(s)5) (s)ds,

k=1 j=17ti-1

telt_1,t,], r=1,N.
%

Thus, the function system v[t,X] = (V7(t),05(t),...,v5(t)) is a solution to the special
Cauchy problem (6), (7). Theorem is proved.

Example. Consider the nonlinear Fredholm integro-differential equation

T
> - cp(t)/o W(r)a(r)dr + f(ta), tel0,T], e R

WhereT:2,4p(t):<\/E _t>,w(7):<1

0 % T

(e NR
N———

f(t,x) Vitsinzy + cos’zy + 22 — VEsin(t® — 2) — %‘/{ —cos®(t + 1) Le0,1]
x) = S
' tcos3zy 4 Vtsinwe + & — tcos(3t® — 6) — VEsin(t+1) + 1 ' T

f(t,x) Vitsinzy + cos’zy — & — VEsin(2 —t) — %‘ﬁ — cos®(t? 4 1) e,
x) = S .
' tcos3zy + Vtsinwy + 2L — tcos(6 — 3t) — VEsin(t® + 1) ' ’

Let us divide the interval [0, T) into two equal parts and by As denote the partition with
the points tg = 0, t; = 1, to = 2. Introducing parameters \; = x(0), A2 = z(1) and making
the substitutions

v1(t) = x(t) — x(0), te€[0,1], va(t) = x(t) —x(1), t € [1,2],
we obtain the special Cauchy problem

dv,
dt

2 g
— o(t) Z/ s (7) + MldT + F(t o+ A)s L€ [brorsth], (27)
j=1"ti-1
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vp(ty—1) =0, r=12. (28)

Assume that py = 10 and A0 = ((1,0), (0, -1)).

By the equalities z(t) = Ago), t € [0,1], zo(t) = )\é , t € [1,2], we define a piecewise
constant function zo(¢) on [0, 2]. Then we set Gy(p) = {(t, ) €[0,2], |z —zo(t)|| < p, p=
583).

Since

[t 2)[ <114, () € Golp),

2
t)?{E'/L_J/¢«s>ds (v

and y < 5.7, conditions of Theorem 1 are satisfied. R

Therefore, the special Cauchy problem (27), (28) has a solution v[t, A] belonging to
S(0,p0), pu = 572 for any A € S(AQ py), px = 10. If we take, for example, A =
((—2,1),(1,2)) € S(A® py), then at the fixed value of parameters the special Cauchy

N 2
problem (27), (28) has the solution v[t,\] = (v1(t),v2(t)) € S(0, py) and vi(t) = < t > ,

t
= (524 )

A+ Q) <907,
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Membaesa  C.T. CBI3BIKTHL EMEC  ®PEATOJIbM  MHTEIPAJIIBIK-
NOOEPEHIINAJIIBIK TEHJIEVIIEP KYIIECI YIITH APHAIBI KON ECEBIHIH
IIIEIIIMIHIH BAP BOJIVEHI

AKBIpJIbI apanbiKTa 1 depeHIuaIIbiK 06JIir CHI3BIKTH €MeC YKoHe MHTErPaJIILIK, 06JIi-
Il CBI3BIKTHI OOJIATHIH epeKINeIeHTeH siaposibl PpearoabM MHTErpaJIabK-a1nddepeHITnaIbK,
TeHeyi KapacThIpblIadbl. Apasblk [N Oejlikke OeJliHenl »KoHe ChI3BIKTHI eMeC MHTErPaJIIbIK-
muddepeHnraIbK TeHIEYIiH, MeniMiHiH imKi apaabIKTapAblH COJ YKAaK IMeTKi HyKTeaepiH-
JIeri MoHIepi KOCBIMINA IapaMeTpsep perinae eHrizimemi. I3memina dyHKIus coiikec apaJibl-
KTapga Oenricis pyHKIMAIap MEH KOCBIMIIA ITapaMeTpJep/IiH, KOCBIHIbLIaAPbIMEH aJIMaCThbI-
pbuTaIbl. Bepinren murerpasiabik-anddepeHInaaablk TeHIEY ChI3LIKThI eMeC HHTErPAJIIbIK-
nuddepeHIuaIBIK, TeHIEYIep XKylheci yImH mapaMmerpsai apHaiibl Koru ecebine kesrripises.
@perobM UHTErPAJILIK-TudepeHnunaiabK Tenaeyi ymurin Kommm ecebi CHUIKTBI, apHANDI
Ko ecebi sie GapJblk yakbITTa IermiaiMal 6osa 6epmeiiai. CoHIBIKTAH HapaMeTp/IepIin
OesriJii MoHIepiH e apHaiibl Ko ecebiniH menriMinig 6ap 60/1ybl Mocestesiepi 3eprrestemi. O
VIIiH Keciugife ysiiiccis pyHKIMsIap >KUBIHBIHLIH KOMIIAKTBUIBIFL TypaJjbl Aplesa Teope-
Machl KoJtaHbLIa bl ApHaiibr Kot ecebinig, mermiminiy 6ap 00Ty bIHBIH ITAPTTAPHI aJIbIHFAH.

Kinrrik coznep. Coi3blkThl eMec OperosibM HHTErPAIbIK- UM PEPEHITUAIBIK, TEHAEY,
apHaiibl Komn ecebi, mapamMerpiiey o/1ici, HTEPAIUSIIBIK, 91iC, KOMIIAKT YKUbIH.
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Membaesa C.T. CYIIIECTBOBAHUE PEIIEHUS CIIELMATBHON 3ATAYN KO-
I I CUCTEMBI HEJUHENHBIX NHTEMPO-IUOOEPEHIINATLHBIX YPAB-
HEHWIT ®PEITOJIbMA

