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On the conjugate diagram of one entire function
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Abstract. The analytical structure of the characteristic determinant of the eigenvalue problem for
a linear differential equation on a finite interval is studied. Various representations of the specified
characteristic determinant are given. The order and type of growth of the characteristic determinant
are clarified. The possible types of conjugate diagram of the characteristic determinant are analyzed.
Depending on the indices of nonzero minors of the boundary matrix, theorem on the localization of the
eigenvalues of the investigated problem are formulated.

Keywords. Entire function, boundary matrix, characteristic determinant, eigenvalues, Kronecker sym-

bol, degenerate and non-degenerate boundary value problems, conjugate diagram, exponential type.

1 Introduction

Let 4 x 8 matrix

A= a1 G52 453 a4 a5 aj6 Q57 458
j=1,2,3,4 ’

composed of complex numbers, be given. We call it a boundary matrix. We denote its
minors by Agmsi, where k,m, s, correspond to the column numbers of the boundary matrix
A. We assume that at least one of the A, minors is nonzero. Let the functions gx(-) with
k = 0,1,2 be defined on the interval [0, 1] and be continuously differentiable k times. It is
also assumed that

2010 Mathematics Subject Classification: 30D15, 05C50, 34B05.
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On the conjugate diagram of one entire function 7

qr(z) = (—1)qu(1 —z), x €[0,1].
Then the entire function

V=Y Amzmerasao1z” ()0 200200 (1)

1<k,m,s,l<4

represents the characteristic determinant of the following problem eigenvalues:

u(z) + g2 (@)u? (2) + g1 (2)uV (2) + qo(x)u(z) = Mu(z), 0 <z <1, (2)
8
Wiu) =Y apVp(u) =0, j=1,2,3,4. (3)
=1
Here
Vi(u) = u(1) + u(0),
Va(u) = u(1) — u(0),

(
(
v7<u>=<u<3><> ®(0)) + g2(1) (D (1) = uD(0)) + (2 (1) — g5” (1)) (u(1) — u(0)),
®)( WD) +uM(0) + (0a(1) — 6" (1) (u(1) + u(0)).
). k

An important role in representation (1) is played by entire functions {z (
1,2,3,4}. These functions were introduced in [1] and are determined according to the formulas

AV = 5100, 0),
A2 = s (0,0),
23 = 5200, 0) + g2(0)54(0, \),

A0 = 590,) + 02(0)57 (0, A) = (61(0) — g5 (0)) (0, ).
Moreover, si(z,A) is a solution of the homogeneous equation (2), subordinate to the

1
Cauchy conditions at the point z = 5

KAZAKH MATHEMATICAL JOURNAL, 20:2 (2020) 6-12



8 B.E. Kanguzhin, N.M. Tasbaeva, A.l. Kasbakbaeva, A.A. Seitova

1
S](gl/) (5))‘> = Op+lk, V= 0,1,2,3,

where 0,41 is the Kronecker symbol.

Note that representation (1) was proved in [1]. In the case of second-order differential
equations, an analogue of representation (1) can be found in the monograph ([2], p. 33-50).
A detailed analysis of representation (1) in the case of second-order differential equations
allowed V.A. Marchenko [2] to classify the boundary conditions. V.A. Marchenko identified
two classes of boundary value problems: degenerate and non-degenerate boundary value
problems. It turned out that non-degenerate boundary value problems for second-order
differential equations have a complete system of eigen functions and as sociated functions in
the space L(0,1). This article explores the conjugate diagram of the entire function fg(A).
Information on the conjugate diagram will allow calculating the type and growth order of the
entire function f;(A). Then the type and growth order of the entire function f,(\) will allow
us to carry out according to V.A. Marchenko classification of boundary conditions (3).

2 The conjugate diagram of the function f,(\) for ¢;(z) =0, £k =0,1,2

In this section, we study the entire function fy(\), for g2 = ¢1 = go = 0. In this case, the
functions {zj(-k)(/\)7 k,j=1,2,3,4} are written as follows

4
k 1 i 1
2000 = 1 (o) exp (o), (4)
p=1
where wy = 1, wy =14, w3 = —1, wy = —i, p* = \. In work [1] the following lemma is proved.

Lemma 1. Let the set of functions {z](-k)()\), k,j7=1,2,3,4} be determined according to the
formulas (4). Then the product

k m s l
A7) 20 - A7) A0
has an idea

m s 1 m-s+1—
200 M) TN 20 0) = YT BY) gm0 y),

— aq kmsl
64 ocJ
where J = {2,141, 3%, 322 1 Lk 1o o}
1 4
P PWjz
17[}(1.7)\) - 4216 .
p:

KAZAKH MATHEMATICAL JOURNAL, 20:2 (2020) 6-12



On the conjugate diagram of one entire function 9

Note that the numbers B,(ﬁzbsl, except for the indicated indices, depend on the numbers
(9)

sl TOT example

w1, wae, w3, wys. Here are some of the numbers B

(14+4) _  s—3 1-4 s—3 1—4 s—3 m—2 s—3 m—2 s—3 k—1 s—3 k—1
Bynsi =Wo Wy tws Twy  Fwy Twy T Fwy Twy T Wy Wy Wy Twhy

+wl2_4wén_2 + wé_4w;”_2 + wl{4w§_1 + wé_4w§_l + wlg_lw;”_z + wlg_lwg”_z,

1—2 — — — — — — — — — —1 —
B ?) = wiBwlit + wi Tl + Wi w2 4wl W

-1 —4 m-2 —4 m-2 —4 k-1 —4 k-1 ~1, m-2 ~1, m-2
xWE T Wb A2 4wl ol b 4 b T 4 b2

The volume of the article does not allow writing out all the numbers B,(Ci)l s+ The statement

follows from representation (1).

Theorem [1]. Let g2 = q1 = qo = 0. Then the entire function fy(\) has the representation

16
Fo) =33 P10, ),

p=40cJ

where 9 = > A .BY Here K, is a finite set of
P = 2u(km,s)EK, A2k—1,2m,25-1.2(p—k—m—s) " Plms(p_k—m—s)- HETE Lp 15 @ funite set o
multi-indices (k,m, s) and it changes with p.
In this paper, the coefficients are calculated explicitly cl(,g). The software package was used

for this <MAPLE>. It turned out that part of the coefficients 01(70) is equal to zero regardless
of the choice of the boundary matrix A. The type of indicator chart depends only on nonzero

coeflicients CI()H). In the next representation of fy(A) only numbers with nonzero coefficients

()

cz(f) are written out. Representation (13) can be clarified by calculating the coefficients c;’,

for 0 € J, s € {4,...,16}. It turns out that for the values of the parameter s, the coefficients

cga):() for # = 4,3+ 14,1+ 4,1+ 3i. Nonzero coefficients cge) are written below

242i
054 ) = —8As567s,

3T — (=8 + 8i) Azgrs + (8 — 8i) Ausrs,
5T = 16i Asars + 8iAig7s — 8iAssrs — 8iAsses + 8iAuser,
0321”” = (—8 — 8i)Aasrs + (8 + 8i) Arars + (—8 — 8i) Aszae7
+(8 + 8i) Azass + (8 + 8i) Agse7 + (—8 — 8i) Ays6s,
2720 _ 1641458 — 8A1368 — SAz3ss + 16 Aaser — SA1ag7 — SAsusy + 8A197s + 8Asz456,

10
(242i) . . .
Cy = (—8+ 8i)A1267 + (8 — 8i)A1258 + (8 — 8i) A1456

KAZAKH MATHEMATICAL JOURNAL, 20:2 (2020) 6-12



10 B.E. Kanguzhin, N.M. Tasbaeva, A.l. Kasbakbaeva, A.A. Seitova

+(—8 + 8i) Aagse + (—8 + 8i) A13as + (8 — 8i) Agsar,
Cé2+2i) = 8iA1346 — 8i A5 + 8iA1247 — 8iA1238 — 160 A 1256,
c§2+2i) = (8 + 8i) A1245 + (=8 — 8i) A1236,
) = —8A 1934,
c3) = 1643675 + 16 Asss,
i) = 16 A167s + 16 Agsrs — 16 Asses — 16 Aaser,
cﬁ) = 16A2378 + 16 A1478 + 16 A3467 + 16 A3458 — 16 A2s67 — 16 A1568,
ct) = 3241455 — 3249367,
cg(f) = 16A1267 + 16 A1258 + 16 A1456 + 16 A2356 — 16 A1348 — 16 A2347,
cg) = —16A1346 — 16 Ag345 + 16 A1247 + 16 A1233,
0(72) = 16A1245 + 16 A1236.

Therefore, the representation from the above theorem takes the form

Ay(A) = —8Assrs ™ (2 4+ 20)(1 + 0<;>>

1 1
+16(Ase7s + Ass7s) TP (1 + 0(;)) +pt 1+ O(;))
as p — 0o. The quantity O(%) is subject to the estimate

1 1
‘O()‘gc at p — oo.
p ol +1

The function W(f, ) is an entire function of A = p* and is written as

4
U(h,\) = Zexp (%pw]ﬂ).
j=1

It follows from representation (5) that the entire function of exponential type f,(A) has
an conjugate diagram in the form of a square with vertices 1 +4, 1 —4, —1 —4, —1 4+ 7 and

points 1, #+7 marked on the sides.

According to [3] theorems on the zeros of entire functions of exponential type sufficiently
large modulo zeros fj,(A) lie in the corners of an arbitrarily small sector with a bisector on the
real (non-negative) semiaxis, if the numbers Agg7s # 0 or |Asers| + |Ass78] # 0. The above

KAZAKH MATHEMATICAL JOURNAL, 20:2 (2020) 6-12



On the conjugate diagram of one entire function 11

statements remain valid even for nonzero coefficients g2(-), q1(-), qo(-), if gz € C¥[0,1], k =
0,1,2. If the above minors Asg7s, Asgrs, Ass7g are equal to zero, then you need to look at
the coefficients for the exponents that determine the type of growth of the entire function
fp(A). Moreover, relations (5) allow us to accurately write nonzero coefficients for defining
exponents. Thus, under any non-degenerate boundary conditions of the initial task, it is
possible to write down the asymptotics of its eigenvalues.

3 Conclusion

In conclusion, it is appropriate to cite Sylvester’s words about the amazing intellectual
phenomenon that the proofs of general statements are usually simpler than the proofs of
various special cases contained in them. According to Arnold, namely, they are the essence
of science, even if stated, for the sake of simplicity of evidence, deductively, that is, starting
from general statements.
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Kanryxun B.E., Tacbaesa H.M., Kacbakbaesa A.l., Ceunrosa A.A. BYTIH OYHKIII-
AHBIH TYNIHAEC JMATPAMMACHI TYPAJIBI

Byn xKymbicTa aKbIp/Ibl apasibIKTarbl ChI3BIKTHIK, Au(depEeHITHaIbIK, TeHIEY YIITiH MEeH-
KT MoHJEpal Tabyra apHAJFaH €CENTiH CHUIATTAYBIINl AHBIKTAYBIIILIHLH aHAJIATHKAJIBIK,
KYPBLJIBIMBI 3epTTeJITeH. ATajifaH CHMIATTAYBINI AHBIKTAYBIIIBIHBIH Op TYpJi Keiiinremesepi
kesaripiarer. CHIATTAyBINT aHBIKTAYBIIIBIHBIH ©CYy PeTi MeH Typi HaKTblIanraH. CHmaTTaybIi
AHBIKTAYBIMBIHBIH TYHiHIEC IrnarpaMMachIHBIH, MyMKiH OoJaThIH TypJepi Tagnanran. Illeka-
paJIbIK MaTPHUIAHBIH HOJIIIK eMeC MUHOPJIAPBIHBIH HHIEKCTepiHe OaillaHbICTh OaCTAIKbI eCell-
TiH, MEHIITIKTI MOHJIEPIH JIOKAJIU3AIUIay TYpPaJibl TeopeMaJiap TYKbIPbIMIaJIFaH.

Kinrrix ceznep. ByTin dyuknus, mekapaiblK, MATPUIIA, CAMATTAYBII AHBIKTAYBIII, MEH-
mrikTi MoH, KpoHnekep cMMBOJIBI, affHbIFAH KOHE aiffHbIMaraH IIeKapaJblK, ecernTep, TYHiHzec
JuarpamMMa, KCIIOHEHIIMAJJIBIK TYP.

Kanryxun B.E., Tac6aesa H.M., Kac6ax6aesa A.J., Cenrosa A.A. O COIIPIKEHHON
JMATPAMME OJHON HEJION ®YHKIINI

B pabore nzyuena ananuTuvdeckas CTPYKTyPa XapaKTEPUCTUUECKOTO OIPEIETUTE IS 3313~
91 Ha COOCTBEHHBIE 3HAYECHUA JJTsT JUHEHHOTO AuddepeHITuaILHOIO YPAaBHEHNsT HA KOHETHOM
otpe3ke. [IpuBeennl pa3IndHbie MPEICTABIECHNS YKA3aHHOTO XapaKTEPUCTUIECKOTO OIIpee-
JTesisi. BhIScHEH TOPSAI0K W TUIT POCTa XapaKTePUCTUIECKOro onpeaennTess. [Ipoanamm3u-
POBaHBI BOBMOYKHbBIE BUIbI COPSIYKEHHON JTUATPAMMbBI XapaKTEePUCTUIECKOr0 orpejiesinTeis. B
3aBUCUMOCTHU OT WHJIIEKCOB HEHYJIEBLIX MUHODPOB I'PAHUYHON MATPHUIBI CHOPMYINPOBAHA TEO-
peMa O JIOKAJU3alul COOCTBEHHBIX 3HAYEHUI MCXOMHON 3aa4m.

Krouesnre ciioBa. llenas dyuknus, rpaHndHas MaTPUIlA, XapPAKTEPUCTUIECKUN OIpeie-
JINTeJIb, COOCTBEHHOE 3HadeHue, cuMBOJl KpoHekepa, BbIPOXK/IEHHBIE U HEBBIPOXK/IEHHBIE T'Da-
HUYHBIE 33J[a491, CONPsKEHHAs TUarpamMMa, SKCIIOHEHITNAIbHBIA THII.
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Abstract. We establish solvability criteria and construct the exact solution to some general boundary
value problems for linear Fredholm integro-partial differential equations, or partial differential equations,
with nonstandard integral boundary conditions. Our approach is based on a perturbation technique
and the theory of extensions of operators in Banach spaces, and assumes the knowledge of the explicit
solution of an ideal simpler problem involving the associated partial differential equation with simple

conventional boundary conditions.

