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Abstract. Particular monochromatic solutions of biquaternionic wave for the free fields of electro-

gravimagnetic charges and currents have been constructed that describe elementary particles as standing

monochromatic electro-gravimagnetic waves. Two classes solutions of this biwave equation generated

by scalar potentials (pulsars) and vectorial potentials (spinors) are studied. Their asymptotic properties

have been researched on the basis of which they are classified on heavy and light elementary particles

(bosons and leptons). It is shown that bosons are spherical harmonic pulsars, the mass density of which

is determined by their frequency of oscillations. This allows to construct periodic systems of elementary

particles on the basis of classical musical scale. In particular, a biquaternionic representation of the

hydrogen atom is given and advising it a periodic system, built on the principle of the simple musical

scale.

Keywords. Biquaternion, frequency, standing wave, pulsar, spinor, boson, lepton, atom, hydrogen,

periodic system, musical scale.

1 Introduction

In [1]–[6], the author developed a biquaternionic model of electro-gravimagnetic field
(EGM-field) and electro-gravimagnetic interactions. It is based on biquaternionic represen-
tations of Maxwell and Dirac equations (MEq, DEq) and their generalization in biquater-
nions algebra (GMEq, GDEq). The biquaternionic representation of GMEq expresses the
biquaternion of mass charge and EGM current densities through the bigradient of EGM-field
intensity. The biquaternionic representation of GDEq defines a transformation of density of
EGM-charges (mass-charges) and EGM-currents under the influence of external EGM fields.
In particular, in the absence of external fields, on its basis, the biquaternionic wave equation

2010 Mathematics Subject Classification: 81V25.
Funding: This work was completed with the support of the Ministry of Education and Science of the

Republic of Grant AP0532272-OT-18.
c© 2019 Kazakh Mathematical Journal. All right reserved.



Bosons and leptons in biquaternionic ... 7

of the free field of mass-charges and currents, which is a field analog of the first Newton law,
inertia law were obtained.

Here the particular monochromatic solutions of this equation are constructed, which de-
scribe elementary particles as standing EGM-waves. They can be divided into two classes
generated by scalar potentials (pulsars) and vectorial potentials (spinors). Their asymptotic
properties are researched, on the basis of which they are classified on heavy (bosons) and
light (leptons) elementary particles. It is shown that bosons are spherical harmonic pulsars,
the mass-charge density of which is determined by their oscillation frequency. This allows us
to build periodic system of elementary particles based on the simple harmonic musical scale.

In particular, a biquaternionic representation of hydrogen atom and the corresponding
periodic system are built on the principle of a simple gamut.

2 Equation of the free field of charge-current

The equation of the free field of charge-currents has the form of a homogeneous biwave
equation:

∇−Θ(τ, x) = (∂τ − i∇) ◦ (iρ(τ, x) + J(τ, x)) = 0. (1)

Here Θ(τ, x) is a biquaternion of charge-current (CC), which scalar part ρ(τ, x) discribes
densities of electric and gravimagnetic charges (EGM-charge). Vector part J(τ, x) is the
density of electric and gravimagnetic currents (EGM-currents):

ρ =
1√
ε
ρE − i

√
µ
ρH , J =

√
µ jE − i

√
ε jH .

Here ρE(x, t), jE(x, t) are densities of electric charge and current, ρH(x, t), jH(x, t) are den-
sities of gravimagnetic charge and current; ε, µ are constants of electric conductivity and the
magnetic permutability of vacuum, c = 1/

√
εµ is the speed of light (c = 299792458 ± 1, 2

m/s), i is imaginary unit.
The action of biquaternionic differential operators ∇− and ∇+(mutual bigradients) are

defined according to the rule of quaternions multiplication:

∇±F (τ, x) = (∂τ ± i∇) ◦ (f(τ, x) + F (τ, x))

= (∂τf ∓ i divF ) + {±igradf + ∂τF ± irotF}.

Energy-pulse Bq of any F -field has the form:

Ξ(τ, x) = W (τ, x) + i P (τ, x) = 0.5F ◦ F ∗,

where F ∗ is conjugated Bq:
F ∗ = f̄(τ, x)− F̄ (τ, x).

Here, the line above the symbol means complex conjugation. The scalar part W is the energy
density of F -field, and P is an analogue of Pointing vector of electromagnetic field. We will

Kazakh Mathematical Journal, 19:4 (2019) 6–20



8 Lyudmila A. Alexeyeva

call it by the same name (for details, see [5], [6] about application of differential algebra of
biquaternions in electrodynamics).

The scalar part of this equation is well known as

the law of EGM-charge conservation:

∂τρ+ div J = 0.

The vector part describes the connection between charges and currents in absence of external
EGM-field. It is

the law of EGM-current motion:

∂τJ − i rotJ + gradρ = 0.

This two laws are a closed hyperbolic system of differential equations for construction of its
solutions.

3 Monochromatic EGM-field. Harmonic elementary particles and structures

For monochromatic fields with frequency ω CC-Bq can be represented as

Θ(τ, x) = Θ(x, ω) exp(−iωτ), ω > 0.

In this case from Eq. (1) we get the equation for complex biquaternionic amplitude (biampli-
tude) Θ(x, ω):

(ω +∇) ◦ (iρ(x) + J(x)) = 0. (2)

Since

(ω +∇) ◦ (ω −∇) = (ω −∇) ◦ (ω +∇) = ω2 + ∆,

from here it follows that the biamplitude satisfies to Helmholtz equation:

∆Θ + ω2Θ = 0,

4 is Laplace operator.

Monochromatic solutions of Eq. (1) have the form:

Θ(τ, x) = exp(−iωτ) (ω −∇) ◦
(
ψ0(x, ω) +

3∑
j=1

ψj(x, ω)ej

)
, (3)

where the potentials ψj are any solutions of Helmholtz equation:

∆ψ + ω2ψ = 0,

Kazakh Mathematical Journal, 19:4 (2019) 6–20



Bosons and leptons in biquaternionic ... 9

which can be presented as surface integral of the kind

ψj(x, ω) =

∫
‖ξ‖=ω

φj(ξ, ω)e−i(ξ,x)dS(ξ) (4)

for any function φj summed on the sphere of radius ω.

We consider particular solutions of the Helmholtz equation [7]:

ψnm(x, ω) = jn(ωr)Y m
n (ϑ, ϕ), (5)

where jn(ωr) are spherical Bessel functions of order n (n = 0, 1, 2...), Y m
n (ϑ, ϕ) is a spherical

harmonic of order n,m (m = 1, 2, ...):

Y m
n (ϑ, ϕ) = Pmn (cosϑ) exp(imϕ),

Pmn (...) are associated with Legendre polynomials [8], (r, ϑ, ϕ) are spherical coordinates.

It is natural to take these solutions to build elementary particles, which can be named
harmonic. Among them we single out those, generated by the scalar potential, and call them
pulsars:

Θ0
nm(x, ω) = (ω −∇) ◦ ψnm(x, ω)

= ωψnm(x, ω)− gradψnm(x, ω),
(6)

and which are generated by vectorial potential, we call them spinors:

Θj
nm(x, ω) = (ω −∇) ◦ ψnm(x, ω)ej

= div (ψnm(x, ω)ej) + {ωψnm(x, ω)ej − rot (ψnm(x, ω)ej)} . (7)

The latter are polarized in the direction of the coordinate axes, respectively index j = 1, 2, 3.

Using structural biquaternions of an arbitrary form K(x) and biquaternionic operation
of convolution (εjlm is Levi-Civita pseudo-tensor):

Θ(x, ω) ∗K(x) = (iρ+ J) ∗ (k +K)

=
{
iρ ∗ k −

∑3
j=1(Jj ∗Kj)

}
+
{
iρ ∗K + J ∗ k +

∑3
j,l,m=1 εjlm(Jj ∗Kl) em

}
,

(8)

we can construct different monochromatic CC-fields:

Θ(x, ω) =

3∑
j=0

Θj
nm(x, ω) ∗Kj(x). (9)

Kazakh Mathematical Journal, 19:4 (2019) 6–20



10 Lyudmila A. Alexeyeva

The functional convolution for regular function has integral form:

ρ(x) ∗ k(x) =

∫
R3

ρ(y)k(x− y)dy1dy2dy3.

Components of convolutions for vector are written in the same way. By virtue of the differ-
entiation property of convolution, it is also a solution of Eq. (2).

Formulas (9) allow us to build various crystal lattices from harmonic elementary particles,
if as a structural biquaternion we take lattices, which are various shifts of δ-function and
others generalized functions.

Here is a simple example of a heterogeneous rectangular grid with variable step (hl, hm, hn)
and weights almn:

K(x) =
L∑
l=0

M∑
m=0

N∑
n=0

almnδ(x1 − hl)δ(x2 − hm)δ(x3 − hn).

It corresponds to such orthotropic crystalline ω-pulsar:

Θ(x, ω) =

L∑
l=0

M∑
m=0

N∑
n=0

almnθ 0(x1 − lhl, x2 −mhm, x3 − nhn, ω).

Formulas (7)–(9) allow us to build the most diverse monochromatic structures, such as
bodies, tissues and threads (about their representation see in more detail in [4]). And their
frequency superpositions are generally vast.

4 Elementary spherical harmonic pulsars. Bosons

Among the solutions of the Helmholtz equations (7), only one is spherically symmetric
[8]:

ψ00(x, ω) = j0(ωr) =
sin ωr

ωr
. (10)

Here j0(ωr) is spherical Bessel function, r = ‖x‖ =
√
x21 + x22 + x23, ex = x/r.

The biamplitude of the corresponding pulsar has the form:

Θ0(x, ω) = (ω −∇) ◦ ψ00(x, ω) = ω sinωr
ωr − grad sinωr

ωr

= sinωr
r −

(
cosωr
r − sinωr

ωr2

)
ex.

(11)

Hence, taking into account the fact that j
′
0(z) = −j1(z), we obtain complex amplitudes and

amplitudes of CC-field oscillations:

iρ01 + J0
1 = ω {j0(ωr) + j1(ωr)ex},

Kazakh Mathematical Journal, 19:4 (2019) 6–20



Bosons and leptons in biquaternionic ... 11

ρ0 = −iωj0(ωr), J0 = ωj1(ωr)ex,∣∣ρ0∣∣ = ω|j0(ωr)|, ‖J0‖ = ω|j1(ωr)|.

Figure 1 – Bosons scalar potential ϕ00(r, ω) : ω = 1, 2, 4, 8

Calculating the energy-momentum biquaternion Θ0:

Ξ0(x, ω) = W 0 + i P 0 = 0.5Θ0e−iωτ ◦
(
Θ0
)∗
eiωτ

= 0, 5ω2(j20(ωr) + j21(ωr)),

(12)

we get that the Pointing vector is zero:

P 0(τ, x) ≡ 0.

From these relations and properties of spherical functions it follows that the CC-density
decreases with increasing r as r−1, and the vibrations energy decays even faster, like r−2.

Consider the asymptotic behavior of these quantities by r → 0, ω = const. In so far as

j0(0) = 1, j1(0) = 0, (13)

by r → 0 ∣∣ρ0∣∣ ∼ ω, ∥∥J0
∥∥ ∼ 0, W ∼ 0, 5(ω2).

And so we have the following .

Properties of spherical harmonic pulsars. At spherical harmonic pulsars in the center
at x = 0 the GM-charge density is equal to its oscillation frequency ω, the density of the
EGM-current is zero, the energy density of the oscillations is 0.5ω2, and Pointing vector is
zero everywhere.

Based on these properties of the density of the mass charge, the spherical harmonic pulsars
are heavy elementary particles, bosons.

Kazakh Mathematical Journal, 19:4 (2019) 6–20



12 Lyudmila A. Alexeyeva

In Figures 1–6 you can see their properties for different frequencies depending on r.
Figures 1–4 show graphs of changes in the scalar potential and amplitudes of the densities
of the EGM charge and the EGM current of bosons and their components in the radial
coordinate on which they depend, with successive doubling of frequencies on each graph.
With increasing frequency, the density maxima at zero increase, the nodal points thicken,
and the decrease along the radius from the center of a boson increases.

Figures 5 and 6 show graphs of changes in the bosons energy density. There are no nodal
points. The energy in the center of the boson increases sharply with increasing frequency
and decreases faster near its center.

Figure 2 – Amplitude EGM-charge density of bosons ϕ00(r, ω) = 1, 2, 4, 8

Figure 3 – Amplitude of EGM-current density of bosons: ω = 1, 2, 4, 8

Nonspherical harmonic pulsars (6) for n > 0 have zero density at x = 0, because [8]

jn(z) =
zn

(2n+ 1)!!
((1 + o(z)) by z → 0.

They are light elementary particles, leptons.

Kazakh Mathematical Journal, 19:4 (2019) 6–20



Bosons and leptons in biquaternionic ... 13

Figure 4 – Amplitude of electric (a) and gravimagnetic (b) density of bosons: ω = 1, 2, 4, 8

Figure 5 – Energy density of bosons: ω = 1, 2, 4, 8

Figure 6 – Energy density of bosons: ω = 8, 16, 32

5 Elementary spherical harmonic spinors. Leptons

At first let us consider a spinor polarized in the direction of X1 axis:

Θ0
1(x, t) = iρ01 + J0

1 = Θ0
1(x, ω)e−iωτ,

Kazakh Mathematical Journal, 19:4 (2019) 6–20



14 Lyudmila A. Alexeyeva

which biamplitude is

Θ0
1(x, ω) = (ω −∇) ◦ j0(ωr)e1

= div (j0(ωr)e1) + ωj0(ωr)e1 − rot (j0(ωr)e1)

= ω{−r,1 j1(ωr) + j0(ωr)e1 + j1(ωr)(r,3 e2 − r,2 e3)}, r,j = xj/r.

(14)

From here follow
ρ01 = iωj0(ωr)r,1 ,

J0
1 = ω{e1j0(ωr) + j1(ωr)(r,3 e2 − r,2 e3)},∣∣ρ01∣∣ = |ωj1(ωr)r,1| , ‖J‖ = ω

√
j20(ωr) + j21(ωr)

(
r,22 +r,23

)
.

Energy-impuls Bq is equal to

Ξ0
1(x, ω) = 0.5ω2(j20(ωr) + j21(ωr)). (15)

By r → 0: ∣∣ρ01∣∣ ∼ 0, ‖J‖ ∼ ω,

W 0
1 ∼ 0.5ω2 P 0

1 ≡ 0.

Following (14), we obtain a biquaternion representation of a spherical spinor polarized
along an arbitrary vector e, |e| = 1:

Θ0
e(x, ω) = (ω −∇) ◦ j0(ωr)e

= div (j0(ωr)e) + ωj0(ωr)e− rot (j0(ωr)e) = iρ0e + J0
e ,

where
ρ0e = −ωj1(ωr)(e, ex), J0

e = ω{j0(ωr)e+ j1(ωr)[e, ex]}

with the same asymptotic properties. Here (e, ex), [e, ex] are scalar and vector productions.
Properties of harmonic spherical spinors. In the center (x = 0) of spherical harmonic

spinors the EGM-charge density is zero, the norm of EGM-current density is equal to ω,
energy density is equal to ω2/2, Pointing vector is zero.

Thus, spherical harmonic spinors, in terms of EGM charge density, belong to light ele-
mentary particles, that is, leptons.

6 Biquaternion representation of elementary hydrogen atom

So, we have shown that among monochromatic solutions of the charge-current free field
equations (1), only harmonic spherical pulsars have nonzero density at their center. This sug-
gests that spherical harmonic pulsars can be used to build biquaternionic model of elementary
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atoms. The simplest atom is hydrogen H. It is known that the spectrum of the hydrogen
atom contains a set of frequencies. Denote by ω0 minimum frequency in its spectrum.

We call an elementary hydrogen atom a spherical harmonic pulsar with ω0 frequency. Its
biquaternionic representation has the form:

H0(τ, x) = ω0{j0(ω0r) + j1(ω0r)ex}e−iω0τ. (16)

The asymptotic properties of its density at the center of the atom are related to the
oscillation frequency:

|ρH0(x, τ)| ∼ ω0, ‖JH0(x, τ)‖ ∼ 2

3
ω2
0r, WH0(x) ∼ 0.5ω2

0, r → 0. (17)

The nodes of this standing wave with mass density |ρH0 | are spheres whose radii are deter-
mined by a simple trigonometric equation:

sinω0rk = 0 ⇒ rk =
πk

ω0
, k = 1, 2, ... .

To determine the nodes of this standing wave by energy density WH0 you need to find the
zeros of a more complex equation:

ω2
0r

2
k + ω0rk sin 2ω0rk − sin2 ω0rk = 0, (18)

where rk =
zk
ω0
, zk are the roots of transcendental equation

f(z) = z2 + z sin 2z − sin2 z = 0.

However, this equation has no real roots (see Figs. 5–6).
In the original space-time

exp(−iω0τ) = exp(−iω0ct) = exp(−i$0t), $0 = ω0c.

Using the representation of complex charges and currents through electric and gravimagnetic
charges and currents (1), we obtain the following expressions for its elementary hydrogen
atom, electric and gravimagnetic charges, electric and gravimagnetic currents:

ρEH0
(t, x) =

√
ε
r cos$0t sin $0‖x‖

c ,

ρHH0
(t, x) =

√
µ
r sin$0t sin $0‖x‖

c ,

JEH0
(t, x) = 1√

µr cos$0t
(

cos $0‖x‖
c − c

$0r
sin $0‖x‖

c

)
ex,

JHH0
(t, x) = 1√

εr
sin$0t

(
cos $0‖x‖

c − c
$0r

sin $0‖x‖
c

)
ex.
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16 Lyudmila A. Alexeyeva

Accordingly, in the initial space-time the biquaternion of the elementary hydrogen has the
form:

H0(t, x) =
e−i$0t

r

{
sin($0 r/c) +

(
cos($0r/c)−

c sin($0r/c)

$0 r

)
ex

}
.

Consequently (17), by r → 0

|ρH0(x, τ)| ∼ $0/c, ‖JH0(x, τ)‖ ∼ ($0/c)
2

3
r, W0(x, τ) ∼ ($0/c)

2

2
.

7 Periodic system of atoms. Simple gamut

So, in the biquaternionic representation, hydrogen atom is a spherical harmonic standing
wave with fix frequency in EGM charges-currents field.

Since the main characteristic of a hydrogen atom is the oscillations frequency, which
determines its mass, on its basis it is possible to build the periodic system for atoms according
to the musical scale. Indeed, with an increase in the frequency of vibrations, the mass of
atom increases.

The musical scale is an octave system with frequency doubling for each subsequent octave:

ω0, 2ω0, 4ω0, 8ω0, 16ω0, ... .

The ratio of vibration frequencies for atoms within the n-th octave:

2n−1ω0, ..., 2
nω0

is similar to the ratio of tone frequencies within a musical gamut. Number of notes in the
musical scale depends on the type of musical system.

There are many musical scales. They depend on the national characteristics of the musical
perception of peoples, the creation of national string musical instruments. Pythagoras gave
the earliest mathematical description of the musical scale, studying the spectrum of the
string. The most complete description of various musical systems was given by Shilov G.E.
in brochure [9]. Here in Table 1 there are two musical scales, which can be taken as basis.
In them the ratio of tone frequencies is a rational number. For such tones (notes) there is
a general period of oscillations, which is determined by the smallest total multiple for the
periods of their oscillations. It creates harmonious sound from different notes (chord).

For each of them there are substances in nature, that possess the above properties. Which
one matches Mendeleev periodic system? This should be the subject of special research for
specialists in physical chemistry, spectral properties of substances. Perhaps among them
there is no such formation. But a similar musical scale should be. It should contain the
frequencies of tones, indicated here. The numerical tones in an octave should increase with
the increasing octave numbers, but all similar tones of the previous octave should be present in
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Table 1 – Harmonic scale. Simple gamma

it. This explains the repeatability of the chemical properties of the substances in the columns
of Mendeleev periodic system, just as consonant and octave sounds and chords composed of
them.

On this basis, atoms can be called musical elementary particles with the corresponding
names. Hydrogen atom is a note ut of the first natural octaves.

Accordingly, the biquaternion of the k -th atom in n-th octave has the form:

Atomn,k(t, x) =
e−iwn,kt

r

{
sin
(wnk

c
r
)
−
(

cos
(wnk

c
r
)
− c sin (wnkr/c)

wnkr

)
ex

}
=
(wnk

c

)
{j0
(wnk

c
r
)

+ j1

(wnk
c
r
)
}e−iwn,kt.

Here the atomic vibration frequency

wnk = 2nγkw0,

where γk is the number from the k -th column in the table corresponding musical scale.
All above formulas for bosons are true for them with indicating the corresponding vibra-

tion frequency. The presented figures 1-6 describe the behavior of the first atoms in the first
6 lines (octaves) of the above table.

8 Conclusion

How many such natural octaves exist? Obviously, no less than the number of rows in the
Mendeleev periodic table.

Note that now accepted in classical music twelve-tempered musical system with 12 notes
inside octaves cannot be taken, since the ratio of the frequencies of consecutive tones in it
is an irrational number (21/12) and there is no the total period of oscillations in the rows of
periodic system of atoms.
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18 Lyudmila A. Alexeyeva

Similar periodic systems can be constructed for elementary harmonic leptons (spinors
and asymmetric pulsars), the addition of which to atoms with the same vibration frequency
creates isotopes of these atoms. Moreover, the addition of spinors is apparently associated
with the magnetization of a substance. You can build a lot of different isotopes with the
same asymptotic density of the EGM charge. Which of them exist in nature? It is also a
special question of experimental research.

We also note that this description of atoms is based on the construction of solutions of
the free field equations of charge-currents. At the action of external EGM-fields the charges-
currents are transformed. Their transformation is described by generalized Dirac equation
(see [10]). In particular, static EGM-fields action shifts its vibration spectrum. It should be
taken into account in the experimental justification of considered model.

Currently the most common and canonized representations of light and heavy elementary
particles and atoms are constructed on the basis of solutions of equations of quantum field
theory. The bibliography in this direction is more of half a century and very extensive. Here
we use the names for heavy and light particles, adopted from this theory. However, the
presented biquaternionic model is completely different, deterministic, based on the definition
of real physical characteristics of elementary particles and atoms, not probabilistic.

This paper was presented this year as Keynote report at Int.conf. Quantum mechanics
and Nuclear Engineering in Paris [12].
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Алексеева Л.А. БИКВАТЕРНИОНДЫ КӨРIНIСТЕГI БОЗОНДАР МЕН ЛЕПТОН-
ДАР. АТОМДАРДЫҢ ПЕРИОДТЫҚ ЖҮЙЕСI ҚАРАПАЙЫМ ГАММА РЕТIНДЕ

Электр-гравимагниттiк зарядтар мен тоқтардың еркiн өрiстерi үшiн бикватеринион-
ды толқындық теңдеудiң элементар бөлшектердi монохроматты электр-гравимагниттi
толқындар түрiнде сипаттайтын дербес монохроматты шешiмдерi тұрғызылды. Осы би-
толқындық теңдеудiң скалярлық потенциалдар (пульсарлар) және векторлық потенци-
алдар (спинорлар) тудыратын шешiмдерiнiң екi класы зерттелдi. Олардың асимптотика-
лық қасиеттерi зерттелдi, соның негiзiнде олар ауыр және жеңiл элементар бөлшектерге
(бозондар мен лептондарға) жiктеледi. Бозондар – сфералық гармоникалық пульсарлар,
олардың массалық тығыздығы тербелiстерiнiң жиiлiгiмен анықталатындығы көрсетiл-
ген. Бұл элементар бөлшектердiң периодтық жүйесiн классикалық музыкалық шкала
негiзiнде тұрғызуға мүмкiндiк бередi. Атап айтқанда, сутегi атомының бикватернионды
кейiптемес ұсынылған. Оның негiзiнде қарапайым атомдардың периодтық жүйесi қара-
пайым музыкалық шкала қағидаты бойынша тұрғызылды.

Кiлттiк сөздер. Бикватернион, элементар бөлшек, жиiлiк, тұрақты ЭГМ-толқын,
пульсар, спинор, бозон, лептон, атом, сутегi, музыкалық гамма.
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Алексеева Л.А. БОЗОНЫ И ЛЕПТОНЫ В БИКВАТЕРНИОННОМ ПРЕДСТАВЛЕ-
НИИ. ПЕРИОДИЧЕСКАЯ СИСТЕМА АТОМОВ КАК ПРОСТАЯ ГАММА

Построены частные монохроматические решения бикватернионных волновых уравне-
ний для свободных полей электро-гравимагнитных зарядов и токов, которые описывают
элементарные частицы, как стоячие монохроматические электро-гравимагнитные волны.
Исследованы два класса решений этого биволнового уравнения, порожденные скалярны-
ми потенциалами (пульсары) и векторными потенциалами (спиноры). Исследованы их
асимптотические свойства, на основании которых они классифицируются на тяжелые и
легкие элементарные частицы (бозоны и лептоны). Показано, что бозоны представляют
собой сферические гармонические пульсары, массовая плотность которых определяет-
ся частотой их колебаний. Это позволяет строить периодические системы элементарных
частиц на основе классической музыкальной шкалы. В частности, дано бикватернионное
представление атома водорода. На его основе построена периодическая система элемен-
тарных атомов, построенная по принципу простой музыкальной гаммы.

Ключевые слова. Бикватернион, элементарная частица, частота, стоячая ЭГМ-волна,
пульсар, спинор, бозон, лептон, водород, музыкальная гамма.
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Abstract. In this article, we show that a chaotic behavior can be found for sets in finite dimensional

space. N-dimensional cube is fixed for discussion. Our approach is based on a recursive division of the

set into an infinite number of elements which satisfy specific conditions. By using infinite sequences to

the set of points, a chaotic map can be defined on the set. The map is shown to exhibit different types

of chaos.

Keywords. Poincarè chaos, Li-Yorke chaos, Devaney chaos, finite dimensional space, cube, chaos

generating map, diameter property, separation property.