Ha komeuHoM wWHTepBaJie pacCMaTpPUBAETCs WHTErpo-auddepeHnnaibHoe ypaBHEeHNE
OpearoabMa ¢ HeIUHEHHON auddepeHInaaIbHO YacTh0 U JIUHEHHON MHTerpaabHON JacThIO
C BBIPOXKJIEHHBIM sApoM. VHTepBas mesurcs Ha [N dacTeil M 3HAYEHUsI PEICHUsT HEJUHEH-
HOIO MHTerpo-muddepeHnnaJbHOr0 YPABHEHNSI B JIEBBIX TOYKAX IOJIUHTEPBAJIOB BBOJIATCS
B KadecTBe JIOMOJHUTEIbHBIX IapaMeTpoB. VIckoMast (pyHKIMS 3aMEHsIeTCs Ha, CYMMBbI HOBBIX
HEU3BECTHBIX (DYHKIINI U JOTOJHUTENBHBIX IIApaMETPOB B COOTBETCTBYIOIINX IMOIMHTEPBAJIaX.
Ucxonnoe maTErpo-muddepennuaibHoe ypaBHEHNE CBOANTCA K CIIENUAJbHON 3amade Kormm
JJIsl CHCTEeMbl HEJIMHEHHBIX MHTErpo-audpepeHnualbHbIX ypaBHeHuil ¢ napamerpamu. Cire-
nuasbHag 3anada Komnm, kak 3amada Komm s maTerpo-andQepeHuajibubix ypaBHEHHI
@pearosbMa, He Beeraa pa3pernmMa. B CBSI3U ¢ 9THUM HCCIeIyIOTCSA BOIIPOCHI CYIIECTBOBAHUST
peltenust crenuaabHoi 3agaan Ko mpu huKCHpoBaHHBIX 3HATEHUSIX TapaMeTpoB. st sTo-
IO HUCIOJIb3yeTcs: TeopeMa Apliesia 0 KOMIIAKTHOCTH MHOXKECTBA HEIPEPLIBHBLIX (DYHKIMI Ha
OTpe3Kax. YCTAHOBJIEHBI YCIOBUS CYIECTBOBAHUS PEIleHUs CrennaabHoi 3agatdn Korn.

Kmroaesnre ciioBa. Henuwneitnoe mnrerpo-aunddepentuaibuoe ypapuenne Ppearosbma,
crenuaabHas 3amada Kolmm, Meros mapaMeTpU3allid, UTEPAIMOHHBIA METOM, KOMIIAKTHOE
MHO>KECTBO.
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Abstract. This paper is devoted to description of self-adjoint extensions of an integro-differential
operator. We find symmetric integro-differential operators of order 2« (with % < a < 1). Indeed,
it is an analogue of the fractional Sturm-Liouville operator in some sense. Moreover, an analogue of
the Green's formula for fractional order differential equations is established with further applications in
describing a class of self-adjoint operators. Finally, we discuss about global Fourier analysis and prove
some results on spectral properties of fractional order self-adjoint operators associated with Caputo-

Riemann-Liouville type derivatives.

Keywords. Integro-differential operator, Caputo derivative, Riemann-Liouville derivative, Self-adjoint
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1 Introduction

In the theory of differential equations the charming role plays describing and studying self-
adjoint problems. One of the methods to describe them can be done by using the sufficiently
developed theory of self-adjoint extension, for example, see monographs [1], [2]. The Green’s
formula is one of the main moments in the theory of extensions and contractions. In this
paper the Green’s formula is established for a differential equation of the fractional order.
Moreover, we introduce the notion of a fractional differentiation of generalized functions.
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Self-adjoint operators generated by integro-differential operators 83

For clearity, we give a class of self-adjoint problems for a fractional analogue of the Sturm-
Liouville operator. Due to the physical applications the spectral properties of the fractional
operators are subject to intensive studies, especially, for the papers with applications [3]-[7].

One of the first investigations of the spectral properties of fractional differential equa-
tions is done by Dzhrbashyan [8]. After Dzhrbashyan’s paper mathematicians began to pay
attention to the properties of the special functions generated by the fractional differential
the equations. For this, we refer the reader to the papers [9]-[14] and references therein. In
general, fractional operators are not symmetric, and in all mentioned works non self-adjoint
problems are considered (also, see [15]). In the weighted class of continuous functions one
symmetric fractional order differential operator is described by Klimek and Agrawal [16]. In
this work we continue researches started in [17], and we attempt to establish an analogue
of the Green’s formula for fractional order differential equations with further applications in
describing a class of self-adjoint operators.

In this paper we deal with a fractional differential operator of the Caputo and Riemann-
Liouville type. Moreover, we are aiming at describing a class of self-adjoint problems associ-
ated with this fractional order differential equation in the Hilbert space. Indeed, it is found a
symmetric Caputo-Riemann-Liouville operator of order 2« (with % < a < 1). In appreciate
sense, it can be interpreted as an analogue of the classical Sturm-Liouville operator.

2 Main results

In what follows, we assume that % < a < 1. Now, let us consider
Lu(x) := DY [D§ [u]] (), 0 < & < 1. (1)

Here, our aim is to investigate spectral properties of operators generated by the fractional
order differential equation (1) in L2(0,1). To start, we define an operator in the Holder
classes. Consider the spectral problem

Lu(x) = Au(x), 0 <z < 1, (2)

in the space HZ*™°([0,1]) := {p € H?**°([0,1]) : ¢(0) = 0, ...,™(0) = 0}, where m =
[2a+0], and H?**°([0, 1]) is the Holder space with the parameter 2a+o. Here o is a sufficiently
small positive number such that o < 1—a. By other words, we deal with the following spaces:

H3* 2 ([0,1]) = {p € H***°((0,1]) : (0) = 0,/'(0) = 0},
HE(0,1]) = {p € H**((0,1]) : ¢(0) = O},
HE([0,1)) := { € HO([0,1]) : (0) = O}.
From the book of Samko, Kilbas and Marichev [18, Chapter 1, Theorem 3.2] it follows

that the integro-differential operator L is bounded from H3**°([0,1]) to HZ([0,1]). Hence,
the functionals

& (u) =17 [u] (0), & (u) = Iy~ [u] (1),
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ff(u) = Dg [u] (0) and fg’(u) = D [u] (1),

are well-defined for all HSO‘J“)([O, 1]). Denote by Lo an operator generated by the fractional
differential expression (1) with "boundary” conditions

& () =0 and & (u) =0. (3)

Then due to the definitions and properties given by Appendix (see, [18, Chapter 1]) for

1 1
f e HQ([0,1]) := {v e H3([0,1]) : /0 v(s)s**ds = 0 and /0 v(s)s?* 1ds = 0}

an inverse operator to Lg has the form
1
Lyt f(@) = IGTY f(z) = / K(x,s)f(s)ds, 0 <z <1,
0

as Ly : HY — H2*T°, with the symmetric kernel K (-,-) from L?(0,1) ® L2(0,1). Since,
S := span{z*, k € N} c H§([0,1]), and powers of the sets S and S := {v € S : fol v(s)s?ds =
0 and fol v(s)s**~ds = 0} are equal, then we conclude that a closure of the space Hg([0,1])
by the L2-norm is L2(0,1). Hence, Ly ! has a continuous continuation to a compact operator
in L2(0,1). Compactness implies the fact that there exists non empty discrete spectrum with
the eigenfunctions forming an orthogonal basis in the space L?(0,1).