Keywords. Integro-differential equations, differential operators, integral boundary conditions, exact

solutions.

1 Introduction

Integro-partial differential equations of Fredholm type appear in mathematical modeling
in many disciplines of natural sciences, engineering, computer science and economics, see for
example, in [1]-[6] and the references therein. Boundary value problems for these types of
equations coupled with general nonlocal boundary conditions are difficult to solve analytically.
Numerical methods are usually employed, whereas over the last decades there is an increasing
interest in closed form solutions encouraged by the available computer algebra systems and
the advances made in symbolic computations.

An approach to attack general boundary value problems is to treat multipoint and integral
boundary conditions as perturbations of simpler classical boundary conditions [7]. Thus, the
solution of a boundary value problem for the differential equation with nonlocal (perturbed)
boundary conditions may be constructed from the solution of a corresponding ideal prob-
lem for the differential equation subject to simpler (unperturbed) boundary conditions [8].
Moreover, Fredholm integro-differential equations may be viewed as differential equations

2010 Mathematics Subject Classification: 45K05, 35R09, 35A02, 35C05, 47G20.
© 2020 Kazakh Mathematical Journal. All right reserved.



14 Efthimios Providas, loannis N. Parasidis

perturbed by one or more integral terms and therefore their solution may be obtained from
the solution of the associated (unperturbed) differential equation [9]-[16].

In [17], the authors have applied this approach along with the theory of extensions of
operators in Banach spaces to obtain closed form solutions for some partial boundary value
problems with nonstandard perturbed boundary conditions. Here, we continue the work
in [17] and derive exact solutions of two more categories of boundary value problems for
integro-partial differential equations subject to some rather uncommon integral boundary
conditions.

Let X,Y, Z be complex Banach spaces and X*, Y™* the adjoint spaces of X and Y, i.e. the
set of all complex-valued bounded linear functionals on X and Y, respectively. Let A : X — Y
be a maximal, not necessarily closed, linear partial differential operator with domain D(A)
and range R(A), and T' : X4 2 Z a bounded linear operator, where X4 = (D(A), || - ||x,)
is a Banach space with respect to a norm || - ||x,. Let A be a correct restriction of A and
consider the "unperturbed” boundary value problem

Au=Au=f, feY,

D(A) = {u:u € D(A), Tu=0}. (1)

The correct problem (1) is known to possess a unique solution for every f € Y. We assume
that the inverse operator A=1 is known in an explicit form and the solution u = A1 f can
be obtained analytically for every f € Y.

In this paper, we consider the "perturbed” boundary value problem

Bu=Au—gF(Au) = f, f €Y,

D(B) ={u:ue€ D(A), Tu=vV(Au)}, (2)

where B : X — Y is a linear operator, F' = col(Fy,..., F,) is a column vector of bounded
linear functionals F; € Y*, g = (g1,...,¢gn) is a row vector of n linearly independent elements
9 €Y,V =col(¥y,...,¥,,) is a column vector of bounded linear functionals ¥; € Y* and
v =(v1,...,Un) is a vector of m elements v; € Z. We examine the solvability of problem (2)
and construct its solution in closed form when the inverse operator A1 is available explicitly.
Further, we contemplate the more involved ”perturbed” boundary value problem

Biu = A%u — gF(A%u) — qF(Au) = f, f €Y,
D(By) = {u:u € D(A?%), Tu = v¥(Au),
[(Au) = v¥(A%u) + wF(Au)}, (3)

where now X =Y, By : X — X is a linear operator and, in addition to above definitions,
9i,qi € X are 2n linearly independent elements, ¢ = (¢1,-..,¢n), and w = (wy,...,wy,) is a
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Extension operator method for solving nonstandard partial boundary ... 15

row vector of n elements w; € Z. We examine the existence and uniqueness of its solution
and obtain it in closed form when the inverse operator A~ is known.

The paper is organized as follows. In Section 2, some preliminary results are presented.
The main results are given in Sections 3, where the explicit solution formulae for problems (2),
(3) are derived. An application to integro-partial differential equations is considered in Section
4. Finally, some conclusions are quoted in Section 5.

2 Preliminaries

An operator A, is said to be an extension of an operator A;, or Aj is said to be a
restriction of Ag, compactly A1 C Aqg, if D(A2) D D(A1) and Aju = Agu, for all u € D(A;).
An operator A : X — Y is called closed if for every sequence u,, in D(A) such that u, — ug
in X and Au, — fo in Y, it follows that ug € D(A) and Aug = fy. An operator A is called
mazimal if R(A) =Y and ker A # {0}. An operator A:X =Y is correct if R(A\) =Y and
the inverse A~! exists and is continuous on Y. An operator A is called a correct restriction
of a maximal operator A if it is a correct operator and AcC A

Let U; e Y*, i=1,...,m, and ¥ = col(Vy,...,¥,,). Also,let g; €Y, j=1,...,n, and
g=1(91,--.,9n). We will denote by ¥(g) the m x n matrix whose i, j-th entry ¥;(g;) is the
value of the functional ¥; on the element g;; note that

¥ (gC) = ¥(9)C, (4)

where C'is a n x | constant matrix. Further, we will designate by 0,,, the m X n zero matrix,
by 0,, the zero m x m matrix, by I,, the identity m x m matrix, by c a constant vector and
by 0 the zero column vector. When vectors and matrices are expressed explicitly, brackets
and square brackets are used, respectively.

The boundary operator I' in (1), (2) and (3) may be a column vector I'u =
col(Tyu, ..., Txu) of linear operators T; : X4 & Z;,i = 1,...,k, (Z = Z1 x --- X Zy).
In this case, the elements of the vectors v and w in (2) and (3) are column vectors; for
example,

Flu Vi1 - Uim \Ill(Au)
I'iu Vkl -+ Ukm U, (Au)
V11 Ulm
=| ¢ |WAu)+--+ | 0| Un(Au)
Vk1 Vkm
=1V (Au) + - - 4+ v Vo (Au)
= vV (Au). (5)
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16 Efthimios Providas, loannis N. Parasidis

The following lemma is attributed to Oinarov [18] and it is recalled here together with its
proof for easy of reference.

Lemma 1. Let X,Y,Z be complex Banach spaces, A : X — Y a maximal closed linear
operator, T' : X4 2 Z a bounded linear boundary operator, where

Xa= (D), [ -lxa)s Nullxs = llullx +[[Auly, Vue D(A), (6)

is a Banach space, and A a correct restriction of A defined in (1). Then the restriction r of
I" to ker A, where ker A is a Banach space in the induced topology of X, is correct.

Proof. By assumption the operator I" is bounded from X 4 onto Z, i.e. there exists a constant
¢ > 0 not depending on u € X4 such that

ITullz < ellully, = c(llullx + [|Aully),  Vu € D(A). (7)

For every ug € ker A, we have ||[I'ug||z = Hfuon < ¢|lug||x. Hence, the operator [ is bounded
on ker A. Moreover, I is closed because ker A is closed. From the condition kerI' = D(A)
and the decomposition [19],

D(A) = D(A) @ ker A, (8)

it follows that kerI'Nker A = {0} and _thus the operator T is injective. From (8) it is implied
that Z = R(I') =T'D(A) =Tker A = errA and therefore Z = R(I' ) and the domain of 1
is the whole of Z. Since the operator I1is closed, because T is closed, D( N=Zand Z
is a Banach space, then by the Closed-Graph Theorem the operator [ is bounded. U

We also prove the next lemma which does not require the operator A to be closed, but it
suffices to be the composition A = A3A; of two maximal closed linear operators Ay, As.

Lemma 2. Let X,Y,Z be complex Banach spaces, A1 : X — X and As : X — Y maximal
closed linear operators, and A : X — Y a maximal linear operator defined by the composition
A= AyA;. LetT: X4 2 Z be a continuous boundary operator with

Xa= (DA, I Ixa) llullx, = llullx +[[Arullx + [|AzAvully, (9)
and the space
N = (ker A, |- |[~), [lully = llullx + | Avullx, v € ker A. (10)

Let there eists a correct restriction A of A as specified in (1), and let T be a restriction of
I" to ker A. Then:

(i) X4 and N are Banach spaces.

KAZAKH MATHEMATICAL JOURNAL, 20:2 (2020) 13-29



Extension operator method for solving nonstandard partial boundary ... 17

(ii) The operator T:N 23 Zis correct.

Proof.

(i) Let {un} C X4 be a fundamental sequence, i.e. ||u, — upm|x, — 0, n,m — co. Then,
by (9),

l|n — umHXA = |lun — umllx + A1 (un — um)|lx + [[A2A41 (un — um)[ly, n,m — oo,
and hence
lun — umllx — 0, [|A1(un —um)|lx — 0, ||A2A1(up — um)|ly — 0, n,m — oo.
Since X,Y are Banach spaces, there exist elements ug,vg € X and zy € Y such that
Up — U, AUy — vy, AsAiu, — 29, M — 00.

By the assumption that the operators Aj, Ag are closed, we obtain ug € D(A;), Ajup = vo,
vg € D(Ag) and Agvg = zg. Consequently, ug € D(A2A1) = D(A) and hence X 4 is a Banach
space.

It is easy to verify that N is a normed space. Let {u,} be a fundamental sequence of N.
Then 4, € ker A C D(A) and by (10),

||ﬂn - ﬂmHN = ||ﬂn - ﬂmHX + ||A1(an - zzm)HX — 0, n,m — oo,

and thus
[tn — Gml|x — 0, [|A1(Gn — tm)||lx — 0, n,m — 0.

Then there exist elements g, 99 € X such that a, §> g and 0, = A, 5) Up. From the
closeness of A; follows that 49 € D(Ay) and A4y = 0. From 0, X 09 and 0 = As, X
0, n — oo, because the operator As is closed, it follows that Aty = 09 € D(Az) and
As A1ty = 0. So ug € N and N is a Banach space.

(i) Note that ker ' = {0} and D(I'"!) = Z as it has been proved already in Lemma 1.
Further, since I' : X4 2 Z is bounded, [ cT and (10), for all uw € N there exists a number
¢ > 0 such that R

[Tullz = ||Tullz

< cllullx, < e(lullx +[[Arulx + [[A2Avully)
= c(llullx + [[Arullx) = cllul|n- (11)

So, the operator T:NZZis bounded. The operator T is closed, because D(f) :AkerA and
N is a Banach space. It follows that I'tis closed and by taking into account DI 1Y =2,
it is implied that I'~! is bounded. Therefore, T' : N 2% Z is correct. ]
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18 Efthimios Providas, loannis N. Parasidis

3 Main results

In this section, we present the two main theorems which provide the solvability and
uniqueness conditions and the solution in closed form of the general boundary value prob-
lems (2) and (3).

Theorem 1. Let X,Y, Z be complex Banach spaces, the operators A: X =Y and ' : Xy z
7 as specified in Lemma 1 or Lemma 2, A a correct restriction of A as in (1), T a correct
restriction of I' to ker A, and the operator B : X — 'Y defined by

Bu = Au — gF(Au),

D(B) ={u:ue€ D(A), Tu=vY(Au)}, (12)

where F' = col(F1,..., F,) is a vector of linear bounded functionals F; € Y*, g = (g1,...,9n)
is a vector of n linearly independent elements g; € Y, ¥ = col(¥1,...,¥,,) is a vector of
linear bounded functionals V; € Y* and v = (v1,...,vm) is a vector of m elements v; € Z.
Then:

(i) The operator B is injective if and only if
det W = det [I,, — F(g)] # 0. (13)

(i) Moreover, under the condition (13) the operator B is correct and the unique solution to
boundary value problem

Bu=f, VfeY, (14)
is given by the formula
= B7lf
— A4 |[A g+ T W(g) | WLE(f) + T W (). (15)

Proof. (i) Suppose detW # 0. Let u € ker B, then Bu = Au — gF(Au) = 0 and T'u =
vW(Au). Furthermore, F(Au — gF(Au)) = [I, — F(9)]F(Au) = WF(Au) = 0. This implies
that F'(Au) = 0 and as a consequence Bu = Au = 0 and hence I'u = 0. Thus u € D(A\),
Au = Au = 0 and u = 0 since A is correct. This means ker B = {0} and therefore B is an
injective operator. Conversely, we assume det W = 0 and we will prove that the operator B is
not injective. Then there exists a constant vector ¢ = col(cy, ..., ¢,) # 0 such that We =0
Let the element ug = [A~1g + I'"1v¥(g)]c and observe that ug # 0, because g1, ..., gn is a
linearly independent set and gc # 0; otherwise ¢ = 0. We have

Tug — v¥(Aug) = v¥(g)c — v¥(g)c =0,
Buy = Aug — gF (Aug) = gc — gF(g9)c = g/, — F(g)]c = gWc = g0 = 0. (16)
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Extension operator method for solving nonstandard partial boundary ... 19

Hence ug € ker B C D(B), ker B # {0} and therefore B is not injective.
(ii) Let det W # 0. Equation (14) may be written as

Bu=A (u . f_lv\Il(Au)) _gF(Au)=f, feY,

D(B) = {ue D(A): T (u - f_lv\lf(Au)> =0}, (17)

where T'"1v € ker A. From (17) follows that u — I oW (Au) € D(A) and since A C A, we
obtain R R
Bu=A (u - F_lv\I/(Au)) — gF(Au) = f,
u—T""U(Au) — A 'gF(Au) = A"'f, fEY. (18)
Further, by applying the vector F' on both sides of (14), we get
F(Au — gF(Au)) = F(f),
[In — F(g)]F(Au) = F(f),
F(Au) = W (f), (19)

for every w € D(B) and f € Y. Similarly, application of the vector ¥ on both sides of (14)
yields
W(Au - gF (Au)) = B(1),
U(Au) = U(g)F(Au) + U(f). (20)
Substituting (19) and (20) into (18), we acquire (15). Because f in (15) is arbitrary, we
have R(B) = Y. Moreover, since the operators A- L ! and the functionals F,... F,,

Uy,...,¥,, are bounded it follows that B~! is bounded too. Thus, the operator B is correct.
O

The boundary value problem (3) is more cumbersome to solve. We begin by noting that
Ay = A%y,
D(A?) = {u:u e D(A), Tu=0, ['(Au) = 0}. (21)

Theorem 2. Let X, Z be complex Banach spaces, the operators A: X 5> X andT: X, & Z
as specified in Lemma 1 or Lemma 2 with X =Y, A a correct restriction of A as in (1), r
a correct restriction of I' to ker A, and the operator By : X — X defined by