1 Introduction and preliminaries

Chaos has become a very important concept that is deeply integrated into many, if not
most, fields of science such as physics, biology, medicine, engineering, culture, and human ac-
tivities [1], [2]. The chaotic behavior of some physical and biological properties was formerly
attributed to random or stochastic processes or uncontrolled forces [3], [4]. The appear-
ance of chaos in deterministic systems drew the borderline between (deterministic) chaos and
stochastic noise. The idea is manifested in the chaotic behavior of simple dynamical systems.
However, the of Kolmogorov-Martin-Lofwhich randomness theory still can provide a deeper
understanding of the origins of deterministic chaos [1]. The fundamental theoretical frame-
work of chaos was developed in last quarter of the twentieth century. During that period,
different types and definitions of chaos were formulated. In general, chaos can be defined
as aperiodic long-term behavior in a deterministic system that exhibits sensitive dependence
on initial conditions [5]. Devaney [6] and Li-Yorke [7] chaos are the most frequently used
types, which are characterized by transitivity, sensitivity, frequent separation and proximal-
ity. Another common type occurs through period-doubling cascade which is a sort of route
to chaos through local bifurcations [8]–[10]. In papers [11], [12], Poincarè chaos was intro-
duced through the unpredictable point concepts. Further, it was developed to unpredictable
functions and sequences.

2010 Mathematics Subject Classification: 34C15, 34C28, 34C60, 34D10.
c© 2019 Kazakh Mathematical Journal. All right reserved.
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Whoever searches in this field can discern from the literature that there is a scientific
conception that chaos is everywhere. Realizing such an ideation needs to develope our math-
ematical tools to conceptualize all manifestation of the phenomenon. Strictly speaking, we
should develop simple chaotic mechanisms that has the ability to emulate complex behavior.
Investigating the fundamental aspects of multi-dimensional chaotic states is necessary in this
direction. Indeed, mathematical modeling of real-world problems shows that real life is very
often a multi-dimensional chaos and even chaotic activities in our everyday lives are difficult
to describe via low-dimensional systems [14].

In the present paper, we show how to establish multi-dimensional chaos for simple geo-
metrical objects. We focus in the domain structure [13] to construct an invariant set under
chaotic map. Our approach is characterized by the simultaneous roles of the domain and the
map. In other words, the invariant set is defined as a collection of the domain points such that
the map is used to describe the structure of the set by addressing its points utilizing infinite
sequence indices. The idea of indexing is essential to prove chaos, however, it is different
from that of the symbolic dynamics, since the action of the map is not just a shifting in the
string space as much as a transforming of the domain points.

2 The chaotic map

For the sake of comprehension, let us first consider a line segment F . Divide F into 4 parts
and denote them by Fi1 , i1 = 1, 2, 3, 4. Divide again each part Fi1 into 4 parts and denote
them by Fi1i2 , i2 = 1, 2, 3, 4. Continue in this procedure such that, at the k-th step of division,
each part Fi1i2...ik−1

is divided into 4 parts denoted as Fi1i2...ik , ip = 1, 2, 3, 4, p = 1, 2, ..., k.
Considering the above simple construction, one can verify the following two properties.

Diameter property: The length of each part Fi1i2...ik approaches zero as the number of steps
k approaches infinity.

Separation property: There exists a positive number, ε0, such that for any part Fi1i2...ik at
any step k, one can find another part Fj1j2...jk so that they are separated from each other by
a distance of not less than ε0.

The diameter property implies that an infinite iteration of the procedure would pro-
duce infinitely many points that the line F consists of. The points can be represented by
Fi1i2...ik..., ip = 1, 2, 3, 4, p = 1, 2, ... . Thus, the set F can be defined as the collection of all
such points, i.e.,

F =
{
Fi1i2...ik... | ip = 1, 2, 3, 4, p = 1, 2, ...

}
. (1)

Let us now introduce the map ϕ : F → F defined by

ϕ(Fi1i2...ik...) = Fi2i3...ik..., (2)

such that for fixed sequence i1i2...ik, ϕ(Fi1i2...ik) = Fi2i3...ik and ϕ(Fi1) = F . We call each
part Fi2i3...ik a subset of order k, and the map ϕ the chaos generating map.
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(a) (b)

(c)
Figure 1 – The division procedure of the line F

Considering the results of Theorems 1, 2 and 3 in the Section 3, one can prove that the
chaos generating map is chaotic in the sense of Poincarè, Devaney and Li-Yorke. Thus, we
show that a line segment can be a domain for chaos. This simple case is frankly pointed out
in [6] for the Devaney chaos of the lositic map f(x) = 4x(1−x) on the interval [0, 1]. On the
basis of the above construction, more general cases of the chaotic domain can be investigated.

Consider a square (cube) F . Similarly, we divide F into 16 squares (64 cubes) and denote
them by Fi1 , i1 = 1, 2, ..., 16 (Fi1 , i1 = 1, 2, ..., 64). Again we divide each square (cube) Fi1

into 16 squares (64 cubes) and denote them by Fi1i2 , i2 = 1, 2, ..., 16 (Fi1i2 , i2 = 1, 2, ..., 64).
We continue this procedure such that, at the k-th step of division, each part Fi1i2...ik−1

is divided into 16 squares (64 cubes) denoted as Fi1i2...ik , ip = 1, 2, ..., 16, p = 1, 2, ..., k
(Fi1i2...ik , ip = 1, 2, ..., 64, p = 1, 2, ..., k). Likewise, the set F can be defined by

F =
{
Fi1i2...ik... | ip = 1, 2, ...,m, p = 1, 2, ...

}
,

where m is 16 for the square and 64 for the cube. Again in this cases, the chaos generating
map ϕ is defined for the sets and it can be verified that both the diameter and separation
conditions are valid. Therefore Theorems 1, 2 and 3, in the Section 3, are applicable and the
chaos generating map is chaotic in the sense of Poincarè, Devaney and Li-Yorke.

For a general case, consider n-dimensional cube F . The first step consists of dividing
F into 4n parts (n-dimensional cube) denoted as Fi1 , i1 = 1, 2, ..., 4n. In the second step,
each part Fi1 is again divided into 4n parts denoted as Fi1i2 , i2 = 1, 2, ..., 4n. Continue this
procedure such that, at the k-th step of division, each part Fi1i2...ik−1

is divided into 4n parts
denoted as Fi1i2...ik , ip = 1, 2, ..., 4n, p = 1, 2, ..., k. Similarly, the validity of the diameter
and separation conditions could be substantiated. At the infinite iteration of this process,
the cube F can be represented as the collection of all points, Fi1i2...ik..., i.e.,

F =
{
Fi1i2...ik... | ip = 1, 2, ..., 4n, p = 1, 2, ...

}
. (3)

Using Theorems 1, 2 and 3, in the Section 3, it can be shown that the chaos generating map
defined in (2) is chaotic in the sense of Devaney, Li-Yorke and Poincarè.
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3 Chaos for the map ϕ

In the following theorem, we prove that the map ϕ defined in (2) possesses three ingredi-
ents of Devaney chaos, namely density of periodic points, transitivity and sensitivity [6]. The
point Fi1i2i3... ∈ F is periodic with the period n if its index consists of endless repetitions of
a block of n terms.

Theorem 1. If the diameter and separation properties hold, then the similarity map is chaotic
in the sense of Devaney.

Proof. Fix a member Fi1i2...in... of F and a positive number ε. Find a natural number k
such that diam(Fi1i2...ik) < ε and choose k-periodic element Fi1i2...iki1i2...ik... of Fi1i2...ik . It is
clear that the periodic point is an ε-approximation for the considered member. The density
of periodic points is thus proved.

Next, utilizing the diameter property, the transitivity will be proved if we show the
existence of element Fi1i2...in... of F such that for any subset Fi1i2...ik there exists a sufficiently
large integer p so that ϕp(Fi1i2...in...) ∈ Fi1i2...ik . This is true since we can construct the
sequence i1i2...in... such that it contains all sequences of the type i1i2...ik as blocks.

For sensitivity, fix a point Fi1i2... ∈ F and an arbitrary positive number ε. Due to the
diameter property, there exist an integer k and element Fi1i2...ikjk+1jk+2... 6= Fi1i2...ikik+1ik+2...

such that d(Fi1i2...ikik+1..., Fi1i2...ikjk+1jk+2...) < ε. We precise jk+1, jk+2, ... such that
d(Fik+1ik+2...ik+n

, Fjk+1jk+2...jk+n
) > ε0, by the separation property. This proves the sensi-

tivity.
For Poincarè chaos, Poisson stable motion is utilized to distinguish the chaotic behavior

instead of the periodic motions in Devaney and Li-Yorke types. The existence of infinitely
many unpredictable Poisson stable trajectories that lie in a compact set meet all requirements
of chaos. Based on this, chaos can be appeared in the dynamics on the quasi-minimal set
which is a closure of a Poisson stable trajectory. Therefore, the Poincarè chaos is referred to
as the dynamics on the quasi-minimal set of trajectory initiated from unpredictable point.
For more details we refer the reader to [11], [12].

Next theorem shows that the Poincarè chaos is valid for the similarity dynamics.

Theorem 2. If the diameter and separation properties are valid, then the similarity map
possesses Poincarè chaos.

The proof of the last theorem is based on the verification of lemma 3.1 in [12] adopted to
the similarity map.

In addition to the Devaney and Poincarè chaos, it can be shown that the Li-Yorke chaos
also takes place in the dynamics of the map ϕ. The proof of the following theorem is similar
to that of Theorem 6.35 in [15] for the shift map defined on the space of symbolic sequences.

Theorem 3. The similarity map is Li-Yorke chaotic if the diameter and separation properties
hold.
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Ахмет М., Аль-Эджали Э.М. АҚЫРЛЫ ӨЛШЕМДI КЕҢIСТIКТI ХАОТИФИКА-
ЦИЯЛАУ

Бұл мақалада ақырлы өлшемдi кеңiстiктегi жиындар үшiн хаосты қозғалысты қалай
құруға болатындығын көрсетемiз. Зерттеу объектiсi ретiнде N өлшемдi куб қарастыры-
лады. Бiздiң тәсiлдемемiз жиынды белгiлi бiр шарттарды қанағаттандыратын элемент-
тердiң шексiз санына рекурсивтi бөлшектеуге негiзделген. Осы жиында, берiлген нүкте-
лердi индекстеу үшiн шексiз тiзбектердi пайдалану арқылы, хаостық бейнелеу анықта-
лады. Бұл бейнелеу Пуанкаре, Деваню және Ли-Йорк хаостары сияқты хаостың бiрнеше
тұрлерiне ие болады.

Кiлттiк сөздер. Пуанкаре хаосы, Ли-Йорк хаосы, Деваню хаосы, ақырлы өлшемдi
кеңiстiк, куб, хаосты тудыратын бейнелеу, диаметрдiң қасиетi, бөлшектеу қасиетi.

Ахмет М., Аль-Эджали Э.М. ХАОТИФИКАЦИЯ КОНЕЧНОМЕРНОГО ПРО-
СТРАНСТВА

В этой статье мы показываем, как построить хаотическое движение для множеств
в конечномерном пространстве. В качестве объекта исследования рассматривается куб
размерности N. Наш подход основан на рекурсивном делении множества на бесконечное
число элементов, которые удовлетворяют определенным условиям. Используя бесконеч-
ные последовательности для индексации заданных точек, на этом множестве определя-
ется хаотическое отображение. Это отображение имеет разные типы хаоса: Пуанкаре,
Ли-Йорка и Деваню.

Ключевые слова. Хаос Пуанкаре, хаос Ли-Йорка, хаос Деваню, конечномерное про-
странство, куб, отображение порождающее хаос, свойство диаметра, свойство разделе-
ния.
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Abstract. A one-dimensional volume hyperbolic potential in a domain with curvilinear boundaries is

studied. As a kernel of the hyperbolic potential the fundamental solution of the Cauchy problem is

chosen. It is well-known that in this case the volume hyperbolic potential satisfies homogeneous initial

conditions. The boundary conditions to which the hyperbolic potential satisfies at lateral boundaries

of the domain are constructed. It is shown that the formulated initial-boundary value problem has the

unique classical solution.

Keywords. Hyperbolic equation, initial-boundary value problem, boundary condition, hyperbolic poten-

tial.

1 Introduction and statement of the problem

In [1], the Riemann-Green method is used to give general solutions of Cauchy problems
for a hyperbolic equation in an arbitrary domain. Riemann first engaged in such tasks in the
twentieth century [2]. After Riemann, Darboux made a great progress in this area. In these
papers, the foundations were laid for representation of solutions of hyperbolic equations in
integral form.

The volume elliptic potential is widely used in solving classical problems of Dirichlet,
Neumann and other boundary value problems in domains of arbitrary form. But, at the
same time, the boundary conditions and the spectral problems of the volume potential have
not been researched till the recent time. That is, despite the deep research of the general
theory of the volume potential, till the recent time the Newton volume potential

uNP (x) =

∫
Ω

ε(x− y)f(y)dy
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has not been considered as an independent operator being a solution of some boundary value
problem. The scientists as Engquist B. and Majda A. [3], Givoli D. [4]–[6], Li J.R., Greengard
L. [7], Hagstrom T. [8], Tsynkov S.V. [9], Wu X. and Zhang J. [10] used the foundations of
the theory of the boundary value problems for different kinds of the volume potentials for
solving various problems of the mathematical physics and numerical calculations.

In the paper of T. Sh. Kal’menov and D. Suragan the boundary conditions of the volume
potential uNP for the case of multidimensional Laplace operator were built for the first time
[11]. New non-local boundary conditions, which uniquely define the Newton volume potential,
have the form

u(x)

2
−
∫
∂Ω

(
∂ε(x− y)

∂ny
u(y)− ε(x− y)

∂u(y)

∂ny

)
dSy = 0, x ∈ ∂Ω.

Despite the complexity of these boundary conditions, they were quite convenient to use.
Using these boundary conditions, all eigenvalues and eigenfunctions were constructed for the
volume potential in a two-dimensional circle and a three-dimensional ball considered in [12].

The trace of the Newton potential on a boundary surface appeared in Kac’s work [13],
where he called it as ”the principle of not feeling the boundary” and he made the subse-
quent spectral analysis. This was further expanded in Kac’s book [14] (see also Saito [15])
with several further applications to the spectral theory and the asymptotics of the Weyl
eigenvalue counting function. For the general background details on potential theory of the
time-fractional diffusion equation we refer to [16]–[18].

It is shown in [19] that self-adjoint differential operators are generated by boundary con-
ditions. Further the boundary conditions were constructed for the non-self-adjoint operators.
In [20] the initial-boundary value problem for the wave equation in the domain with rectilin-
ear boundaries is considered. In [21] a generalized heat potential for the degenerate (heat)
diffusion equation, which satisfies the initial condition with respect to the time variable is
considered. In this work the boundary condition for this potential is found. The nonlocal
initial boundary value problem for the time-fractional diffusion equation for the Kohn Lapla-
cian and its powers on the Heisenberg group have been recently investigated by Ruzhanksy
and Suragan in [22] as well as in [23] for general stratified Lie groups.

The study of the well-posedness of non-local problems for hyperbolic equations with in-
tegral conditions is recently an urgent problem. One of the first works in this direction was
an article by L.S. Pulkina [24] in which the existence and uniqueness of generalized solution
for a second-order hyperbolic equation with integral conditions in a rectangle are proved. In
[25] a boundary-value problem for one-dimensional hyperbolic equation with nonlocal initial
data in integral form was considered. In a recent paper [26], the problem was considered
for a hyperbolic equation with standard initial data and a non-local integral condition of the
second kind, which degenerates and turns into the first kind.

In this paper we investigate the problem of constructing boundary conditions for a one-
dimensional hyperbolic volume potential in a domain with curvilinear boundary. We show

Kazakh Mathematical Journal, 19:4 (2019) 27–45
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that the solution of the boundary value problem is uniquely determined by the volume po-
tential.

2 Formulation of the problem

Let Q ⊂ R2 be a finite domain bounded at the sides by the curves x = α1(t) and x = β1(t),
and bounded above and below by the segments t = 0, 0 < x < 1 and t = T , x0 < x < x1.
Here T > 0, α1(0) = 0, β1(0) = 1, α1(T ) = x0, β1(T ) = x1, α1(t) < β1(t) (see Fig. 1).

Figure 1 – The domain Q

We consider the following hyperbolic equation

Lu ≡ ∂2u(x, t)

∂t2
− ∂2u(x, t)

∂x2
+ a1(x, t)

∂u(x, t)

∂x

+b1(x, t)
∂u(x, t)

∂x
+ c1(x, t)u(x, t) = f1(x, t), (x, t) ∈ Q, (1)

with the initial conditions

u(x, 0) =
∂u

∂t
(x, 0) = 0, 0 ≤ x ≤ 1, (2)

where a1, b1, c1 ∈ C1
(
Q
)
. Additionally, assume that

|α′1(t)| < 1, |β′1(t)| < 1. (3)
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It is known that for T > 1/2 the solution of the hyperbolic equation (1) in Q is recon-
structed under the initial conditions (2) not uniquely. For the uniqueness it is necessary to
use boundary conditions. We set the task to construct boundary conditions under which
(together with the initial conditions) the solution of equation (1) in Q will be uniquely de-
fined in the form of a volume hyperbolic potential (see Eq. (4)). In the case, when α(t) ≡ 0,
β(t) ≡ 1 and a1, b1, c1 = 0 this problem was considered in [20]. The case where the domain
Q remains the same and a1, b1, c1 = 0, was considered in our paper [27].

Let Qx,t be a part of Q: Qx,t = {(x1, t1) ∈ Q : |x−x1| < t− t1}. In Q we have the volume
hyperbolic potential

u(x, t) = −
∫∫
Ωx,t

R1(x, t;x1, t1)f1(x1, t1)dx1dt1, (4)

where R1(x, t;x1, t1) is the Riemann-Green function [1], which satisfies the conjugate homo-
geneous equation

L∗1R1 ≡
∂2

∂x1∂t1
R(x, t;x1, t1)− ∂

∂x1
(a1(x1, t1)R(x, t;x1, t1))

− ∂

∂t1
(R(x, t;x1, t1)b1(x1, t1)) + c1(x1, t1)R(x, t;x1, t1) = 0, (x, t) ∈ Ω,

and the following characteristic equations

∂R1(x, t;x1, t1)

∂x1
− b1(x1, t1)R1(x, t;x1, t1) = 0, when x1 = x,

∂R1(x, t;x1, t1)

∂t1
− a1(x1, t1)R1(x, t;x1, t1) = 0, when t1 = t,

R1(x, t;x, t) = 1.

In the characteristic coordinates ξ = x+ t, η = x− t equation (1) has the form

∂2u(ξ, η)

∂ξ∂η
+ a

∂u(ξ, η)

∂ξ
+ b

∂u(ξ, η)

∂η
+ cu(ξ, η) = f(ξ, η), (ξ, η) ∈ Ω, (5)

and initial conditions (2) has the form

u =
∂u

∂ξ
− ∂u

∂η
= 0, at ξ = η, 0 ≤ η ≤ 1, (6)

where a(ξ, η), b(ξ, η), c(ξ, η) ∈ C1
(
Ω
)

and

a(ξ, η) =
1

4

(
a1

(
ξ + η

2
,
ξ − η

2

)
+ b1

(
ξ + η

2
,
ξ − η

2

))
,
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b(ξ, η) =
1

4

(
a1

(
ξ + η

2
,
ξ − η

2

)
− b1

(
ξ + η

2
,
ξ − η

2

))
,

c(ξ, η) =
1

4
c1

(
ξ + η

2
,
ξ − η

2

)
, f(ξ, η) =

1

4
f1

(
ξ + η

2
,
ξ − η

2

)
.

Here Ω ⊂ R2 is a domain bounded at the sides by the curves ξ = α(η) and ξ = β(η), and
bounded from above and below by the segment ξ − η = 0 and ξ − η = 2T . Here α(0) = 0,
β(1) = 1, α(η) < β(η). From (3) we have

−∞ < α′(η) < 0, (7)

−∞ < β′(η) < 0. (8)

3 Construction of boundary conditions

By Ωξ,η we denote a part of Ω: Ωξ,η = {(ξ1, η1) ∈ Ω : ξ1 < ξ, η1 > η}. Then the volume
potential (4) can be written in the form

u(ξ, η) = −
∫∫
Ωξ,η

R(ξ, η; ξ1η1)f(ξ1, η1)dξ1dη1, (9)

where R(ξ, η; ξ1, η1) is the Riemann-Green function [1], which satisfies the following equations

L∗R ≡ ∂2

∂ξ1∂η1
R(ξ, η; ξ1, η1)− ∂

∂ξ1
(a(ξ1, η1)R(ξ, η; ξ1, η1))

− ∂

∂η1
(b(ξ1, η1)R(ξ, η; ξ1, η1)) + c(ξ1, η1)R(ξ, η; ξ1, η1) = 0, (ξ, η) ∈ Ω, (10)

∂R(ξ, η; ξ1, η1)

∂ξ1
− b(ξ1, η1)R(ξ, η; ξ1, η1) = 0, when ξ1 = ξ, (11)

∂R(ξ, η; ξ1, η1)

∂η1
− a(ξ1, η1)R(ξ, η; ξ1, η1) = 0, when η1 = η, (12)

R(ξ, η; ξ, η) = 1. (13)

Evidently, for any f(ξ, η) ∈ C1(Ω), the volume potential (9) gives a classical solution of
the inhomogeneous hyperbolic equation (5) from the class u(ξ, η) ∈ C2(Ω). Our task is to
construct homogeneous boundary conditions on the lateral boundaries ξ = α(η) and ξ = β(η),
which the volume potential (9) satisfies for all f(ξ, η).

We consider separately various cases of placing Ωξ,η inside Ω.
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Case I
Firstly, we consider a case, when 0 < η < ξ < 1, (ξ, η) ∈ Ω. In this case Ωξ,η is a triangle

that is bounded from above by ξ1 = ξ, is bounded from below by η1 = η, and is bounded from
the right by ξ1 = η1. In this case the domain Ωξ,η nowhere touches the lateral boundaries
Ω (see Figure 2). Therefore there is no need to construct the boundary conditions for the

Figure 2 – The domain Ωξ,η in the case I

hyperbolic volume potential. By the direct calculation it is easy to see that the volume
potential (9) satisfies the homogeneous initial conditions (6).

Case II
The case, when ξ < 1, η < 0, (ξ, η) ∈ Ω. Let ξ = α(η), then Ωα(η),η = {(α(η), η) ∈ Ω :

η1 < ξ1 < α(η), at η1 > 0;α(η1) < ξ1 < α(η), at η1 < 0} is a curvilinear triangle, bounded
by ξ1 = α(η) on the right bounded by ξ1 = α(η1) from below, and bounded by ξ1 = η1 from
above (see Fig. 3).

Hereinafter we will use the Green’s theorem in a plane [28]: Let C be a positively oriented,
piecewise smooth, simple closed curve in a plane, and let D be a domain bounded by C. If L
and M are functions of (ξ1, η1) defined on an open domain containing D and have continuous
partial derivatives there, then∮

C

(Ldξ1 +M dη1) =

∫∫
D

(
∂M

∂ξ1
− ∂L

∂η1

)
dξ1 dη1,

where the left-hand side is a line integral and the right-hand side is a surface integral, and
the path of integration along C is anticlockwise.

Applying the Green’s theorem in a plane, from (9) we get the following chain of equalities:

u (α(η), η) = −
∫∫

Ωα(η),η

R(α(η), η; ξ1η1)f(ξ1, η1)dξ1dη1
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Figure 3 – The domain Ωξ,η in the case II

−
∫∫

Ωα(η),η

(RLu− uL∗R) dξ1dη1

= −
∮

∂Ωα(η),η

(
−bRu+

1

2

∂R

∂ξ1
u− 1

2
R
∂u

∂ξ1

)
dξ1 +

(
aRu− 1

2

∂R

∂η1
u+

1

2
R
∂u

∂η1

)
dη1.

Calculating the obtained line integrals, taking into account the initial conditions (6) and
conditions (10)–(13), we have

Iαu ≡
η∫

0

∂u(α(η1), η1)

∂η1
R(α(η), η;α(η1), η1)dη1

+

η∫
0

u(α(η1), η1)R(α(η), η;α(η1), η1)
(
a(α(η1), η1)− b(α(η1), η1)α

′
(η1)

)
dη1
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−
η∫

0

u(α(η1), η1)
∂R(α(η), η;α(η1), η1)

∂ξ1
dη1 = 0. (14)

Note that (14) is the condition on the boundary ξ = α(η), connecting the values of the
function u and its derivative on this boundary.

Case III
Consider a case, when 0 < η, 1 < ξ, (ξ, η) ∈ Ω. Let ξ = β(η), then Ωβ(η),η = {(β(η), η) ∈

Ω : η1 < ξ1 < β(η1) and η1 > η} is a curvilinear triangle, which is bounded from the right by
ξ1 = β(η1), is bounded from below by η1 = η, and is bounded from the left by ξ1 = η1 (see
Figure 4).

Figure 4 – The domain Ωξ,η in the case III

Analogously, as in Case II, applying the Green’s theorem, from (9) we have the boundary
condition

Iβu ≡
η∫

1

∂u(β(η1), η1)

∂ξ1
R(β(η), η;β(η1), η1)β

′
(η1)dη1

−
η∫

1

u(β(η1), η1)R(β(η), η;β(η1), η1)
(
a(β(η1), η1)− b(β(η1), η1)β

′
(η1)

)
dη1

+

η∫
1

u(β(η1), η1)
∂R(β(η), η;β(η1), η1)

∂η1
dη1 = 0. (15)
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Note that (15) is the condition on the boundary ξ = β(η), connecting the values of the
function u and its derivative on this boundary.

Case IV

Consider a domain, when η < 0 and 1 < ξ. In this case the domain Ωξ,η is a curvilinear
pentagon, bounded by ξ1 = β(η1) from above and η1 = ξ1, bounded by ξ1 = α(η1) and η1 = η
from below, bounded by ξ1 = ξ on the right (see Fig. 5).