Denote by A;, k € N, eigenvalues of the spectral problem (2)-(3) in the ascending order
and by ug, k € N, corresponding eigenfunctions, i.e.

DY [Dg [ur]] (z) = Apur(z), 0 <z <1,

& (ur) =0, & (up) =0
for all £k € N. Thus, the domain of the operator Lg

Dom(Lg) :={u € HgaJro([O, 1]): & (w) =0, & (u) =0}

is not empty.
Now, we introduce the space of test functions C7° ([0, 1]) (for more details, see [19,20]) as
follows:
o0
Cf5([0,1]) == () Dom(L),
k=1
where Dom(LE) is a domain of LE. Here L§ stands for the k times iterated Lo with the

domain '
Dom(LE) := {LE7 " u € Dom(Lp),j = 0,1,....k — 1}
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for k > 2. Since the linear combination of all eigenfunctions is in C¢? ([0, 1]), then the space of
test functions is not empty as a set. For further properties of the space C7? ([0, 1]) we refer to
the papers [19], [20], where the properties of the test functions based on a basis are studied.
The dual space to C7° ([0, 1]) we denote by D7, (0, 1) (the space of continuous functionals on

Cr ([0,1]).-
0

Now, we are in a way to define a fractional derivation of generalized functions. To begin,
note that for all u,v € C72([0,1]) we get

(DY [Dgul ,v) = (u, Dy [DG]). (4)

Here, both sides exist in the classical sense.
Indeed, equality (4) follows by the direct computations of (D [Dfu] ,v). By the definition,
we have

1 1
(D [Dyu],v) = _F(ll—a)/o / (t— x)_a%Dg‘u(t)dtv(x)daj,

and by changing integration order, we obtain

1 1 a d N
/0 / (t — )% Dyu(t)dro(a)da

d

1
— /0 2 Dju(®) /O (t — )~ %v(z)dzdt. (5)

Integrating by parts in the right-hand side of equation (5), we have

1 t
_F(ll—a) 0 %D(‘)"u(t) /0 (t — 2)"v(x)dadt

1
— —Dgfu(t)fg—%(t))o + (DSu, DSv)

1 1 1 d
= —ngu(t)zg—%(t)]o + Ig—“u(t)ng(t)‘o — / I&‘O‘u(t)%Dg‘v(t)dt.
0

By applying the property to (Ié_o‘m %D&v), and due to the equivalent definitions of the
Caputo derivation [18, Chapter 1], we obtain

— d (0% e (0%
<I& u, dtDOU) = — (u, DY [D§]v) .

As the result, one takes the Green’s formula

(DY [Dgu],v) = (u, DY [Dg] v)
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2

+ ) (wE () = & ()& ()] (6)

i=1
Since u,v € C72([0,1]) the identity (6) implies (4).
Define an action of the operator L on a generalized function u € D} (0,1). Put

(L'LL,’U) = (uﬂ,Dlll [Dglv]) (7)

for all v € C7°([0,1]). The term (u, DY [D§v]) exists due to the fact that v € C72([0,1]) and
also involves DY [Dfv] € C7 ([0,1]). Thus, the action of L introduced by the formula (7) is
well defined on the space of the generalized functions D (0,1).

Now, we consider the following expression

Lu(x) := DY [D§ [u]] (), 0 <z < 1, (8)

in the space L2(0,1). To define correctly L in L2(0, 1), we introduce the space W3%(0,1) as
a closure of H3*™([0,1]) by the norm

lullwze0,1) == llullra(0,1) + IPT DG ull £y(0,1)-

Indeed, the space W3%(0, 1) with the introduced norm is a Banach one. Moreover, it is the
Hilbert space with the scalar product

(u, v)wze(0,1) = (u,v) + (D' Dgu, D Dgv).

We define L, as an operator acting from L2(0,1) to L2(0,1) by formula (8) with the
domain

Dom(Lyn) = {u€ W3%(0,1) : & (u) =& (u) = & (u) = & (u) = 0} .

Also, introduce an operator Lys : L2(0,1) — L2(0,1) generated by expression (8) with the
domain Dom(Lyy) := {u € W3%(0,1)}.

Now, we are in a position to formulate the main result of the manuscript.

In what follows, we introduce a class of (2x4)-matrices. This class will be helpful to define
boundary forms for Df [D§ [u]].

Definition 1. We say that the matriz

g .— ( 011 012 013 014 )
' 021 O 093 024

is S—matriz, if it can be written in one of the following views:

1 0 r c d 1 0 r
01 —¢c d)’” \e 01d)’
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1 d r 0 r c 1 0
0 ¢c —d 1)’ —c d 0 1)’
where r,c,d € R. Here, the matrices

(911 012 013 914) ( 011 012 613 Oua

0),
621 (922 923 924 7021 7022 7623 7024 ) fOT’ (’75‘é )

( 011 £ 021 012 £ 022 013 £ 023 014+ 0oy )
021 029 023 B4

and

( 021 O O3 024 )
011 012 13 O14

are equivalent.

Theorem 1. Let 0 be an S-matriz. Then an operator Lg generated by
DYDiu(z) = f(z), 0 <z <1,

for uw € W3%(0,1) with "boundary” conditions

011&7 (u) + 60125 () + O13&7 (v) + 01485 (u) =
021€7 (1) + 02265 () + O3 (w) + 02485 (u) =

0,
0,

is a self-adjoint extension of Ly, in W3%(0,1).

Note that when « < 1/2 the statement of Theorem 1, briefly speaking, is not true.

3 Proof of Theorem 1
3.1. Preliminaries

Below we formulate necessary results on the operators L., and L.

Lemma 1. Kernel of the operator Ly (KerLys) consists of any linear combination of the

functions (x — &) and (z — )¢~ 1 for arbitrary e € [0, 1].

The proof of Lemma 1 follows from the statements of Properties A.2, A.3, A.4 and A.5.