Biu = A*u — qF(Au) — gF (A%u),

D(By) = {u:u € D(A?), Tu = vVU(Au),
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20 Efthimios Providas, loannis N. Parasidis

['(Au) = v¥(A%u) + wF(Au)}, (22)

where F' = col(F1, ..., F,) is a vector of linear bounded functionals F; € X*, ¢ = (q1,-..,qn)
and g = (g1,...,9n) are vectors, where the 2n elements q;,g; € X are linearly independent,
fexXx, U=col(Vy,...,¥,) is a vector of linear bounded functionals ¥; € X*, and v =
(v1,...,0m) and w = (wy, ..., wy) are vectors of m and n elements vj,w; € Z, respectively.
Then:

(i) The operator By is injective if and only if

det L # 0, (23)
where
I, —V@ ) —W(Alg+Ttw) —W(Aly
1= | Owm —FO ) I,—FA'q+Tw) —F(Alg) | (24)
Om Im _\IJ(Q) _\Ij(g)
Onm Onm _F(Q) In - F(g)

(i) Moreover, under the condition (23) the operator By is correct and the unique solution to
boundary value problem
Biu=f, VfelX, (25)

18 given by

V(AL
F(f)
Proof. (i) Let (23) holds true. Let u € ker B; and hence
Byu = A*u — qF (Au) — gF(A%u) = 0,
Tu = v¥(Au),
['(Au) = vU(A%u) + wF(Au). (27)

By noticing that [ c T and f‘lv, I lw € ker A, we can write the last two boundary
equations of (27) as follows

r (u - f_lv\I/(Au)> =0,

KAZAKH MATHEMATICAL JOURNAL, 20:2 (2020) 13-29



Extension operator method for solving nonstandard partial boundary ... 21

r (Au ~ T low(A2) — f—le(Au)) —0, (28)

which means that the elements v — I~ 'oW¥(Au), Au — [ 0¥ (A%u) — T wF(Au) € D(A).
In addition, from the first equation of (27) we may obtain

Ay — qF (Au) — gF (A%u) =

~

A (Au = T1ow(4%) — T wF(Au)) - gF (Au) — gF (A%) = 0,

A (Au ~ T low(A%) — f*le(Au)) — qF(Au) — gF(A%u) = 0,

Au — T U (A%) — (A g+ T 'w)F(Au) — A~ gF(A%u) =0, (29)
and since Au= A (u - f‘lv‘lf(Au)> =A (u - f‘lv\IJ(Au)>, we get

uw=T""0U(Au) + AT wW(A%) + (A 2q + AT~ w) F(Au)

+A2gF(A%), (30)
or conveniently in matrix form
U (Au)
~ ~ ~ ~ i ~ U(A%u)
_ -1 —1p—1 -2 —1p-1 -2
u-(FvAFqu+AFwAg> F(Au) (31)
F(A2%u)

Acting by the vectors ¥ and F' on both sides of (29) and the first equation of (27), we acquire
U(Au) — U(T0)0(A%) — U(A g+ T w)F(Au) — U(A ) F(A%u) =

F(Au) — F(T ') W(A%) — F(A'q+T'w)F(Au) — F(A~'g)F(A%u) =

W(4%) — W(g) F(Au) — ¥(g) F(A%) =0,
F(A%u) — F(q)F(Au) — F(g)F(A%u) = 0,
or in matrix form
U(Au)
L ‘11’7(641:5)) =0, (32)
F(A%u)

where the matrix L is specified in (24). From (32) and the hypothesis it is implied that
col (¥(Au), U(A?u), F(Au), F(A%u)) = 0, which upon substitution into (31) yields u = 0.
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22 Efthimios Providas, loannis N. Parasidis

Thus, ker B; = {0} and therefore B is injective.

Conversely. We assume det L = 0. Observe that

—F(I W) I,—F(Aq+Tw) —F(A g

det L = det I —¥(q) —~¥(g)
Onm _F(Q) L, — F(g)
et | T F(A g+ f_;zg)) — F(T~'0)¥(q)
~F(A~1g) = F(T~'0)¥(g)
In - F(g)
— +det Ly = 0, (33)

by multiplying from the left the second line by F (f‘lv) and adding to the first line of
the matrix. Equation (33) suggests that there exists a vector ¢ = col(cy, c2) # 0, where
c1 = col(cit, ..., c1p) and cg = col(cay, . . ., cap), such that Loc = 0. Consider the element

uo = A~%(qe1 + gea) + AT (w + v¥(q)) e1 + v¥(g)es]
+I o [W(A ) + @ (f_l[w + N’(Q)]) Je

AT (A g) + U(T o) ¥(g)] e, (34)

and notice that ug # 0; otherwise gc1 + gco = 0 which implies ¢; = co = 0 since the vectors
q, g are linearly independent. Notice that

Tug=wv [\Il(ﬁ_lq) + Vv (f‘l[w + U\I/(q)]) Jer

+o[U(A 7 g) + BT )P (g)] o,
I'(Aug) = [w +v¥(g)]e1 + v¥(g)c2,
Aug = A7 (ge1 + gez) + T 7w + v¥(g)]er + T 0T (g)ey,
A’ug = gy + ge,
W(Aug) = W(A g)ey + W(A g)es + W (T [w + v¥(g)]) e

+0(T ') U (g)cy,
(A%up) = U(q)er + (g)ca,
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F(Aug) = F(A™ g)er + F(A™ g)ea + F (T~ [w + 0¥ (q)]) 1

~

+F (T 10)W(g)es,
F(A%up) = F(q)c1 + F(g)ca. (35)

By using (35), we have
Tug — v¥(Aug) = 0,

I'(Aug) — v¥(A%u) — wF(Aug) = (w,0)Lac = 0, (36)

which means that ug € D(By). Further,

Biug = A%ug — qF (Aug) — gF (A%ug)

= qe1 + ges — g[F(A g)er + F(A g)ey + F (T w + v¥(g)]) e

~

+P(T'0)W(g)es| - g [F(@)er + Flg)es]

=(q g)Lx=0, (37)
and hence ug € ker By which implies ker B; # {0} and thus the operator B; is not injective.
(ii) Let det L # 0 and consider the boundary value problem (25), i.e.

Biu = A%u — qF (Au) — gF (A%u) = f,
T'u = vV (Au),
['(Au) = v¥(A%u) + wF(Au), (38)
for any f € X. By taking into account (28) and repeating the same steps in (29), we get

Ay — qF (Au) — gF(A%u) = f,

Au—T 00 (A%) — (A g+ T 'w)F(Au) — A~ gF(A%u) = A7'f, (39)
and
u=A"2f
U (Au)
-1 171 -2 —17—1 -2
+<FvAFqu+AFwAg) Flau) | (40)
F(A%u)
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24 Efthimios Providas, loannis N. Parasidis

Acting now by the vectors ¥ and F' on both sides of (39) and the first equation of (38), we
get

U(Au) T(A-1f)
U(A%) | | FALf)

L F(Au) | — vy | (41)
F(A%) F(f)

where the matrix L is given in (24). Since det L # 0 the system (41) has a unique solution
for any f € X. By inverting the system and substituting into (40), we obtain (26) which is
the unique solution to the problem (38) Moreover, the operator Bj is 1nJectlve and onto, i.e.
R(B;) = X, while the operator Bl_ is bounded since the operators A2 A L ! as well
as the elements of the vectors F' and W are bounded. Thus, the operator 31 is correct. U

4 Examples

To show the implementation and the effectiveness of the method unfolded in the previous
section, we find the solution of a boundary value problem for a partial integro-differential
equation with two integral boundary conditions.

Let the Fredholm integro-partial differential equation

1 1
zy = 20y [ [ sy (o, )dady = 62y(52 ), (w,1) € (42)
0 0

subject to two boundary conditions

11
= 4x//u$y x,y)dzdy,
0 0

1 1
(0, ) = //fwwymw} (43)
0 0

where Q = {(z,y) ER2: 0 < z,y < 1}, Q = {(z,y) € R? : 0 < z,y < 1}, and C(Q) denotes
the space of all continuous functions u = u(z,y) defined on €.

Comparing problem (42), (43) with (12) and (14), it seems natural to take the operator
A:C(Q) — C(Q), the vectors F = (F}) € C(Q)* and g = (g1) € C(Q), and the function
f € C(Q) defined as follows

Au = gy, D(A)={uecC@): uy, uyy € C(Q)},

1

1
//$2uxy(x7y)dxdy )

0 0
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Extension operator method for solving nonstandard partial boundary ... 25

g9 = (2zy),
f = 6xy(5z —6). (44)

In addition, the boundary operator I' : X4 2% Z, the vector ¥ = col(¥y, Uy) € [C’(ﬁ)*]2 and
the vector v € Z are specified as

11
[ [ vy, y)dxdy
00

11
ffy2u$y(x,y)d$dy
00

z={o= (20): @ e, a0 el

with, [|zl|z = [lz1(2)llc + |22(y) [l (46)

is a Banach space, and
Xa=D(A), [ lIxa), Nullxs = llullc@ + luellom) + lveyllog)

N = (ker A, [[-[ln), llully = llullog) + lluall o) (47)

are also Banach spaces by Lemma 2, since Au = AsAju, where Aju = uy, D(A1) = {u €
C(Q) : uy € C(Q)} and Asu = uy, D(A2) = {u € C(Q) : uy € C(Q)} are maximal closed
operators. Moreover, by the same lemma it is concluded that the operator T c T is correct.
To find the inverse operator f‘l, we notice that [ 1z = u(z,y) € ker A, Vz € Z, ie.
z21(x) = ug(x,0), 22(y) = u(0,y) and Au = uyy = 0, which after double integration yields

T

Iz = /zl(s)ds + 29(y), Vz e Z. (48)
0

Also, the correct operator A is defined by
~ ~ o ux(xz,0) \ (0
Au = ugy, D(A) = {u € D(A): < (0, y) ) = < 0 >}, (49)
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26 Efthimios Providas, loannis N. Parasidis

and its inverse is given by

T Y

Alf— f(t,s)dsdt, Vfe ). (50)
/]

Finally, it is easy to show that the functionals F, ¥, ¥y are bounded. Thus, the operator
B :C(Q) — C(Q) is defined by

11
Bu = Au — gF (Au) = ugy — 22y / / x2umy (z,y)dzdy,
0 0

D(B) ={ue€ D(A) : Tu =v¥(Au)}, (51)
and the given problem is formulated as
Bu(z,y) = f(z,y). (52)

We now apply Theorem 1. To examine its solvability, we compute

W=[1-F() |=[2]. (53)
As a consequence det W = % # 0 and therefore the given problem possesses a unique solution
for every f € C(Q). To find the solution, we perform the following calculations

z vy
A\_lf = f(t,s)dsdt = z*y*(5z — 9),
0/0/

Alg = O/O/g(t,s)dsdt :(éngﬁ),
1 1
F() = O/ O/ fleday ) = (-3),
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Extension operator method for solving nonstandard partial boundary ... 27

11
[ [ 9(z,y)dzdy 1
T 1
W(g) = \;Eg; =) - [ : ]
Y [ [ 2o, y)dady | L
00
= ( Tloy T loy ) = (222 2(y-1)), (54)

and then by substituting the above into the formula (15), we obtain

u(z,y) = 5x3y* — 102%(y* + 1) —y + 1. (55)

5 Conclusions

By employing a perturbation technique and the theory of extensions of operators in Ba-
nach spaces we have developed a method for examining the solvability and constructing the
unique solution in closed form of a kind of boundary value problems incorporating a linear
Fredholm integro-partial differential equation and nonlocal multipoint and integral boundary
conditions of special type. The method has been proven to be effective, easy to use and
simple to program to a computer algebra system.

The method can be adjusted for solving general boundary value problems for partial
differential equations with nonstandard boundary conditions.
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Eprumuoc Iposunac, san Hecreposuu [lapacuaunc CTAHJIAPTTHI EMEC JIEPBEC
TYBIHABIJIBI ITETTIK ECEIITEP/I HIEIIYTE APHAJIFAH KEHENTY OIIEPATO-
PBI o 1CI

Biz cranmaprThl eMec MHTErpaJsblK IeKapaJsblK IIapTTapbl 0ap »KoHe jepbec TybIHIbI-
JIbl CBIBBIKTHI PperobM MHTErPasIbIK-1uddepeHIuaIIblK, TeHaeyaepi yIima Keitbip »xkaJ-
bl MIEeTTIK eCenTep/iH MENNIiMIIK KPUTEPUIIEPIH TaralibIHIaliMbI3 KoHe JoJT IIEeTiMiH
TYprbI3aMbr3. Bismig Tociimimiz aybiTkyrap ojici Mmen Banax keHicTikTepinzeri omeparopJiap-
JIbIH KEHEUTYJIEp TeOpUSChbIHA HeTi3JIeTeH opi KapanaibiM Koyiari meKapaJsblK MapTTapbl
bap smepbec TYBIHIBLIBI COffKeC TEHJIeY/i KAMTUTBIH MYJITIKCI3 OaphbIHITa KapalailbiM ecenTiH
AffKBIH TIenriMil OLTy/i 2KopaMasIaii bl

Kinrrix ceznep. depbec TybIHIBLIBI HHTErPAIIBIK- 10 (MEPEHINAIBIK, TeHAEYIep, Id-
depeHInAIIbIK, OllepaTopIap, MHTErPAJIILIK ITEKAPAJLIK IITapTTap, J9J1 IMIeIIiMIep.

Estumuoc [posugac, Usan Hecreposuu IMapacumane METO/ OITEPATOPA PACIIIU-
PEHUA OJ14d PEINNEHNA HECTAHJIAPTHBIX YACTUYHBIX KPAEBBIX 3AJ/TAY

MpbI ycranaB/mBaeM KPUTEPHUHU PA3PENINMOCTH M CTPOUM TOYHOE PeIleHrne HEKOTOPBIX 00-
UX KPAEBBIX 3aJa4 Jijis JUHEHHBIX HHTerpo-auddepeHnuaibabix ypasaenuii Operoibma
C YaCTHBIMH ITPOU3BOJHBIMUA U HECTAHIAPTHBIMU WHTETPAJIBHBIMU I'PAHUYHBIMUA YCJIOBUSIMU.
Ham nosixon ocHOBaH Ha MeTO/e BO3MYIIEHUM W TEOPUU PACIIUpEHu!l omepaTopoB B Dama-
XOBBIX IMPOCTPAHCTBAX U IPEJIO/aracT 3HAHUE sIBHOTO PeIIeHUsI WUIeaIbHOM 0ojiee ITPOCTOi
3a/la4y, BKJIIOYAIOIIEl COOTBETCTBYIONEE ypaBHEHUE B YaCTHBIX IIPOU3BOIHBIX C IIPOCTBIMU
OOBIMHBIMU T'PAHUYIHBIMY YCJIOBUSIMU.