Figure 5 – The domain Ωξ,η in the case IV

We apply the Green’s theorem in a plane for the volume hyperbolic potential

u (ξ, η) = −
∫∫
Ωξ,η

R(ξ, η; ξ1η1)f(ξ1, η1)dξ1dη1

−
∫∫
Ωξ,η

(RLu− uL∗R) dξ1dη1
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= −
∮

∂Ωξ,η

(
−bRu+

1

2

∂R

∂ξ1
u− 1

2
R
∂u

∂ξ1

)
dξ1 +

(
aRu− 1

2

∂R

∂η1
u+

1

2
R
∂u

∂η1

)
dη1

=

∫
AE

(
−bRu+

1

2

∂R

∂ξ1
u− 1

2
R
∂u

∂ξ1

)
dξ1 +

(
aRu− 1

2

∂R

∂η1
u+

1

2
R
∂u

∂η1

)
dη1

+

∫
ED

(
−bRu+

1

2

∂R

∂ξ1
u− 1

2
R
∂u

∂ξ1

)
dξ1 +

(
aRu− 1

2

∂R

∂η1
u+

1

2
R
∂u

∂η1

)
dη1

+

∫
DC

(
−bRu+

1

2

∂R

∂ξ1
u− 1

2
R
∂u

∂ξ1

)
dξ1 +

(
aRu− 1

2

∂R

∂η1
u+

1

2
R
∂u

∂η1

)
dη1

+

∫
CB

(
−bRu+

1

2

∂R

∂ξ1
u− 1

2
R
∂u

∂ξ1

)
dξ1 +

(
aRu− 1

2

∂R

∂η1
u+

1

2
R
∂u

∂η1

)
dη1

+

∫
BA

(
−bRu+

1

2

∂R

∂ξ1
u− 1

2
R
∂u

∂ξ1

)
dξ1 +

(
aRu− 1

2

∂R

∂η1
u+

1

2
R
∂u

∂η1

)
dη1.

Then we obtain the identity

η2∫
1

(
1

2

∂R(ξ, η;β(η1), η1)

∂ξ1
u(β(η1), η1)− 1

2

∂u(β(η1), η1)

∂ξ1
R(ξ, η;β(η1), η1)

)
β

′
(η1)dη1

−
η2∫

1

b(β(η1), η1)R(ξ, η;β(η1), η1)u(β(η1), η1)β
′
(η1)dη1

+

η2∫
1

(
1

2

∂u(β(η1), η1)

∂η1
R(ξ, η;β(η1), η1)− 1

2

∂R(ξ, η;β(η1), η1)

∂η1
u(β(η1), η1)

)
dη1

+

η2∫
1

a(β(η1), η1)R(ξ, η;β(η1), η1)u(β(η1), η1)dη1

−
η∫

0

(
1

2

∂R(ξ, η;α(η1), η1)

∂ξ1
u(α(η1), η1)− 1

2

∂u(α(η1), η1)

∂ξ1
R(ξ, η;α(η1), η1)α

′
(η1)

)
dη1

−
η∫

0

b(α(η1), η1)R(ξ, η;α(η1), η1)u(α(η1), η1)α
′
(η1)dη1
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−
η∫

0

(
1

2

∂u(α(η1), η1)

∂η1
R(ξ, η;α(η1), η1) +

1

2

∂R(ξ, η;α(η1), η1)

∂η1
u(α(η1), η1)

)
dη1

+

η∫
0

a(α(η1), η1)R(ξ, η, α(η1), η1)u(α(η1), η1)dη1

−1

2
R(ξ, η; ξ, η2)u(ξ, η2)− 1

2
R(ξ, η; ξ0, η)u(ξ0, η) = 0, (16)

where (β(η2), η2) is a point of crossing ξ1 = β(η1) and ξ1 = ξ, and (ξ0, η) is a point of crossing
ξ1 = α(η1) and η1 = η.

In (16) equating firstly ξ = α(η) and then ξ = β(η), we get two identities

Jαu ≡ Iαu (17)

−
η2∫

1

(
∂R(α(η), η;β(η1), η1)

∂η1
u(β(η1), η1)− ∂u(β(η1), η1)

∂ξ1
R(α(η), η;β(η1), η1)

)
dη1

+

η2∫
1

(
a(β(η1), η1)− b(β(η1), η1)β

′
(η1)

)
R(α(η), η;β(η1), η1)u(β(η1), η1)dη1 = 0,

Jβu ≡ Iβu (18)

+

η∫
0

(
∂R(β(η), η;α(η1), η1)

∂η1
u(α(η1), η1)− ∂u(α(η1), η1)

∂η1
R(β(η), η;α(η1), η1)

)
dη1

+

η∫
0

(
a(α(η1)), η1)− b(α(η1), η1)α

′
(η1)

)
R(β(η), η;α(η1), η1)u(α(η1), η1)dη1 = 0.

Note that (17) and (18) are the conditions, connecting the values of the function u and
its derivative on the boundaries ξ = α(η) and ξ = β(η).

Thus, the following lemma is proved:

Lemma 1. The volume hyperbolic potential (9) satisfies the hyperbolic equation (5), the
homogeneous initial conditions (6) and the boundary conditions:

Iαu = 0 at α(η) ≤ 1,
Jαu = 0 at α(η) ≥ 1,
Iβu = 0 at η ≥ 0,
Jαu = 0 at η ≤ 0.

(19)
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Corollary 1. The volume hyperbolic potential (9) is the solution of the initial-boundary
problem (5), (6), (19).

4 Uniqueness of solution of problem (5), (6), (19)

The constructed in Section 3 boundary conditions (19) will uniquely define the volume
hyperbolic potential (9) if the initial-boundary problem (5), (6), (19) has no other solutions
except (9).

Lemma 2. The solution of the initial-boundary problem (5), (6), (19) is unique.

Proof. As usual, by u1(ξ; η) and u2(ξ; η) we denote two solutions of the initial-boundary
problem (5), (6), (19). Then their difference u(ξ; η) = u1(ξ; η) − u2(ξ; η) satisfies the homo-
geneous hyperbolic equation

∂2u(ξ, η)

∂ξ∂η
+ a(ξ, η)

∂u(ξ, η)

∂ξ
+ b(ξ, η)

∂u(ξ, η)

∂η
+ c(ξ, η)u(ξ, η) = 0, (ξ, η) ∈ Ω, (20)

the homogeneous initial conditions (6) and the boundary conditions (9). We apply the Green’s
theorem in a plane to the integral

0 = −
∫∫
Ωξ,η

R(ξ, η; ξ1η1) · 0 · dξ1dη1 = −
∫∫
Ωξ,η

(RLu− uL∗R) dξ1dη1

=

∫ η2

1

(
1

2

∂R(ξ, η;β(η1), η1)

∂ξ1
u(β(η1), η1)− 1

2

∂u(β(η1), η1)

∂ξ1
R(ξ, η;β(η1), η1)

)
β

′
(η1)dη1

−
η2∫

1

b(β(η1), η1)R(ξ, η;β(η1), η1)u(β(η1), η1)β
′
(η1)dη1

+

η2∫
1

(
1

2

∂u(β(η1), η1)

∂η1
R(ξ, η;β(η1), η1)− 1

2

∂R(ξ, η;β(η1), η1)

∂η1
u(β(η1), η1)

)
dη1

+

η2∫
1

a(β(η1), η1)R(ξ, η;β(η1), η1)u(β(η1), η1)dη1

−
η∫

0

(
1

2

∂R(ξ, η;α(η1), η1)

∂ξ1
u(α(η1), η1)− 1

2

∂u(α(η1), η1)

∂ξ1
R(ξ, η;α(η1), η1)α

′
(η1)

)
dη1

−
η∫

0

b(α(η1), η1)R(ξ, η;α(η1), η1)u(α(η1), η1)α
′
(η1)dη1
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−
η∫

0

(
1

2

∂u(α(η1), η1)

∂η1
R(ξ, η;α(η1), η1) +

1

2

∂R(ξ, η;α(η1), η1)

∂η1
u(α(η1), η1)

)
dη1

+

η∫
0

a(α(η1), η1)R(ξ, η, α(η1), η1)u(α(η1), η1)dη1

−1

2
R(ξ, η; ξ, η2)u(ξ, η2)− 1

2
R(ξ, η; ξ0, η)u(ξ0, η) + u(ξ, η) = 0. (21)

In (21) equating firstly ξ = α(η) and then ξ = β(η), we get two identities:

−Jαu+ u(α(η), η) = 0, (22)

and
−Jβu+ u(β(η), η) = 0. (23)

Taking into account homogenous boundary conditions (19), from (22), (23) we obtain that

u(α(η), η) = 0, η < η0, (24)

u(β(η), η) = 0, η < 0, (25)

where α(η0) = 1. Similarly for the case II and case III we have

u(α(η), η) = 0, η0 < η, (26)

u(β(η), η) = 0, η > 0. (27)

Thus, the function u(ξ, η) satisfies the homogeneous hyperbolic equation (5), the homoge-
neous initial conditions (6) and the boundary conditions (24)–(27), it is the solution of the
homogeneous first initial-boundary value problem. By virtue of the uniqueness of its solution
we have u(ξ, η) = 0 at (ξ, η) ∈ Ω. Consequently, u1(ξ, η) = u2(ξ, η). Lemma 2 is proved.

5 The statement of main result

Definition 1. As a classical solution of the initial-boundary problem (5), (6), (9) we call
a function u(ξ, η) from the class u(ξ, η) ∈ C2

(
Ω
)

satisfying equation (5) and the initial
conditions (6) and the boundary conditions (9).

Combining the results of Lemma 1 and Lemma 2, we obtain the main result of the paper.

Theorem 1. Let f(ξ, η) ∈ C1
(
Ω
)
. The volume hyperbolic potential (9) satisfies the hyper-

bolic equation (5), the homogeneous initial conditions (6) and the boundary conditions (9).
Conversely, for any f(ξ, η) ∈ C1

(
Ω
)

the initial boundary problem (5), (6), (19) has the
unique classical solution u(ξ, η) ∈ C2

(
Ω
)

and this solution is presented in the form of the
hyperbolic potential (9).
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Corollary 2. The boundary conditions (19) together with the initial conditions (6) uniquely
determine the volume hyperbolic potential (9), i.e. are boundary conditions of the hyperbolic
potential (9).

6 The case of wave potential

In this section we consider a special case, when a, b, c = 0. In this case

R(ξ, η; ξ1, η1) = 1.

In the case II, from equation (14), substituting ξ = α(η) and differentiating with respect
to η, and taking into account the initial conditions (6), we have the following condition:

∂u(α(η), η1)

∂η
= 0, η0 < η < 0. (28)

In the case III, from equation (15) substituting ξ = β(η) and differentiating with respect
to η, we have the following condition:

∂u(β(η), η)

∂ξ
= 0, 0 < η < 1. (29)

For the case IV in this special case from (16) we have the next identity

−
η2∫

1

∂u(β(η1), η1)

∂ξ1
β

′
(η1)dη1 +

η2∫
1

∂u(β(η1), η1)

∂η1
dη1

+

η∫
0

∂u(α(η1), η1)

∂ξ1
α

′
(η1)dη1 −

η∫
0

∂u(α(η1), η1)

∂η1
dη1 − u(ξ, η2)− u(ξ0, η) = 0. (30)

Firstly, in (30) equating ξ = α(η) and then ξ = β(η), and differentiating with respect to η,
and taking into account the initial conditions (6), we have the next conditions:

−α′(η)
∂u(β(η2), η2)

∂ξ
=
∂u(α(η), η)

∂η
, η0 < η < 0, (31)

−∂u(α(η), η)

∂η
=
∂u(β(η), η)

∂ξ
β′(η), 0 < η < 1. (32)

These boundary conditions look more clearly in variables (x, t). In coordinates (x, t) the
volume hyperbolic potential is written in the form

u(x, t) = −
∫∫
Ωx,t

f1(x1, t1)dx1dt1, (33)
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hyperbolic equation (1) has the form

∂2u(x, t)

∂t2
− ∂2u(x, t)

∂x2
= f1(x, t), (x, t) ∈ Q, (34)

and the initial conditions (2) has the form

u(x, 0) =
∂u

∂t
(x, 0) = 0, 0 ≤ x ≤ 1. (35)

For the case II, when x = α1(t) from (28) we have(
∂u

∂x
− ∂u

∂t

)
(α1(t), t) = 0, 0 < t < t1. (36)

For the case III, when x = β1(t) from (29) we have(
∂u

∂x
+
∂u

∂t

)
(β1(t), t) = 0, 0 < t < t1. (37)

For the case IV from (31), (32), when x = α1(t) and x = β1(t) we have the next boundary
conditions on the left-hand and right-hand sides of the domain Qx,t:(

∂u

∂x
− ∂u

∂t

)
(α1(t), t)

=
1 + α′1(t)

1− α′1(t)

(
∂u

∂x
+
∂u

∂t

)
(β1(t2(t)), t2(t)), t1 < t < T, (38)

(
∂u

∂x
+
∂u

∂t

)
(β1(t), t)

=
1− β′1(t)

1 + β′1(t)

(
∂u

∂x
− ∂u

∂t

)
(α1(t0(t)), t0(t)) , t1 < t < T, (39)

where (α1(t0(t)), t0(t)) is a point of crossing of the boundary curve x1 = α1(t1) and of the
characteristics x1 = t1 − t + β1(t); (β1(t2(t)), t2(t)) is a point of crossing of the boundary
curve x1 = β1(t1) and of the characteristics x1 = t+ α1(t)− t1.

The identity (38) holds for t+ α1(t) > 1, and the identity (39) holds for β1(t)− t < 0.

Both obtained identities (38), (39) connect with each other the traces of solutions on
the left-hand and right-hand boundaries of the domain Qx,t. Herewith, since t > t2(t) and
t > t0(t), then the points in which values are taken in the left-hand parts of this identities, are
”above” than the points, in which values are taken in the right-hand parts of the identities.
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Lemma 3. The volume wave potential (28) satisfies the wave equation (34), the homogeneous
initial conditions (35), the boundary condition on the left-hand boundary of the domain(

∂u

∂x
− ∂u

∂t

)
(α1(t), t) = 0, at 0 ≤ t ≤ T, (40)

and the boundary condition on the right-hand boundary of the domain(
∂u

∂x
+
∂u

∂t

)
(β1(t), t) = 0, at 0 ≤ t ≤ T. (41)

Corollary 3. The volume wave potential (33) is the solution of the initial boundary value
problem (34), (35), (40), (41).

Boundary conditions (40, (41) have the following physical interpretation. It is well known
that the general solution of the homogeneous equation (34), that is, the equation

∂2u

∂x2
− ∂2u

∂t2
= 0 (42)

is a superposition of two waves

u(x, t) = φ(x+ t) + ψ(x− t),

one of which (φ(x+ t)) extends to the left, and the second (ψ(x− t)) extends to the right.

It is easy to see that the boundary condition (44) is ”transparent” for the wave going to
the left, that is, for the wave of the form φ(x + t). Similarly, the boundary condition (45)
is ”transparent” for the wave going to the right, that is, for the wave of the form ψ(x − t).
These waves occur at some nonzero initial perturbation

u(x, 0) = τ(x), ut(x, 0) = υ(x), (43)

given at t = 0 on the segment 0 ≤ x ≤ 1. These waves are given by

φ(x+ t) =
1

2
τ(x+ t) +

1

2

x+t∫
a

υ(s)ds, ψ(x− t) =
1

2
τ(x− t) +

1

2

x−t∫
a

υ(s)ds.

Thus, if we consider the wave process of oscillation of an infinite string described by
equation (34) at −∞ < x < +∞, t > 0, with locally inhomogeneous initial conditions (43)
(that is, in the case when supp{τ(x)} ⊂ [0, 1] and then to study the behavior of the string
at the interval 0 ≤ x ≤ 1 it is sufficient to consider the solutions of the equation (42) only at
0 ≤ x ≤ 1, t > 0 with boundary conditions (40), (41), supp{υ(x)} ⊂ [0, 1]), then to study the
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behavior of the string at the interval 0 ≤ x ≤ 1 it is sufficient to consider the solutions of the
equation (42) only at 0 ≤ x ≤ 1, t > 0 with boundary conditions (40), (41).
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Садыбеков М.А., Дербiсалы Б.О. ҚИСЫҚ СЫЗЫҚТЫ ШЕКАРАЛЫ ОБЛЫ-
СТАҒЫ КӨЛЕМДIК ГИПЕРБОЛАЛЫҚ ПОТЕНЦИАЛДЫҢ ШЕКАРАЛЫҚ ШАР-
ТТАРЫ

Қисық сызықты шекаралы облыста бiр өлшемдi көлемдiк гиперболалық потенци-
ал зерттелдi. Гиперболалық потенциал ядросы ретiнде Коши есебiнiң iргелi шешiмi
таңдалды. Бұл жағдайда көлемдiк гиперболалық потенциал бiртектi бастапқы шартты
қанағаттандыратыны жақсы белгiлi. Облыстың бүйiр шекарасында көлемдiк гипербо-
лалық потенциалдың қанағаттандыратын шекаралық шарттары құрылды. Тұжырым-
далған бастапқы-шеткi есептiң жалғыз классикалық шешiмi бар екенi көрсетiлдi.

Кiлттiк сөздер. Гиперболалық теңдеу, бастапқы-шекаралық есеп, шекаралық шарт,
гиперболалық потенциал.

Садыбеков М.А., Дербисалы Б.О. ГРАНИЧНЫЕ УСЛОВИЯ ОБЪЕМНОГО ГИПЕР-
БОЛИЧЕСКОГО ПОТЕНЦИАЛА В ОБЛАСТИ С КРИВОЛИНЕЙНОЙ ГРАНИЦЕЙ

Исследован одномерный объемный гиперболический потенциал в области с криволи-
нейной границей. В качестве ядра гиперболического потенциала выбрано фундаменталь-
ное решение задачи Коши. Хорошо известно, что в этом случае объемный гиперболиче-
ский потенциал удовлетворяет однородному начальному условию. В работе построены
граничные условия, которым удовлетворяет гиперболический объемный потенциал на
боковых границах области. Показано, что сформулированная начально-краевая задача
имеет единственное классическое решение.

Ключевые слова. Уравнение гиперболического типа, начально-краевая задача, крае-
вые условия, гиперболический потенциал.
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Abstract. For the Duffing equation, a problem of finding a pair consisting of the unknown function

and a parameter is considered. The boundary condition of this problem is periodic. For determining

the parameter, an additional condition is given as the value of the first coordinate of the solution at the

left endpoint of the domain interval. We propose a numerical algorithm for solving the problem under

consideration.

Keywords. Duffing equation with parameter, numerical algorithm, Newton’s method.

The Duffing equation is used as a mathematical model of many processes in natural
sciences. This equation contains numerical parameters which describe impact of various
factors to the behavior of studying processes. In order to determine their values, we need
to set additional conditions besides the initial and boundary ones. Various problems for
differential equations with parameters have been studied and solved in [1]–[8].

In the present paper, we consider the system of quasilinear ordinary differential equations
with parameter

dx1
dt

= x2, t ∈ (0, T ), (1)

dx2
dt

= −σ2x1 − εγx31 + µcos(ωt) + g(t), t ∈ (0, T ), (2)
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subject to the periodic boundary condition

x1(0) = x1(T ), x1(0) = x2(T ) (3)

and additional condition

x1(0) = x01. (4)

Here ε > 0, γ, ω, and x01 are given numbers and g(t) is a function continuous on [0, T ].
System (1), (2) is the Duffing equation expressed via two ordinary differential equations of
the first order.

A solution to problem (1)–(4) is a pair (µ∗, x∗(t)), where µ∗ ∈ Rl and x∗(t) = (x∗1(t), x
∗
2(t))

is a vector function continuous on [0, T ] and continuously differentiable on (0, T ), satisfying
conditions (3), (4) and the system of ordinary differential equations (1), (2) with µ = µ∗.

The purpose of the present paper is to construct a numerical algorithm for solving problem
(1)–(4).

To this end, we reduce this problem to a problem with additional parameters and apply
the method proposed in [9], [10]. As additional parameters we choose the values of x1(t), x2(t)
at the point t = 0 : λ1 = x1(0), λ2 = x2(0), and make the substitutions u1(t) = x1(t) − λ1,
u2(t) = x2(t)− λ2. Then problem (1)–(4) takes the form:

du1
dt

= u2 + λ2, t ∈ (0, T ), (5)

du2
dt

= −σ2(u1 + λ1)− εγ(u1 + λ1)
3 + µcos(ωt) + g(t), t ∈ (0, T ), (6)

u1(0) = 0, u2(0) = 0, (7)

u1(T ) = 0, u2(T ) = 0, (8)

λ1 + u1(0) = x01. (9)

A solution to problem (5)–(9) is a set (µ∗, λ∗1, λ
∗
2, u

∗
1(t), u

∗
2(t)), where the functions u∗1(t),

u∗2(t) satisfy the system of differential equations (5), (6) with µ = µ∗, λ1 = λ∗1, λ2 = λ∗2 and
conditions (7)–(9). It is clear that if this set is a solution to problem (5)–(9), then a pair
(µ∗, x∗(t)) with x∗(t) = u∗(t)− λ∗ is a solution to problem (1)–(4). From (7) and (9) we get
λ1 = x01.

Let us choose numbers λ
(0)
2 , µ(0), ρλ > 0, ρµ > 0 and assume that the Cauchy problem

(5)–(7) has a unique solution u(t, λ, µ) = (u1(t, λ1, λ2, µ), u2(t, λ1, λ2, µ)) for all λ1 = x01,

λ2 ∈ (λ
(0)
2 − ρλ, λ

(0)
2 + ρλ), and µ ∈ (µ(0) − ρµ, µ(0) + ρµ). Problem (5)–(9) is solvable if the

system of nonlinear algebraic equations

u1(t, x
0
1, λ2, µ) = 0, (10)
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u2(t, x
0
1, λ2, µ) = 0 (11)

has a solution (λ∗2, µ
∗) ∈ (λ

(0)
2 − ρλ, λ

(0)
2 + ρλ)× (µ(0) − ρµ, µ(0) + ρµ). We write system (10),

(11) in the form
Q∗(λ2, µ) = 0 (12)

and solve (12) by Newton’s method choosing as initial guess solution a pair (λ
(0)
2 , µ(0)), the

centers of the above mentioned intervals.
Taking into consideration that ε > 0 is a small number, we determine λ

(0)
2 , µ(0) by solving

the linear boundary value problem with parameters

du

dt
= A(t)(u+ λ) +B(t)µ+ f(t), t ∈ (0, T ), (13)

u(0) = 0, (14)

u(T ) = 0, (15)

λ1 = x01, (16)

where A(t) =

(
0 1

−σ2 0

)
, B(t) =

(
0

cosωt

)
and f(t) =

(
0

g(t)

)
.

Denote by a(P, t) a unique solution to the Cauchy problem for the linear ordinary differ-
ential equation

dz

dt
= A(t)z + P (t), t ∈ [0, T ], z(0) = 0, (17)

where P (t) is (2 × 2)-matrix or vector of the dimension 2 continuous on [0, T ]. Using this
solution, we can represent the solution to the Cauchy problem (13), (14) in the form

u(t, λ, µ) = a(A, t)λ+ a(B, t)µ+ a(f, t), t ∈ [0, T ]. (18)

Equation (16) and the substitution of the right-hand side of (18) into boundary condition
(15) lead to the system of linear algebraic equations in λ2, µ :(

α11 α12

α21 α22

)(
x01

λ2

)
+

(
β1

β2

)
µ+

(
γ1

γ2

)
=

(
0

0

)
. (19)

The coefficients and the right-hand side of system (19) are defined by the equalities(
α11 α12

α21 α22

)
= a(A, T ),

(
β1

β2

)
= a(B, T ),

(
γ1

γ2

)
= a(f, T ).

System (19) is equivalent to the system

α12λ2 + β1µ = −γ1 − α11x
0
1,
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α22λ2 + β2µ = −γ2 − α21x
0
1.

By solving this system, we find (λ
(0)
2 , µ(0)). Further approximations of the solution to the

system of nonlinear algebraic equations we find according to the iterative process(
λ
(k+1)
2

µ(k+1)

)
=

(
λ
(k)
2

µ(k)

)
−

(
∂Q∗(λ

(k)
2 , µ(k))

∂y

)−1

·Q∗(λ
(k)
2 , µ(k)),

where

∂Q∗(λ
(k)
2 , µ(k))

∂y
=

 ∂u1(T,x01,λ
(k)
2 ,µ(k))

∂λ2

∂u1(T,x01,λ
(k)
2 ,µ(k))

∂µ

∂u2(T,x01,λ
(k)
2 ,µ(k))

∂λ2

∂u2(T,x01,λ
(k)
2 ,µ(k))

∂µ

, k = 0, 1, 2, ... .

For the given λ
(k)
2 , µ(k), we solve the Cauchy problem (5)–(7) with λ2 = λ

(k)
2 , µ = µ(k)

and find functions u1(t, x
0
1, λ

(k)
2 , µ(k)), u2(t, x

0
1, λ

(k)
2 , µ(k)). Then the value of Q∗(λ

(k)
2 , µ(k)) is

equal to the vector

 u1(T, x
0
1, λ

(k)
2 , µ(k))

u2(T, x
0
1, λ

(k)
2 , µ(k))

.
In order to determine the elements of the Jacobi matrix ∂Q∗(λ

(k)
2 , µ(k))/∂y, we use the

following equalities:

du1(t, x
0
1, λ2, µ)

dt
= u2(t, x

0
1, λ2, µ) + λ2, t ∈ (0, T ), (20)

du2(t, x
0
1, λ2, µ)

dt
= −σ2(u1(t, x01, λ2, µ) + x01)− εγ(u1(t, x

0
1, λ2, µ) + x01)

3

+µcos(ωt) + g(t), t ∈ (0, T ), (21)

u1(0, x
0
1, λ2, µ) = 0, u2(0, x

0
1, λ2, µ) = 0, (22)

which are true for all (λ2, µ) ∈ (λ(0) − ρλ, λ(0) + ρλ)× (µ(0) − ρµ, µ(0) + ρµ).
Differentiating both sides of (20), (21), and (22) with respect to λ2 gives

d

dt

(
∂u1(t, x

0
1, λ2, µ)

∂λ2

)
=
∂u2(t, x

0
1, λ2, µ)

∂λ2
+ 1, t ∈ (0, T ), (23)

d

dt

(
∂u2(t, x

0
1, λ2, µ)

∂λ2

)

= −
{
σ2 + 3εγ

[
x01 + u1(t, x

0
1, λ2, µ)

]2}∂u1(t, x01, λ2, µ)

∂λ2
, t ∈ (0, T ), (24)
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∂u1(0, x
0
1, λ2, µ)

∂λ2
= 0,

∂u2(0, x
0
1, λ2, µ)

∂λ2
= 0. (25)

Therefore, the functions v
(k)
1 (t) =

∂u1(t, x
0
1, λ

(k)
2 , µ(k))

∂λ2
, v

(k)
2 (t) =

∂u2(t, x
0
1, λ

(k)
2 , µ(k))

∂λ2
satisfy the Cauchy problem for ordinary differential equations

dv1
dt

= v2 + 1, t ∈ [0, T ], (26)

dv2
dt

= −
{
σ2 + 3εγ

[
x
(k)
1 (t)

]2}
v1, t ∈ [0, T ], (27)

v1(0) = 0, v2(0) = 0, (28)

where x
(k)
1 (t) = x01 + u1(t, x

0
1, λ

(k)
2 , µ(k)).