Lemma 2. The equation Ly,u = g has a solution u € Dom(Ly,) if and only if there exists a

function f € L2(0,1) such that for arbitrary v € KerLy; we have (f,v) =0, or

R(Ly,) @ KerLy, = L2(0,1).
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Proof. Let f € R(Ly,). Then there is a function w € L2(0, 1) such that for any v € KerLy,
we obtain

(f,v) = (Lipw,v) = (w, Lyv) = 0.

Now, fix a function f € L2(0,1) with the property (f,v) = 0 for all v € KerLy;. Due to
the definition of Lj; there is a function g € Dom(Lys) such that Lysg = f. It is easy to see
that for arbitrary v € KerLj; we have

2

0=(f,0) = (Lmg,v) = Y _[& ()& (9) — & (9)& (v)]. 9)

i=1

Finally, Lemma 1 implies that the kernel of the operator Lj;; consists of the infinite number
of the linear independent functions. Thus, due to the arbitrariness of v from identity (9) we
obtain

&9 =¢&"(9 =0 i=12
Hence, f € R(Ly,). This completes the proof of the lemma. O

Corollary 1. Dom(L,,) is dense in L%(0,1).

Proof. Let g € Ly(0,1) be orthogonal to the lineal Dom(L,,). Find a function v as an
arbitrary solution of the equation Lj;v = g. Then for any v € Dom(L,,) we get

0= (u,9) = (u, Lyyv) = (Liu,v).
Due to Lemma 2 we obtain v € KerLy;. Hence, g = Lysv = 0. The corollary is proved. [

3.2. Proof of Theorem 1

By Definition [21] the operator L,, is hermit, since for any u,v € Dom(L,,) we have
(Lmu,v) = (u, Lypv).

Moreover, due to Corollary 1 the operator L,, is symmetric. Thus, to show that Ly is a
self-adjoint operator it is enough to have

Dom(Lg) = Dom(L}). (10)

The last one can be proven by the direct calculations taking into account formula (6).
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4 Global Fourier Analysis associated with Caputo—Riemann—Liouville type
Fractional Order Operators

4.1. Spectral properties of Ly

1 0 0 0
0 6220 6ag )
Then the following statements hold:
(i) L, is a compact operator in 1L2(0,1).

(ii) The spectrum of Lg is real and discrete, and the system of eigenfunctions forms a
complete orthogonal basis of the space L2(0,1).

Theorem 2. Let 0 be as

Proof. (i) Indeed, the inverse operator can be represented in the form

0 o (0% aTo
= IPFLF(0) + TG T f ()

1 _ o
Ly /(@) = 622 + 624 T'()

For 695 = 0 we have
Ly f(z) = I§T f(z), 0 <z < 1.

Hence, it follows compactness of the operator L, in L2(0, 1).

(ii) Compactness of L;l implies discreteness of the spectrum, and the system of eigen-
functions forms a complete orthogonal basis in L2(0, 1). From the self-adjoint property of Lg
one obtains real validity of all eigenvalues [21]. O

Theorem 3. Let 0 be in one of the following forms:

(0 01 ) a

(2300 (00 <12>

Then for all p € R the operator Ly is positive in the space L2(0,1).

_ o

0
0

o O
"
N
O =
o O

o O

Proof. To prove the theorem it is sufficient to show the inequality
(D7 [DG ] u) > 0.

Now, we calculate

11
(DY [Dyul,u) = _]_“(11—04)/0 / (t— x)_a%DS‘u(t)dt u(z)dx.
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By changing integration order, we get

1 p1
_I‘(ll— a)/o /(t—g;)o‘thS‘u(t)dtu(a:)dx

1 ¢
:_I‘(ll—a) ; CZDg‘u(t)/o (t —x)" “u(x)dzdt.

By integrating by parts in the right-hand side of the last integral, we obtain

1 t
“Taoa ) @0 [ - s

1
. Dg‘u(t)lé_au(t)‘o + (DS, DS).

As the result, we take the identity
1
D(‘)"u(t)[é’o‘u(t)‘o ~0,

which completes the proof.

4.2. Schatten classes of L;l

The following assertion is proved by Delgado and Ruzhansky [26]: Let M be a closed
manifold of the dimension n. Let K € H¥(M x M) for some g > 0. Then the integral

operator T on L?(M), defined by

(Tf)(x) = / K (x,5)f(s)ds,
M

is in the Schatten classes S,(L?(M)) for p > ni’;#

Now, we try to apply this result as follows:

Theorem 4. Let 0 be in one of the following forms:
10 00 10

01 0/’ 00

0

0

0

0100 0

0010) \0
o,

1), defined by

o O
= o
"

Then the inverse operator LQ_1 on L?

(13)

(14)
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Proof. Here, we give a full proof only for the case 611 # 0,024 # 0,012 = 013 = 014 = b1 =
029 = 23 = 0. Other three cases can be proved similarly.
From Theorem 2 it is known, that

Ly f(2) = IS I8 f(z), 0< <1

Then the operator L;l can be represented as

1
Ly f(z) = I§ I f(z) = /K(a:,s)f(s)ds, 0<x<l,
0
where K (z,s) has the form

1
K(z,s) = FQta) /0 (z — 1)1 (s — 7)°Ldr

1 max{z,s} o1 o1
_FQ(Q)/O (z — ) Y(s — 1) Ldr.

Here
0, z <e,
(z—e)t, z>e.

<z—e>f:={

The fact that Le_l is inverse to Lg implies that K (z,s) is the Green’s function of Ly. Hence
K (z, s) belongs to the class W2%((0,1) x (0,1)). Consequently, by the Delgado-Ruzhansky’s
theorem 4, we obtain that the integral operator L, !is in the Schatten classes S,(L?(0,1))

for p > 1f4a. O

4.3. Global Analysis generated by Ly

Here, we briefly discuss about the Global Analysis associated with the fractional order
differential operator Lg. Indeed, by using the Global Fourier Analysis commuted with Lg
developed in [19], [20], studied operators can be applied for solving problems of the sub-
diffusion, super-diffusion, anomaly diffusion, etc (for instance, see, [23]-[25]). We note that
the general case is developed in [26] with some applications given in [27] for the Landau
Hamiltonian. More general setting is offered in the recent papers [28], [30]. One is worth to be
mentioned that the theory of Pseudo-Differential Operators associated with fractional order
differential equations can be started. Moreover, investigations of the spectral problems for
fractional differential operators are helpful and important to enrich and develop the fractional
calculus.
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A. Fractional differentiation and its properties

In this Appendix, we define fractional integration and differentiation operators [18], [30],
[30].