Kmrouesnbre ciiopa. nrerpo-auddepenimaibubie ypaBHEHUS ¢ YACTHBIMA ITPOU3BOIHBIM,
nuddepeHnnaabHbIe OIEePaTOPbl, HHTErPAJbHbIE TPAHUIHBIE YCIOBUsI, TOYHBIE PEIICHUS.
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Abstract. Recently, we have introduced unpredictable oscillations, which are in the basis of Poincaré
chaos. For theoretical analysis as well as for applications, it is necessary to provide constructive examples
of unpredictable functions. We have already provided such functions utilizing orbits of the logistic map,
and in the present paper we suggest another way of construction of the functions by applying the

Bernoulli random process. A simulation for a randomly determined unpredictable function is provided.

Keywords. Unpredictable functions, Unpredictable sequences, Bernoulli process, Poincaré chaos, Sym-

bolic dynamics.

1 Introduction and preliminaries

The theory of oscillations extremely rely on functions, which can be either tabulated or
formalized. The ones in the second category are based first of all on the functions which
are trigonometric, polynomials, hyperbolic trigonometric and others. All of them have been
tabulated in computer memories. Next ones are functions, which can be presented as finite
or infinite sums of the former ones. They are evaluated by developing software programs
and very helpful in applications. Other are oscillations produced as solutions of differential
equations. There exists, even, the large class in the qualitative theory of differential equations
— oscillatory differential equations. The solutions are approved as oscillations by special type
of criteria for the existence. In this study, we focus on functions which are shaped through
qualitative conditions of definitions. They make the core of the research area in the theory
of dynamical systems, issued by H. Poincaré, G. Birkhoff, and others [1], [2]. These are
periodic, quasi-periodic, almost periodic oscillations, recurrent and Poisson stable orbits [1]—
[4]. A special type of Poisson stable orbit called an unpredictable trajectory, which leads
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to Poincaré chaos in the quasi-minimal set, was introduced in the paper [5]. Moreover,
the papers [6]-[9] were concerned with unpredictable solutions of various types of quasi-
linear differential equations. In the present paper, we introduce a new way for unpredictable
functions construction benefiting from the dynamics associated with the discrete distribution
[10]. We consider the process with a finite number of possible outcomes to generate an
unpredictable sequence. The sequence is then used to construct a continuous unpredictable
function. Thus, unpredictable oscillations appeared as solutions of linear or quasi-linear
differential equations, i.e., as outputs of the systems, provided that there is an unpredictable
input. The natural question how it is possible to choose the inputs being unpredictable arises.
For this reason in the previous papers [6]-[9], we introduced unpredictable functions built
by applying orbits of the logistic map, which were verified to be unpredictable sequences.
One can confirm that in this way we utilize several other discrete equations with dynamics
topologically equivalent to the symbolic dynamics [11], [12]. This is why, they are in some
sense the same as those functions, which have been already determined in our research. For
that reason, the task of construction of new unpredictable oscillations is undertaken in the
present paper. We utilize the two principal issues for solving the problem. The first one is
that the set of all orbits of the symbolic dynamics coincides with all possible sequences of
the symbols. Moreover, realizations of the Bernoulli random process altogether are the set of
sequences. Consequently, constructing an orbit of a random process, we obtain an orbit of
the symbolic dynamics and simulate a part of the unpredictable sequence. Thus, we obtain
that a single iteration of the Bernoulli shift is the same as a trial for the Bernoulli process.
The next definitions are concerned with unpredictable sequences and functions.

Definition 1.1 [8]. A bounded sequence {vi}, k € Z, in RP is called unpredictable if there
exist a positive number €y and sequences {(,}, {mn}, n € N, of positive integers both of which
diverge to infinity such that ||Vgyc, — vkl| = 0 as n — oo for each k in bounded intervals of
integers and ||v¢, 4y, — Vn, || = €0 for each n € N.

Definition 1.2 [6]. A uniformly continuous and bounded function h : R — RP is unpredictable
if there exist positive numbers g, o and sequences {t,}, {un} both of which diverge to infinity
such that h(t+t,) — h(t) asn — oo uniformly on compact subsets of R and ||h(t+t,)—h(t)|| >
o for each t € [uy, — o, up + o] and n € N.

Consider the space X, of bi-infinite sequences ...i_9i_1.ig%1%2 ... on finite number of
complex numbers a1, ..., a,,, with the metric

[e.9]

arn= 'y gl 1)

k=—o00

is the absolute value.

where I = ( . i_gi_l.ioilig . .), J = ( . .j_Qj_l.j()jle . .), and
Introduce the Bernoulli shift ¢ : ¥, — ¥, such that

80(( .. Z',Qifl.ioilig . )) = ( .. Z.,Qiflio.ilig’ig .. ) (2)
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The map ¢ is continuous and the metric space ¥, is compact [12].

Let us, now, build an unpredictable point for the dynamics (X,,,d, ¢). Without loss of
generality, we consider a particular case of the space when m = 2, a; = 0, az = 1. We need

a collection of finite sequences 7, r € N, k = 1,2,...,2", consisting of 0’s and 1’s. Let us
use the notations i1 = (0) and i} = (1) for the sequences of length 1. For each natural
number 7, we recursively define z;;il = (i;,0) and 22:1 = (iz1), k = 1,2,...,2", where

ZQZFEI and zgzl are obtained by respectively inserting 0 and 1 to the end of the sequence

it of length r. For instance, i = (i{0) = (00), i3 = (i{1) = (01), 4 = (i30) = (10),

and i2 = (i31) = (11) are the sequences of length 2. Now consider the following sequence

i* = (...i3i3i3i3i%i3.i}i%i3i3i3i243 .. ). In [5] it was proved that i* is an unpredictable point
of the dynamics.

Because the trajectory which initiates at ¢* is dense in the quasi-minimal set ¥,,, the
dynamics is Poincaré chaotic according to Theorem 3.1 presented in paper [5]. Moreover,
there is an uncountable set of unpredictable points in the set. From this discussion it implies
that any numerical simulation of a discrete finite distribution is an approximation of an
unpredictable sequence. Indeed, the metric peculiarity implies that if one considers the point
1" in X, as bi-infinite sequence, then it is easily seen that it is an unpredictable sequence
in the sense of Definition 1.1. This is in the base of the construction of an unpredictable
function in the next section.

2 Main result

Let us fix a finite string i, ...,%p, 1 < k < p, on the set of complex numbers aq,...,apn,.
It can be accepted as an arc of a sequence from 3,,. Since of the last section discussion,
the string can be approximated with arbitrary precision by a shift of the sequence i*. More
precisely, the peculiarity of the metric implies that as the result of the shifting we have
coincidence of elements in arcs, and the term approximation relates only to the length of
the coincidence. This possibility to approximate by the shifts is the main advantage of
the Poincaré chaos against other types of chaos. Taking into account that there are limits
for the approximation validity in numerical simulations by computers, we can admit that
simulation of the string is simulation of the unpredictable sequence itself. This is why, we
accept that finite realizations of the Bernoulli process, which are obtained randomly present
the unpredictable sequence, since, at first, they are not periodic even on a sufficiently large
interval of discrete time, and, secondly, since of the above explanation the simulation is an
approximation of the sequence with arbitrary precision. The arbitrariness guarantees that
in applications we can get the simulations as the unpredictable sequence with the atributes
listed in the definition. Moreover, we must not be confused with the approximations in the
basis of the definition. This is true for all types of functions, which are determined through
infinitely long algorithms such as series, for instance.

Fix an unpredictable sequence ¢*, which is defined on the two real numbers a and b. One
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can find that the unpredictability constant €y can be taken equal to |a—b|. Define the function
x(t) : R — R through the equation

x(t) = / e~ =)n(s)ds, (3)

—00

where 7(t) : R — R is the piecewise constant function satisfying n(t) = i} for ¢t € [k, k + 1),
k € Z. One can confirm that sup |x(t)| < M,, where M, = max{|al|, |b|}.
teR

We will show that the function x(t) defined by (3) is unpredictable. Consider a fixed
compact interval [a, 8] and a positive number . We assume without loss of generality that
a and B are integers. Let us fix a positive number £ and an integer v < « which satisfy the
inequalities Me= 2@~ < £/4 and £(1 — e~ 2(P=7)) < . Suppose that n is a sufficiently large
natural number satisfying |7 (t + ¢,) — 7(t)| < £ for every ¢ in [, 5]. Accordingly, we have for

t € [a, (] that
-

Xt + o) — x(8)] < / 2 [n(s + Co) — m(s)| ds
B8 vy B
+/€_2(t_8) |T(s + Cn) — 7(s)|ds < / e 2t=9)9ds 4 /e_Q(t_S)fds
Yy —00 ¥

< oMe-207) 4 %[1 _ e8] < .

Thus, |x(t+ ¢.) — x(t)| = 0 as n — oo uniformly on the interval [«, f].

Let us fix a number n and consider two alternative cases: (i) |x(nn + Gu) — x(mn)] < 2

8
and (ii) ’X(T/n + Cn) - X(nn)‘ 2 %0'
(i) There exists a positive number & < 1 such that e=>* = Z. Using the relation
t
X(t+Gn) = x(&) = X(M + Cn) = X (1) + /6_2“_5) ((s + Cn) — m(s))ds (4)

Mn

we obtain that

IX(E+ Ga) — x(8)] > | / e 2 (s 4 o) — 7(s))|ds — |7(nn + Gu) — 7(0)|
n

R B I PR A )
—/6 cods — g =5 (l—e™) — g =5
Mn
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for t € [, + K, mn + 1).

(ii) There exists a positive number x < 1 such that 1 — e~2* = 4. From the relation (4)
we get

W@+Qﬁ—x@ﬂzwwn+@)—ﬁmm—!/ffwsNﬂS+%)—ﬂ$M8

t
€0 —2(t—s) €0 —2x €0
> - 2s > — —[1 — —
-8 / ‘ ds 2 8 [1=e™] 24

for ¢t € [nn, N + k).
Thus, x(t) is an unpredictable function.
It is easy to see that x(t) is a solution of the differential equation

¥ = —x+h(t) (5)
with
0
X(0) = / e*h(s)ds, (6)

but we do not know the value x(0) precisely, since it cannot be evaluated by the improper
integral (6). Nevertheless, we utilize that x(¢) is an exponentially stable solution of equation
(5). Therefore, any solution ¢(t) of (5) approximates x(¢). The approximation is better
for larger ¢ such that ||x(t) — @(t)]| < [|x(0) —¢(0)][e™, t > 0. For that reason we take
©(0) = 0.5, so that ||x(t) — ¢(t)| < e < 10717 for ¢ € [50,100]. It is less than Matlab
precision between 50 and 100. Hence, the part of the time series of ¢(t) for 50 < ¢t < 100 can
be accepted as the graph of the function x/(¢).

In Figure 1 we depict the unpredictable function x(¢) defined by equation (3). For the
simulation, we use the function 7(t) = ix, t € [u(k — 1), uk), p = 0.1, k € N. The sequence
i is generated randomly such that i = 0,1 for each £k =1,2,....

0.5 T T T T T

$1ch - iy ’WMJMW
T W N WW\M M JW i W\WW [

0.1

0 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

Figure 1 — Time series of the unpredictable function ()
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Axmer M., @er M.O., Anemxaiim E.M. CTOXACTUKAJIBIK TYPIE AHBIKTAJIPAH
BOJIZKAHBATAH OYHKITS

IIyankape xaocwl Herizimme kaTkaH OoskanbaraH TepbesicTepmai 0i3 YKaKbIHIA €HTI3reH
60J1aTEIHOBIZ. TeoPHUSIIbIK TaaIayMeH KaTap, KOJMIaHbIC TYPFBICHIHAH aJIFaHia, ODoKaHOaraH
GYHKIUATAPIABIH KYPBLIBIMIBIK MbBICAJIAPBIH YChIHY KaxKeT OoJiafibl. BypbiH 0613 Ooskan-
baraH (GyHKOUSIIAPIbI JIOTHCTUKAJBIK, OeiiHesiey opOMTaJapblH MMaiifagaHa OTBIPBII KypraH
6oJIcaK, OChl MaKaJIaMbI3]1a aTaJFaH (DYHKIUIAP/Ibl Ke3/1eiicoK, BepHysu mporecin KoJana
OTBIPBIT KYPY/IbIH OacKa o/IiciH yechiHaMbI3. Kesmeiicok aHbIKTaran Oo/Kanbaran (QyHKIIIATa
apHaJIFaH MOJIEeJIJIey YCBIHBLIAIBL.

Kinrrix ceznep. Bomkaubaran dynkius, bomxandbaran Tizdbex, Bepuysiu mporeci, [yan-
Kape XaoChl, CHMBOJIIBIK, JTUHAMUKA.

Axmer M., ®ern M.O., Anemxkaiyim E.M. CTOXACTUYECKUN OIIPEIEJIEHHAS
HEITPEJICKA3YEMAA ®OYHKIIUA

Hemnpenckazyemble kKosebanust, KOTOpbIe JieykaT B ocHOBe xaoca llyankape, Obuin BBEjIE-
HBI HAMHU HegaBHO. Kak s TeopeTndeckoro aHajn3a, TaK U JJIs TPUIOKEHWH HeOOXOIIMO
[IPEJIOCTABJISATh KOHCTPYKTUBHBIE IIPUMEPBI HEIllpeIcKa3yeMbix (yHkIuit. Panee Mbl cTpomin
HelpeJcKasyeMble (PYHKIUK, UCIOJIB3Ysl OPOUTHI JIOTHCTHIECKOTO OTOOPayKeHusl, I B HACTO-
AMEl cTaThe IpejjaraeM JApyroil crocod moctpoerust MYHKIUI ¢ IPUMEHEHUEM CJIyYaliHOTO
mportecca Beprysan. [Ipemmokeno MomenpoBanme s CIy<IaiHo OMpeIeIeHHON HeMpeIcKa-
3yeMoil (DyHKIIHH.