Similarly, differentiating (20), (21), and (22) with respect to µ, we get that the functions

w
(k)
1 (t) =

∂u1(t, x
0
1, λ

(k)
2 , µ(k))

∂µ
and w

(k)
2 (t) =

∂u2(t, x
0
1, λ

(k)
2 , µ(k))

∂µ
are the solution to the

Cauchy problem
dw1

dt
= w2, t ∈ [0, T ], (29)

dw2

dt
= −

{
σ2 + 3εγ

[
x
(k)
1 (t)

]2}
w1 + cosωt, t ∈ [0, T ], (30)

w1(0) = 0, w2(0) = 0. (31)

Thus, if (v
(k)
1 (t), v

(k)
2 (t)) and (w

(k)
1 (t), w

(k)
2 (t)) are the solutions to the Cauchy problems

(26)–(28) and (29)–(31), respectively, then the elements of the Jacobi matrix are determined
by the formula

∂Q∗(λ
(k)
2 , µ(k))

∂y
=

 v
(k)
1 (T ) w

(k)
1 (T )

v
(k)
2 (T ) w

(k)
2 (T )

. (32)

Based on the above results, we propose the following numerical algorithm for solving the
quasilinear boundary value problem (1)–(4) with parameters.

Step 1.
(a) Choose the stepsize h > 0 : 2Nh = T and, using the Runge-Kutta method of the fourth

order, find the numerical solution to the Cauchy problem (5)–(8) with λ1 = x01, λ2 = λ
(0)
2 ,

and µ = µ(0). So, we have the functions u1(t̂, x
0
1, λ

(0)
2 , µ(0)) and u2(t̂, x

0
1, λ

(0)
2 , µ(0)), where

t̂ = {0, h, . . . , (2N − 1)h, 2Nh}. Construct the function x
(0)
1 (t) = x01 + u1(t̂, x

0
1, λ

(0)
2 , µ(0)),

which is determined for all t = mh, m = 0, 1, . . . , 2N.

(b) Since the function x
(0)
1 (t) is known only on the grid {0, h, . . . , (2N − 1)h, T}, to solve the

Cauchy problems for linear ordinary differential equations (26)–(28) and (29)–(31), we apply
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the Runge-Kutta method of the fourth order with the stepsize h1 = 2h. Solving the Cauchy
problems

dv1
dt

= v2 + 1, t ∈ [0, T ],

dv2
dt

= −
{
σ2 + 3εγ

[
x
(0)
1 (t)

]2}
v1, t ∈ [0, T ],

v1(0) = 0, v2(0) = 0,

and
dw1

dt
= w2, t ∈ [0, T ],

dw2

dt
= −

{
σ2 + 3εγ

[
x
(0)
1 (t)

]2}
w1 + cosωt, t ∈ [0, T ],

w1(0) = 0, w2(0) = 0,

we find the functions v
(0)
1 (t), v

(0)
2 (t), and w

(0)
1 (t), w

(0)
2 (t) on the grid

{
0, 2h, . . . , 2Nh

}
.

(c) Assuming that (2× 2)-matrix

∂Q∗(λ
(0)
2 , µ(0))

∂y
=

 v
(0)
1 (T ) w

(0)
1 (T )

v
(0)
2 (T ) w

(0)
2 (T )


is invertible, the next approximation of the solution to (12), we determine as follows:(

λ
(1)
2

µ(1)

)
=

(
λ
(0)
2

µ(0)

)
−

(
∂Q∗(λ

(0)
2 , µ(0))

∂y

)−1

·Q∗(λ
(0)
2 , µ(0)).

Continuing the process, in the k-th step we find (λ
(k)
2 , µ(k)) and u1(t, x

0
1, λ

(k)
2 , µ(k)),

u2(t, x
0
1, λ

(k)
2 , µ(k)). The convergence conditions for the iterative process in terms of Q∗(λ2, µ)

and its Jacobi matrix are given in Theorem 4.1 [10, p. 1019].

Example. We consider problem (1)–(4) with T = 1, w = 1, σ = 2, γ = 1, ε = 0.05,
g(t) = −16π2 sin(4πt) + 4 sin(4πt) + 0.05 sin3(4πt) − 2 cos t. The solution to this problem is

the pair (µ∗, x∗(t)), where µ∗ = 2, x∗(t) =

(
sin(4πt)

4π cos(4πt)

)
.

First, we solve the Cauchy problems for ordinary differential equations by Runge-Kutta
method of the fourth order with step size h = 0.1.

In order to determine an initial guess solution to system (12), we solve corresponding
linear boundary value problem (13)–(15) with parameter and obtain

y(0) =

(
12.5755281606075435
1.9992073852266987

)
.
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Using this initial approximation, we find the solution to our problem by the algorithm
proposed in the paper.

Iteration 1:

Q∗(λ
(0)
2 , µ(0)) =

(
−0.0012409267739448
0.0039987251271718

)
,

∂Q∗(λ
(0)
2 ,µ(0))
dy =

(
0.4473886530784268 0.3166236459146591
−1.4325137911331871 0.3176777877070035

)
,

y(1) =

(
12.5783153434482031
1.9991883493678824

)
.

Iteration 2:

Q∗(λ
(1)
2 , µ(1)) =

(
−0.0000028493576018
−0.0000016787191317

)
,

∂Q∗(λ
(1)
2 ,µ(1))
dy =

(
0.4473887615789600 0.3166236635261683
−1.4324996864543631 0.3176882131436935

)
,

y(2) =

(
12.5783159707593359
1.9991964621716516

)
.

After Iteration 5, we get:

Q∗(λ
(4)
2 , µ(4)) =

(
0.0000000000000002
0.0000000000000036

)
,

∂Q∗(λ
(4)
2 ,µ(4))
dy =

(
0.4473887616392045 0.3166236641865047
−1.4324996528324900 0.3176882362279510

)
,

y(4) =

(
12.5783159732745986
1.9991964642523374

)
, y(5) =

(
12.5783159732746004
1.9991964642523343

)
.

The comparison with the exact solution to the problem shows that

|λ(5)2 − λ
∗
2| ≤ 0.0119,

|µ(5)2 − µ
∗
2| ≤ 0.0008.

Next, to reduce the error we increase the number of the partition subintervals by ten
times and solve the auxiliary Cauchy problems with step size h = 0.01.

Iteration 1:

Q∗(λ
(0)
2 , µ(0)) =

(
−0.0012183459495035
0.0039110916233056

)
,
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∂Q∗(λ
(0)
2 ,µ(0))
dy =

(
0.4464104388179766 0.3164970726810607
−1.4330580996129132 0.3181099350162241

)
,

y(0) =

(
12.5636425257306055
1.9999999921366101

)
, y(1) =

(
12.5663717215062629
2.0000000062462897

)
.

Iteration 2:

Q∗(λ
(1)
2 , µ(1)) =

(
0.0000000000851788
0.0000000184865454

)
,

∂Q∗(λ
(1)
2 ,µ(1))
dy =

(
0.4464105239728410 0.3164970827929271
−1.4330444981906445 0.3181199776724043

)
,

y(2) =

(
12.5663717312849208
1.9999999921846303

)
.

After Iteration 3, we obtain

Q∗(λ
(2)
2 , µ(2)) =

(
0.0000000000000025
−0.0000000000000052

)
,

∂Q∗(λ
(2)
2 ,µ(2))
dy =

(
0.4464105239730589 0.3164970827918964
−1.4330444981937203 0.3181199776730464

)
,

y(3) =

(
12.5663717312849172
1.9999999921846281

)
.

Thus, in this case Iteration 3 allows us to reach the proximity of order O(10−8).
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Жұмабаев Д.С., Әбiласанов Б., Жұбатқан Ә., Әсетбеков А. ДУФФИНГ ТЕҢДЕУI
ҮШIН КВАЗИСЫЗЫҚТЫ ШЕТТIК ЕСЕПТI ШЕШУДIҢ САНДЫҚ АЛГОРИТМI

Дуффинг теңдеуi үшiн белгiсiз функция мен параметрден тұратын жұпты табу есебi
қарастырылады. Бұл есептiң шеттiк шарты периодты шарт болып табылады. Параметр-
дi анықтау үшiн шешiмнiң бiрiншi координатасының интервалдың сол жақ шеткi нүк-
тесiндегi мәнi қосымша шарт ретiнде берiледi. Қарастырылып отырған есептi шешудiң
сандық алгоритмi үсынылады.

Кiлттiк сөздер. Параметрлi Дуффинг теңдеуi, сандық алгоритм, Ньютон әдiсi.

Джумабаев Д.С., Абиласанов Б., Жубаткан А., Асетбеков А. ЧИСЛЕННЫЙ АЛ-
ГОРИТМ РЕШЕНИЯ КВАЗИЛИНЕЙНОЙ КРАЕВОЙ ЗАДАЧИ ДЛЯ УРАВНЕНИЯ
ДУФФИНГА

Для уравнения Дуффинга рассматривается задача нахождения пары, состоящей из
неизвестной функции и параметра. Краевое условие этой задачи является периодиче-
ским. Для определения параметра задано дополнительное условие в качестве значения
первой координаты решения в левой точке интервала. Предложен численный алгоритм
решения рассматриваемой задачи.

Ключевые слова. Уравнение Дуффинга с параметром, численный алгоритм, метод
Ньютона.
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Abstract. The problem of the existence and integral representation of a unique multiperiodic solution

of an inhomogeneous linear system with constant coefficients and a differentiation operator D on the

direction of the main diagonal of the space of time variables were considered. This problem was solved

in non-critical case when all eigenvalues of the matrix of coefficients of the system have non-zero real

parts; moreover, the method of studying this case was not suitable for studying a critical case. Thus,

critical cases remained open. This proves the existence of a solution to the problem when the matrix of

coefficients has several pure imaginary eigenvalues with simple elementary divisors, and a free member of

the system has the properties of real analyticity in independent variables that change in the strip of the

real axis of the complex plane, and periodicity with rationally incommensurable frequencies. Moreover,

the frequencies of the eigenvalues oscillations and excitation forces together satisfy the Diophantine

condition of strong incommensurability. The condition for the absence of a nonzero multiperiodic

solution of the homogeneous system corresponding to the given system is established. On this basis,

the Green-type matrix function is constructed, in terms of which the question of the integral structure

and existence of the required unique real analytic multiperiodic solution is solved. When studying the

problem of a linear replacement system, it splits into two types of subsystems: a) several similar systems

of the second order of critical nature and b) a system of non-critical cases. The problem is solved

for these indicated subsystems individually according to the method described above, and then the

developed method is described in general form for the original system. In general, the work proposes a

new method for studying the problem of the existence and construction of a unique multiperiodic solution

of the linear system of equations with constant coefficients and the same differentiation operator D.

The method which is applicable in both non-critical and critical cases.

Keywords. Multiperiodic solution, Green’s function, differentiation operator, real analytic function,

integral representation, critical and non-critical cases.

2010 Mathematics Subject Classification: 34C46, 35B10, 35C15, 35F35.
c© 2019 Kazakh Mathematical Journal. All right reserved.



56 Zh.A. Sartabanov, B.Zh. Omarova

1 Introduction

It is known [1]–[6] that if a linear homogeneous θ-periodic system has no periodic so-
lution except zero, then the corresponding inhomogeneous periodic system admits a unique
θ-periodic solution x(τ). Moreover, its integral representation is easily obtained by eliminat-
ing the initial given x0 from the systems of integral equations of solutions x(τ) and x(τ + θ).

In the case of (θ, ω)-periodic in (τ, t) systems, as known [7], the condition for the multi-
plicity of their solutions is represented by the systems of functional-difference equations with
a difference θ, which should be solvable in the space of ω-periodic smooth functions.

Accordingly, in the case, considered in this note as the systems for determining the initial
ω-periodic with respect to t function u(t) of (θ, ω)-periodic solution x(τ, t) we have a linear
system of the homological type with a difference θ. From the assumption of the absence
of nonzero (θ, ω)-periodic solutions of the corresponding homogeneous system follows that
the initial function u(t) is determined from the class of (θ, ω)-periodic zeros v(τ, t) of the
differentiation operator D of the considered system with condition u(t) = v(0, t), where
Dv(τ, t) = 0. In this case, by virtue to the rational incommensurability of periods (θ, ω) we
have that v = const, and therefore u = c− const. By virtue of this simplification, we have
an integral representation of the unique (θ, ω)-periodic solution of the system in terms of the
Green type function, which is described in this paper.

It was required for us that the free member of the system possesses the property of real
analyticity in the infinite strip of the real axis, and its frequencies together with the frequency
of natural vibrations satisfy the Diophantine condition of their strong incommensurability [8]–
[11] in order to justify the integral representation. This allowed us to solve the main problem
in terms of Fourier series.

A problem of this type was previously considered only in the non-critical case [12]–[17].
In this case, small dividers do not occur.

This paper is essentially the first in this direction of the theory of multiperiodic solutions
of the systems with a vector field differentiation operator, where elements of the methods
KAM theory [18]–[24] are used. The study carried out here is a natural continuation of the
works [25]–[28].

Thus, we consider the linear system of equations

Dx = Ax+ f(τ, t) (1)

with respect to the vector-function x = (x1, . . . , xn) of variables τ ∈ (−∞,+∞) = R,
t = (t1, . . . , tm) ∈ R× . . .×R = Rm with the same for all components Dx = (Dx1, . . . , Dxn)
of operator D of the form

D =
∂

∂τ
+

〈
e,
∂

∂t

〉
, (2)

where e = (1, . . . , 1) is m-vector,
∂

∂t
=

(
∂

∂t1
, . . . ,

∂

∂tm

)
is a vector operator, 〈a, b〉 is a scalar
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product of vectors a and b, A = [aij ]
n
1 is a constant matrix, f(τ, t) =

(
f1(τ, t), . . . , fn(τ, t)

)
is

a vector-function of variables (τ, t) ∈ R×Rm.
Suppose that the matrix A has purely imaginary eigenvalues λj = λj(A) with simple

elementary divisors, or eigenvalues λk = λk(A) with nonzero real parts. Therefore, the
spectrum σ of eigenvalues λj is splitted into the union of two sets σ0 and σ1:

σ = σ0
⋃
σ1,

σ0 =
{
λj ∈ σ : (Reλj = 0) ∧ (Imλj 6= 0) ∧ (Iedλj = 1), j = 1, 2n0

}
,

σ1 =
{
λk ∈ σ : Reλk 6= 0, k = 1, n1

}
,

(3)

where Ied is the index of the elementary divisor.
The vector-function f(τ, t) has the properties of (θ, ω)-periodicity with respect to (τ, t),

with the rationally incommensurate periods (ω0 = θ, ω1, . . . , ωm) = (θ, ω), qjωj 6= qkωk
for sets of integers qj , qk ∈ Z and the real analyticity for (τ, t) ∈ Πδ × Πm

δ = Πm+1
δ ,

Πδ = {τ ∈ C : |Imτ | < δ}, as well as continuity on the closure Π
m+1
δ strip Πm+1

δ , where
δ = const > 0, C is a complex plane. We represent these properties of f(τ, t) in the form

f(τ + θ, t+ qω) = f(τ, t) ∈ Ab
(

Π
m+1
δ

)
, q ∈ Zm, (4)

where Ab
(

Π
m+1
δ

)
is a class of real analytic in Πm+1

δ and continuous on Π
m+1
δ vector-functions.

We set the task of investigating a problem of the existence of (θ, ω)-periodically with
respect to (τ, t) solutions of the system (1) with the differentiation operator (2), which has
properties (3) and (4).

In accordance with condition (3), the system (1)–(2) by a non-singular linear change

x = Ky, detK 6= 0, (5)

can be reduced to the system
Dy = By + f̃(τ, t) (6)

with the block-diagonal matrix

B = diag (J1, . . . , Jn0 , C) , (7)

where the second-order matrices Jj have the form

Jj =

(
0 2πν0

j

−2πν0
j 0

)
(8)

with constants ν0
j > 0, j = 1, n0, and in (n1 × n1)-matrix C all eigenvalues λk = λk(C) have

non-zero real parts:
Reλk(C) 6= 0, k = 1, n, 2n0 + n1 = n. (9)

Kazakh Mathematical Journal, 19:4 (2019) 55–70



58 Zh.A. Sartabanov, B.Zh. Omarova

It is obvious that

f̃(τ, t) = K−1f(τ, t). (10)

It is clear from the relations (7)–(10), that the system (6) decomposes into n0 second-type
subsystems of the same type with respect to z = (u, v) of the form

Dz = Jz + h(τ, t) (11)

with matrix J of the form (8) with constant ν̃ = 2πν0 > 0 and vector-function

h(τ, t) = (ϕ(τ, t), ψ(τ, t))

and into the subsystem n1-st order

Dw = Cw + g(τ, t), (12)

where the functions ϕ = ϕ(τ, t), ψ = ψ(τ, t) and g = g(τ, t) have properties of the form (4).

Thus, the main problem was reduced to its study for systems (11) and (12).

2 Multiperiodic solutions of the second-order of subsystems in the critical case

The homogeneous system

Dz = Jz, (13)

corresponding to the system (11) has a matricant

Z(τ) =

(
cos 2πντ sin 2πντ
− sin 2πντ cos 2πντ

)
. (14)

Obviously, under condition

det[Z(θ)− E] 6= 0 (15)

for the matricant (14), the homogeneous system (13) does not have θ-periodic solutions,
except for zero, where E is an identity matrix.

Obviously, the variable τ changing on the numerical axis R = (−∞,+∞) can be repre-
sented in the form

τ =
[
θ−1τ

]
θ +

{
θ−1τ

}
θ = s∗(τ) + s∗(τ),

where θ is a positive number, [α] and {α} are the integers and fractional parts of the number,
s∗(τ) =

[
θ−1τ

]
θ, s∗(τ) =

{
θ−1τ

}
θ are functions with the domain τ ∈ R.

The functions s∗(τ) and s∗(τ) at τ = kθ, k ∈ Z with a jump equal to θ, moreover, s∗(τ)
is a non-decreasing step function in steps h = θ, s∗(τ + θ) = s∗(τ) + θ, s∗(τ + θ) = s∗(τ) are
non-negative periodic functions of period θ, limited by the number θ.
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They are differentiable when τ ∈ [kθ, kθ + θ), k ∈ Z, moreover
d

dτ
s∗(τ) = 0,

d

dτ
s∗(τ) = 1

and at the breakpoints τ = kθ their one-sided derivatives are equal to each other:

ds∗(τ)

dτ

∣∣∣∣
τ=kθ+0

=
ds∗(τ)

dτ

∣∣∣∣
τ=kθ−0

= 0,
ds∗(τ)

dτ

∣∣∣∣
τ=kθ+0

=
ds∗(τ)

dτ

∣∣∣∣
τ=kθ−0

= 1.

So the derivatives of these functions at the breakpoints have a removable singularity, therefore,
with this in mind, we can assume that they are continuously differentiable and put

d

dτ
s∗(τ) = 0, τ ∈ R and

d

dτ
s∗(τ) = 1, τ ∈ R.

Under condition (15), we define matrix

G0(τ, s) =

{[
Z−1(τ + θ)− Z−1(τ)

]−1
Z−1(s+ θ), s∗(τ)− θ ≤ s < τ,[

Z−1(τ + θ)− Z−1(τ)
]−1

Z−1(s), τ ≤ s ≤ s∗(τ),
(16)

where s∗(τ) =
[
θ−1τ

]
θ is a step function with step θ and derivative

d

dτ
s∗(τ) = 0, τ ∈ R,

since for integer k ∈ Z one-sided derivatives are
ds∗(kθ − 0)

dτ
=
ds∗(kθ + 0)

dτ
= 0.

It is easy to verify that the matrix (16) has the properties

∂

∂τ
G0(τ, s) = JG0(τ, s), τ 6= s, (17)

G0(τ, τ + 0)−G0(τ, τ − 0) = E, (18)

G0(τ + θ, s+ θ) = G0(τ, s). (19)

The matrix (16) with properties (17)–(19) can be called the Green’s matrix of set problem
of a multiperiodic solution.

The matricant (14) can be represented in the form

Z(τ) = Γ+e
2πiν0τ + Γ−e

−2πiν0τ , (20)

by using Euler’s formulas, where Γ+ and Γ− are matrix coefficients of the form

Γ+ =
1

2

(
1 −i
i 1

)
,Γ− =

1

2

(
1 i
−i 1

)
. (21)

We have
Z−1(τ) = Z(−τ) = Γ+e

−2πiν0τ + Γ−e
2πiν0τ , (22)

by representation (20).
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We obtain from the condition (4) the Fourier series expansion for the function h(τ, t) in
the form

h(τ, t) =
∑

(k0,k)

h(k0,k) exp [2πi (k0ν0τ + 〈k, νt〉)] , (23)

where ν0 = θ−1 = ω−1
0 , ν1 = ω−1

1 , . . . , νm = ω−1
m , ν = (ν1, . . . , νm), k = (k1, . . . , km),

νt = (ν1t1, . . . , νmtm), 〈k, νt〉 = k1ν1t1 + . . . + kmνmtm, kj ∈ Z, j = 0,m, h(k0,k) are the
Fourier coefficients that satisfy the estimate∣∣h(k0,k)

∣∣ ≤ ‖h‖δ e−2πδ(|k0|+|k|), |k| = |k1|+ . . .+ |km|,

‖h‖δ = sup
Π
m+1
δ

|h(τ, t)|, |h| = max {|ϕ(τ, t)|, |ψ(τ, t)|} , h = (ϕ,ψ).
(24)

Further, the norms ‖x‖δ and ‖X(τ, t)‖δ of the vector-function x(τ, t) = (x1(τ, t), . . . , xn(τ, t))
and the matrix function X(τ, t) = [xij(τ, t)]

n
1 are determined by the well-known formulas:

‖x‖δ = sup
Π
m+1
δ

|x(τ, t)|, |x(τ, t)| = max
1≤j≤n

|xj(τ, t)|,

‖X‖δ = sup
Π
m+1
δ

|X(τ, t)|, |X(τ, t)| = max
1≤j≤n

n∑
k=1

|xjk(τ, t)|.

Allowing for the term-by-term integration of the expansion of the integrand based on
(20)–(23) for Πδ/2 ×Π

m
δ/2 we calculate an integral of the form

I(τ, t) =

τ∫
s∗(τ)

Z−1(s)h(s, t− eτ + es) ds =

τ∫
s∗(τ)

{
Γ+e

−2πiν0s + Γ−e
2πiν0s

}

×
∑

(k0,k)

h(k0,k)e
2πi(k0ν0s+〈k,ν(t−eτ+es)〉) ds =

τ∫
s∗(τ)

∑
(k0,k)

Γ+h(k0,k)e
2πi〈k,ν(t−eτ)〉

×e2πi(−ν0+k0ν0+〈k,ν〉)s ds+

τ∫
s∗(τ)

∑
(k0,k)

Γ−h(k0,k)e
2πi〈k,ν(t−eτ)〉e2πi(ν0+k0ν0+〈k,ν〉)s ds

=
∑

(k0,k)

Γ+h(k0,k)

[
2πi

(
−ν0 + k0ν0 + 〈k, ν〉

)]−1
e2πi〈k,ν(t−eτ)〉

{
e2πi(−ν0+k0ν0+〈k,ν〉)τ

− e2πi(−ν0+k0ν0+〈k,ν〉)s∗(τ)
}

+
∑

(k0,k)

Γ−h(k0,k)

[
2πi

(
ν0 + k0ν0 + 〈k, ν〉

)]−1
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×e2πi〈k,ν(t−eτ)〉
{
e2πi(ν0+k0ν0+〈k,ν〉)τ − e2πi(ν0+k0ν0+〈k,ν〉)s∗(τ)

}
=
∑

(k0,k)

Γ+h(k0,k)

[
−ν0 + k0ν0 + 〈k, ν〉

]−1
e2πi(−ν0τ+k0ν0τ+〈k,νt〉)

×
{

1− e−2πi(−ν0+k0ν0+〈k,ν〉)s∗(τ)
}

+
∑

(k0,k)

Γ−h(k0,k)

[
ν0 + k0ν0 + 〈k, ν〉

]−1

×e2πi(ν0τ+k0ν0τ+〈k,νt〉)
{

1− e−2πi(ν0+k0ν0+〈k,ν〉)s∗(τ)
}

or
I(τ, t) =

∑
(k0,k)

Γ+h(k0,k)

[
−ν0 + k0ν0 + 〈k, ν〉

]−1
e2πi(−ν0τ+k0ν0τ+〈k,νt〉)

×
{

1− e−2πi(−ν0+k0ν0+〈k,ν〉)s∗(τ)
}

+
∑

(k0,k)

Γ−h(k0,k)

[
ν0 + k0ν0 + 〈k, ν〉

]−1

×e2πi(ν0τ+k0ν0τ+〈k,νt〉)
{

1− e−2πi(ν0+k0ν0+〈k,ν〉)s∗(τ)
}
.