Definition A.1. Let f be a function defined on the interval [0,1]. Assume that the following
integrals exist

U0 = i [ (=577 f (s)ds, 1€ (0,1]

a)

o

and

I{ [ f] (s —t)* (s)ds, te]0,1).

w\}_‘

Then we call them the left and right Riemann-Liouville integral operators of the fractional
order a > 0, respectively.

Definition A.2. Define left-side and right-side Riemann-Liouville differential operators of
the fractional order o (0 < v <'1) by

d

D)) = S 1 1110
and p

DY [f](t) = %111 L),
respectively.

Definition A.3. For 0 < a < 1 we say that the actions

Do [f1(8) = Dg [f (1) = f(0)]

and

DY [f]1(t) = DY [f (1) — f(1)],
are left and right differential operators of the fractional order a (0 < o < 1) in the Caputo
sense, respectively.

Note that in monographs [18], [30], [31] there are studied different types of fractional
differentiations and their main properties. In what follows we formulate statements of nec-
essary properties of integral and integro-differential operators of the Riemann-Liouville type
and fractional Caputo operators.

Property A.1 [30, Pages 73, 76, 96]. Let 0 < oo < 1. Assume that
f el 0,1), II7f, I;7*f € AC[0,1].
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Then the following equalities are true:
I8 f(a) = I,
1) f(2) = TP,
forall0 < B < 1;

_.,L.afl

Ip ?f@0:=f@0—<ﬁanD(1IK£),
xa—l
D5 () = 1(0) - 137 FO)F

for x € (0,1).
Moreover, if f € AC|0,1], then we have

I5Dg f(x) = f(x) = f(0),

DY f(z) = f(z) = f(1),
for all z € [0, 1].
For any € € (0,1) we denote

0, x <e¢,
(x—¢) =
T—€,T>E.

Property A.2 [18, Page 87]. Let a > 0, B > 0, C = const and

I'(a+ pB)

1=

(@ —e)dt.

Then we have
I§ f(x) = Clx —e)2tF !,

forO<z <1,

Property A.3. Let 0 < a < 1. Then for all ¢ € (0,1) and any constant C the following

function
0,z <e¢g
fla)=Cle—e)y™! =
Clx—e)*lo>e,

satisfies the equation
D§f(x)=0, =€ (0,1).
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Property A.4. Let 0 < a < 1. Then for arbitrary € € (0,1) and a constant C' the function

0, z <g¢;
f(z) =Cl(z —¢) =
C,x>e,

satisfies
Dff(x)=0, 0 <z <1,
where 0(x) is the Heaviside function.

Property A.5. Let 0 < o < 1. Then

1

fla) = =@ —e)f ™+ Ta+1)

(x—¢e)y, C=const, 0 <z <1,

satisfies the equation
Dif(x)=0(x—¢), 0<z<]1.

Property A.6 [31, Page 34]. Let u,v € L2(0,1) and 0 < o < 1. Then we have the formula
of integration by parts
(Ifu,v) = (u,]{?v) .

Here, by (-,-) we denote the inner product of the Hilbert space L?(0,1).
Let us formulate Theorem 3.2 of the book [18]:

Theorem A.1. Assume that ¢ € HV([0,1]), v > 0. Then the fractional integral I§e, a > 0,
has the form

m (k)
P L id O AT
IOSO_kZO F(Oé+k+1)x +’l/](37)7

where m is the greatest integer such that m < v; and ¢ € HY"*([0,1]), if v+ « is not integer,
orif v,a € 7.
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Tokmaramberos H., Tepebex B.T. UHTEI'PAJIBIK-INOOEPEHIINMAJIABIK OIIE-
PATOPJIAPIAH TYBIHIATAH ©3-O3IHE TYUIH/EC OIIEPATOPJIAP

MakaJia nHTerpaIbK-TudOePEeHITNAIBIK OIIEPATOPIBLIH 63-03iHe TYHiHIec KeHeHTyIepin
curarTayra apHajgrad. Peri 2« (% < «a < 1) 6omaTblH CHMMETPUSIIBI HHTEIPAJIIHIK-
muddepeHnnaaIblK onepaTopaap TabbUIALI. ByJsl, IMBIHALIFbIHIS Oesriji MarbiHaga 0eJ-
mek perti HITypm-JInyBuiis omepaTopbIHBIH aHAIOTEI 00JbIT TabbLIa b, Conmaii-ak, 6eJ-
meK perTi auddepeHuaIblK, TeH ey YiiH ['pul (hopMyIachbIHbIH AaHAJIOTBI TaralibIHIAJIBIII,
opl Kapail OHBIH ©3-e3iHe TYHiHjeC omepaTopapibl CHIATTayFa KOJIAHBLIYBl KeJITiplIreH.
Conpraga raobaasl Pypbe Taimaybl TaJdKbLIaHFaH KoHe Kamyro-Puman-JInyBuiib Tekrec
TYBIHIbLIAPMEH OailJIaHBICKAH ©3-3iHe TyHiHaec OOJIIeK PeTTi ormepaTop iapiblH CIIEKTPaJ-
JBIK, KACHETTEP] TypaJjbl Keibip HOTHKeIep A0JIe/IIeHIeH.