Kirouesnie ciioBa. Henpenckasyemble (byHKIMSI, HelpeacKa3yeMasl I0C/IeI0BaTeIbHOCTD,
nportecc bBeprysiu, xaoc Ilyankape, cuMBoindecKkas TUHAMUAKA.
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Abstract. It is well-known that the Dirichlet problem is ill-posed for general hyperbolic equations.
Earlier work mostly studied this problem using the functional analysis methods, which is inconvenient
for applications. This paper establishes a multi-dimensional domain, where the Dirichlet and Poincare

problems for the degenerate hyperbolic equations are well-posed.
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1 Introduction

It has been shown (see [1]) that one of the fundamental problems of mathematical physics,
that is, the study of the behavior of an oscillating string, is incorrect on a plane in the case
when the boundary conditions are given on the entire boundary of the region. As noted in
[2], [3], the Dirichlet problem is ill-posed not only for the wave equation but also for general
hyperbolic equations. In [4] it has been shown that a solution to the Dirichlet problem exists
in rectangular domains. Subsequently, this problem was investigated using the functional
analysis methods [5], which is however inconvenient for the use in applied work.

A more complete bibliography of works devoted to this subject can be found in the
monographs [3], [6].

In [7]-[10], the Dirichlet and Poincare problems for degenerate multidimensional hyper-
bolic equations were analyzed. These works show that the well-posedness of these problems
crucially depends on the height of the cylindrical region under study.

In this paper, we establish a multi-dimensional region inside a characteristic conoid in
which the Dirichlet and Poincare problems for the Gellerstedt equation are uniquely solvable.

2010 Mathematics Subject Classification: 35R12.

Funding: The work is supported by the grant project AP 05134615 from the Ministry of Science and
Education of the Republic of Kazakhstan.

© 2020 Kazakh Mathematical Journal. All right reserved.



38 Serik A. Aldashev

2 Statement of the problem and the main result

Let D be a finite region of the Euclidean space FE,,+1 of points (21, ..., Zm,t), bounded
at t > 0 with the conic surface K : t = ¢(r), ¢(0) = ¢(1) = 0, p(r) € C*([0,1]) N
C?((0,1)), |¢'(r)] < 1, and the plane t = 0, where r = |z| is the length of the vector
x = (x1,...,Tm). Let us denote with S the set {t =0, 0 < |z| < 1} of the points in E,.

In the domain D, let us analyze the multi-dimensional Gellerstedt equation
tpru — Ut — 0, (1)

where p = const > 0, A, is the Laplace operator for variables x1, ..., z,,, m > 2.
The multi-dimensional versions of the Dirichlet and Poincare problems for the equation
(1) are the following problems.

Problem 1. In the domain D, find the solution to the equation (1) from the class C(D) N
Cl1(D U S) N C?(D), satisfying the boundary conditions

uls = 7(x), ulx = o(z), (2)

or
utls = v(z), ulk = o). (3)

Hereafter, it is convenient to switch from the Cartesian coordinates x1, ..., T, t to spher-
ical ones r,01,...,0,,,—1,t, 7>0,0< 60, <27, 0< 60, <m,1=2,3,...,m— 1.

Let {Yfm ()} be a system of linearly independent spherical functions of order n, 1 < k <
kn, (m—2)nlk, = (n+m—3)!2n+m —2),0 = (01,...,0m_1), Wi(S), I = 0,1, ..., being the
Sobolev spaces.

The following lemma holds [11].

Lemma 1. Let f(r,0) € Wi(S). If I > m — 1, then the series

oo kn

n=0 k=1

as well as the series obtained from it by differentiation of order p < 1 — m + 1, converge
absolutely and uniformly in S.

Lemma 2. For f(r,0) € W(S) to hold, it is necessary and sufficient that the coefficients of
the series (4) satisfy the inequalities

oo kn

lfa(r)| < e, ZZnZl]fff(r)F < 9, c¢1, cg = const.

n=1k=1
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vkr, &k (r) the coefficients of the series (4), respectively, of the

functions 7(r,0), v(r, 0) o(r,0).

Let also 7(r,0) = rir*(r,0), v(r,0) = r*v*(r,0), o(r,0) = ric*(r,0),7*(r,0),v*(r,0),
o*(r,0) € W(9), 1 > 2 4 4.

Then, the following theorem holds.

Let us denote by 7¥(r), 7

Theorem. Problem 1 is uniquely solvable.

Note that [12] proves this theorem for the multidimensional wave equation.

3 Proof of the Theorem
In the spherical coordinates, the equation (1) has the form [11]

m—1 1

P (upy + Up — T—Zéu) —uy =0, (5)
m—1
1 0 .0
=3 — L0 (Gt D) 1 g (sinfhsingy ) G > 1,
Z g gin™m—J—1 ‘9j aej (Sln aej) y g1 ) 9j (Sln 1... 81N U; 1) , ] >

j=1
Since the solution to Problem 1 that we are looking for belongs to the class C(D)NC?(D),

it can be sought in the form

oo kn

u(r, 0,t) ZZU rtYk (9), (6)

n=0 k=1

where @¥ (r,t) are functions to be determined.

Substituting (6) into (5), and using the orthogonality of spherical functions Y,ﬁm(Q) [11],
we obtain

-1 A
tp(ﬂﬁrr+m7ﬁk —22aky —ak, =0, My =nn+m—2), k=1,k,, n=0,1,..., (7)

nr P2 on

with the boundary conditions (2) and (3), taking into account Lemma 1, take the forms,
respectively,

uy(r,0) =78 (r), ay(r,p(r)) =on(r), k=1, kn, n=0,1,... (8)
ﬂﬁt(r, 0) = 175(7“), ﬂfL(T, o(r)) = 62(1”), k=1,k,, n=0,1,.... (9)
. 9
Doing the substitutions @ (r t) = (1 2 )uﬁ(r, t) and putting r =r, xg = ﬁt@?) , the
p
problems (7), (8) and (7), (9) reduce to the following problems
a A
Lavlgz,n = va,nrr - U]gt,natoxo - ;Ovlgz,na:o + Tgvfy,n = Oa (1001)
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Vg o (r,0) = 7 (r), (ryp1(r) = oy(r), k=1, kn, n=0,1,..., (11)
lim = v’;n—yﬁ(r) k (r,p1(r)) (r), k=1, ky,, n=0,1,..., (12)
Io—)O 81}‘0 ’
where
- —1 — — 4\, 2 2
0<a= 2’%}) <1, \p= ((m )(34 m) )7 vh L (r, o) = ulb {7‘7( ;rpﬂfo)ﬁp} :
2 m— m— m—
o1(r) = 57 el B k) = TR, i) = TR, ohe) = gk,

Along with the equation (10,,), let us consider the equation

A
k — .k k n_ k _
LOUO,n = Vo,nrr — V0,nazozo + ﬁvo,n = 0. (100)

As has been shown in [13] (see also [14]), there exists the following functional connection
between the solutions to the Cauchy problem for the equations (10,) and (10p).

Proposition 1. If v(’i’}l(r, xo) 18 a solution to the Cauchy problem for the equation (10g) that
satisfies the conditions

0
Ugi(r 0) = 75(r), Do UIS}L(T 0) =0, (13)

0

then the function
k. / a —a [vga(r,a0)
vl (r, 20) U kL (r,&xo)(1 —52)771d§ =271, (—) D 2| ——— (14)
O.m 2 03 x%
0

for a > 0 is a solution of the equation (10,) with the conditions (13).

Proposition 2. If v(’i’}l(r, xo) 18 a solution to the Cauchy problem for the equation (10g) that
satisfies the conditions
k
k1 Vn(T) 0 k1
0
Y00 = T BT a) et 1=a) G 0n

(r,0) =0, (15)
then for 0 < a < 1 the function

1 9\ 1-a ! _a
VB2 (r,20) = Ya—kt2q () [a:(l) +2‘1/ vp (T, Ex0) (1 — €2)7 2d§]
0

i) 83}0

k,1
a_q vy (T, o)
. Qq—lr( _ a )Dz L1 2ot 7> 70/ 1
Vo—k+2q ¢—5 022 - (16)
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is a solution of the equation (10,) with the initial conditions

0
van(r,0) =0, lim a0l = v(r), (17)

where fF( )7a = 2T (0‘+1) I'(z) is the gamma-function, D§, is the Riemann-Liouville
operator [15], whereas ¢ > 0 is the smallest integer satisfying the inequality 2—a+2q > m—1.
We will seek for the solution of the problem (10,), (11) in the form

Unn (1 20) = v (1, w0) + vg7 (1, 20), (18)

where Uloi’,,l@(r, xg) is a solution to the Cauchy problem (10,), (13), while Uﬁ’%(r, xg) is the
solution to the boundary value problem for the equation (10,) with the conditions

Ui (r,0) = 0, v (r,p1(r) = o3 (1) — Vi (r,1(r) (19)

Taking into account the expressions (14), (16), as well as the invertibility of the operator
D§; [15] the problems (10,), (13) and (104), (19), respectively, reduce to the Cauchy problem
(109), (13), which has a unique solution [13], and to the problem for (10¢) with the conditions

0
5 Vom(r:0) = 0, gy, (1, 91(r)) = oy (1), (20)
Zo
where of (r) is a function expressed through 7%(r), o%(r).

It has been shown in [12] that the problem (100), (20) is uniquely solvable.

Next, using Propositions 1 and 2, the unique solvability of the problems (10,,), (13) and
(104), (19) are established.

Now we can solve the problem (10,), (12) in the form (18), where v52 (r, z¢) is a solution

to the problem Cauchy (10,), (17), and Ufj}l(r, xg) is a solution to the problem for (10,) with
the conditions

;‘mvk1<r 0) = 0, V5L (r, 01 (1)) = o (1) — OE2 (1, 01 (r). (21)

Using the expressions (16), (14), the problems (10,), (17) and (10,), (21), respectively
reduce to the Cauchy problem (10p), (15) and the problem (10p), (20), where ¥ (r) is a

function now expressed through v (r), o¥(r).

Thus, the problem (10,), (12), also has a unique solution.
Therefore, the solutions of the problem (1), (2) are in the form

oo kn

u(r,0,6) = 3" 3 r b (O VE,(9), (22)

n=0 k=1
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where u¥ (r,t) are found from (10,), (11).
In a similar way, we find the solution to the problem (1), (3) in the form (22), where
uk (r,t) are determined from (10,), (12).

Given the restrictions on the given functions 7(r,0), v(r,0), o(r,0), the lemmas and the
formulas ([16])

dm Flp+m+1) 1—=2
Po(z) = F(l L m o=, m A+ 1; )
o (%) T (g —m 1) +m A+ p, m— p, m+ 5
I'(z+«)

a— 1 —
S = (= Bla— - )+ 0())

as well as the estimates ([11])
2 | 97 Lk m_ T
|kn’ S clnmi ) ‘wYH,M(Q)‘ S CQngi +q) j = 1)m_ ]-7 q= 0)1)"'7
J

where F'(a,b,c,z) are hypergeometric function, «, 3 are arbitrary real numbers, as in [13],
[12], we prove that the resulting solution (22) belongs to the class C(D)NCYH(DUS)NC?(D).
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Anmames C.A. KOII OJIILIEM/I OBJIBICTA A3BIHTAH T'MITEPBOJIAJIBIK TEH-
AEVTE JTNPUXJIE 2KOHE ITYAHKAPE ECEIITEPIHIH KVCBIH/IBIJIBIT bI

Jupuxiie ecebiHiH »KaJIIbl TUIIEPOOJIATIBIK, TEeHJEY/Iep YIINH KUCBIHIbBI OOJIMaNTHIHBI Oap-
mara MogiM. EprepekTeri KymbicTapma Oyil Mocese, HeridineH, (hyHKIMOHAJIBIK TaJIay
9JicTepiH Haiifajiana OTBIPBI 3€PTTEJreH 60JATHIH, 0J1 KOJIAaHOa ap YIMH bIHFaiChI3 OOJIBIIT
TabbL1aael. OChbl MakaJia asblHFaH THIEpOOJIAIBIK TeHaeytep yinin Jupuxie men Ilyarnkape
ecenTepi KUCHIHIbI 00JIAThIH KOIIOIIIeM Il 00JIBICTBI ailKbIH AN IbI.

Kinrrix ceznep. KUCBIHIBLIBIK, KOII OJIIEMJ I OOJIBIC, a3bIHFAH TeHIeysaep, cdepasibik
dyHKIHLIAD.

Annames C.A. KOPPEKTHOCTD 3AJIAY JMPUXJIE 1 IIYAHKAPE B MHOT'O-
MEPHOI OBJIACTH 1151 BRIPOZKTAIOIINXCY TUIIEPBOJIMYECKIIX YPABHE-
HUN

XOopoII1o n3BeCTHO, U4TO 33 1a4a Jlupux/ie HEKOPPEKTHA, /It OOIINX FUIIEPOOJIMIECKUX YPaB-
HeHuii. B panHux paborax, B OCHOBHOM, M3yd4aJjach 3Ta MpoOJeMa C UCIOJIb30BAHUEM METO-
JI0B (DYHKITHOHATBHOTO aHAJIN3a, ITO HEYIOOHO JIJIsT IPUJIOYKEHU. DTa CTaThsl yCTAHABIHBAET
MHOTOMEPHYIO 00J1acTb, B KOTOpOoil 3asiaun Jdupuxiie u [lyankape iyt BBIPOXKJIEHHBIX THIIED-
OOJIMYECKUX YPaBHEHUN SBJIAIOTCI KOPPEKTHBIMU.

Kurouesnre ciioBa. KoppeKTHOCTb, MHOTOMEPHasi 00JIaCTh, BBIPOXKIAIOIIMECs yPaBHEHMSI,
cepuyeckue pyHKIIN.
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Abstract. Institutional investors, especially high frequency traders, employ the order information
contained in the Limit Order Book (LOB). The main purpose of the paper is to investigate how full
information about the LOB can help in predicting the price jump. Normally, a full LOB contains total
volumes of orders for hundreds of prices. Using the full information runs into the curse of dimensionality
which manifests itself in multicollinearity, insignificant coefficients, inflated estimate variances and high
computation time. Due to these problems, order volumes for prices that are distant from ask and bid
prices are usually not used in prediction procedures. For this reason we call such information a silent
crowd. Here we propose a summary measure of the silent crowd and quantify its influence on trade jump
prediction. We use a realistically simulated LOB as a vehicle for experiments and logistic regression as
the prediction tool. The full code in Matlab includes 18 blocks.