(25)

By virtue of the property Z(τ + θ) = Z(τ)Z(θ) of the matricant (14) from (25), we easily
get the integral

Ĩ(τ, t) =

τ∫
s∗(τ)−θ

Z−1(s+ θ)h(s, t− eτ + es) ds =

τ∫
s∗(τ)−θ

Z−1(θ)Z−1(s)

×h(s, t− eτ + es) ds =
∑

(k0,k)

Z−1(θ)Γ+h(k0,k)

[
2πi

(
−ν0 + k0ν0 + 〈k, ν〉

)]−1

×e2πi(−ν0τ+k0ν0τ+〈k,νt〉)
{

1− e−2πi(−ν0+k0ν0+〈k,ν〉)(θ+s∗(τ))
}

+
∑

(k0,k)

Z−1(θ)Γ−h(k0,k)

[
2πi

(
ν0 + k0ν0 + 〈k, ν〉

)]−1
e2πi(ν0τ+k0ν0τ+〈k,νt〉)

×
{

1− e−2πi(ν0+k0ν0+〈k,ν〉)(θ+s∗(τ))
}
. (26)

We assume that the condition of strong rational incommensurability of frequencies
ν0, ν0, ν1, . . . , νm of the form∣∣ν0 + k0ν0 + 〈k, ν〉

∣∣−1 ≤ c

2π
(|k0|+ |k|)γ (27)

with constants c > 0 and γ ≥ m + 2, is satisfied to ensure the legality of the term-by-term
integration of series (25), (26) and prove the convergence of the series obtained.
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It is obvious that |Γ±| = 1, |Z−1(θ)| ≤ 2 and

| exp
[
−2πi

(
±ν0 + k0ν0 + 〈k, ν〉

)
(α+ s∗(τ))

]
| ≤ 1,

where α = 0 or α = θ.

Then, by virtue of the condition (24) for the Fourier coefficients of a real analytic vector-
function h(τ, t) and the condition (27) for the frequencies ν0 of matricant and ν0, ν1, . . . , νm
of vector-functions h(τ, t), for members I(k0,k)(τ, t) of the series (25) and (26) we have an
estimate of the form∥∥I(k0,k)(τ, t)

∥∥
δ/2
≤ 4 · c

2π
(|k0|+ |k|)γ ‖h‖δe−2πδ(|k0|+|k|)eπδ(ν

0+|k0|+|k|)

=
2c

π
eπν

0δ (|k0|+ |k|)γ e−πδ(|k0|+|k|)‖h‖δ

≤ 2c

π

(
2γ

πδe

)γ
eπδν

0
e−

πδ
2

(|k0|+|k|)‖h‖δ = a‖h‖δe−α(|k0|+|k|), (28)

where a =
2c

π

(
2γ

πδe

)γ
eπδν

0
and α =

πδ

2
.

Note that here the inequality

(|k0|+ |k|)γe−
πδ
2

(|k0|+|k|) ≤
(

2γ

πδe

)γ
is taken into account in the evaluation.

It is clear from the estimate (28) that the series (25) and (26) converge uniformly for
(τ, t) ∈ Πδ/2 × Π

m
δ/2, and their sums are real-analytic and are estimated at the norm by

b = 8m+1 a

δm+1
‖h‖δ, 0 < δ < 1.

We have

I(τ + θ, t+ qω) = Z−1(θ)I(τ, t) ∈ Ab
(

Πδ/2 ×Π
m
δ/2

)
, q ∈ Zm,

‖I‖δ/2 ≤ b =
8m+1a

δm+1
‖h‖δ, 0 < δ < 1, (29)

on the basis of the properties of the matricant Z(τ + θ) = Z(τ)Z(θ).

The integral Ĩ(τ, t) also has property (29).

Thus, the following lemma is proved.
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Lemma 1. Under the conditions (15), (27) and

h(τ + θ, t+ qω) = h(τ, t) ∈ Ab
(
Πδ ×Π

m
δ

)
, q ∈ Zm, (30)

the integral I(τ, t) defined by (25) and the matricant (14) have the property (29).

Under the conditions of Lemma 1, the integral relation Ĩ(τ, t) defined by the expression
(26) also has property (29).

Now we are in a position to prove the following theorem.

Theorem 1. Under the conditions (15), (27) and (30), the system (11) admits a unique
(θ, ω)-periodic solution

z∗(τ + θ, t+ qω) = z∗(τ, t) ∈ Ab
(

Πδ/2 ×Π
m
δ/2

)
, q ∈ Zm, (31)

which is representable in the Green’s function by the relation

z∗(τ, t) =

s∗(τ)∫
s∗(τ)−θ

G0(τ, s)h(s, t− eτ + es) ds (32)

and satisfies the estimate

‖z∗‖δ/2 ≤
8m+12∆a

δm+1
‖h‖δ, (33)

where ∆ is a positive constant that bounds with respect to normal θ0 =
1

ν0
-periodic matrix

Y (τ) =
[
Z−1(τ + θ)− Z−1(τ)

]−1
, i.e. ‖Y ‖δ ≤ ∆.

Proof. We represent (32) in the form

z∗(τ, t) =

τ∫
s∗(τ)−θ

G0(τ, s)h(s, t− eτ + es) ds+

s∗(τ)∫
τ

G0(τ, s)h(s, t− eτ + es) ds

= Y (τ)Ĩ(τ, t)− Y (τ)I(τ, t). (34)

We obtain the analyticity and boundedness properties (33) from (34), by virtue of Lemma 1.

Differentiating (34), by virtue of the properties (17) and (18) of the Green’s function,
we see that (32) really satisfies the system (11), that is, the expression (32) is an integral
representation of the required solution. The periodicity of z∗(τ, t) with period θ in τ is proved
by replacing s by s+ θ and using property (19), taking into account the analogical property
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h(τ, t). Its periodicity by t with period ω follows directly from ω-periodicity of h(τ, t) in t.
Therefore, property (31) is completely proved.

Uniqueness follows from the condition (15).

Theorem 1 is completely proved.

3 Multiperiodic solution of the subsystem in non-critical case

Now we investigate the question of the existence of (θ, ω)-periodic solution of the system
(12) according to the method described above.

We consider in accordance with this, the homogeneous system

Dw = Cw, (35)

which has a matricant W (τ) = exp[Cτ ] having properties

DW (τ) = CW (τ),W (0) = E (36)

with a unit (n1 × n1)-matrix E and satisfying conditions

|W (τ, t)| ≤ ae−α|τ |, (37)

det|W (θ)− E| 6= 0 (38)

with some constants a ≥ 1 and α > 0 by virtue of the condition (9).

Analogically to constructing matrix (16), we introduce the Green’s matrix

G1(τ, s) =

{[
W−1(τ + θ)−W−1(τ)

]−1
W−1(s+ θ), s∗(τ)− θ ≤ s < τ,[

W−1(τ + θ)−W−1(τ)
]−1

W−1(s), τ ≤ s ≤ s∗(τ),
(39)

and the problem of multiperiodic solutions of the system (12), which has the properties

DG1(τ, s) = CG1(τ, s), τ 6= s, (40)

G1(τ, τ + 0)−G1(τ, τ − 0) = E, (41)

G1(τ + θ, s+ θ) = G1(τ, s). (42)

These properties easily follow from relations (35)–(38).

Theorem 2. Under the conditions (9) and

g(τ + θ, t+ qω) = g(τ, t) ∈ Ab
(
Πδ ×Πδ

)
, q ∈ Zm, (43)
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the system (12) allows the unique (θ, ω)-periodic solution w∗(τ, t) with the integral repre-
sentation of the form

w∗(τ, t) =

s∗(τ)∫
s∗(τ)−θ

G1(τ, s)g(s, t− eτ + es) ds ∈ Ab
(
Πδ ×Π

m
δ

)
(44)

satisfying the estimate

‖w∗‖δ ≤
a

α
‖g‖δ. (45)

The proof is carried out similarly to the proof of Theorem 1 with a change of references
to the corresponding formulas.

Indeed, the matricant W−1(s) can be represented as a finite quasi-polynomial of the form

W−1(s) =
n∑
j=1

Pj(s)e
−λjs, (46)

where Pj(s) are matrix polynomials with respect to of s degree nj , λj = 2π(αj + iβj) are
eigenvalues of the matrix C with non-zero real parts Reλj = 2παj 6= 0.

The vector-function g(τ, t) can be expanded to the Fourier series by virtue of the condition
(43), moreover,

g(s, t− eτ + es) =
∑

(k0,k)

g(k0,k)e
2πi〈k,ν(t−eτ)〉e2πi[k0ν0+〈k,ν〉]s (47)

with the Fourier coefficients g(k0,k) satisfying the inequality

|g(k0,k)| ≤ ‖g‖δe2πδ[|k0|+|k|] (48)

for (τ, t) ∈ Πδ ×Π
m
δ .

Then, when integrating over s the product of the matrix (46) and the vector-function
(47), represented as

W−1(s)g(s, t− eτ + es) =
n∑
j=1

∑
(k0,k)

Pj(s)

×e2π[−αj+i(−βj+k0ν0+〈k,ν〉)]s · g(k0,k) · e2πi〈k,ν(t−eτ)〉 (49)

factors of the form [−αj + i (−βj + k0ν0 + 〈k, ν〉)]−γj with natural exponents γj appeared on
the coefficients of quasi polynomials, which do not belong to the category of small denomi-
nators, since

[−αj + i (−βj + k0ν0 + 〈k, ν〉)] ≥ |αj |, j = 1, n. (50)
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Therefore, the integral of the vector-function of the form

I(τ, t) =

τ∫
s∗(τ)

W−1(s)g(s, t− eτ + es) ds (51)

by virtue of the relations (46)–(50) for (τ, t) ∈ Πδ × Π
m
δ is real analytic, and therefore the

vector-function w∗(τ, t) ∈ Ab
(
Πδ ×Π

m
δ

)
. We see by the direct verification based on (40),

(41) and (43), that the expression (44) is a solution to the system (12). It is easy to prove the
(θ, ω)-periodicity of the solution (41) by virtue of the condition (43) and the property (42).

The estimate (45) follows from inequality (37). The uniqueness is a consequence of the
condition (38). Theorem 2 is completely proved.

4 Multiperiodic solution of the main system

Now, applying Theorem 1 to the subsystems

Dzj = Jjzj + hj(τ, t), j = 1, n0, (52)

with matrices of the form (8) with constants ν0
j , j = 1, n0, satisfying the condition

(27) for ν0 = ν0
j , we establish the existence of the unique (θ, ω)-periodic solution z∗(τ, t)

of each subsystem (52) with a free term hj(τ, t) = h(τ, t) satisfying condition (30).
Thus, Theorems 1 and 2 imply the existence of the unique (θ, ω)-periodic solution x∗(τ, t)

of the basic system (1) under conditions (3), (4), (27) for ν0 = ν0
j , j = 1, n0, and (9).

The equivalence of the main problem of the existence of the multiperiodic solution of the
system (1) with analogous problems for subsystems of the types (11) and (12) allows us to
extend the developed methodology to the original system in a direct way.

Indeed, a matricant X(τ) satisfying

DX(τ) = AX(τ), X(0) = E, (53)

by virtue of the conditions (3), (9) and (27) for ν0 = ν0
j , j = 1, n0, has the property

det[X(θ)− E] 6= 0, (54)

where E is an identity matrix of the n-th order.
The inequality (54) allows us to construct the Green’s matrix

G(τ, s) =

{[
X−1(τ + θ)−X−1(τ)

]−1
X−1(s+ θ), s∗(τ)− θ ≤ s < τ,[

X−1(τ + θ)−X−1(τ)
]−1

X−1(s), τ ≤ s ≤ s∗(τ),
(55)

which, by virtue of (53), has the properties

DG(τ, s) = AG(τ, s), τ 6= s, (56)
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G(τ, τ + 0)−G(τ, τ − 0) = E, (57)

G(τ + θ, s+ θ) = G(τ, s). (58)

The condition (4) and the Green’s matrix (55) with properties (56)–(58) give the integral
representation

x∗(τ, t) =

s∗(τ)∫
s∗(τ)−θ

G(τ, s)f(s, t− eτ + es) ds ∈ Ab
(
Πδ/2 ×Πδ/2

)
(59)

of the unique (θ, ω)-periodic solution x∗(τ, t) of the system (1) satisfying the estimate

‖x∗(τ, t)‖δ/2 ≤ d‖f‖δ (60)

with a constant d = d
(
c, γ, ν0

1 , ..., ν
0
n0
, λ1, ..., λn1 , δ

)
, 0 < δ < 1.

Thus, the following theorem is proved.

Theorem 3. Under the conditions (3) for the matrix A with eigenvalues µj = 2πiν0
j ,

j = 1, n0, satisfying the conditions (27) for ν0 = ν0
j , j = 1, n0, and λj = λj(C), j = 1, n1,

which submit to the condition (9) and for the free term f(τ, t) having the property (4), the
system (1) has a unique real analytic (θ, ω)-periodic for (τ, t) ∈ Πδ/2 ×Π

m
δ/2 solution x∗(τ, t)

with integral representation (59) satisfying the estimate (60).

In conclusion, we note that the idea of the methodology which is used in this work has
broad development prospects for studying the problems of the multiperiodic solutions of
linear systems and in other critical cases.
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Сартабанов Ж.А., Омарова Б.Ж. КЕЙБIР СЫНДЫҚ ЖАҒДАЙДА СЫЗЫҚТЫ
ЖҮЙЕНIҢ КӨППЕРИОДТЫ ШЕШIМIНIҢ ИНТЕГРАЛДЫҚ БЕЙНЕЛЕНУI

Тұрақты коэффициенттi және уақыт айнымалылары кеңiстiгiнде бас диагонал бағы-
ты бойынша D дифференциалдау операторлы бiртектi емес сызықты жүйенiң жалғыз
көппериодты шешiмiнiң бар болуы мен интегралдық бейнеленуi есебi қарастырылады.
Бұл есеп жүйенiң коэффициенттерi матрицасының барлық меншiктi мәндерiнiң нақты
бөлiктерi нөлден өзгеше болған жағдайда, яғни сындық емес жағдайда шешiлген бо-
латын, әрi бұл жағдайда зерттеу әдiсi сындық жағдайды зерттеуге жарамсыз болған.
Сондықтан сындық жағдайлар әлi де зерттелмеген күйiнде қалып отырды. Бұл мақа-
лада коэффициенттер матрицасының жәй элементар бөлгiштi бiрнеше таза жорымал
меншiктi мәндерi болғанда, ал жүйенiң бос мүшесiнiң комплекс жазықтықтағы нақты
ось жолағында өзгеретiн тәуелсiз айнымалылары бойынша нақты аналитикалық қаси-
етi болғанда және меншiктi тербелiс пен мәжбүр етушi күштiң жиiлiктерi Диофанттың
қатты өлшемдес еместiк шартын қанағаттандырғанда, яғни рационал өлшемдес емес
жиiлiктi периодтылығы болғанда есеп шешiмiнiң бар болуы дәлелденедi. Берiлген жүй-
еге сәйкес бiртектi жүйенiң нөлден өзгеше көппериоды шешiмi болмайтындығы шар-
ты анықталды. Соның негiзiнде iзделiндi жалғыз нақты аналитикалық көппериодты
шешiмнiң интегралдық құрылымы мен бар болуы туралы мәселе шешiлетiн терминде
Грин типтi матрицалық функция тұрғызылды. Есептi зерттеу кезiнде жүйе сызықты
алмастыру арқылы екi түрлi iшкi жүйеге ыдырайды: а) сындық сипаттағы екiншi реттi
бiрнеше бiртектес жүйелерге және б) сындық емес жағдайдағы жүйе. Қойылған есеп
жоғарыда сипатталған әдiс арқылы бұл iшкi жүйелер үшiн жеке-жеке шешiледi, одан
кейiн құрастырылған әдiс жалпы түрде негiзгi жүйеге қолданылады. Сонымен мақалада
тұрақты коэффициенттi және бiрдей D дифференциалдау операторлы сызықты теңде-
улер жүйесiнiң жалғыз көппериодты шешiмiнiң бар болуы есебiн зерттеудiң және оны
тұрғызудың жаңа әдiсi ұсынылды, Әрi ол сындық емес жағдайда да, сындық жағдайда
да қолданылады.

Кiлттiк сөздер. Көппериодты шешiм, Грин функциясы, дифференциалдау операто-
ры, нақты аналитикалық функция, интегралдық бейнелеу, сындық және сындық емес
жағдайлар.

Kazakh Mathematical Journal, 19:4 (2019) 55–70



70 Zh.A. Sartabanov, B.Zh. Omarova

Сартабанов Ж.А., Омарова Б.Ж. ИНТЕГРАЛЬНОЕ ПРЕДСТАВЛЕНИЕ МНОГО-
ПЕРИОДИЧЕСКОГО РЕШЕНИЯ ЛИНЕЙНОЙ СИСТЕМЫ В ОДНОМ КРИТИЧЕ-
СКОМ СЛУЧАЕ

Рассматривается задача существования и интегрального представления единственно-
го многопериодического решения неоднородной линейной системы с постоянными коэф-
фициентами и оператором дифференцирования D по направлению главной диагонали
пространства временных переменных. Эта задача решена в некритическом случае, когда
все собственные значения матрицы коэффициентов системы имеют отличные от нуля
действительные части, причем метод исследования этого случая не был пригоден для
изучения критического случая. Таким образом, проблема изучения критических случа-
ев оставалась открытой. В данной работе доказывается существование решения задачи,
когда матрица коэффициентов имеет несколько чисто мнимых собственных значений
с простыми элементарными делителями, а свободный член системы обладает свойства-
ми вещественной аналитичности по независимым переменным, изменяющимися в полосе
действительной оси комплексной плоскости и периодичности с рационально несоизмери-
мыми частотами, причем частоты собственных колебаний и вынуждающей силы вместе
удовлетворяют диофантовому условию сильной несоизмеримости. Установлено условие
отсутствия ненулевого многопериодического решения однородной системы, соответству-
ющей заданной системе. На этой основе построена матричная функция типа Грина, в
терминах которой решается вопрос об интегральной структуре и существовании искомо-
го единственного вещественно аналитического многопериодического решения. При ис-
следовании задачи система линейной заменой расщепляется на подсистемы двух видов:
а) несколько однотипных систем второго порядка критического характера и б) систему
некритического случая. Поставленная задача решается для этих указанных подсистем
в отдельности по описанной выше методике, а затем разработанный метод излагает-
ся в общей форме для исходной системы. В целом, в работе предложен новый метод
исследования задачи существования и построения единственного многопериодического
решения линейной системы уравнений с постоянными коэффициентами и одинаковым
оператором дифференцирования D. Данный метод применим как в некритических, так
и в критических случаях.

Ключевые слова. Многопериодическое решение, функция Грина, оператор диффе-
ренцирования, вещественно аналитическая функция, интегральное представление, кри-
тический и некритический случаи.
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Abstract. In this work, an elliptic potential, that can be represented as an integral operator, is con-

structed by using the fundamental solution of a linear elliptic equation of the second order. Then, the

boundary conditions of this integral operator are found. The inverse problem of finding the density of

an elliptic potential is solved.

Keywords. Helmholtz potential, fundamental solution of the Helmholtz equation, potential density,

potential boundary condition, inverse problem of finding the density.

1 Introduction

It is known that the continuous distribution of mass and charge in a bounded domain
Ω ⊂ R3 creates the linear (Newtonian) potential [1] according to the formula

u (x) =

∫
Ω

ε (x− ξ)ρ (ξ) dξ, (1)

where ε (x− ξ) is a fundamental solution of the Laplace equation

−∆xε (x) = δ (x) , ε (x) ||x|→∞ = 0. (2)

The task of unambiguously finding the density ρ (x) from the given potential u (x) is
incorrect since, together with the necessary smoothness of u (x), an unknown boundary value
still requires volume potential conditions, i.e. boundary conditions of integral (1).

In the work [2] (T.Sh. Kal’menov, D. Suragan) the boundary conditions of the volume
(Newtonian) potential were found for the first time, and in the work [3] (I.V. Bezmenov), [4]
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(T.Sh. Kal’menov, D. Suragan), the boundary conditions of the Helmholtz potential are
studied, while in the work [3] (I.V. Bezmenov) the boundary conditions are given in approx-
imate form, the boundary conditions of the Helmholtz operator are written in explicit form.
These boundary conditions have the property that stationary waves arriving at the boundary
∂Ω from Ω pass through ∂Ω without reflection, i.e. boundary conditions are transparent.

In this paper, the methods [1] are used to obtain the boundary conditions for the volume
potential u (x) defined by the integral

u (x) =

∫
Ω

ε (x, ξ)ρ (ξ) dξ, (3)

where ε (x, ξ) are fundamental solutions of the elliptic equation

L(x,D)ε(x, ξ) = −
n∑

i,j=1

∂

∂xi
aij(x)

∂

∂xj
ε (x, ξ) = δ(x, ξ), (4)

ε(x, ξ)||x|→∞ → 0.

Using the found boundary conditions of the potential u (x) unequivocally determines density
ρ (x) of this potential.

In the domain Ω ⊂ Rn with a smooth border ∂Ω ∈ C2 consider the elliptical potential

u(x) =

∫
Ω

ε(x, ξ)ρ(ξ)dξ, (5)

where ε(x, ξ) are fundamental solutions of the linear elliptic equation of the second order, i.e.

L(x,D)u(x) = −
n∑

i,j=1

∂

∂xi
aij(x)

∂

∂xj
u(x) + a(x)u = ρ(x), (6)

where
n∑

i,j=1
aij(x)ξiξj ≥ δ|ξ|2, δ > 0, |ξ|2 =

n∑
i,j=1

ξ2
i , aij(x) ∈ C1+α(Ω̄), a(x) ∈ Cα(Ω̄), a(x) ≥

0, εn(x, ξ) = εn(ξ, x).
Now we give a brief scheme for constructing a fundamental solution to equation (5)

according to the scheme proposed by A.V. Bitsadze [5].
Denote by Aij the ratio of the algebraic complement of the elements aij of the matrix

‖aij‖ of highest coefficients of the equation to the determinant a = det ‖aij‖ .
We introduce the function:

σ(x, ξ) =
n∑
i,j,ξ

aij(x)(xi − ξi)(xj − ξj),
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where x, ξ are arbitrary points of the domain Ω.
Assume that the coefficients aij(x) ∈ C3(Ω̄), a(x) ∈ C1(Ω̄). Due to the uniform ellipticity

of equation (1), there exist positive constants k0 and k1 such that,

k0|x− ξ|2 ≤ σ(x, ξ) ≤ k1‖x− ξ‖2.

For x 6= ξ we define the function

ψ (x, ξ) =

 ψ(x, ξ) = σ(x,ξ)
σ0(ξ)

2−n
2 , n > 2,

− 1
2πσ0(ξ) log σ, n = 2,

(7)

σ0 = ωn(n− 2)(
√
|a(ξ)|)−1, ωn is the area of n-dimensional unit sphere.

The function

W (x) =

∫
Ω0

ψ(x, ξ)µ(ξ)dξ,

where Ω0 ⊂ Ω are the subdomains of the domain Ω, we call a generalized potential with the
density µ(x).

Using the jump of the function ψ(x, ξ) it is easy to show that

LW (x) = µ(x) +

∫
Ω0

Lψ(x, ξ)µ(ξ)dξ, (8)

where the second term on the right is a standard improper integral.
We solve the equation in the domain Ω0

Lu = −
n∑
i,j

∂

∂xj
aij(x)

∂

∂xi
+ a(x)u = f,

looking for u(x) in the form of

u(x) = ω(x) +

∫
Ω0

ψ(x, ξ)µ(ξ)dξ, (9)

where ω(x) is an arbitrary smooth function, and µ(x) is an unknown function to be deter-
mined.

By applying the operator L to ratio (5) taking into account equality (4) we have

µ(x) +

∫
Ω0

k(x, ξ)µ(ξ)dξ = F (x), (10)
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where k(x, ξ) = Lψ(x, ξ), F (x) = Lω(x) + f(x).

The integral equation (10) is an integral equation of the second kind, therefore, for small
Ω0 has a unique solution. Consequently, we have

ε(x, y) = ψ(x, y) +

∫
Ω

ψ(x, ξ)µξdξ, (11)

where ψ(x, ξ) is a function defined by equality (3), and µ(x) is a solution of equation (10),
where ω(x) ≡W (x), f(x) = 0.

Let us check that ε(x, y) is a fundamental solution of equation (7). Suppose that

u(x) =

∫
Ω0

ε(x, y)f(y)dy.

Then using the jump property of the function ψ(x, y) we have

Lu = L

∫
Ω0

ε(x, y)f(y)dy = L

∫
Ω0

[ψ(x, y) +

∫
Ω0

ψ(x, ξ)µ(ξ)dξ]

= f(x) +

∫
Ω0

[Lψ(x, y)− µ(x) +

∫
Ω0

Lψ(x, ξ)µ(ξ, y)dξ]f(y)dy.

(12)

From here, we choose µ(x, y) as a solution of the equation

Lψ(x, y) + µ(x, y) +

∫
Ω0

Lψ(x, ξ)µ(ξ, y)dξ = 0,

so

Lu = L

∫
Ω0

ε(x, y)f(y)dy = f(x). (13)

Thus, the fundamental solution can be represented by formula (11). In this case, the basic
properties of the fundamental solution coincide with the properties of the function ψ(x, y),
set by formula (7).

2 Problem N

Find the density ρ(x) of the volume elliptic potential (5).

It should be noted that the elliptic potential (5) is an integral equation of the first kind,
so in general the inverse problem N is an ill-posed problem.
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Theorem 1. Let ρ(x) ∈ L2(Ω), then the elliptic potential defined by formula (5) satisfies the
following boundary condition

−u(x)

2
+

∫
∂Ω

ε(x, ξ)
n∑

i,j=1

niaij(ξ)
∂

∂ξj
u(ξ)dξ −

∫
∂Ω

u(ξ)
n∑

i,j=1

niaij(ξ)
∂

∂ξj
ε(x, ξ)dξ = 0, (14)

x ∈ ∂Ω.

Conversely, if the function u(x) ∈W 2
2 (Ω) satisfies equation (6) and the potential boundary

condition (14), then u(x) coincides with the elliptic potential (5).