Kinrrik ce3znep. Wurerpanabik-auddepeHuaiabk, omneparop, KamyTo TybIHIbICH,
Puman-JInyBuias TYBIHABICEH, ©3-03iHe TYHiHIEC ecerr, borek perTi auddepeHInaIbK TeH-
ney, 6esexk perti HITypm-JIuyBuiis onepaTopbl, KEHERTYIIEP TEOPUSICHI.
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Toxkmarambero H., Topebex B.T. CAMOCOIIPA?KEHHBIE OITEPATOPBI, [IOPOZK-
JEHHBIE UHTEI'PO-INOOEPEHIMAJIBHBIMU OITEPATOPAMU

JlaHHast CcTaThsl TOCBAIIEHA OIMUCAHUIO CAMOCOIPSIXKEHHBIX PACIIUPEHUIl HHTErpo-
juddepeHnuaabLHOro  oneparopa. HaiijieHbl cuMMeTpUYHbIE HHTEIPO-IuddepeHnnabHbIe
oepaTopsl HopsijiKa 2« (rie % < a < 1). /leficTBUTEIHLHO, B HEKOTOPOM CMBICJIE 9TO aHA-
Jgor gpobuoro omneparopa Ilrypma-Jluysusis. Kpome toro, anamsor dopmyssr ['puna jms
nuddepeHnnaaIbHbIX YPAaBHEHUH TPOOHOTO TOPSIKa YCTAHOBJIEH C TAJILHEHIITUMY ITPUI0ZKEHU-
sIMU B OIIUCAHUU KJIACCA CAMOCOIPSKEHHBIX oriepaTopoB. Hakonerr, Mbl 00Cy/iuM 17100a/IbHBIIT
anaym3 Pypbe U JoKayKeM HEKOTOPbIe PE3YJILTAThI O CIEKTPAJIbHBIX CBOMCTBAX CAMOCOIPSsI-
JKEHHBIX OIIEPATOPOB JIPOOHOIO MOPsI/IKA, CBA3AHHBIX C IIpon3BoiHbiME Tuna Kamnyro-Pumana-
JInyBuiis.

Krouesnie ciioBa. Interpo-auddepeHimaibHblil oriepaTop, npon3soauas KamyTo, mpons-
BoaHas Pumana-JInyBuiist, caMoconpsizKeHHast 3a1a49a, auddepeHuabHoe ypaBHeHne 1poo-
HOro nopsiaka, npobubtit oneparop [Itypma-JluyBuiis, Teopus paciiupeHnii.
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Abstract. The paper presents an attempt to assess the transition of arc to glow discharge on the basis
of a comparison of selected theoretical indicators and these provided by the experiments. The evaluation
includes the dynamics change of the discharge volume during the opening of the contact. The tests
were carried out for a low voltage DC' circuit with a discharge energy not exceeding 10J. Based on
the results obtained, appropriate practical conclusions were formulated regarding the need for further

consideration.

Keywords. Switching DC arc, low voltage and low power electric grid, arc-to-glow transition.

1 Introduction

The use of direct current in various areas shows increasing trend mainly due to the
increasing use of renewable energy sources. However, this forces manufacturers and users
to different approach to the application due to both the advantages and disadvantages of
DC compared to AC. One of the problem is to ensure effective breaking of the DC' circuit
especially under inductive loads.

Tests carried out by authors in recent years have demonstrated the occurrence of the
previously unknown effect of spontaneous transition of the DC switching arc into glow dis-
charge [1]. This is a very positive effect because it significantly reduces contact erosion thereby
increasing their switching life. However, there are significant problems with explaining the
reasons of this effect due to the diversity, complexity and variability of physical phenomena
and their mutual interaction each other. This applies both to the surface conditions of the
contacts as well as the area of the contact space. The authors investigated this effect to
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the broadest limits possible, paying attention to the majority of factors affecting the dis-
charge phenomena. This applies to both the type of contact material, voltage and switching
current, type and pressure of protective gas inside the contact gap, contact opening speed,
etc. The tests were performed using, among others, fast photo registration and optical fiber
spectroscopy [2]. It allowed to draw specified conclusions, however, a small amount of data
does not allow for the practical implementation of this process under operation conditions.
No less, it can be concluded that for specified switching conditions this process is statistically
predictable, unfortunately it is not repeatable for following switching.

At the same time, the authors made the attempt to theoretical analysis of this phe-
nomenon via a mathematical description of this effect based on the experimental results.
The mathematical model has been developed that describes the dynamics of the transition
of a low-temperature electric arc plasma into a glow discharge. It is based on the system
of differential equations for temperature and electromagnetic fields, the solution of which is
found using the method of upper and lower functions. Based on Lyapunov’s theory and the
Hurwitz criteria, a system of inequalities is obtained for the parameters of the electric arc and
the material of the electrodes, which makes it possible to obtain criteria for instability and
bifurcation of voltage, current and temperature, which provide the required transition [3].
According to this the arc instability criteria can (for the given electric circuit R, L, C) be
formulated as follows:

R 1 1
= — =<0 1
L + CRas ka <Y (1)
R 1 1 1 R 1 R
=+ -— )=+ + -
L CRyg kg LC LCRs kaCRsg ksl
1 R
— — —1 0 2
kALC <RA > =% @
R
— —1<0. 3
s ®)
Where arc resistance Ry4: .
A
Ro= -2 4
A= T (4)
and thermal (heat) constant
T'CT
pa = ATl 9
A

are particularly important for the relation between the arc time t4 and this of glowing t,
(Vare is arc volume, Ty is arc temperature, P4 is arc power, C'4 is heat capacity of the arc).
Unfortunately, the modeling of the arc transition into glowing is based on a large error due to
complex phenomena and mutually dependent parameters. Therefore, despite the extensive
experimental research, changes in transient cannot be determined precisely, mostly due to
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the lack of appropriate available high resolution measuring equipment. However, it should
be noted that for the given switching conditions, the electrical circuit parameters R, L, C
are already given. Selected physical quantities can be calculated from recorded waveforms of
current and voltage drop. Therefore, it is possible to estimate the value of the resistance (R 4)
of the discharge (arc and glow) as well as the power P4 provided to the electric discharge.
Next, when using the literature data regarding the average arc T4 temperature and its heat
capacity Cy4, the thermal time constant k4 of the arc can be estimated. For analysis the
value of the arc volume V4 as well as its variation with time under contact opening has to be
taken into account. (It must be noted that in [3] only average arc volume was considered).
These values were estimated by the authors on the basis of the measurement of the change
in the length of the contact gap in time and its correlation with the results of measurements
of photo-registration of the discharge process.

Thus, using the set of inequalities (1)—(3) one can estimate the values of both R4 and k4
for given switching conditions. Basing on (5) for the experimentally estimated values of the
arc volume and its temperature one can obtain the threshold power value of the arc, i.e. the
maximum value of the current at which interruption of the arc-to glow transition will take
place. Note, that if the arc resistance R4 tends to infinity the k4 value is close to the circuit
time constant (I' = L/R).