Keywords. Simulation, trade jump prediction, high frequency trading, logistic regression, limit order
book.

1 Introduction

The advent of information technologies made possible the transition from quote-driven
markets to order-driven trading platforms. On many stock exchanges, including NYSE,
NASDAQ, and the London Stock Exchange, trade orders are submitted and executed elec-
tronically [1]. Outstanding orders are recorded in what is called a Limit Order Book (LOB).
For a fee, clients can have access to either partial or full information contained in the LOB.
High speed communications, fast computers and computer algorithms enabled high frequency
trading, when orders are submitted every millisecond. Analysing the LOB and making pre-
dictions regarding possible market moves in real time is essential for participants of this
market.
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Using full limit order book for price jump prediction 45

One direction of research focuses on mathematical models of the LOB [2]-[6]. They
provide kind of a common denominator for financial phenomena but are too judgmental in
the sense that they typically impose restrictions which are hard to validate in practice [7], [8].

On the other hand, machine learning methods do not impose any a priori conditions
and attempt to reveal the regularities that are in the data [9]-[12]. In particular, statistical
methods are used to predict quantities that can be used profitably. The paper [13] presents
a non-parametric model for trade sign inference. [14] uses logistic regression to predict oc-
currence of price jumps. [15], [16] employ support vector machines to capture the dynamics
of price movements. [17] suggest a model that describes the evolution of the distribution of
limit orders and whose estimates can be used in a regression. [18] analyze the contribution to
price discovery of market and limit orders by high-frequency traders (HFTs) and non-HFTs.
See the last paper for a valuable review and latest references.

The above references use real-world data. We work with a simulated LOB. The two
approaches have different focuses.

The main value of real-world data is that it contains traces of investors’ decisions, which
are influenced by the shape of the LOB, among other things. The challenge is to infer about
investors decisions and use that inference to successfully predict future price movements. This
is complicated by many realities: different investors react differently to the market signals
contained in the LOB, there are events outside the LOB influencing investors moves and the
very invention of successful prediction mechanisms affects investors behaviour.

A simulated LOB should incorporate and exhibit the stylized facts of the real LOB.
Different types of orders are posted in accordance with distributional patterns observed in
practice, but other than that they are random and independent, at least in our implementa-
tion. There are no built-in behavioral assumptions. The simulated LOB is impartial, so to
speak. It serves better the purpose of revealing relative importance of quantities contained
in the LOB, as opposed to inferring about investors motivations. A real LOB is a snapshot
of what has happened, while a simulated LOB can be produced as many times as needed and
allows one to fine-tune model parameters to achieve the desired patterns.

In Section 2 we describe the standard features of limit order books. In Section 3 we detail
the simulations. Section 4 presents the main results. Section 5 contains conclusions. The
Matlab code is available on request.

2 Order types and LOB structure

In order-driven markets investors can submit three order types: limit orders, cancel orders
and market orders. The minimum allowed price increment is called a tick. For simulation
purposes the tick can be taken to be 1 without loss of generality.

A sell limit order is an order to sell a certain number of shares at a certain price (called
ask) or higher. A buy limit order is an order to buy a certain number of shares at a certain
price (called bid) or lower. If there is no offsetting order at the same price, a limit order

KAZAKH MATHEMATICAL JOURNAL, 20:2 (2020) 44-53



46 Kairat Mynbaev

is recorded in the LOB. Limit orders are executed against offsetting incoming orders in the
order they (limit orders) were recorded. Limit orders have an expiration date, unless the
investor specifies that the order is good until canceled. Order expiration dates are not seen
in the LOB investors have access to. For modeling purposes all limit orders are considered
as orders with no expiration date.

An investor can cancel his/her limit order (or its remaining part) at any time. In fact,
most limit orders are canceled before their execution.

It is useful to imagine the LOB as consisting of two parts, with a vertical price axis. The
upper part contains all sell orders, and the lower one contains all buy orders (more precisely,
total volumes against each tick). The lowest sell price is called the best ask and the highest
buy price is called the best bid. Because of opposite order matching the best ask is always
higher than the best bid. The midprice is defined by midprice = (best ask + best bid)/2.
The difference best ask — best bid is called a spread. The prices and total volumes at the best
ask and bid are called first level quotes, the prices and total volumes one tick away from the
best ask and bid are called second level quotes and so on.

A market sell order is an order to sell a certain number of shares at the best available
price, that is at the best bid. Similarly, a market buy order is an order to buy a certain
number of shares at the best available price, that is at the best ask. When a market sell
order arrives, the total volume at the best bid may be smaller than the market order size.
In this case the market order consumes all of the volume at the best bid, the best bid moves
down and the remaining part of the market order is executed against the limit orders at the
new best bid. Some exchanges use a different rule: if, say, a sell market order size is larger
than the outstanding volume at the best bid, the remaining part of the market order stays in
the LOB as a sell limit order. The difference between the first case, when the market order
may be executed at several prices, and the second one, when it may be partially executed
and the remainder stays as a limit order at the best bid, is that in the first case the best bid
moves down (and the spread increases), while in the second case it is the best ask that moves
down. In the first case the downward move of the midprice is determined by the relative size
of the market order and liquidity at the bid side. In the second case this downward move
depends on the spread, and the midprice right after execution of the market order will be
lower than the best bid right before the execution. The midprice is more stable under the
first arrangement, which we adopt in our simulations. Stability of market prices is one of
desirable features.

Market orders are executed immediately, so in case of a real LOB, one can know about
their arrival and size only from a change in total volumes of limit orders at the best ask and
bid. HFT’s often place orders just to cancel them a moment later. There also can be errors
in the way the LOB is recorded. This kind of problems do not arise with a simulated LOB.
Experiments on a real stock exchange are costly and likely to disrupt its operations; in case
of a change in rules governing an exchange, large and technologically advanced players will
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win at the expense of small investors.
All the information above the ask price characterizes the supply, whereas all the informa-
tion below the bid price characterizes the demand side.

3 Simulation description

The task of modeling the LOB is complex because the impact of an order on the book
depends on the state of the book. Therefore one cannot sum the incoming orders over a
period of time and post the sum to the book. The orders have to be generated and posted
immediately one by one. This requires a lot of calculation, only a small part of which can
be made faster using parallel computing. We have not been able to use the CUDA (parallel
computing language from NVIDIA™) because it can handle only specific types of code.

Application of logit requires measuring depths at equally spaced moments, and their num-
ber should be large enough. With short time intervals (on the order of several milliseconds)
the LOB is too poor. Increasing the lengths of time intervals increases the complexity of
calculations.

Following the empirical pattern [7], the distribution of orders is defined in such a way
that the spread of limit orders is very large, +50% of the midprice or more. On both sides
of the midprice the distribution declines as a power law, up to 100 ticks from the midprice,
and then falls to zero. Orders arrive independently at exponential rates.

Cancel order sizes are given as a fraction of the order depth.

The Matlab code consists of 18 programs. The first character in the program name
indicates its level. The lowest-level programs start with A, the next-level programs start
with B and so on. The level of a program is determined by the references contained in it.
For example, the program C.AllOrdersTimesAndPrices.m may refer to levels A and B but
not higher.

The function A_InDistr creates the initial distribution of orders.

The function A_OrderTimes generates a sequence of order placement times up a to given
moment.

The function A_Revert just makes some code more convenient to read.

A _NormConstant realizes an empirically observed pattern in the distribution of orders
from [7].

B_OrderTimesFixedPrice generates lists of limit, cancel and market order times (for all
price ticks from 1 to MaxPrice).

B_AskAndBid finds the best ask (the lowest ask price at which the order size is not zero)
and the best bid (the highest bid price at which the order size is not zero).

The function B_FindCum creates cumulative sums starting from the lower end of B_T.
This is the most important part of the method. The silent crowd should be summarized in
such a way that the prices close to the midprice should have larger weights. The weights
should not be so heavy as to dampen the tail of the silent crowd.
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B_LODensity generates sizes of limit orders in the range (midprice—dist, midprice+dist),
currently under the condition MazPrice = 4 * dist.
C_AllOrdersTimesAndPrices puts into one MaxPrice x 3 matrix M:

e all order times from lists of limit, cancel and market orders, unsorted (first column of
M),

e order types (1 for Limit, 2 for Cancel, 3 for Market) (second column of M),

e and corresponding prices, numbered 1 through MaxPrice (third column of M).

This is necessary to create a line of orders that later will be posted to the LOB.

Next there are three functions that post three types of orders: C_PostCancelOrder,
C_PostLimitOrder and C_PostMarketOrder.

E_Inference_A_B collects statistical characteristics of the LOB. It is important that after
about 50 orders the simulated LOB stabilizes and its two-humped shape corresponds to what
is observed in practice.

Next we need to see how informative are the prices close to the midprice, compared to
the informativeness of the silent crowd.

F_band_A B finds bands of order sizes of width band (band up from ask in A_T and band
down from bid in B_T).

F_weight _A_B prepares weights for averaging order sizes.

Finally, comparison is made between the contribution of the prices that are close to the
midprice (in the band) and the contribution of the silent crowd.

3 Simulation results

The density of incoming limit orders is generated according to what is observed in practice.
200 ticks up and down from the initial midprice the density tapers off. After that, we set it
to zero, see Figure 1.

0 50 100 150 200 250 300 350 400

Figure 1 — Density of limit orders
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As it was mentioned above, after about 50 orders the simulated LOB stabilizes. The
midprice falls from the one defined in the initial distribution and afterwards is pretty stable
(Figure 2).

0 100 200 300 400 500 600 700 800 900 1000

Figure 2 — Stabilization of the midprice

The standard deviation of the midprice also stabilizes (Figure 3).

0 100 200 300 400 500 600 700 800 200 1000

Figure 3 — Stabilization of the standard deviation of the midprice

Its two-humped shape corresponds to what is observed in practice, see Figure 4. This is a
sign that relative order sizes have been chosen correctly (orders do not accumulate to infinity
and are not consumed entirely by incoming buy orders).

0 50 100 150 200 250 300 350 400

Figure 4 — Two-humped distribution of order sizes
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Another sign that the LOB is being simulated correctly is that the order lists in the LOB
behave pretty irregularly. See in Figure 5 the behavior of the first five ask sizes.

x10°

If
|
I
0 50 100 150 200 250 300 350 400

Figure 5 — Ask sizes at the first 5 prices

We use the logit model to predict the price jump. This is done with two sets of predictors:
one includes only prices close to the midprice and the other additionally includes the index
of the silent crowd. Specifically, let a;, by denote the ask and bid sizes at time ¢, where
i =1,2,... is the quote level. The price jump j; = sgn(midprice, 1 — midprice;) is regressed
on a;, by, 1 =1,...,1, in the first regression and on a;, b;r, i = 1,...,1,index; in the second
regression. Here index; = Zf‘i‘}iﬁ”ce w;(ai + bit) is a weighted sum of the representatives

of the silent crowd. We change I = 1,2, ...,24 to see how the two regressions compare.

Figure 6 — R squared for two sets f predictors

From Figure 6 it is clear that the silent crowd significantly improves prediction if the
number of prices included is low (less than or equal to five). Then its contribution falls and
becomes negligible after the number of prices included exceeds eight.
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5 Conclusions

We have been able to reproduce the stylized facts of the LOB. Those include the hump-
shaped density distribution of order sizes. Using a simulated LOB allows one to achieve
desirable distributional properties while preserving unpredictability and to test various fore-
casting techniques in different scenarios. In our simulations, the midprice stabilizes, which is
not a feature observed in practice. It can be easily avoided by introducing a random-walk-like
disturbances. However, to obtain distributions of order sizes one would have to detrend the
resulting midprice series using moving averages. Because of the lagging nature of moving
averages, this would introduce an additional error in estimation. However, we believe that
reversion to the mean would at least partially mitigate this problem and the final result would
not be very different from ours.

References

[1] Parlour C., Seppi D.J. Limit Order Market: A Survey, Elsevier: North-Holland, 2008.
[2] Cont R. Statistical modeling of high-frequency financial data, Signal Processing Magazine, IEEE,
28 (2011), 16-25. https://doi.org/10.1109/msp.2011.941548.
[3] Cont R., Stoikov S., Talreja R. A stochastic model for order book dynamics, Operations Re-
search, 58 (2010), 549-563. https://doi.org/10.2139/ssrn.1273160.
[4] He H., Kercheval A.N. A generalized birth-death stochastic model for high frequency order book
dynamics, Quantitative Finance, 12 (2012), 547-557. https://doi.org/10.1080/14697688.2012.664926.
[5] Rosu 1. A dynamic model of the limit order book, Review of Financial Studies, 22 (2009), 4601-
4641. https://doi.org/10.1093/rfs/hhp011.
[6] Shek H.H.S. Modeling High Frequency Market Order Dynamics Using Self-Excited Point Pro-
cess, SSRN, (2011), 1-22. http://dx.doi.org/10.2139/ssrn.1668160.
[7] Bouchaud J.-P., Mezard M., Potters M. Statistical properties of stock order books: Empirical
results and models, Quantitative Finance, 2 (2002), 251-256. https://doi.org/10.2139/ssrn.507362.
[8] Foucault T., Kadan O., Kandel E. Limit order book as a market for liquidity, Review of Financial
Studies, 18 (2005), 1171-1217. https://doi.org/10.1093/rfs/hhi029.
[9] Jondeau E., Perilla A., Rockinger G. Optimal Liquidation Strategies in Illiquid Markets,
Springer: Berlin Heidelberg, 553 (2005). https://doi.org/10.2139/ssrn.1431869.
[10] Linnainmaa J.T., Rosu I. Weather and Time Series Determinants of Liquidity in a Limit Order
Market, AFA 2009 San Francisco Meetings Paper. http://dx.doi.org/10.2139/ssrn.1108862.
[11] Crammer K., Singer Y. On the algorithmic implementation of multiclass kernel-based vector
machines, Journal of Machine Learning Research, 2 (2001), 265-292.
[12] Tino P., Nikolaev N., Yao X. Volatility forecasting with sparse bayesian kernel models, In 4th
International Conference on Computational Intelligence in Economics and Finance, 2005, 1052-1058.
[13] Blazejewski A., Coggins R. A Local Non-Parametric Model for Trade Sign Inference, Physica
A: Statistical Mechanics and Its Applications, 348 (2005), 481-495.
https://doi.org,/10.1016/j.physa.2004.09.033.
[14] Zheng B., Moulines E., Abergel F. Price Jump Prediction in a Limit Order Book, Journal of
Mathematical Finance, 3:2 (2013), 242-255. https://doi.org/10.4236 /jmf.2013.32024.