Proof. Substituting the differential equation

L(ξ,D)u(ξ) = −
n∑

i,j=1

∂

∂xi
aij(ξ)

∂

∂xj
u(ξ) + a(ξ)u,

instead of the function ρ(ξ) in equality (5), we get

u(x) =

∫
Ω

ε(x, ξ)L(ξ,D)u(ξ)dξ =

∫
Ω

ε(x, ξ)

(
−

n∑
i,j=1

∂

∂xi
aij(ξ)

∂

∂xj
+ a

)
u(ξ)

= −
∫
∂Ω

ε(x, ξ)

n∑
i,j=1

niaij(ξ)
∂

∂ξj
u(ξ)dξ +

∫
∂Ω

u(ξ)

n∑
i,j=1

njaij(ξ)
∂

∂ξj
ε(x, ξ)dξ

+ lim
r→0

∫
Ur(x)

u(ξ)L(ξ,D)ε(x, ξ)dξ +

∫
Ω/Ur(x)

u(ξ)L(ξ,D)ε(x, ξ)dξ, x ∈ Ω,

(15)

where Ur(x) = {x ∈ Ω, ‖ x − ξ ‖< r}, and nj – the direction cosines of the boundary ∂Ω.
Since when x 6= ξ it is easy to check that L(ξ,D)ε(x− ξ) ≡ 0 and

lim
x→ξ

∫
Ur

u(ξ)L(ξ,D)ε(x, ξ)dξ = u(x).

With this in mind, from (11) we get

u(x) =

∫
∂Ω

(
∂ε(x, ξ)

∂nξ
u(ξ)− ε(x, ξ)∂u(ξ)

∂nξ

)
dξ + u(x) = 0, x ∈ Ω. (16)
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Using the properties of the fundamental solution ε(x, ξ), we have

lim
x→∂Ω

∫
∂Ω

u(ξ)
∂ε(x, ξ)

∂nξ
dξ = −u(x)

2
+

∫
∂Ω

u(ξ)
∂ε(x, ξ)

∂nξ
, (17)

lim
x→∂Ω

∫
∂Ω

ε(x, ξ)
∂u(ξ)

∂nξ
dξ =

∫
∂Ω

ε(x, ξ)
∂u(ξ)

∂nξ
dξ. (18)

It follows from (15)–(18) that

N [u] = −u(x)

2
+

∫
∂Ω

(
∂ε(x, ξ)

∂nξ
u(ξ)− ε(x, ξ)∂u(ξ)

∂nξ

)
dξ = 0, x ∈ ∂Ω. (19)

This proves that the elliptic potential (5) satisfies the boundary condition (14).
Conversely, if u(x) is a solution to the second-order elliptic equation (6) and satisfies the

potential boundary condition (14), then u(x) coincides with the elliptic potential (5).
Let ϑ(x) ∈W 2

2 (Ω) be an arbitrary regular solution of problem (6) and (14), and let u(x)
be an elliptic potential given by formula (5). Let to us denote ω(x) = ϑ(x) − u(x). It is
obvious that the function ω(x) satisfies a homogeneous elliptic equation of the second order

L(x,D)ω(x) = −
n∑

i,j=1

∂

∂xi
aij(x)

∂

∂xj
ω(x) + aω(x) = 0. (20)

By direct calculation, as above, we will make sure that

0 =

∫
Ω

ω(ξ)L(ξ,D)ε(x, ξ)dξ = ω(x)− ω(x)

2

+

∫
∂Ω

(
∂ε(x, ξ)

∂nξ
ω(ξ)− ε(x, ξ)∂ω(ξ)

∂nξ

)
dξ = ω(x)|x∈∂Ω +N [ω]|x∈∂Ω = 0. (21)

Since ω(x) = ϑ(x)−u(x) and N [ϑ]|x∈∂Ω = N [u]|x∈∂Ω = 0, then N [ω]|x∈∂Ω = 0. With this
in mind, it follows from (21) that

ω(x)|x∈∂Ω = 0.

As a(x) ≥ 0, due to the uniqueness of the solution to the Dirichlet problem ω(x) = ϑ(x) −
u(x) ≡ 0, that is, ϑ(x) coincides with the to elliptic potential. Theorem 1 is proved.

It follows from Theorem 1 that for any ρ(x) ∈ L2(Ω), the elliptic potential defined by the
formula (5) satisfies the potential boundary condition (14).

Hence it follows
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Theorem 2. The necessary and sufficient condition for the unambiguous solvability of the
elliptic potential with respect to the density ρ(x) ∈ L2(Ω) is the condition u(x) ∈W 2

2 (Ω) and
the fulfillment of the relation

N [u] = −u(x)

2
+

∫
∂Ω

(
∂ε(x, ξ)

∂nξ
u(ξ)− ε(x, ξ)∂u(ξ)

∂nξ

)
dξ = 0, x ∈ ∂Ω. (22)

If the condition of Theorem 2, i.e. condition (22), is met, the function ρ(x) is defined by the
formula

ρ(x) = L(x,D)u(x) = −
n∑

i,j=1

∂

∂xi
aij(x)

∂

∂xj
u(x) + a(x)u. (23)

It should be noted that inverse and ill-posed problems are studied in [6]–[9].
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Кәлменов Т.Ш., Лес А.К. КӨЛЕМДIК ПОТЕНЦИАЛДЫҢ ШЕКАРАЛЫҚ ШАР-
ТЫ ЖӘНЕ ОНЫҢ КЕРI ЕСЕПКЕ ҚОЛДАНЫСЫ

Бұл жұмыста екiншi реттi сызықтық эллипстiк теңдеудiң iргелi шешiмiнiң көмегi-
мен интегралдық оператор түрiнде кейiптелетiн эллипстiк потенциал тұрғызылды. Одан
кейiн осы интегралдық оператордың шекаралық шарттары табылды. Эллипстiк потен-
циалдың тығыздығын табудың керi есебi шешiлдi.

Кiлттiк сөздер. Гельмгольц потенциалы, Гельмгольц теңдеуiнiң iргелi шешiмi, потен-
циал тығыздығы, потенциалдың шекаралық шарт, тығыздықты анықтаудың керi есебi.

Кальменов Т.Ш., Лес А.К. ГРАНИЧНОЕ УСЛОВИЕ ОБЪЕМНОГО ПОТЕНЦИА-
ЛА И ЕГО ПРИЛОЖЕНИЕ К ОБРАТНОЙ ЗАДАЧЕ

В работе с помощью фундаментального решения линейного эллиптического урав-
нения второго порядка построен эллиптический потенциал представимое в виде инте-
грального оператора. Затем найдены граничные условия этого интегрального оператора.
Решена обратная задача нахождения плотности эллиптического потенциала.

Ключевые слова. Потенциал Гельмгольца, фундаментальные решение уравнения
Гельмгольца, плотность потенциала, потенциальное граничное условие, обратная задача
нахождения плотности.
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Abstract. In this article, we calculate the composition factors and the submodule structures of some

Weyl modules with singular highest weights for simply connected and semisimple algebraic groups of

type Cl over an algebraically closed field of characteristic p ≥ h, where h is the Coxeter number. In

particular, we obtain several new examples of simple Weyl modules.

Keywords. Algebraic group, Weyl module, simple Weyl module, singular weight.

1 Introduction

In the singular case, the structures of Weyl modules are very different from the struc-
tures of the corresponding Weyl modules with p-regular highest weights. Weyl modules with
singular highest weights are studied in [1]–[6]. In [1], all simple Weyl modules for algebraic
groups of type Al are described. Except Weyl modules with highest weights in the initial
alcove, they all have singular highest weights. Weyl modules with singular restricted highest
weights of rank two algebraic groups were described in [2]. It was proved in [3] that Weyl
modules with singular highest weights from alcoves, the main ones adjacent to the initial
alcove, are simple. Simple Weyl modules with singular highest weights related to the stan-
dard module for semisimple algebraic groups were studied in [4]. The structure of the Weyl
modules V ((p − 3)(ω3 + ω4)), V (2(ω3 + ω4)) (p = 7) with singular highest weights for the
algebraic group of type D4 was calculated in [5, Theorem 2, (d)]. The simplicity of the fol-
lowing Weyl modules with singular highest weights for the algebraic group of type B4 was
proved in [5, Theorem 1, (d)]: V ((p− 4)ω4), V ((p− 5)ω4), V ((p− 6)ω4), V ((p− 7)ω4). In [6],
for the algebraic groups of type Dl, the author calculated the structures of all Weyl modules
with singular highest weights defined by the dominant elements of the following subsets of

2010 Mathematics Subject Classification: 20G05, 20G10, 20G40.
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affine Weyl groups:

Y := {y−1 = 1, y0 = s0, yi = s0s2 · · · si+1 | i = 1, 2, · · · , l − 1} ∪ {y′l−2 = yl−3sl};

Z := {z0 = y0, zi = yis1 | i = 1, 2, · · · , l − 1} ∪ {z′l−2 = zl−3sl}.

In this paper, we give the structure of Weyl modules with singular highest weights for simply
connected and semisimple algebraic groups of type Cl (l > 2) with highest weights defined
by the elements of the following dominant subsets of the affine Weyl group Wp :

Y1 = {y−1 := 1, y0 := s0, yi := s0s2 · · · si+1 | i = 1, 2, · · · , l − 1};

Y2 = {yl+j−1 := s0s2s3 · · · slsl−1 · · · sl−j | j = 1, 2, · · · , l − 2};

Z1 = {z0 := y0, zi := yis1 | i = 1, 2, · · · , l − 1};

Z2 = {zl+j−1 := yl+j−1s1 | j = 1, 2, · · · , l − 3}.

In the p-regular case, the composition factors and the submodule structures of Weyl
modules for the algebraic groups of type Cl were computed in the following cases:

• the group of type C2 = B2, p > 0, for all restricted weights [7], [2];

• the groups of type Cl, p ≥ h, for all highest weights in

{λ0, λ1, · · · , λl | sβi,1 · (λi) = λi−1, i = 1, 2, · · · , l},

where λ0 ∈ C1,

βi = α1 + α2 + · · ·+ αi + 2αi+1 + · · ·+ 2αl−1 + αl, i = 1, 2, · · · , l − 2,

βl−1 = α1 + · · ·+ αl and βl = 2α1 + · · ·+ 2αl−1 + αl [8];

• the groups of type Cl, p > 0, for all fundamental weights [9];

• the groups of type Cl (l ≤ 4), p = 2, for all restricted weights [10];

• the group of type C3, p = 2, for all restricted weights [11];

• the group of type C3, p = 3, for all restricted weights [12].

In the main, we use the standard notation and notation introduced in [6]. That is, let
R be the irreducible root system of type Cl and let G be a simply connected and semisimple
algebraic group with root system R over an algebraically closed field K of characteristic p ≥ h,
where h is the Coxeter number of R. We assume that R ⊂ Rl, where R is the field of real
numbers. On Rl there is the usual euclidian inner product (·, ·). This leads to the natural

pairing 〈·, ·〉 : Rl × Rl → R given by 〈λ, µ〉 = (λ, µ∨), where µ∨ =
2

(µ, µ)
µ. Let R+ be the set

of positive roots and let ∆ = {α1, α2, · · · , αl} be the set of simple roots.
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Let T ⊆ G be a maximal torus, and let B be the Borel subgroup corresponding to
the negative roots. We denote by U the unipotent radical of B. The set X(T ) of additive
characters for T can be seen as a subset of Rl with basis ω1, ω2, · · · , ωl satisfying 〈ωi, αj〉 =
δij . The set X(T ) also has the following property:

X(T ) = {λ ∈ Rl | 〈λ, α〉 ∈ Z for all α ∈ R}.

Any rational G-module can be considered as the direct sum of T -modules:

V =
⊕

λ∈X(T )

Vλ,

where Vλ = {v ∈ V | tv = λ(t)v, for all t ∈ T}. If Vλ 6= 0 we say that λ is a weight of V. In
this case Vλ is called a weight subspace of V.

Let
X(T )+ = {λ ∈ X(T ) | 〈λ, α〉 ≥ 0 for all α ∈ R+}

be the set of dominant weights.

We define by

[V ] =
∑

λ∈X(T )

dimk Vλe
λ ∈ Z(X(T )) =

⊕
λ∈X(T )

Zeλ

a formal character of V.

Let λ ∈ X(T )+, and let H0(λ) be the vector space over K of all regular functions
f : G→ K satisfying:

f(bg) = λ(b−1)f(g), for all b ∈ B, g ∈ G.

We define on H0(λ) a G-module structure given by

gf(h) = f(hg), f ∈ H0(λ), g, h ∈ G.

And also it is well known that H0(λ) = IndGB Kλ, where Kλ is a one-dimensional B-module
defined by λ ∈ X(T )+ via the isomorphism B/U ∼= T. Let L(λ) be a maximal semisimple
submodule (socle) of H0(λ). Each L(λ) is a simple G-module and every simple G-module
is isomorphic to L(λ) for some λ ∈ X(T )+. Weyl module V (λ) with the highest weight
λ ∈ X(T )+ is isomorphic to H0(−w0(λ))∗, where w0 is the maximal element of Weyl group
W for R. There is the following Weyl character formula:

χ(λ) := [V (λ)] = [H0(λ)] =

∑
w∈W

(−1)l(w)ew(λ+ρ)∑
w∈W

(−1)l(w)ew(ρ)
.
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Let V be a G-module. We define a composition coefficient [V : L(λ)] for λ ∈ X(T )+ such
that

[V ] =
∑

λ∈X(T )+

[V : L(λ)][L(λ)].

If [V : L(λ)] 6= 0, then we say that L(λ) is a composition factor of V.

For α ∈ R+ and n ∈ Z let us define the affine reflections sα,n on X(T ) by

sα,n · λ = λ− 〈λ+ ρ, α〉+ npα for all λ ∈ X(T ).

Denote by Wp the affine Weyl group generated by all sα,n with α ∈ R+ and n ∈ Z. Finite
Weyl group W of R appears as the subgroup of Wp generated by the reflections sα,0 with
α ∈ R+.

Let α0 = ω2 be the unique maximal short root of R. We will use the following notation:
sαi,0 := si for all i ∈ {1, 2, · · · , l} and s0 := sα0,1. The set of simple reflections in W is
S = {si | i = 1, 2, · · · , l} and the set of simple affine reflections in Wp is Sp = S ∪{s0}. Then

(Wp, Sp) is the Coxeter group of type C̃l with the following defending relations

(sisj)
mij = 1, s20 = 1, (s0si)

2 = 1 (i 6= 2), (s0s2)
3 = 1, (1)

where i, j ∈ {1, · · · , l} and

mij =



1, i = j;

2, if |i− j| > 1;

3, if |i− j| = 1 and (i, j) /∈ {(l − 1, l), (l, l − 1)};

4, if (i, j) ∈ {(l − 1, l), (l, l − 1)}.

We will also use the affine hyperplanes and the affine alcoves. For α ∈ R+ and n ∈ Z we
define the affine hyperplane

Hα,n = {v ∈ Rl | 〈v + ρ, α〉 = np}.

The set of affine alcoves A is defined as the set of connected components of

Rl \ (
⋃

α∈R+, n∈Z
Hα,n).

The initial alcove C1 ∈ A is defined by

C1 = {v ∈ Rl | 0 < 〈v + ρ, α〉 < p for all α ∈ R+}.
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We denote by C1 a closure of C1.

Let W+
p ⊂Wp be the set of dominant elements defined by

W+
p = {w ∈Wp |w · ν ∈ X(T )+ for any ν ∈ C1}.

The stabilizer stab(λ) of λ ∈ X(T ) is the set

stab(λ) = {w ∈Wp |w · λ = λ}.

If stab(λ) ∩ Sp = ∅ we say λ is a regular weight, otherwise it is called a singular weight. Let
λ = w · ν, where w ∈ Wp and ν ∈ C1. It is known that λ is a regular weight if and only if
ν ∈ C1.

Let H0 := Hα0,1 and Hi := Hαi,0 for all i ∈ {1, 2, · · · , l}. Denote by νi1, i2, ··· , im any
element of C1 \ C1 satisfying the following conditions:

1) νi1, i2, ··· , im ∈ Hi1 ∩Hi2 ∩ · · · ∩Him

2) i1, i2, · · · , im ∈ {0, 1, · · · , l};
3) i1 < i2 < · · · < im;

4) m ∈ {1, 2, · · · , l + 1}.

Let ν ∈ C1 \ C1. Denote by wν the (left) coset of the stabilizer stab(ν) containing the
element w ∈ W+

p . Then W+
p = ∪w∈W+

p
wν . An action of wν on ν is defined by wν · ν = u · ν

for any u ∈ wν . If wν · ν ∈ X(T )+ we say wν is dominant for ν. Then, up to isomorphism,
wν defines a simple G-module (respectively, a Weyl module) with highest weight wν · ν. We
will use notation w for the coset wν when ν is fixed.

Let W ′ ⊂W+
p and ν ∈ C1 \ C1. By definition, put

X+
ν (W ′) := {wν |wν · ν ∈ X(T )+ and w ∈W ′}.

We say that X+
ν (W ′) is the set of dominant elements of W ′ for ν. In particular,

X+
ν := {wν |wν · ν ∈ X(T )+ and w ∈W+

p }

is the set of dominant elements of W+
p for ν.

The main result of this paper is formulated as a theorem.

Theorem 1. Let G be the simply connected and semisimple algebraic group of type Cl (l > 2)
over an algebraically closed field K of characteristic p ≥ h, where h is the Coxeter number.
Suppose that ν ∈ C1 \ C1 and X+

ν (Y1 ∪ Y2 ∪ Z1 ∪ Z2) 6= ∅. If wν ∈ X+
ν (Y1 ∪ Y2 ∪ Z1 ∪ Z2),

then χ(wν · ν) = [L(wν · ν)] except in the following cases:
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(a) χ(z2l−3 · ν0) = [L(z2l−3 · ν0)] + [L(y2l−3 · ν0)];

(b) χ(yi · ν1) = [L(yi · ν1)] + [L(yi−1 · ν1)], where i ∈ {2, 3, · · · , 2l − 3};

(c) χ(z2 · ν2) = [L(z2 · ν2)] + [L(y0 · ν2)];

(d) χ(zi · ν2) = [L(zi · ν2)] + [L(zi−1 · ν2)], where i ∈ {3, 4, · · · , 2l − 5};

(e) χ(z2l−4 · ν2) = [L(z2l−4 · ν2)] + [L(z2l−3 · ν2)] + [L(y2l−4 · ν2)];

(f) χ(zi−2 · νi) = [L(zi−2 · νi)] + [L(yi−2 · νi)], where i ∈ {3, 4, · · · , l};

(g) χ(z2l−i−2 · νi) = [L(z2l−i−2 · νi)] + [L(y2l−i−2 · νi)], where i ∈ {3, 4, · · · , l − 1}.

2 Preliminary results

Let V (λ) be Weyl modules with highest weight λ ∈ X(T )+. Then there is a filtration of
submodules

V (λ) = V (λ)0 ⊃ V (λ)1 ⊃ V (λ)2 ⊃ · · · (2)

such that V (λ)/V (λ)1 ∼= L(λ) and∑
j>0

[V (λ)j ] =
∑
α∈R+

∑
0<np<〈λ+ρ,α〉

νp(np)χ(sα,n · λ), (3)

where νp(m) = max{i ∈ N | pi|m} [13, II.8.19]. The filtration (2) is called the Jantzen
filtration and the formula (3) is called Jantzen’s sum formula.

If {εi | i = 1, 2, · · · , l} is the orthonormal basis of Rl, then the set of positive roots R+

can be seen as the set

{αi + αi+1 + · · ·+ αj = εi − εj+1 | 1 ≤ i ≤ j ≤ l − 1}

∪{αi + · · ·+ αl = εi + εl | i = 1, 2, · · · , l − 1}

∪{αi + · · ·+ αj + 2αj+1 + · · ·+ 2αl−1 + αl = εi + εj+1 | 1 ≤ i ≤ j ≤ l − 2}

∪{2αi + · · ·+ 2αl−1 + αl = 2εi, αl = 2εl | 1 ≤ i ≤ l − 1}.

(4)

If ρ ∈ X(T )+ is the half-sum of the positive roots, then it is easy to prove that

ρ = ω1 + ω2 + · · ·+ ωl. (5)
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Between the basis {ωi | i = 1, 2, · · · , l} of X(T ) and the orthonormal basis {εi | i = 1, 2, · · · , l}
there is the following relation: 

ω1 = ε1,
ω2 = ε1 + ε2,
...
ωl−1 = ε1 + ε2 + · · ·+ εl−1,
ωl = ε1 + ε2 + · · ·+ εl.

(6)

Let Z be the set of integers, and m1,m2, · · · ,ml ∈ Z. If λ =
l∑
i=1

miωi ∈ X(T ), then using (4)–(6),

we get

〈λ+ ρ, α〉 =



mi + 1, if α = αi, i = 1, 2, · · · , l;

mi + · · ·+mj + (j − i+ 1),
if α = αi + · · ·+ αj , 1 ≤ i < j = 1, 2, · · · , l − 1;

mi + · · ·+ml−1 + 2ml + l − i+ 2,
if α = αi + · · ·+ αl, i = 1, 2, · · · , l − 1;

mi + · · ·+mj + 2mj+1 + · · ·+ 2ml + 2l − i− j + 1,
if α = αi + · · ·+ αj + 2αj+1 + · · ·+ 2αl−1 + αl, 1 ≤ i ≤ j ≤ l − 2;

mi +mi+1 + · · ·+ml + l − i+ 1,
if α = 2αi + 2αi+1 + · · ·+ 2αl−1 + αl, 1 ≤ i ≤ l − 1.

(7)

Let ν = a1ω1 + a2ω2 + · · ·+ alωl ∈ X(T ), where aj ∈ Z for all j ∈ {1, 2, · · · , l}. We give here two
easy lemmas (Lemmas 1 and 2) on relation between ν ∈ X(T ) and w · ν for all w ∈ Y1 ∪ Y2 ∪Z1 ∪Z2,
for later use.

Lemma 1. Let yi ∈ Y1 ∪ Y2 and ν =
l∑
i=1

aiωi, where a1, a2, · · · , al ∈ Z. Then

(a) y0 · ν = a1ω1 + (p− a1 − a2 − 2
l∑
i=3

ai − 2l + 1)ω2 +
l∑
i=3

aiωi;

(b) for all i ∈ {1, · · · , l − 2},

yi · ν = (

i+1∑
j=1

aj + i)ω1 + (p− a1 − 2

l∑
j=2

aj − 2l)ω2

+

i+1∑
j=3

aj−1ωj + (ai+1 + ai+2 + 1)ωi+2 +

l∑
j=i+3

ajωj ;
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(c) yl−1 · ν = (
l−1∑
j=1

aj + 2al + l)ω1 + (p− a1 − 2
l∑

j=2

aj − 2l)ω2

+

l−1∑
j=3

aj−1ωj + (al−1 + al + 1)ωl;

(d) yl · ν = (
l−2∑
j=1

aj + 2al−1 + 2al + l + 1)ω1 + (p− a1 − 2
l∑

j=2

aj − 2l)ω2

+

l−2∑
j=3

aj−1ωj + (al−2 + al−1 + 1)ωl−1 + alωl;

(e) for all i ∈ {2, 3, · · · , l − 3},

yl+i−1 · ν = (

l−i−1∑
j=1

aj + 2

l∑
j=l−i

aj + l + i)ω1 + (p− a1 − 2

l∑
j=2

aj − 2l)ω2

+

l−i−1∑
j=3

aj−1ωj + (al−i−1 + al−i + 1)ωl−i +

l∑
j=l−i+1

ajωj .

(f) y2l−3 · ν = (a1 + 2
l∑

j=2

aj + 2l − 2)ω1 + (p− a1 − a2 − 2
l∑

j=3

aj − 2l + 1)ω2 +
l∑

j=3

ajωj .

Proof. (a) By (7), we have

y0 · ν = ν − (〈ν + ρ, α0〉 − p)α0 = ν + (p− a1 − 2

l∑
i=2

ai − 2l + 1)ω2

= a1ω1 + (p− a1 − a2 − 2

l∑
i=3

ai − 2l + 1)ω2 +

l∑
i=3

aiωi.

(b) We use induction on i. According to (7),

s2 · ν = (a1 + a2 + 1)ω1 + (−a2 − 2)ω2 + (a2 + a3 + 1)ω3 +

l∑
i=4

aiωi. (8)

Then

y1 · ν = s2 · ν − (〈s2 · ν + ρ, α0〉 − p)α0 = s2 · ν + (p− a1 − a2 − 2

l∑
i=3

ai − 2l + 2)ω2

= (a1 + a2 + 1)ω1 + (p− a1 − 2

l∑
i=2

ai − 2l)ω2 + (a2 + a3 + 1)ω3 +

l∑
i=43

aiωi.
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Therefore, the statement is true for i = 1.

Suppose that the statement is true for all i < t, where t ≤ l − 2. According to (7),

st+1 · ν =

t−1∑
j=1

ajωj + (at + at+1 + 1)ωt + (−at+1 − 2)ωt+1 + (at+1 + at+2 + 1)ωt+2 +

l∑
j=t+3

ajωj .

By the induction hypothesis,

yt−1 · ν = (

t∑
j=1

aj + t− 1)ω1 + (p− a1 − 2

l∑
j=2

aj − 2l)ω2

+

t∑
j=3

aj−1ωj + (at + at+1 + 1)ωt+1 +

l∑
j=t+2

ajωj .

Then

yt · ν = yt−1 · (st+1 · ν) = (

t−1∑
j=1

aj + (at + at+1 + 1) + t− 1)ω1 + (p− a1 − 2

l∑
j=2

aj − 2l)ω2

+

t∑
j=3

aj−1ωj + (at + at+1 + 1− at+1 − 2 + 1)ωt+1 + (at+1 + at+2 + 1)ωt+2 +

l∑
j=t+3

ajωj

= (

t+1∑
j=1

aj + t)ω1 + (p− a1 − 2

l∑
j=2

aj − 2l)ω2

+

t+1∑
j=3

aj−1ωj + (at+1 + at+2 + 1)ωt+2 +

l∑
j=t+3

ajωj .