The article attempts to define the limit parameters of the presented equations with refer-
ence to the measurement results obtained under testing. The test was carried out in a specially
designed and made for this purpose the test stand with hermetic chamber for round, plain
contacts (diameter 5mm and thickness of 1 mm) made of CuCr composite material (made
by means of the electron beam technology [4], for different Cr content) in air under normal
pressure at room conditions (see Fig. 1). Voltage was fixed to be 110V, current about 0.5 A
for the inductive time constant of the electric circuit equal to 40 ms (discharge energy less
than 10 J) and contact gap around 4 mm [2]. The average contact opening speed was around
0.125m/s.

2 Selection of the test results for analysis

The tests were performed for flat contacts (1) with the use of an insulating washer (2)
that prevents the arc from moving beyond the contact area (Fig. 1).

Due to the different progress of the phenomenon for the same switching conditions, three
different cases (waveforms) were selected for the analysis: only the arc discharge without
transient to glowing (Fig. 2), only the glow discharge (Fig. 3) and the arc discharge with
double transition into the glowing (Fig. 4).

Arc column radius 74, changes linearly from 1.5-107° to 2- 1073 m.

Arc volume is:

Vare = V;:ilinder(la TATC) = W(TATC)QZ (6)
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Figure 1 — Appearance of the contact sample for testing

(1 — contact member, 2 — textolite washer, dimensions in mm)
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Figure 2 — Arc current waveform i, contact voltage u and contact gap 1 variation during
interruption of DC inductive load (110V, 0.52 A, L/R = 42ms, CuC'r contacts materials)
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Figure 3 — Discharge current waveform ¢, contact voltage u and contact gap 1

variation during interruption of DC' inductive load

(110V, 0.52 A, L/R = 42ms, CuC'r contacts materials), for only the glow appearance
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Figure 4 — Discharge current i, contact voltage waveform u and contact gap 1
variation during interruption of DC inductive load (110V, 0.52 A, L/R = 42ms,

CuC'r contacts materials), for double transition of the switching arc into glowing

3 Estimation based on experiment

The assessment of the arc’s transition into glow discharge was carried out for three pre-
sented above cases based on measured and estimated waveforms of the discharge column
volume (arc) Vy,., discharge resistance R4, and discharge power P4 for two different radius
values r Aremin and T Aremaz Of the arc column (discharge). All data for estimation are included
in Table I.

TABLE 1 — Measured and theoretically estimated parameters for analysis

Parameters for analysis
supplied voltage U 110V
load current 1 0.52A
load resistance R 211.538 Ohms
load inductance L 8.931 H
circuit capacity C 5.86855- 1078 F
arc temperature | Ty 6500 K
arc volume Viare | 5.0-10719;1.5-107"m3
arc heat capacity | Ca 237.6 J/m3K

For the case of the existence of only arcing (see Fig. 2), the trends of variation of the
volume of the arc column, the resistance of the arc and the arc power with time under the
discharge are shown in Fig. 5-9, respectively. The possibility of meeting the transition
conditions (according to the equations (1)-(3)) for the arcing only as in Fig. 2 is illustrated
by Fig. 10 and 11.
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Figure 5 — Variation of the arc column Va,. with time for different

Arc resistance RA [Ohm]

Figure 6 — Variation of the arc resistance R4 with time
(discharge as in Fig. 2, dotted for raremin = 1.5 - 107° m)
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From the obtained waveforms it follows that for only arc appearance, both the resistance
of the arc and the power supplied to the arc are quite stable and show change at the end of
the discharge. However, the probability of meeting the logical conditions for the transition
is quite possible, especially for a small radius of the arc column r4pemin = 1.5 - 1079 m as
indicated by dots in Fig. 6 and Fig. 8. It can be seen that with the increase in the radius
value (7 Aremaz = 2 - 1073m) the transition is theoretically possible only at the beginning of
the course (as indicated by dots in Fig. 7 and Fig. 9). It should be also noted that the
duration of the only arcing is the longest in comparison with the other runs.
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Figure 7 — Variation of the arc resistance R4 with time
(discharge as in Fig .2, dotted for rarcmaz = 2 - 1073 m)
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Figure 8 — Variation of the discharge power P4 with time

(discharge as in Fig. 2, dotted for rarcmin = 1.5 - 1075 m)

For the case of the appearance of only glowing (see Fig. 3), the variation of the volume
of the discharge column, the discharge resistance and the dissipated power with time under
the discharge are shown in Fig. 12-16, respectively. Whereas, possibility of meeting the
transition conditions (according to the equations (1)—(3)) for the glowing only as in Fig. 3 is
illustrated by Fig. 17 and 18.
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Figure 9 — Variation of the discharge power P4 with time
(discharge as in Fig. 2, dotted for 7 arcmaz = 2 - 1073 m)
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Figure 10 — Logical conditions (3/3 =1;2/3 =0.67;1/3 = 0.33;0/3 = 0)

as a function of time and arc column radius r 4., for discharge as in Fig. 2

During the tests, it was found that in the case of only glow discharge, the volume of the
discharge column is smaller than in the case of only an arc discharge. However, this value
increases with time, which is the result of the increase in the length of the contact gap under
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Figure 11 — Logical conditions with time and volume

of the arc Va,. for discharge as in Fig. 2.
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Figure 12 — Variation of the discharge column Vy4,.

with time for different discharge radius (discharge as in Fig. 3)

opening. The discharge resistance indicates much higher value and is exponentially increasing
over time. The discharge power decreases practically linearly. The logical conditions for the
occurrence of the transition effect are met, but practically for small values of both the radius
and discharge volume. It should be emphasized here that the duration of the discharge is
much shorter in this case. The glow discharge disappears before the contact opens.
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Figure 13 — Variation of the discharge resistance R4
with time (discharge as in Fig. 3, dotted for rarcmin = 1.5 - 107° m)
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Figure 14 — Variation of the discharge resistance R4

with time (discharge as in Fig.3, dotted for rarcmaz = 2 - 107°m)

7000

6000

5000

4000

3000

2000

1000

7000

6000

5000

4000

3000

2000

1000

0
0

Contact No:4 Shot:F0048 Resistance

0

100

Contact No:4 Shot:F0048 Resistance

200 300 400 500 600
Sample [-]

100

200 300 400 500 600
Sample [-]