KAZAKH MATHEMATICAL JOURNAL, 20:2 (2020) 44-53



52 Kairat Mynbaev

[15] Fletcher T., Shawe-Taylor J. Multiple Kernel Learning with Fisher Kernels for High Frequency
Currency Prediction, Comput. Econ., 42 (2013), 217-240.
https://doi.org/10.1007/s10614-012-9317-z.

[16] Kercheval A.N., Zhang Y. Modelling high-frequency limit order book dynamics with support
vector machines, Quantitative Finance, 15 (2015), 1315-1329.
https://doi.org/10.1080/14697688.2015.1032546.

[17] Platania F., Serrano P., Tapia M. Modelling the shape of the limit order book, Quantitative
Finance, 18 (2018), 1575-1597. https://doi.org/10.1080/14697688.2018.1433312.

[18] Brogaard J., Hendershott T., Riordan R. Price Discovery without Trading: Evidence from Limit
Orders, The Journal of Finance, 74 (2019), 1621-1658. https://doi.org/10.1111/jofi.12769.

Membaes K. BATA ©CYIH BOJIZKAY YIITH IIEKTEY/II TATICHIPBICTAP/IBIH,
TOJIBIK KITABBIH TTATUIAJTAHY

WMHucTuTynmuoHa bl HHBECTOPJIAp, dcipece Korapbl *KULIKTI Tpeitaepsep, Hlekreymi Tar-
coipbictap Kirabeiaparsr (LOB) rtanceipsicrap Typasibl aknaparThl naiigaaanaibl. Makasa-
HBIH HEri3ri MakCaTbl — HHBECTOPJIAPFa KbI3BIKTHI OOJIATHIH DpAJIyaH OKUFaJap/ibl OoJIKayra
LOB TypaJibl TOJBLIK akKIapaTThiH Kajaail KOMEKTece aJaTbiHILIFLIH 3eprrey. Ogerre, LOB
JKy3zeren 6arajap OOUBIHINA TAICHIPBICTBIH, XKAJIIBI KOJIEMJIEPIH KaMTUIbI. TOJIBbIK aKiiapaT-
ThI HAWTAJIAHY OJITEMIIIIK KAPFBICBIHA KE3/EeCe/Il, 0JI KOIKOJIMHEAPIBIKTAH, KOIDhUImeHT-
TeP/IiH MaHbBI3/IBLIBIFBI TOMEH 0OJIybIHAH, Oarasiaysiap/iblH JUCIIEPCUSITIAPBIHBIH IIIAMaJIaH THIC
OCyiHEH »KOHE eCeNTeyJieD YaKbIThIHBIH Y3aKThIFbIHAH Oaiikasiaael. Ocbl Mocesesepre Oaitra-
oeicThl, bid men ask OarajapbrHan aJImakTal KeTKeH Oarajiap OOMBIHIIA TAIICHIPBICTAD KOJIEMI
ozieTTe OboJkay poaciMjiepinie KoJmanbiMaiabl. Ocbl cebenTi, 613 OCBIHIAN aKIapaTThl YHCI3
TOOBIp Jien araiiMbid. MyHma 613 yHCI3 TOOBIPIBIH KUBIHTHIK, OJIMIEMIH YCHIHAMBI3 YKOHE OHBIH
caya cekipicin Oo/Kayra BIKIAJBIH CaH KarblHaH OarajaiiMbl3. Bi3 mbIHaflbl MOIe/IeHTeH
LOB-1BI Toxxipubejiepre apHaJFaH KypaJl PeTiHIe, ajl JIOTHCTUKAJBIK, PErPECCUSTHBI O0/IKay
KypaJibl petinjie naiiiasanambrs. Matlab-tarsr Tosibik Koz 18 6JI0KTaH TypaJIbl.

Kinrrix ceznep. Monenney, cayna cekipicin 6oKay, Koraphl KHUITIKTI cayaa, JOTUCTUKA-
JIBIK, PEIPECCHst, MIEKTEYJIl TAllChIPhICTAP KiTabObl.
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Memmbaes K. NCIIOJIbBOBAHUE ITOJIHON KHUT'Y TTPEAEJILHBIX 3AKA30B
JJIA ITIPOTHOSMPOBAHUA CKAYKA [HEH

NucTurymonaibHble UHBECTOPHI, OCODEHHO BBICOKOYACTOTHBIE TPEHAephbl, MCIOJIb3YIOT
nadopMaImio o0 3aKazax, cojgepxaiiyiocs B Kuure Jlumurabix 3akazos (LOB). OcunoBnas
[eJIb CTAThU - U3y YUTh, Kak mojHast nagopmarms o LOB MoxkeT moMo4db B IIPOrHO3UPOBAHIH
Pa3IMIHBIX COOLITHIA, TPEJACTABIAIOMUX uHTepec st uaBectopoB. O6brano LOB comepxxut
obrme 00beMbI 3aKa30B [0 COTHSM IleH. VIcrmosib3oBanme MOJTHON WHMOPMAINT HATATKUBA-
eTCsT Ha MPOKJISITHE PA3MEPHOCTH, KOTOPOE TMPOSBISETCS B MYTbTUKOJIMHEAPHOCTH, HU3KOMN
3HAYUMOCTHU KOI(DDUIINEHTOB, 3aBBIIIEHHBIX JUCIEPCUSX OIEHKHN U OOJIBIIIOM BPEMEHHU BBIYUNC-
nennii. M3-3a 3Tux mpobaeM o6beMbl 3aKa30B 110 ITeHaM, JajgekuM oT 1eH bid u ask, 0OBITHO
HE HCIOJIB3YIOTCS B MPOIELypax Mporao3upoBanus. [1o 9Toil npuvunHe MBI Ha3bIBAEM TaKyIO
MHQMOPMAITIO MOJTIAIUBON TOJIION. 3/1eCh MBI MIpe/ijlaraeM CBOIHYIO MEPY MOJTYAJIMBON TOJI-
bl U KOJIMYECTBEHHO OIEHUBAEM €€ BJIMsIHUE Ha MPOIHO3UPOBAHUE TOPIOBOrO cKadka. Mbl
HCIIOJTb3YeM PeajuCTUIHO cMmojenupopannyio LOB B kadecTBe cpeicTBa It 3KCIIEPUMEH-
TOB U JIOTUCTUYECKYIO PErPECCHIO B KAYECTBE HHCTPYMEHTa poruo3upoBanus. [osHbIi Ko/ B
Matlab Bkjrogaer 18 6/10K0B.

Kmrogesbre ciioBa. MomenmupoBanne, MpOrHO3MPOBAHIE TOPTOBOIO CKAYKa, BHICOKOYIACTOT-
Hasl TOPIOBJIsl, JOTHCTUYECKas PErpeccusi, KHUTa JINMUTHBIX OPAEPOB.
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Abstract. In this article, we consider symbolic dynamics (X, T") with holes H and corresponding interval
maps. Depending on location and size of the hole, the survivor set given by Qg (T) = {z € X : T"(z) &
H, for every n > 0.} maybe finite or infinite. Our goal is to find the sufficient condition for the survivor
sets Qg (T) of general open subshifts of finite type to be uncountable and also to have positive entropy

and Fractal dimension.

Keywords. Dynamical systems, fractal dimension, interval maps, survivor sets, open systems, irregular

sets.

1 Introduction

The entire universe is full of changes. In fact, there is almost nothing that is stable
and constant. The changes happen subject to various rules and physical laws. Applied
mathematics tries to simplify real life phenomena and obtain a mathematical model that
helps to understand the original system to certain extent. Dynamical systems theory deals
with systems that vary in time subject to a given rule. In mathematical terms, let X be a
set and let T be a self map 7' : X — X, then (X,T) is called a (closed) dynamical system.
For a given point x € X, its orbit or trajectory is given by

Or(x) :={T"(x) :n=0,1,2,...},

where T™ is n-fold composition of T with itself, namely T o T o --- o T. Dynamical systems
theory tries to understand orbits of points of X and their properties. For a given z € X,
some of the research questions of interest are

1. Is x (eventually) periodic, that is, is Or(z) finite?
2. Is Or(x) bounded or unbounded?
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3. Is O7(z) infinite, if so is it countable or uncountable?
4. Is Or(z) dense in X7

5. Is Op(z) uniformly distributed?

6. What is the fractal dimension of the closure of Or(x)?

However, it is often difficult to understand the orbit of a single point, except in certain
specific cases such as when (X,7) is minimal [1] or uniquely ergodic [2]. We note here that
this difficulty is not due to the research gap in the literature, instead it is related to the
presence of chaos in the system. In any case, to overcome this difficulty we usually study sets
of orbits with certain characteristics and understanding topological aspects of sets is much
easier.

While the closed dynamical systems have much studied, the open dynamical systems have
many research directions awaiting to be explored. In general terms, let (X, T") be a dynamical
system as before and H a subset of X, called a hole. (X,T,H) is called an open dynamical
system. An orbit of x exists as far as its iteration under the map T' does not fall into H, if it
visits the H, then the point is said to have escaped, and the dynamics stops. Open dynamical
systems are analogous to systems with terminal nodes in stochastic processes. A survivor set
Qpr is the set of all points whose orbits under 7" miss H. In other words,

Qu(T) :={x € X : T"(x) ¢ H, for every n > 0.}. (1)

Clearly, for any x € Qg (T) we have T'(x) € Qg (T). Thus, T : Qu(T) — Qu(T) is well-
defined and (Qg(T),T) gives rise to a new dynamical system for each given hole H. The
questions listed above are still valid for the open dynamical systems and this list can be
extended. In particular, for open dynamical systems, one of important research questions is
if to investigate the ‘size’ of the survivor sets. Here, ’size‘ could be related to some topological
notions or measure theoretic notions. To be more specific, for a given H C X, some of the
further research questions are

1. Is Qg (T) finite?

2. Is Qg (T) infinite, if so is it countable or uncountable?
3. What is the fractal dimension of Qp(7")?

4. What is the topological entropy of Qg (T)?

Another interesting question is about the speed of orbits escape to the hole. In this paper,
our primary objective is to address the above four questions for subshifts of finite type and
corresponding k-transformations of unit interval. Before we state our findings, we introduce
the related notions and review the literature on the related work.

KAZAKH MATHEMATICAL JOURNAL, 20:2 (2020) 54—62



56 Nazipa Aitu, Shirali Kadyrov

1.1 k-transformations and symbolic space

In the rest of the paper, we fix a positive integer £k > 2. Let X = [0,1) and k-
transformation T}, : X — X given by T'(z) = kx mod 1. More specifically,

kx, if kz < 1,
kx—1, if 1 <kx <2,
kr—(k—1), ifk—1<kx<k.

Let H = (a,b) be an open interval in X. The case of k = 2 was studied by Glendinning and
Sidorov in [3], [4]. They prove,
Theorem. The Hausdorff dimension of the survivor set Qg (T}) is positive and in particular
it is uncountable if b—a < 1—2a,, where a, ~ 0.41245 is the Thue-Morse constant. Moreover,
if the hole H contains the midpoint 0.5, then Qg (T)) has positive Hausdorff dimension if and
only if b < x(a), where x(-) is given in [{, Theorem 2.3].

The above theorem is recently generalized to k-transformations for arbitrary k > 2 by
Agarwal in [5].

The main idea of the proofs in the above mentioned results are to transfer the problem
to symbolic space, namely the full shift on k letters.

We now define the shift space and more generally subshifts of finite type. To this end, let
Ay denote the alphabet of k symbols, namely, A = {1,2,...,k} and

Yo =1{1,2,..., k)N ={w=uqapaas--- | a; € {1,2,...,k},i=0,1,2,...}

be the space of infinite words from the alphabet A equipped with the product topology. Let
A = (A;j) be a k x k transition matrix with entries consisting of 0’s and 1’s. We define ¥4
to be the subspace of {1,2,...,k} given by

S = {w=apamaz--- € {1,2,...,k}" | Agja;,, = 1,Vi=0,1,2,...}.

If A;; = 0, it means that the phrase ij is forbidden. A subshift of finite type (¥4, 0%) is a
dynamical system with a shift map o : ¥4 — X 4 given by

or(apajaz...) =ajazas... .
We define a metric di on ¥ 4 given by
die (w1, ws) = k~H9192) where t(wy,ws) = max{n > 0: z; = y;,0 < i < n},

where wy = zgx122 ... and ws = Yoy1y2 ... .
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For A consisting of only 1’s we get the full shift space ¥, and otherwise ¥ 4 is a proper
subspace. Clearly, for any hole in {1,2,...,k} if a point escapes to the hole under the full
shift, then it obviously escapes under the shift of finite type for any transition matrix A.

To relate the k-transofrmation on interval to the symbolic space we define 7, : X — [0, 1)
by

[o.¢]
a’n
mr(aparaz . ..) = EEsE
n=0
We note that for any w = agaqas ... we have
. a
_ ntl _
Ty omp(w) =k E kn-l-l mod 1 = T = 7, 0 ok (w),
n=0 n=0

so that the diagram (Figure 1) commutes.

S — X

L

0,1) ——1[0,1).

Figure 1 — Commuting diagram

1.2 Statement of results

As it is seen from the literature, the previous work related to the survivor set was mainly
to understand the cardinally and fractal dimension of survivor set given the open dynamical
system. We would like to extend these results with a slight twist. Mainly, we ask the following
question.

Main question: For a given interval H = (a,b), which intervals maps with hole H induce
the survivor set Qg with positive fractal dimension?

We state our result in symbolic space and leave it to the interested reader to rephrase
the theorem in terms of interval k-transformation using the above mentioned commuting
diagram.

Theorem 1. Let k > 2 be an integer, A a k X k transition matriz, and (X4, 0y) the induced
subshift of finite type. Assume that there exist two distinct symbols 1,7 € Ap such that
Ay =Aj; = A5 =Aj = 1. For any £ > 0 we define the subset of X4

Se(i,7) :={ajaz--- € {z',j}N Yy =1, = Aman =7J,n=1,2... L} (2)
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If the hole H in X 4 is disjoint from Sy for some £, then the survivor set satisfies

o Qp(ok) is uncountable,

log 2
{417

e Qp(ok) has topological entropy at least

o Qp(ok) has Hausdorff dimension at least elfog;k.