Thus, the statement (b) holds for all i ∈ {1, 2, · · · , l − 2}.
Other statements can be proved similarly as the previous statement. �

Lemma 2. Let zi ∈ Z1 ∪ Z2 and ν =
l∑
i=1

aiωi, where a1, a2, · · · , al ∈ Z. Then

(a) z1 · ν = a2ω1 + (p− a1 − 2
l∑
i=2

ai − 2l)ω2 + (a1 + a2 + a3 + 2)ω3 +
l∑
i=4

aiωi;

(b) for all i ∈ {2, 3, · · · , l − 2},

zi · ν = (

i+1∑
j=2

aj + i− 1)ω1 + (p− a1 − 2

l∑
j=2

aj − 2l)ω2 + (a1 + a2 + 1)ω3

+

i+1∑
j=4

aj−1ωj + (ai+1 + ai+2 + 1)ωi+2 +

l∑
j=i+3

ajωj ;
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(c) zl−1 · ν = (
l−1∑
j=2

aj + 2al + l − 1)ω1 + (p− a1 − 2
l∑

j=2

aj − 2l)ω2

+(a1 + a2 + 1)ω3 +

l−1∑
j=4

aj−1ωj + (al−1 + al + 1)ωl;

(d) zl · ν = (
l−2∑
j=2

aj + 2al−1 + 2al + l)ω1 + (p− a1 − 2
l∑

j=2

aj − 2l)ω2

+(a1 + a2 + 1)ω3 +

l−2∑
j=4

aj−1ωj + (al−2 + al−1 + 1)ωl−1 + alωl;

(e) for all i ∈ {2, 3, · · · , l − 4},

zl+i−1 · ν = (

l−i−1∑
j=2

aj + 2

l∑
j=l−i

aj + l + i− 1)ω1 + (p− a1 − 2

l∑
j=2

aj − 2l)ω2 + (a1 + a2 + 1)ω3

+

l−i−1∑
j=4

aj−1ωj + (al−i−1 + al−i + 1)ωl−i +

l∑
j=l−i+1

ajωj ;

(f)

z2l−4 · ν = (a2 + 2

l∑
j=3

aj + 2l − 4)ω1 + (p− a1 − 2

l∑
j=2

aj − 2l)ω2

+(a1 + a2 + a3 + 2)ω3 +

l∑
j=4

ajωj .

Proof. By the definition, zi = yis1 for all i ∈ {1, 2, · · · , 2l − 4}. Then zi · ν = yi · (s1 · ν) for all

i ∈ {1, 2, · · · , 2l − 4}. By (7),

s1 · ν = (−a1 − 2)ω1 + (a1 + a2 + 1)ω2 +

l∑
i=3

aiωi.

Therefore,

zi · ν = yi · ((−a1 − 2)ω1 + (a1 + a2 + 1)ω2 +

l∑
i=3

aiωi). (9)

Thus, for all i ∈ {1, 2, · · · , 2l− 4}, the statement of the lemma for zi follows from the corresponding
statement for yi of Lemma 1 and from (9). �

Now we find a system of generators of a stabilizer of the elements νi1,i2,··· ,im ∈ C1 \ C1.
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Lemma 3. Let Sν be a system of generators of the stabilizer of ν ∈ C1 \ C1. If ν = νi1,i2,··· ,im , then
Sν = {si1 , si2 , · · · , sim}.

In particular, if m = 1, then Sνi = {si} for all i ∈ {0, 1, 2, · · · , l}.

Proof. The generators s0, s1, · · · , sl of Wp act on ν as follows:

s · ν =

 ν − (〈ν + ρ, α0〉 − p)α0 if s = s0,

ν − 〈ν + ρ, αi〉αi if i ∈ {1, 2, · · · , l}.
(10)

If i1 = 0, then by the definition ν0,i2,··· ,im ∈ H0 ∩Hi2 ∩ · · · ∩Him . Then

〈ν0,i2,··· ,im + ρ, α0〉 = p

and

〈ν0,i2,··· ,im + ρ, αi〉 = 0

for all i ∈ {i2, · · · , im}. Therefore, by (10), the condition

s ∈ Sν0,i2,··· ,im
= {s ∈ Sp | s · ν0,i2,··· ,im = ν0,i2,··· ,im}

yields s ∈ {s0, si2 , · · · , sim} ⊂ Sp.

If i1 6= 0, then by the definition νi1,i2,··· ,im ∈ Hi1 ∩Hi2 ∩ · · · ∩Him . Then

〈νi1,i2,··· ,im + ρ, αi〉 = 0

for all i ∈ {i1, i2, · · · , im}. Therefore, by (10), the condition

s ∈ Sνi1,i2,··· ,im
= {s ∈ Sp | s · νi1,i2,··· ,im = νi1,i2,··· ,im}

yields s ∈ {si1 , si2 , · · · , sim} ⊂ Sp. �

Lemma 4. Let w ∈ Y1 ∪ Y2 and ν ∈ C1 \ C1. Suppose that w · ν ∈ X(T )+.

If w = 1, then ν ∈ {ν0}.
(b) If w = y0, then ν ∈ {ν2, ν0}.
(c) If w = y1, then ν ∈ {ν1, ν2, ν3, ν1,3}.
(d) If w = yi, where i ∈ {2, 3, · · · , l − 2}, then ν ∈ {ν1, νi+1, νi+2, ν1,i+1, ν1,i+2}.
(e) If w = yl−1, then ν ∈ {ν1, νl−1, νl, ν1,l−1, ν1,l}.
(f) If w = yl, then ν ∈ {ν1, νl−2, νl−1, ν1,l−2, ν1,l−1}.
(g) If w = yl+i−1, where i ∈ {2, 3, · · · , l − 3}, then

ν ∈ {ν1, νl−i−1, νl−i, ν1,l−i−1, ν1,l−i}.

(k) If w = y2l−3, then ν ∈ {ν1, ν2, ν0, ν1,2}.
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Proof. (a) We prove that ν = νi1,i2,··· ,im ∈ X(T )+ if and only if m = 1 and i1 = 0. Indeed, if m = 1
and i1 = 0, then by the definition of νi1,i2,··· ,im , ν = ν0 and ν ∈ H0. Then 〈ν0 + ρ, αi〉 6= 0 for all
i ∈ {1, 2, · · · , l} and 〈ν0 + ρ, α̃〉 = p. Therefore 0 < 〈ν0 + ρ, α〉 ≤ p for all α ∈ ∆.

Conversely, if ν = νi1,i2,··· ,im ∈ X(T )+, then 〈νi1,i2,··· ,im + ρ, α〉 6= 0 for all α ∈ R+. In particular,
〈νi1,i2,··· ,im + ρ, α〉 6= 0 for all α ∈ {αi1 , αi2 , · · · , αim}. Since νi1,i2,··· ,im ∈ C1 \ C1, then the above
condition yields νi1,i2,··· ,im ∈ H0. Therefore, by the conditions 1), 3) and 4) of the definition of
νi1,i2,··· ,im we get m = 1 and i1 = 0. This implies ν = ν0.

(b) Let ν = νi1,i2,··· ,im =
l∑
i=1

aiωi and ν /∈ H0. Then 〈νi1,i2,··· ,im + ρ, α〉 = 0 for all α ∈

{αi1 , αi2 , · · · , αim}. This condition yields ai1 = ai2 = · · · = aim = −1. Then by the statement (a) of
Lemma 1 and by the definition of νi1,i2,··· ,im , y0 · ν ∈ X(T )+ if and only if m = 1 and i1 = 2. This
implies that ν = ν2.

If ν ∈ H0, then i1 = 0 and 〈ν0,i2,··· ,im + ρ, α̃〉 = p. Using (7), we get

a1 + 2

l∑
j=2

aj + al−1 + αl + 2l − 3 = p.

Then by the statement (a) of Lemma 1 and by the definition of νi1,i2,··· ,im , y0 · ν ∈ X(T )+ if and only
if m = 1 and i1 = 0. Therefore, ν = ν0.

Other statements can easily be proved similarly as the previous statement. �

For the elements of Z1 ∪ Z2, using Lemma 2, we have the following

Lemma 5. Let w ∈ Z1 ∪ Z2 and ν ∈ C1 \ C1. Suppose that w · ν ∈ X(T )+.

(a) If w = z1, then ν ∈ {ν1, ν3, ν1,3}.
(b) If w = z2, then ν ∈ {ν1, ν2, ν3, ν4, ν1,3, ν1,4, ν2,4}.
(c) If w = zi, where i ∈ {3, 4, · · · , l − 2}, then

ν ∈ {ν1, ν2, νi+1, νi+2, ν1,i+1, ν1,i+2, ν2,i+1, ν2,i+2}.

(d) If w = zl−1, then ν ∈ {ν1, ν2, νl−1, νl, ν1,l−1, ν1,l, ν2,l−1, ν2,l}.
(e) If w = zl, then ν ∈ {ν1, ν2, νl−2, νl−1, ν1,l−2, ν1,l−1, ν2,l−2, ν2,l−1}.
(f) If w = zl+i−1, where i ∈ {2, 3, · · · , l − 4}, then

ν ∈ {ν1, ν2, νl−i−1, νl−i, ν1,l−i−1, ν1,l−i, ν2,l−i−1, ν2,l−i}.

(g) If w = z2l−4, then ν ∈ {ν1, ν2, ν3, ν1,2, ν1,3, ν2,3}.

By Lemmas 4 and 5, if X+
ν (Y1 ∪ Y2 ∪ Z1 ∪ Z2) 6= ∅, then

ν ∈ {νi | i = 0, 1, · · · , l} ∪ {ν1,i | i = 2, 3, · · · , l} ∪ {ν2,i | i = 3, 4, · · · , l}.

We calculate the stabilizers of these elements ν.
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Lemma 6. The following statements hold:

(a) for all i ∈ {0, 1, · · · , l} stab(νi) = {1, si};
(b) for all i ∈ {3, 4, · · · , l} stab(ν1,i) = {1, s1, si, s1si};
(c)for all i ∈ {4, 5, · · · , l} stab(ν2,i) = {1, s2, si, s2si};
(d) for all i ∈ {1, 2}

stab(νi,i+1) = {1, si, si+1, sisi+1, si+1si, sisi+1si}.

Proof. It follows from the defending relations (1) of the affine Weyl group Wp and Lemma 3. �

Using Lemma 6, we can easily describe X+
ν (Y1 ∪ Y2 ∪ Z1 ∪ Z2) for all ν listed above. Below, we

often omit the index ν of the element xν when ν is a fixed element of C1 \ C1.

Lemma 7. Suppose that ν ∈ {νi | i = 0, 1, · · · , l}. Then

(a) X+
ν0(Y1 ∪ Y2 ∪ Z1 ∪ Z2) = {1, y2l−3}, where 1 = {1, y0}, y2l−3 = {y2l−3, y2l−3s0};

(b) X+
ν1(Y1 ∪ Y2 ∪ Z1 ∪ Z2) = {yi | i = 1, 2, · · · 2l − 3}, where yi = {yi, zi} (z2l−3 = y2l−3s1);

(c) X+
ν2(Y1 ∪ Y2 ∪ Z1 ∪ Z2) = {y0, y2l−4, zi | i = 2, 3, · · · 2l − 3}, where y0 = {y0, y1}, y2l−4 =

{y2l−4, y2l−3} and zi = {zi, zis2};

(d) for all i ∈ {3, 4, · · · , l − 1}

X+
νi(Y1 ∪ Y2 ∪ Z1 ∪ Z2) = {yi−2, zi−2, y2l−i−2, z2l−i−2},

where yi−2 = {yi−2, yi−1}, zi−2 = {zi−2, zi−1}, y2l−i−2 = {y2l−i−2, y2l−i−1} and z2l−i−2 =
{z2l−i−2, z2l−i−1};

(e) X+
νl

(Y1 ∪ Y2 ∪ Z1 ∪ Z2) = {yl−2, zl−2}, where yl−2 = {yl−2, yl−1} and zl−2 = {zl−2, zl−1}.

Proof. Let w ∈ Y1 ∪ Y2 ∪ Z1 ∪ Z2. By the definition,

wν = {wx |x ∈ stab(ν)}. (11)

Then, using (11) and Lemmas 4 – 6, we obtain the required statements. �

Lemma 8. Suppose that ν ∈ {ν1,i | i = 2, 3, · · · , l}. Then

(a) X+
ν1,2(Y1 ∪ Y2 ∪ Z1 ∪ Z2) = {y2l−4}, where

y2l−4 = {y2l−4, y2l−3, z2l−4, y2l−3s1, y2l−3s1s2, y2l−3s1s2s1};

(b) for all i ∈ {3, 4, · · · , l − 1}

X+
ν1,i(Y1 ∪ Y2 ∪ Z1 ∪ Z2) = {yi−2, y2l−i−2},

where yi−2 = {yi−2, yi−1, zi−2, zi−1} and

y2l−i−2 = {y2l−i−2, y2l−i−1, z2l−i−2, z2l−i−1};

(c) X+
ν1,l

(Y1 ∪ Y2 ∪ Z1 ∪ Z2) = {yl−2}, where yl−2 = {yl−2, yl−1, zl−2, zl−1}.
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Proof. Follows from (11) and from Lemmas 4–6. �

Lemma 9. Suppose that ν ∈ {ν2,i | i = 3, 4, · · · , l}. Then

(a) X+
ν2,3(Y1 ∪ Y2 ∪ Z1 ∪ Z2) = {z2l−5}, where

z2l−5 = {z2l−5, z2l−4, z2l−5s2, z2l−5s2s3, z2l−4s2, z2l−4s2s3};

(b) for all i ∈ {4, 5, · · · , l − 1}

X+
ν2,i(Y1 ∪ Y2 ∪ Z1 ∪ Z2) = {zi−2, z2l−i−2},

where zi−2 = {zi−2, zi−1, zi−2s2, zi−1s2, } and

z2l−i−2 = {z2l−i−2, z2l−i−1, z2l−i−2s2, z2l−i−1s2};

(c) X+
ν2,l

(Y1 ∪ Y2 ∪ Z1 ∪ Z2) = {zl−2}, where zl−2 = {zl−2, zl−1, zl−2s2, zl−1s2}.

Proof. Follows from (11) and from Lemmas 4–6. �

3 Proof of Theorem 1

Using Lemmas 7 – 9 and the Jantzen’s sum formula (3) we can easily prove Theorem 1.
By Lemmas 7 – 9, in the following cases X+

ν (Y1 ∪ Y2 ∪ Z1 ∪ Z2) consists only one coset w:

• ν = ν1,2 and w = y2l−4 (Lemma 8, (a)),

• ν = ν1,l and w = yl−2 (Lemma 8, (c)),

• ν = ν2,3 and w = y2l−5 (Lemma 9, (a)),

• ν = ν2,l and w = zl−2 (Lemma 9, (c)).

Therefore, in these cases, χ(u·ν) = χ(w ·ν) for all u ∈ w and χ(x·ν) = 0 for all x ∈ Y1∪Y2∪Z1∪Z2\w.

Hence, by (3),
∑
j>0

[V (w · ν)j ] = 0 for all listed above w.

Let i ∈ {3, 4, · · · , l − 1}. By the statement (b) of Lemma 8, χ(w · ν1,i) = 0 for all w ∈ Y1 ∪ Y2 ∪
Z1 ∪ Z2, except in the following cases:

χ(yi−2 · ν1,i) = χ(zi−2 · ν1,i) = χ(yi−1 · ν1,i) = χ(zi−1 · ν1,i) = χ(yi−2 · ν1,i),

χ(y2l−i−2 · ν1,i) = χ(z2l−i−2 · ν1,i) = χ(y2l−i−1 · ν1,i) = χ(z2l−i−1 · ν1,i) = χ(y2l−i−1 · ν1,i).

Then according to (3),
∑
j>0

[V (yi−2·ν1,i)j ] = 0 and
∑
j>0

[V (y2l−i−2·ν1,i)j ] = 0 for all i ∈ {3, 4, · · · , l−

1}.
Let i ∈ {4, 5, · · · , l − 1}. By the statement (b) of Lemma 9, χ(w · ν2,i) = 0 for all w ∈ Y1 ∪ Y2 ∪

Z1 ∪ Z2, except in the following cases:

χ(zi−2 · ν2,i) = χ(zi−1 · ν2,i) = χ(zi−2 · ν2,i),
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χ(z2l−i−2 · ν2,i) = χ(z2l−i−1 · ν2,i) = χ(z2l−i−1 · ν2,i).

Then according to (3),
∑
j>0

[V (zi−2·ν2,i)j ] = 0 and
∑
j>0

[V (z2l−i−2·ν2,i)j ] = 0 for all i ∈ {4, 5, · · · , l−

1}.
Arguing as in the above cases, we see that, in the following cases the Jantzen’s sum formula also

is trivial:

• w ∈ {1, y2l−3} ⊂ X+
ν0(Y1 ∪ Y2 ∪ Z1 ∪ Z2) (Lemma 7, (a)),

• w = y1 ∈ X+
ν1(Y1 ∪ Y2 ∪ Z1 ∪ Z2) (Lemma 7, (b)),

• w ∈ {y0, y2l−4} ⊂ X+
ν2(Y1 ∪ Y2 ∪ Z1 ∪ Z2) (Lemma 7, (c)),

• w ∈ {yi−2, y2l−i−2} ⊂ X+
νi(Y1 ∪ Y2 ∪ Z1 ∪ Z2), where i ∈ {3, 4, · · · , l − 1} (Lemma 7, (d)),

• w = yl−2 ∈ X+
νl

(Y1 ∪ Y2 ∪ Z1 ∪ Z2) (Lemma 7, (e)).
Therefore, in all these cases χ(w · ν) = [L(w · ν)].

Thus it remains to prove only the statements (a)–(g) of Theorem 1.

(a) By the statement (a) of Lemma 7, X+
ν0(Y1∪Y2∪Z1∪Z2) = {1, y2l−3, z2l−3}, where 1 = {1, y0},

y2l−3 = {y2l−3} and z2l−3 = {z2l−3}. Therefore, χ(w · ν0) = 0 for all w ∈ Y1 ∪ Y2 ∪ Z1 ∪ Z2, except in
the following cases:

• χ(ν0) = χ(y0 · ν0) = χ(y0 · ν0),

• χ(y2l−3 · ν0) = χ(y2l−3 · ν0) and

• χ(z2l−3 · ν0) = χ(z2l−3 · ν0).

Then, using (3), we get ∑
j>0

[V (z2l−3 · ν0)j ] = χ(y2l−3 · ν0).

This yields χ(z2l−3 · ν0) = [L(z2l−3 · ν0)] + [L(y2l−3 · ν0)], since χ(y2l−3 · ν0) = [L(y2l−3 · ν0)].

(b) By the statement (b) of Lemma 7, χ(w · ν1) = 0 for all w ∈ Y1 ∪ Y2 ∪ Z1 ∪ Z2, except in the
following cases:

• χ(yi · ν1) = χ(zi · ν1) = χ(yi · ν1) for all i ∈ {1, 2, · · · , 2l − 3}.
Then, using the sum formula (3), we have

∑
j>0

[V (yi · ν1)j ] =

i∑
k=2

(−1)i−kχ(yk−1 · ν1) (12)

for all i ∈ {2, 3, · · · , 2l − 3}. If i = 2, then by (12),∑
j>0

[V (y2 · ν1)j ] = χ(y1 · ν1) = [L(y1 · ν1)].

This implies that χ(y2 · ν1) = [L(y2 · ν1)] + [L(y1 · ν1)].

Now, suppose that the statement (b) is true for all i < t, where t ≤ 2l − 3. Then by (12),

∑
j>0

[V (yt · ν1)j ] =

i∑
k=2

(−1)t−k([L(yk−1 · ν1)] + [L(yk−2 · ν1)]) = [L(yt−1 · ν1)].
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This yields χ(yt ·ν1) = [L(yt ·ν1)]+[L(yt−1 ·ν1)]. So, the statement (b) is true for all i ∈ {2, 3, · · · 2l−3}.

(c) By the statement (c) of Lemma 7, χ(w · ν2) = 0 for all w ∈ Y1 ∪ Y2 ∪ Z1 ∪ Z2, except in the
following cases:

• χ(y0 · ν2) = χ(y1 · ν2) = χ(y0 · ν2),

• χ(y2l−4 · ν2) = χ(y2l−3 · ν2) = χ(y2l−4 · ν2) and

• χ(zi · ν2) = χ(zis2 · ν2) = χ(zi · ν2) for all i ∈ {2, 3, · · · , 2l − 4}.
Then by (3),

∑
j>0

[V (zi · ν2)j ] = (−1)iχ(y0 · ν2) +

i+1∑
k=4

(−1)i−k+1χ(zk−2 · ν2) + δ(i ≥ 2l − 4)χ(yi · ν2) (13)

for all i ∈ {2, 3, · · · , 2l − 4}. If i = 2, then using (13), we get∑
j>0

[V (z2 · ν2)j ] = χ(y0 · ν2) = [L(y0 · ν2)].

This yields the statement (c).

(d) We use (13) and the induction on i. If i = 3, then by the statement (c) of this Theorem 1,
(13) yields ∑

j>0

[V (z3 · ν2)j ] = −χ(y0 · ν2) + χ(z2 · ν2) = [L(z2 · ν2)].

Then χ(z3 · ν2) = [L(z3 · ν2)] + [L(z2 · ν2)].

Now suppose that the statement (d) is true for all i < t, where t ≤ 2l − 5. Then by (13),

∑
j>0

[V (zt · ν2)j ] = (−1)tχ(y0 · ν2) +

t+1∑
k=4

(−1)t−k+1χ(zk−2 · ν2)

= (−1)t[L(y0 · ν1)] + (−1)t−3([L(z2 · ν2)] + [L(y0 · ν2)])

+

t+1∑
k=5

(−1)t−k+1([L(zk−2 · ν2)] + [L(zk−3 · ν2)]) = [L(zt−1 · ν2)].

It follows that χ(zt · ν2) = [L(zt · ν2)] + [L(zt−1 · ν2)]. Therefore, the statement (c) is true for all
i ∈ {3, 4, · · · 2l − 5}.

(e) By (13),

∑
j>0

[V (z2l−4 · ν2)j ] = χ(y0 · ν2) +

2l−3∑
k=4

(−1)2l−k−3χ(zk−2 · ν2) + χ(y2l−4).

Using the previous statements (c) and (d) of this Theorem 1, we obtain∑
j>0

[V (z2l−4 · ν2)j ] = [L(y0 · ν2)] + (−1)2l−7([L(z2 · ν2)] + [L(y0 · ν2)])
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+

2l−3∑
k=5

(−1)2l−k−3([L(zk−2 · ν2)] + [L(zk−3 · ν2)]) + [L(y2l−4 · ν2)] = [L(z2l−5 · ν2)] + [L(y2l−4 · ν2)].

It follows that χ(z2l−4 · ν2) = [L(z2l−4 · ν2)] + [L(z2l−5 · ν2)] + [L(y2l−4 · ν2)].

(f), (g) Let i ∈ {3, 4, · · · , l − 1}. By the statement (d) of Lemma 7, χ(w · νi) = 0 for all w ∈
Y1 ∪ Y2 ∪ Z1 ∪ Z2, except in the following cases:

• χ(yi−2 · νi) = χ(yi−1 · νi) = χ(yi−2 · νi),
χ(zi−2 · νi) = χ(zi−1 · νi) = χ(zi−2 · νi),
• χ(y2l−i−2 · νi) = χ(y2l−i−1 · νi) = χ(y2l−i−2 · νi) and

• χ(z2l−i−2 · νi) = χ(z2l−i−1 · νi) = χ(z2l−i−2 · νi).
Then by (3), ∑

j>0

[V (zi−2 · νi)j ] = χ(yi−2 · νi) and
∑
j>0

[V (z2l−i−2 · νi)j ] = χ(y2l−i−2 · νi)

for all i ∈ {3, 4, · · · , l − 1}. Thus, for all i ∈ {3, 4, · · · , l − 1}

χ(zi−2 · νi) = [L(zi−2 · νi)] + [L(yi−2 · νi)]

and
χ(z2l−i−2 · νi) = [L(z2l−i−2 · νi)] + [L(y2l−i−2 · νi)].

Finally, by the statement (e) of Lemma 7, χ(w · νl) = 0 for all w ∈ Y1 ∪ Y2 ∪ Z1 ∪ Z2, except in
the following cases:

• χ(yl−2 · νl) = χ(yl−1 · νl) = χ(yl−2 · νl) and

• χ(zl−2 · νl) = χ(zl−1 · νl) = χ(zl−2 · νl).
Then by (3), ∑

j>0

[V (zl−2 · νl)j ] = χ(yl−2 · νl).

Hence,
χ(zl−2 · νl) = [L(zl−2 · νl)] + [L(yl−2 · νl)].

�

Remark 1. Let Xν(Y1 ∪ Y2 ∪ Z1 ∪ Z2) 6= ∅. If ν lies in the intersection of two hyperplanes, then by
Theorem 1, all Weyl modules with highest weights w · ν with w ∈ Xν(Y1 ∪ Y2 ∪ Z1 ∪ Z2) are simple.

From the proof of Theorem 1 we immediately obtain the following

Corollary 1. Let G be a simply connected and semisimple algebraic groups of type Cl and p ≥ h.
Then Weyl modules with the following highest weights are simple:

(a) ν0, y2l−3 · ν0;

(b) y1 · ν1;

(c) y0 · ν2, y2l−4 · ν2;
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(d) yi−1 · νi, y2l−i−1 · νi where i ∈ {3, 4, · · · , l − 1};
(e) yl−2 · νl;
(f) y2l−3 · ν1,2, yl−2 · ν1,l and yi−2 · ν1,i, y2l−i−2 · ν1,i, where i ∈ {3, 4, · · · , l − 1};
(g) z2l−5 · ν2,3, zl−2 · ν2,l and zi−2 · ν2,i, z2l−i−2 · ν2,i, where i ∈ {4, 5, · · · , l − 1}.

Remark 2. It is known that, in the restricted region, the differential of each simple G-module is a
simple g-module, where g is the Lie algebra of G. In [3] Rudakov proved that

(a) if ν0 ∈ X1(T ), then V (ν0) is simple ,

(b) if y0 · ν ∈ X1(T ) for some ν ∈ C1 \ C1, then V (y0 · ν) is simple.