For the case of the double transition of the arc into glowing (see Fig. 4), the trends
of variation of the volume of the arc column, the resistance of the arc and the arc power
with time under the discharge are shown in Fig. 19-23, respectively. Whereas, possibility of
meeting the transition conditions (according to the equations (1)—(3)) for the double arc-glow
transition, as in Fig. 4 is illustrated by Fig. 24 and 25.
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Figure 15 — Variation of the discharge power P4
with time (discharge as inFig. 3, dotted for r aremin = 1.5 - 107° m)
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Figure 16 — Variation of the discharge power P4
with time (discharge as inFig. 3, dotted for rarcmaz = 2 - 1073 m)

The obtained measurements show that the volume of the discharge column is slightly
smaller compared to the arcing. The duration of the contact opening is also shorter. However,
the resistance at the transition points shows a significant increase. The course of power shows
similarity and arcing and fluorescent discharge. The transition conditions are ensured for a
small arc fault value. This possibility is also marked by dots on the power and resistance
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Figure 17 — Logical conditions (3/3 =1;2/3 =0.67;1/3 = 0.33;0/3 = 0)

as a function of time and column radius 7 .. for discharge as in Fig. 3
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Figure 18 — Logical conditions with time and volume

of the discharge Va,. for discharge as in Fig. 3

waveforms as a function of time.
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Figure 19 — Variation of the discharge column V.. with time
for different discharge radius (discharge as in Fig. 4)
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Figure 20 — Variation of the discharge resistance R4 with time

(discharge as in Fig. 3, dotted for 7 arcmin = 1.5 - 107° m)

4 Conclusions

The tests carried out showed that under certain conditions of interrupting the low-power
inductive DC' current, there is a spontaneous transition of the switching arc into glow dis-
charge. Controlling this phenomenon is however, very difficult due to complexity and mutual
interaction of physical phenomena both at the contact surfaces as well as inside the inter-
contact space. Mathematical stability criteria derived are practically useful provided that
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Figure 21 — Variation of the discharge resistance R4 with time

(discharge as inFig. 3, dotted for 7 arcmaz = 2 - 1073 m)
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Figure 22 — Variation of the discharge power P4 with time
(discharge as inFig. 3, dotted for 7 arcmin = 1.5 - 107°m)

the values of nonlinear parameters in them are precisely determined. The research carried
out by the authors showed that although there is no repeatability of the phenomenon under
following breaking but it is theoretically possible to meet requirements of these conditions
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Figure 23 — Variation of the discharge power P4 with time

(discharge as inFig. 3, dotted for 7 Arcmaz = 2 - 1073 m)
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Figure 24 — Logical conditions (3/3 =1;2/3 =0.67;1/3 =0,33;0/3 = 0)

as a function of time and column radius 74,. for discharge as in Fig. 3

(by, for example, decreasing discharge volume and its radius). However, it is necessary to
analyze theoretically and to examine practically as accurately as possible the thermal process
in transient states of breaking both at the surface of contacts as well as inside the contact gap
volume. Unfortunately, it requires the use of suitable high-resolution measuring equipment.
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Figure 25 — Logical conditions with time and volume of the discharge Var.

for discharge as in Fig. 3
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Bumnepckuit [.B., Xapua C.H., Memxkunckuit 6. JIOFAHBIH COJITBIH PA3PAIIKA
AVBICYBIH SKCITEPUMEHTAJIIBI HOTUXKEJIEP HET'ISIHIE BOJI2KAY OPEKETI

MakaJia/ta TOFaHbIH COJIFBIH PA3PSIKA aybICYbIH TAHIAI AJIbIHFAH TEOPHUSIIbIK KOPCETKIIII-
Tep MeH 3KCIIEPUMEHTTED JePEKTEPIiH CalbICTRIPY HEri3iH e barajiayra opeKeT *KacaJibl. bara-
Jlay KOHTaKTiHI alllKaH Ke3Je pas3psij KOJEeMiHIH e3repy JIMHAMUKACHIH KaMTuAbl. ChIHAKTAD
pa3psii Kyarsl 10 /o acnaliThiH TYpPaKTbl TOKTBIH, TOMEH BOJIBTTHI Tidberi yImiH »Kyprizii-
Ji. AJbiHraH HOTYXKEJEp HeErisiHje ojaH opl Kapail 3epTrey KayKeTTLIIriHe KATBICTBI COMKEeC
MTPAKTUKAJIBIK, KOPBITBIHIBLIAD TYKBIPHIMIAJIHL.

Kinrrix ceznep. TypaKTbl TOKTBIH JOTaChIH AYLICTBIPLII KOCY, TOMEH KEpPHEYJIi YKOHe a3
KyaTThl JIEKTP 2KeJIiCl, IOFAHBIH COJIFBIH Pa3psJIKa aybICYHI.

Bummmesckuit I.B., Xapun C.H., Memxunckuit B. IIOIIBITKA TIPEJICKA3ATH I1E-
PEXO/I JIVI'U B TJIEFOIINI PA3PSI HA OCHOBE SKCIIEPUMEHTAJIbBHBIX PE-
3VJIBTATOB

B craTbe mpennprHATa MONBITKA OIEHUTL BO3MOXKHOCTH MepexoJia JAYTH B TJICIOININH pas3-
P Ha OCHOBE CpaBHEHU A BI)I6paHHbIX TEOPETUICCKUX nokKasareJjieil u JAHHBIX 9KCIIEPUMEHTOB.
OrneHka BKJIIOYAET B cebsl IMHAMUKY U3MEHEHUsI 00'beMa paspsjia IIPpU OTKPBITUU KOHTAKTA.
WcnbiTanus MpOBOSUINCE JIs HU3KOBOJBTHOM €M ITOCTOSTHHOTO TOKa C SHEPTHUeil paspsiaa
ue 6ostee 10 /[orc. Ha ocHoBe 1mosty4eHHBIX PE3YIbTATOB ObLIN CHOPMYJIUPOBAHBI COOTBETCTBY-
oniye nmpakTuieCckmue BbIBOAbl OTHOCHUTEJIBbHO HeO6XO,ZLI/Il\IOCTI/I ,ﬂaﬂbHeﬁH_IeI‘O PaCcCMOTPEHUA.

Kirouesnre cioBa. [lepekiodenne gyru MOCTOSHHOTO TOKA, JIEKTPUIECKAST CeTh HU3KOI'O
HAIIPS2KEHUs U MaJION MOIIHOCTH, II€PEXO/] YT B TJICIONIUN pa3psi/I.
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