Weyl modules V (ν0) and V (y0 · ν2) are satisfy the Rudakov simplicity criterion. In all other cases
the highest weights obtained in Corollary 1 don’t satisfy the Rudakov simplicity criterion. Therefore,
Corollary 1 generalizes the Rudakov simplicity criterion [3, Theorems 1 and 2] for semisimple Lie
algebras of type Cl.

Using Lemmas 1 and 2, one can easily describe highest weights of the simple Weyl modules listed
in Corollary 1. For example, by the definition, zl−2 · ν2,l = zl−2 · ν2,l, and ν2,l satisfies the conditions

〈ν2,l + ρ, α2〉 = 〈ν2,l + ρ, αl〉 = 0,

since ν2,l ∈ H2 ∩Hl. If we write ν2,l =
l∑

j=1

ajωj , then the above conditions yield a2 = al = −1. Then

by the statement (b) of Lemma 2,

zl−2 · ν2,l = zl−2 · ν2,l = (

l−1∑
j=3

aj + l− 4)ω1 + (p−a1− 2

l−1∑
j=3

aj − 2l+ 4)ω2 +a1ω3 +

l−1∑
j=4

aj−1ωj +al−1ωl,

where a1 + 2
l−1∑
j=3

aj + 2l − 5 < p and l ≥ 4.

Corollary 1 gives several new examples of simple Weyl modules for the simple algebraic groups of
type Cl.
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Ыбыраев Ш.Ш. Cl ТҮРIНДЕГI АЛГЕБРАЛЫҚ ТОПТАР ҮШIН СИНГУЛЯРЛЫ АҒА
САЛМАҚТЫ ВЕЙЛЬ МОДУЛЬДЕРI ТУРАЛЫ

Бұл мақалада Cl түрiндегi бiрбайланысты жартылай жәй алгебралық топтардың сингуляр
аға салмақты кейбiр Вейль модульдерiнiң p ≥ h сипаттаманың алгебралық тұйық өрiсiндегi,
мұндағы h – Кокстер саны, композициялық факторлары мен iшкi модульдiк құрылымдары есеп-
телдi. Атап айтқанда, Вейль жәй модульдерiнiң кейбiр жаңа мысалдары алынды.

Кiлттiк сөздер. Алгебралық топ, Вейль модулi, Вейль жәй модулi, сингулярлы салмақ.

Ибраев Ш.Ш. О МОДУЛЯХ ВЕЙЛЯ С СИНГУЛЯРНЫМИ СТАРШИМИ ВЕСАМИ ДЛЯ
АЛГЕБРАИЧЕСКИХ ГРУПП ТИПА Cl

В данной статье вычислены композиционные факторы и подмодульные структуры некото-
рых модулей Вейля с сингулярными старшими весами для односвязных полупростых алгебраи-
ческих групп типа Cl над алгебраически замкнутым полем характеристики p ≥ h, где h – число
Кокстера. В частности, получены некоторые новые примеры простых модулей Вейля.

Ключевые слова. Алгебраическая группа, модуль Вейля, простой модуль Вейля, сингуляр-
ный вес.
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Abstract. We study the class of small ordered theories which includes the class of small weakly o-

minimal theories. We give a condition under which theories from this class have the maximal number

of countable pairwise non-isomorphic models.

Keywords. Small ordered theory, number of countable models, omitting types.

1 Introduction

The problem of counting the number of countable pairwise non-isomorphic models of
ordered theories was studied by M. Rubin, S. Shelah, L. Mayer, S. Sudoplatov, B. Kulpeshov,
S. Moconja, P. Tanovic, and others. The Vaught Conjecture was confirmed for different classes
of ordered theories: for o-minimal theories by L. Mayer [1], for quite o-minimal theories by
Sudoplatov-Kulpeshov [2], for weakly o-minimal theories of convexity rank one by Alibek-
Baizhanov-Kulpeshov-Zambarnaya [3], for binary, stationarily ordered theories by Moconja-
Tanovic [4], and for weakly o-minimal theories of finite convexity rank by B. Kulpeshov [5]. In
research in this direction an important role plays describing the conditions when a complete
theory has the maximal number of countable pairwise non-isomorphic models. In particular,
this question was investigated by Alibek-Baizhanov-Zambarnaya in [6], Baizhanov-Baldwin-
Zambarnaya in [7], and B. Kulpeshov in [8]. In the work we present a condition for maximality
of the number of models for a small theory with a fixed number of convex equivalence relations
in an 1-type. That is, for a theory for which a type does not have a uniformly definable family
of nested equivalence relations.
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2 Main Part

In the article we consider small countable theories with an ∅-definable relation of linear
order. By Gothic letters (M, N, etc.) we denote structures, by capital letters (M , N , etc.)
we denote universes of these structures, respectively. By N we denote a countable saturated
model of the given small theory.

For A ⊆ B ⊆ N (not necessary definable) we use the following notations:

A+ := {γ ∈ N | for all a ∈ A,N |= a < γ};
A− := {γ ∈ N | for all a ∈ A,N |= γ < a}.

We write A < B if for all a ∈ A, b ∈ B N |= a < b.

Definition 1. A set A is said to be convex in a set B, A ⊆ B, if for all x, y ∈ A and all
z ∈ B x < z < y implies that z ∈ A.

Let Θ(x) be an 1-A-formula, then

EΘ(x, y) := Θ(x) ∧Θ(y)∧
∧
(
x = y ∨

(
(x < y → ∀z(x ≤ z ≤ y → Θ(z))) ∧ (y < x→ ∀z(y ≤ z ≤ x→ Θ(z)))

))
defines an equivalence relation with convex classes on Θ(N). We call Θ a zebra-formula or
formula with infinite number of alternations (INA), if there is an infinite number of convex
EΘ-classes. On the set of convex EΘ-classes there is a linear ordering; if this order contains
an infinite discrete chain, then I(T,ℵ0) = 2ℵ0 [6]. So, in this paper, we assume that there is
a natural number nΘ such that any discrete chain of EΘ-classes contains at most nΘ-classes
and the order on the set of all EΘ-classes is dense up to finite discrete chain bounded by nΘ.

Let Θ and Ψ be two zebra-formulas such that |= ¬∃x
(
Θ(x) ∧ Ψ(x)

)
, then we say that

they are mutually dense, if between any two arbitrary EΘ-class and EΨ-class there are
both EΘ-class and an EΨ-class.

Definition 2 [9]. 1) The convex closure of a formula ϕ(x, ā) is the following formula:

ϕc(x, ā) := ∃y1∃y2

(
ϕ(y1, ā) ∧ ϕ(y2, ā) ∧ (y1 ≤ x ≤ y2)

)
.

2) The convex closure of a type p(x) ∈ S1(A) is the following set of formulas

pc(x) := {ϕc(x, ā) | ϕ(x, ā) ∈ p}.

Definition 3 [10], [11]. Let M be a linearly ordered structure, A ⊆M , M be |A|+-saturated,
and p ∈ S1(A) be non-algebraic.

1) An A-definable formula ϕ(x, y) is said to be p–preserving (p-stable) if there exist
α, γ1, γ2 ∈ p(M) such that p(M) ∩

(
ϕ(M,α) \ {α}

)
6= ∅ and γ1 < ϕ(M,α) < γ2.
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2) A p-preserving formula ϕ(x, y) is said to be convex to the right (left) if there exists
α ∈ p(M) such that p(M)∩ϕ(M,α) is convex, α is the left (right) endpoint of the set ϕ(M,α),
and α ∈ ϕ(M,α).

3) A p-preserving convex to the right (left) formula ϕ(x, y) is equivalence-generating
if for any α ∈ p(M) and any β ∈ ϕ(M,α) ∩ p(M) the following holds:

M |= ∀x(x ≥ β → (ϕ(x, α)↔ ϕ(x, β))) (M |= ∀x(x ≤ β → (ϕ(x, α)↔ ϕ(x, β)))).

By CRF (p) (CLF (p)) we denote the family of all p-preserving convex to the right (left)
A-formulas.

Restriction. Let A and B be subsets of a model of a linearly ordered theory T , A be finite,
B be A-definable. We consider 1-types p ∈ S1(A) such that

(i) for every A-formula E(x, y, z̄) there is no infinite sequence b̄1, b̄2, ..., b̄i, ... ∈ B such
that for every i < ω, E(x, y, b̄i) is an equivalence relation on p with classes partitioned into
infinitely many of infinite E(x, y, b̄i+1)-classes;

(ii) the set {q ∈ S1(A) | pc = qc} is finite;

(iii) all p-preserving convex to the right formulas are equivalence generating.

Theorem 1. Let T be a countable complete linearly ordered theory, A be a finite subset of
a model of T , and let p(x) ∈ S1(A) be a non-algebraic 1-type satisfying the Restriction. If
CRF (p) is infinite and has no greatest formula, then T has 2ℵ0 countable non-isomorphic
models.

Proof. Since every non-small theory has 2ℵ0 countable non-isomorphic models, it remains
to prove the case, when the theory T is small. For simplicity we extend our language to
L(A) and work in the theory T ∪ tp(ā), where ā is an enumeration of the set A. Let N be a
countable saturated model of the small theory T containing the finite set A.

Let p ∈ S1(A), then define for an arbitrary p-preserving convex to the right 2-formula ϕ
a relation of equivalence such that any its class is convex in p(N). For ϕ(x, y) ∈ CRF (p)
and for every α, β ∈ p(M) denote by Eϕ(α, β) the formula ϕ(N,α)+ = ϕ(N, β)+. Here,
ϕ(x, y)+ := ∀z

(
ϕ(z, y) → z < x

)
. On the set of all realizations of the type p, Eϕ(x, y) is a

relation of equivalence with convex classes on p(N), but not necessarily on pc(N).

Since |{q ∈ S1(A) | pc = qc}| < ω, then for some Θ ∈ p, p = pc ∪ {Θ}. Then Eϕ is an
A-definable relation of equivalence with convex Eϕ-classes on Θ(N) for suitable Θ ∈ p. Thus,
for arbitrary α ∈ p(N), Eϕ(N,α) ∩ Θ(N) is exactly Aα-definable convex Eϕ-class on p(N)
containing α.

We say that two zebra-formulas Θ and Ψ are mutually attached if for any EΘ-class
there is a EΨ-class such that between these two classes there is no elements. It follows from
this definition that if Θ belongs to p ∈ S1(A) and Ψ ∈ q ∈ S1(A), then pc = qc. We say that
two zebra-formulas are attached if there is a finite sequence of pairwise mutually attached
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zebra-formulas, started by one of them and ended by second zebra-formula. Consider three A-
definable zebra-formulas Θ, Ψ1, Ψ2 such that last two are attached, if Θ and Ψ1 are mutually
dense, then Θ and Ψ2 are mutually dense too.

Note that it is possible to determine an A-definable relation of equivalence on pc(N),
since any A-definable zebra-formula is dense on pc(N) and consequently, two A-definable
dense zebra-formulas on pc(N) are mutually dense up to discrete finite chain of attached
zebra-formulas. Finiteness of chain of attached zebra-formulas to θ follows from the second
condition of the Restriction.

Denote by E1
ϕ(x, y) := ∃z

(
z < x∧ z < y ∧Θ(z)∧ x 6∈ ϕ(N, z)+ ∧ y 6∈ ϕ(N, z)+

)
. This is a

relation of equivalence on pc(N) and consequently, it is an A-definable relation of equivalence
with convex classes on some A-definable convex set K(N), where A-formula K(x) is from pc.

Denote by Eϕ,Θ(N,α) = Eϕ(N,α) ∩Θ(N).

For α |= p we denote Vp(N)(α) := {γ ∈ p(N) | there exists a formula ϕ(x, y) ∈ CRF (p)
such that M |= ϕ(α, γ) ∨ ϕ(γ, α)}. It follows from the definitions that

Vp(N)(α) = ∪ϕ∈CRF (p)Eϕ,Θ(N,α).

Since there is no greatest equivalence-generating formula, the sets Vp(N)(α), Vp(N)(α)+,
Vp(N)(α)− are not Aα-definable.

Denote for arbitrary α ∈ pc(N) by Vpc(N)(α) := ∪ϕ∈CRF (p)E
1
ϕ(N,α). It follows from the

definitions that for any α ∈ p(N) we have

Vp(N)(α) ⊆ Vpc(N)(α), Vp(N)(α)+ = Vpc(N)(α)+, Vp(N)(α)− = Vpc(N)(α)−.

Denote

(Vp(α), Vp(β))p(N) := {γ ∈ p(N) | Vp(N)(α) < γ < Vp(N)(β)}.

Then

(Vp(α), Vp(β))p(N) = {γ ∈ Θ(N) | for every ϕ ∈ CRF (p),
N |= α < γ < β ∧ ¬Eϕ(α, γ) ∧ ¬Eϕ(β, γ)}.

Lemma 1. Let α, β ∈ p(N) such that Vp(N)(α) < Vp(N)(β). Then for all γ1, γ2 ∈
(Vp(α), Vp(β))p(N), tp

c(γ1/Aαβ) = tpc(γ2/Aαβ).

Proof of Lemma 1. Assume that the conclusion of Lemma 1 is not true. This means
that there is an Aαβ-definable 1-formula H(x, α, β) such that H(N,α, β) convex in Θ(N),
H(N,α, β) < ¬H(N,α, β), H(N,α, β) ∪ ¬H(N,α, β) = Θ(N), Vp(N)(α) < γ1 ∈ H(N,α, β),
γ2 ∈ ¬H(N,α, β), and γ2 < Vp(N)(α) ⊂ ¬H(N,α, β).

Consider p1(x, β) := tp(α/Aβ) ∈ S1(Aβ). It follows from the definition that p ∪ (x <
Vp(N)(β)) = p ∪ {x < Eϕ,Θ(N, β) | ϕ ∈ CRF (p)} ⊆ p1 and pc1(N) = pc(N) ∩ Vp(M)(β)−. By
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the second condition of the Restriction the set {q ∈ S1(Aβ) | pc1 = qc} is finite. This means
there is an Aβ-definable zebra-formula Θ1 ∈ p1 such that pc1∪{Θ1} = p1. We have H(x, y, β)
is convex to right p1-preserving Aβ-formula. Notice that CRF (p)∪ {H(x, y, β)} ⊆ CRF (p1)
because for any ϕ ∈ CRF (p), H(N,α, β)+ ⊂ ϕ(N,α)+.

Then by the third condition of the Restriction Aβ-definable formula H(x, β) defines a
relation of equivalence EH(x,β)(x, y, β) with convex EH -classes on the set of all realizations
of one-type p1. This is a relation of equivalence with convex classes on p1(N). Define a new
equivalence relation on some convex part of p(N):

E1
H,Θ(x, y, β) := ∃z

(
Θ1(z)∧Θ(x)∧Θ(y)∧z < x∧z < y∧x 6∈ H(N, z, β)+∧y 6∈ H(N, z, β)+

)
.

Last sentence gives us an Aβ-definable relation of equivalence on some part of p(N),
namely on the set of elements from p(N) less than Vp(N)(β). Since γ1 6∈ H(N,α, β)+, N |=
EH,Θ(γ1, α, β). Since for ϕ ∈ CRF (p), N |= ¬Eϕ,Θ(γ1, α), the definable set EH,Θ(N,α, β) is
a convex subset of p(N), that contains a densely ordered infinite set of non-definable sets of
kinds as Vp(N)(.).

Consider the set of 1-formulas p1(x, α). This is a complete one-type because α, β ∈ p(N).
Take an arbitrary realization of p1(x, α) from EH,Θ(N,α, β) and denote it by α1. Then
we have EH,Θ(N,α1, α) ⊂ EH,Θ(N,α, β). The set EH,Θ(N,α, β), that is convex in p(N),
contains an infinite number of convex sets definable by EH,Θ(x, y, α).

Let f be an A-isomorphism of the countable saturated model N, generated by an elemen-
tary monomorphism such that f(β) = α, f(α) = α1. The existence of such an elementary
monomorphism follows from p1(x, y) = tp(αβ/A) = tp(α1α/A). The isomorphism f generates
an infinite sequence 〈αn〉0<n<ω such that for any n < ω, we have

EH,Θ(N,αn+2, αn+1) ⊂ EH,Θ(N,αn+1, αn).

This contradicts to the first condition of the Restriction.
� Lemma 1

A type q is said to be irrational if qc(N)+ and qc(N)− are both non-definable. By Lemma 1
the type tp(γ1/Aαβ) is irrational, and therefore it is non-principal. A corollary of the proof
of Lemma 1 is the following lemma.

Lemma 2. For every n < ω and all αi ∈ p(N), i ≤ n, such that Vp(N)(αi) < Vp(N)(αi+1),
1 ≤ i ≤ n−1, for all γ1, γ2 ∈ (Vp(αi), Vp(αi+1))p(N), tp

c(γ1/Aα1, ..., αn) = tpc(γ2/Aα1, ..., αn).

Lemma 2 implies that the type tp(γ1/Aα1, ..., αn) is non-principal.

Let M be an ℵ1-saturated elementary extension of N. Now for all infinite sequences of
zeros and ones, τ := 〈τ1, τ2, ..., τi, ...〉i<ω, τ(i) ∈ {0, 1}, we will construct countable models
Mτ ≺ M such that for any τ1 6= τ2, Mτ1 6∼= Mτ2 . Until the end of the proof fix such a
sequence τ . We will use Tarski-Vaught criterion in order to show that Mτ is a universe of
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an elementary substructure of M. On each step of the construction we will be fixing a set of
parameters and promising to realize each satisfiable 1-formula over it. We must keep coming
back to the same set of parameters and deal with another formula. So, the different sets
of parameters are being attacked in parallel. Recall that we have extended the language to
L(A).

Let B := {α(2i−1,j) | i ∈ N, j ∈ Q}∪{α(2i,1), ...α(2i,i) | i ∈ N, τi = 0}∪ {α(2i,1), α(2i,i+1) | i ∈
N, τi = 1} be a subset of p(M) such that the sets Vp(N)(α(i,j)) are disjoint and ordered
lexicographically by the indices (i, j). Since the set B is countable, fix an enumeration
B = {b1, b2, ..., bi, ...}.

Lemma 3 [7]. Let D be a finite subset of M . For each satisfiable (B∪D)-formula, ψ(x, b̄, d̄),
where b̄ = 〈b1, b2, ...bn〉 ∈ B (n < ω), and d̄ ∈ D, there exists a type qψ ∈ S1(B ∪ D) such
that

1) ψ(x, b̄, d̄) ∈ qψ;

2) For every i ≥ n, qψ � (Bi ∪D) is principal, where Bi = {b1, b2, ..., bi}.
Proof of Lemma 3. For i < ω denote b̄i := 〈b1, b2, ...bi〉, and let d̄′ be a tuple enumerating
the set D. Because the theory T is small, there exists a formula ψ0(x, b̄n, d̄

′) that implies
ψ(x, b̄n, d̄) and generates a principal type over ({b̄n} ∪ D). In turn there is a principal
subformula over ({b̄n+1} ∪D) that implies ψ0(x, b̄n, d̄

′). Repeating this procedure, we obtain
a consistent infinite decreasing chain of principal over parameters formulas ψi(x, b̄n+i, d̄

′): ...
⊆ ψi+1(M, b̄n+i+1, d̄

′) ⊆ ψi(M, b̄n+i, d̄
′) ⊆ ... ⊆ ψ0(M, b̄n, d̄

′) ⊆ ψ(M, b̄n, d̄), where M is an
arbitrary model of T with (B ∪D) ⊆M . By this we have defined the desired complete type
over (B ∪D). � Lemma 3

Construction of the model Mτ .

Step 1. Denote by Ψ1 the set of all ∅-definable unary formulas of L(A), Ψ1 := {ψ1
i (x) | i < ω}.

Choose the least i such that M |= ∃xψ1
i (x) and ψ(N) ∩B = ∅. To satisfy the Tarski-Vaught

property, we must find a witness for ψ1
i (x). Since the set B and the formula ψ1

i are as in
Lemma (consider the set D to be empty), there exists a B-type qψ1

i
satisfying conditions 1)

and 2) of the lemma. And since the model M is ℵ1-saturated, this type is realized in M by
some element, denote it by d1. Thus, d1 is principal over ∅. Denote D1 := {d1}.
Step 2. Choose the least j such that the formula ψ1

j (x) ∈ Ψ1 was not considered before

with N |= ∃xψ1
j (x) and such that ψ(x)∩ (B ∪{d1}) = ∅. We find a special witness for ψ1

j (x).

Apply Lemma to the sets B and {d1}, and the formula ψ1
j (x), to find a realization d2 of the

type qψ1
j
, which exists by the lemma. We can arrange that d2 is principal over d1.

Now take b1 and consider the set of all ({b1} ∪ {d1})-definable 1-formulas Ψ2 :=
{ψ2

i (x, b1, d1) | i < ω}. Choose the least index i such that the formula ψ2
i (x, b1, d1) ∈ Ψ2

was not considered previously such that M |= ∃xψ2
i (x, b1, d1) and ψ(x) ∩ (B ∪ {d1, d2}) = ∅,

and find a realization d3 by applying Lemma to B, {d1, d2}, and ψ2
i .
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By the end of step k we will have the following sets:

• Nested sets D1 = {d1}, D2 = {d1, d2, d3}, D3 = {d1, d2, ..., d6},...,Dk = {d1, d2, ..., d (k+1)k
2

},
where Di is constructed on step i by adding i new realizations to the set Di−1. It is

possible that di = dj for some i and j with 1 ≤ i < j ≤ (k+1)k
2 .

• The family of all ∅-definable 1-formulas Ψ1, and for every m, 2 ≤ m ≤ k, a family of(
{b̄m−1} ∪Dm−1

)
-definable 1-formulas, Ψm.

Further we will use the usual notation d̄i = 〈d1, d2, ..., di〉, i < ω.

Step k + 1. Firstly we realize one formula from each of the families we defined earlier. To
do this, for each m, 1 ≤ m ≤ k, find smallest index im such that the formula ψmim ∈ Ψm

was not considered before, and definable set of which in the model M is not empty but
ψ(x) ∩ (B ∪ {d1, d2, ..., d (k+1)k

2
+m−1

}) = ∅. Apply Lemma to the sets B and {d̄ (k+1)k
2

+m−1
},

and the formula ψmim , to find realization d (k+1)k
2

+m
of the type qψm

im
.

Now denote by Ψk+1 the set of all (∪{b̄k} ∪Dk)-definable 1-formulas, and find a smallest
index i with M |= ∃xψk+1

i (x, b̄k, d̄ (k+1)k
2

) and such that ψ(x)∩ (B∪{d1, d2, ..., d (k+1)k
2

+k+1
}) =

∅. We choose d (k+1)k
2

+k+1
as before, as a realization of a type qψk+1

i
, which exists by

Lemma applied to the sets B, {d̄ (k+1)k
2

+k
}, and formula ψk+1

i . Let Dk+1 be the set

{d1, d2, ..., d (k+1)k
2

+k+1
}. We can arrange that each new di is principal over b̄k and the dj ’s

for j < i.

Denote Mτ := B ∪
⋃
i<ω

Di.

The Tarski-Vaught criterion implies that the set Mτ is a universe of an elementary sub-
structure Mτ of M.

For every i < ω, by choosing di to be as in Lemma , the type tp(di/b̄n, d̄i−1) is principal
for every n ≥ i − 1. From the last statement it easily follows by induction that for every
i < ω and every n ≥ i− 1 the type tp(d̄i/b̄n) is principal, and therefore the type tp(di/b̄n) is
also principal.

We claim that p(Mτ ) \
⋃

bn∈B
Vp(M)(bn) = ∅. Towards a contradiction suppose that there

exists a realization δ ∈ p(Mτ ) \
⋃

bn∈B
Vp(M)(bn). Since δ 6∈ B, δ ∈

⋃
i<ω

Di, and for some k < ω,

δ = dk. As we recently showed, the type tp(dk/b̄n) is principal for sufficiently large n’s.
But since all bn’s are a(i,j)’s, by Lemma 2 the types tp(dk/b̄n) are non-principal. This is a
contradiction and we have that p(Mτ ) \

⋃
α(i,j)∈B

Vp(M)(α(i,j)) = ∅.

Since the number of different infinite sequences τ of zeros and ones equals to 2ℵ0 , I(T ∪
tp(ā), ω) = 2ℵ0 . As the theory T is small it has at most countably many distinct complete
extensions by realizing an n-type tp(ā); consequently, I(T,ℵ0) = 2ℵ0 . � Theorem 1
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Байжанов Б., Умбетбаев О., Замбарная Т. ШАҒЫН РЕТТЕЛГЕН ТЕОРИЯЛАР-
ДЫҢ 1-ТИПIНДЕГI ДӨҢЕС ПАРА-ПАРЛЫҚТАР ҚАТЫНАСТАРЫНЫҢ БIРҚА-
ЛЫПТЫ АНЫҚТАЛАТЫН ҮЙIРIНIҢ БОЛМАУЫ ЖӘНЕ МОДЕЛЬДЕРДIҢ МАК-
СИМАЛДЫ САНЫ

Бiз шағын әлсiз o-минималды теориялар класын қамтитын шағын реттелген теория-
лар класын зерттеймiз. Осы класта жататын теориялардың санамалы екеуара изоморф-
ты емес модельдерiнiң саны максималды болатын шарт берiледi.

Кiлттiк сөздер. Шағын реттелген теория, санамалы модельдердiң саны, типтердi тө-
мендету.

Байжанов Б., Умбетбаев О., Замбарная Т. ОТСУТСТВИЕ РАВНОМЕРНО ОПРЕ-
ДЕЛЯЕМОГО СЕМЕЙСТВА ОТНОШЕНИЙ ВЫПУКЛЫХ ЭКВИВАЛЕНТНОСТЕЙ
В 1-ТИПЕ МАЛЫХ УПОРЯДОЧЕННЫХ ТЕОРИЙ И МАКСИМАЛЬНОЕ ЧИСЛО
МОДЕЛЕЙ

Мы изучаем класс малых упорядоченных теорий, который включает в себя класс
малых слабо o-минимальных теорий. Даётся условие, при котором теории из этого класса
имеют максимальное число счётных попарно неизоморфных моделей.

Ключевые слова. Малая упорядоченная теория, число счётных моделей, опускание
типов.
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