2 Proof of main results

To prove Theorem 1, we show that the sets Sy(7, j) have the desired properties. We recall
that an infinite work is in Sy(é, j) if between two symbols ‘2’; there should be symbols ;’
repeated at least £ times, see Figure 2.

(i

£-times

Figure 2 — Letter transitions in Sy(i, j) illustrated

Proof of Theorem 1. From the assumption on transition matrix we see that the subshift
of finite type {i,j}" is embedded in ¥ 4. Let ¢ be a positive integer such that Sy(i,7) is
disjoint from H, as Sy(i,j) is oj-invariant and it is contained in {i, j}" we conclude that
Se(i,j) C Xpg(ok). Thus, it suffices to show the desired properties for the dynamical system
(Se(i,7),0%). The next three lemmas complete the proof. O

Lemma 1. Let i,j be two distinct non-negative integers and £ a positive integer. Then, the
set Sy(a,b) is uncountable.

Proof. The proof of the lemma is analogous to Cantor’s diagonal argument from the set
theory. For the sake of completeness we will reproduce the proof here.

Assume by contradiction that for some 1, j, ¢, we have Sy(7, j) (at most) countable. Let x
and y be two finite words of length ¢ 4 1 and ¢, respectively, given by

y=7jj...7 and x = yi. (3)
—

{—times

Let us take a set U(z,y) C S¢(4,7) given by U(z,y) = {z,y}. Then, U(x,y) must be (at
most) countable too, say U(z,y) = {wi,ws,...}. We now consider, x and y as letters. For
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any i,j by wzj we denote the jth letter of w; and define a new word w € U(z,y) as follows,
for any j = 1,2,3..., the jth letter is given by

wj:{:c ifwj.::y,

e d
y if w; = .
Since wg # w’ for any j we conclude that w # wj, that is, w € U(z,y) a contradiction. Thus,

U(z,y) is uncountable and so is S(7, j). This concludes the proof of the lemma. O

As noted before the sets Sy(a, b) are shift-invariant, that is, w € Sy(a,b) implies o (w) €
Sy(a,b). Hence, it makes sense to study the topological entropy of the set, which is another
way to measure the complexity of a set. A set of positive entropy is necessarily uncountable,
but the converse is false. Namely, the uncountability of sets Sy(a, b) is not sufficient to deduce
positive topological entropy. The next lemma exactly does this.

Lemma 2. Let i,j be two distinct non-negative integers and £ a positive integer. The set
Se(i,7) has positive topological entropy. In fact

log 2

h(Se(i,7),0%) > n

~
—_

Proof. We note that the topological entropy can be computed using the number of periodic
orbits. More specifically, let N(n) denote the number of periodic orbits in Sy(a, b) with period
n. Then, the topological entropy h(og, Se(a,b)) satisfies
. log N(n)
(o, Sr(a,) = tim 25, ()
To finish the proof, we estimate N(n). As in (3) with slight modification we let x and y be
two finite words of length ¢ + 1, given by

y=jjj...j andx=jjj...ji.
| S —

{+1—times £—times

Analogously, set U(x,y) = {x,y} which is a subset of Sy(x,y). We will use the periodic
orbits of U(z,y) to estimate N(n) from below. To this end, we note that there are at least
two periodic orbits of length ¢ + 1, namely > and y*>°, so N({ + 1) > 2. Inductively, we see
that N((£+ 1)n) > 2™. Let m be any large integer, we may find a positive integer n such
that ({+ 1)n <m < ({+1)(n+ 1). For any periodic orbit 2> in U(x,y) of length (¢ + 1)n
we may associate a periodic orbit w of U(x,y) C S¢(x,y) of length m letting

W= §ijed )™
——
(m—(£+1)n)—times
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Thus, N(m) > 2" for ({ 4+ 1)n <m < ({+ 1)(n + 1). Using the formula (4) we arrive at

. log N(m) i log 2™ log 2
h(ok,Se(a,b)) = lim ————= > 1 = .
(O, Se(a, b)) = lim ———2— > lim (+Dn+1) €+1

This finishes the proof. O

Lemma 3. Let i,j be two distinct non-negative integers and £ a positive integer. The set
Se(i,7) has positive Hasudroff dimension. In fact

. .. log 2
> .
dlmH(Sf(Z,])) — glogk

Proof. To prove the lemma, we make use of Mass Distribution Principle, see e.g. [6, § 4].
As in (3) with slight modification we let x and y be two finite words of length ¢+ 1, given by

y=jjj...7 and x =jjj...ji.
— —
£+1—times /—times

Analogously, set U(x,y) = {x,y}¥ which is a subset of Sy(x,y). Thus, it suffices to estimate
the Hausdorff dimension of U(x,y). To this end, we inductively define a probability measure
w on Y4 supported on U(z,y) as follows:

For any finite word z of length ¢ we call C(z) = {apa1--- € g | apar...ar—1 = 2z} a
cylinder set.

We let 1(X%) = 1 and set Eg = . There are k*! finite words of length ¢ + 1.

In the first step, we may split X into k! cylinder sets of equal length and pick two of
them, namely, Fy = {C(z),C(y)} and let u(C(z)) = u(C(y)) = 1/2.

Next, in step 2, we split each C(z) and C(y) into k! cylinder sets of equal length and pick
the four Ey = {C(xx), C(zy), C(yx),Clyy)} and set p(C(xx)) = p(Clry)) = p(Clyz)) =
u(Cyy)) = 1/4.

Inductively, in step n we further split each previously obtained 27~! cylinder sets into
k1 smaller cylinder sets. We note that exactly 2" of these cylinder sets are defined using
x,y and we place them into F,, and assign measure 27" to each.

This inductively defines a probability measure supported in U(x, y).

We notice that d(z,y) = k~¢ and inductively one can show that for any two distinct
cylinder sets C,C’" € E, one has d(C,C") > k~'". Now, let U be any subset of ¥4 with
diameter § > 0. We may find non-negative integer n such that k~("+Df < § < k=" that
is, clearly, on E, there exists at most one cylinder set C' that intersects with U. Hence, the
measure of U satisfies pu(U) < pu(C) = 27", That is,

,LL(U) <9 — (k—n€)10g2/ﬁlogk < (kéd)logQ/élogk < 610g2/€10gk‘
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Hence, it follows from the Mass Distribution Principle that the Hausdorff dimension of the
support U(x,y) satisfies

) log 2
d > .

Hence, dimg (Sy(x,y)) > dimy(U(z,y)) > log2/¢log k which finishes the proof. O

3 Conclusion

We studied open dynamical systems in subshifts of finite type and obtained sufficient con-
dition when the survivor set Q (o) is uncountable and estimated from below the Hausdorff
dimension and topological entropy. We make no claim on the sharpness of our estimates. In-
deed, it is an interesting question to find exact Hausdorff dimension and topological entropy
of survivor sets. Another interesting question is to investigate the necessary condition for the
survivor sets in the subshifts of finite type to be uncountable.

References

[1] Walters P. An introduction to ergodic theory, Springer Science & Business Media, 79 (2000).

[2] Einsiedler M., Ward T. Ergodic theory with a view towards number theory, Springer London
Limited, 2013.

[3] Glendinning P., Sidorov N. Unique representations of real numbers in non-integer bases, Math.
Res. Lett., 8 (2001), 535-543. DOI: 10.4310/MRL.2001.v8.n4.a12

[4] Glendinning P., Sidorov N. The doubling map with asymmetrical holes, Ergodic Theory and
Dynamical Systems, 35:4 (2015), 1208-1228. DOI: https://doi.org/10.1017/etds.2013.98

[5] Agarwal N. The k- Transformation on an Interval with a Hole, Qualitative Theory of Dynamical
Systems, 19:1 (2020), 30. DOI: 10.1007/s12346-020-00383-4

[6] Falconer K. Fractal geometry: mathematical foundations and applications, John Wiley & Sons,
2004.

KAZAKH MATHEMATICAL JOURNAL, 20:2 (2020) 54—62



62 Nazipa Aitu, Shirali Kadyrov

Kanppos 1., Aiiry H. 2KBIJI2KBIMAJIAPJIBIH, AKBIPJIBI TUIITEPIHAELT TYC-
IEN KAJIFAH DJIEMEHTTEP YKIBIHIAPEI

By maxkamama 6i3 6epinren H apajblkKTapbl 6ap CUMBOJIIBIK JUHAMIKAHBI XKOHE CONKeCiH-
tire ostapapbig, T : [0, 1) — [0, 1) apanbIKThIK GeiiHeseyiepin KapacTbipaMbl3. A PAIBIKTHIH OPHBI
MeH esteMine GaittanbicTsl Gepinren kubHiblg Q(T) = {z € X : T"(z) ¢ H,n > 0.} Tyc-
et KaJIraH 3JIeMEeHTTED *KUbIHIaPhl aKbIPJIbl HeMece aKbIPChI3 00JIybl MyMKiH. Bizain makca-
THIMBI3 — YKAJIIIbI AIIBIK YKbLIKbIMAIADIbIH aKbIp/Ibl Tuingeri ) (H) Tycueit Kajuran sjieMeHT-
Tep JKUBIHAAPHI €CenTeJIMENTIH OOJIYBIHBIH, COHBIMEH KATap OH SHTPOMHS MEeH (PPaKTAJIIBIK,
OJITIIeM/Ti MeJIEHYiHIH KeTKIJIIKTI MapThiH Tady.

Kinrrix ceznep. JlunaMukabik Kytiesnep, ppakTaaabK eJIIeMIeD, aPaIbIKThIK (DyHKII-
siy1ap, Tipl KajFaH 3JIEeMEHTTED KUBIHIAPHI, alllblK, KyHesep, Peryssp eMec KUbIHIAP.

Kanaspos 1., Aitry H. MHOKECTBA HEIIOITAJAIOIINX 9JIEMEHTOB B I10O-
JABUT'AX KOHEYHOT'O TUITA

B s10it craTbe MBI pACCMOTPHM CHMBOJIMYECKYIO JUHAMUKY ¢ H HHTepBajaMu H COOT-
sercrytomue T : [0,1) — [0,1) unrepBasbHbBle 0TOOpaXKeHUs. B 3aBHCHMOCTH OT MeCTO-
HOJIOZKEHUSI U pa3Mepa HHTEpBaJa, MHOXKeCTBa HemomaJgamomux steMentoB Qg (1) = {z €
X : T"(x) ¢ H,n > 0.} moxker ObITb KOHEYHBIM min GeckonednsiM. Hamma rens — Haiitu
JIOCTATOYHOE YCIOBUE TOTO, YTOOBI MHOYKECTBA HEIIOIAIAlomuX dj1eMeHTos ((H) B 0bmux o1-
KPBITBIX [IO/IBUTaX KOHEYHOIO TUIIA ObLIM HEUCIUCIUMBIMIE, & TAKZKe MMEJIH [TOJI0KUTEIBHYIO
SHTPONUIO U (BPPAKTAIBHYIO PA3MEPHOCTb.

KirroueBrbre cjoBa. ,HI/IHaMI/I‘{eCKI/IG CHUCTEMBI, (bpaKTaJH)HaSI PasMEpPHOCTDb, NMHTEPBaJIbHbIE
(I)yHKLLI/II/I, MHOZKE€CTBa BbIZKHUBIIIUX 3IJIEMEHTOB, OTKPbLITbHIE CUCTEMbI, HEPEryJjidpHble MHOXKe-
CTBa.
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1 Introduction

The inequalities discovered by Hermite and Hadamard for convex functions are very
important in the literature (see, e.g., [1], [2]). These inequalities state that if [3], [4] u: I — R
is a convex function on the interval I C R and a,b € I with b > a, then

u(a;b)gbia/bu(x)dmgu(a);u(b). (1)

a

Both inequalities hold in the reversed direction if w is concave. We note that Hadamard
inequality may be regarded as a refinement of the concept of convexity and it follows easily
from Jensen’s inequality.

The classical Hermite-Hadamard inequality provides estimates of the mean value of a
continuous convex function u : [a,b] — R.

The most well-known inequalities related to the integral mean of a convex function u are
the Hermite-Hadamard inequalities or its weighted versions, the so-called Hermite-Hadamard-
Fejér inequalities.

2010 Mathematics Subject Classification: Primary 26D10; Secondary 26A33, 47G10.
© 2020 Kazakh Mathematical Journal. All right reserved.
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In [5], Fejér established the following inequality which is the weighted generalization of
Hermite-Hadamard inequality (1):
Let u: [a,b] — R be convex function. Then the inequality

" (“ . b) /bv(x)dm < /bu(x)v(x)dx < “(a);“(b) /v(a:)dx (@)

a a a

b
holds; here v : [a,b] — R is nonnegative, integrable and symmetric to ot .

In [6], Liu, Ngo and Huy established the following results:

— is
v(z
decreasing and wu is increasing on [a, b], then for any convex function ¢; ¢(0) = 0. Then the
inequality

Let v and v be two positive continuous functions on [a,b] and v < v on [a, b]. If

b
J
ab > a (3)
!

holds.

Many generalizations and extensions of the Hermite-Hadamard, Hermite-Hadamard-
Fejér, Liu-Ngo-Huy type inequalities were obtained for various classes of functions using
fractional integrals; see [7]-[19] and references therein.

Definition 1. The function u : [a,b] C R — R is said to be convex if the following inequality
holds

u(pr + (1= p)y) < pu(z) + (1 — p)u(y)

for all z,y € [a,b] and u € [0,1]. We say that u is concave if (—u) is convex.

In the following, we will give some necessary definitions and mathematical preliminaries
of new fractional integral which are used further in this paper.

Definition 2. Let f € Li(a,b). The fractional integrals Z¢ and Z;* of order a € (0,1) are
defined by

(67

1 i 1-—
Tu(x) = o /Ea,l <— a(x - s)o‘> u(s)ds, = > a,

and

(0}

b
1 11—
Tiu(z) = - /E%l (— a(s - m)a> u(s)ds, © < b,
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respectively. Here E, 1(z) is a Mittag-LefHler function is defined as (see e.g. [20])

. 4
Zfak—l—ﬂ a>0 >0 (4)
k=0
If @« =1, then
z b
lim Z2u(x) = /u(s)ds, lim Zj'u(x) = /u(s)ds.
a—1 a—1

Therefore the operators 7' and Z;* are called fractional integrals of order a.
The aim of this paper is to establish some functional inequalities for the above new

Oé(b_

fractional integral operators with exponential kernel. We henceforth denote A =
a)®.
2 Hermite-Hadamard type inequality

Theorem 1. Let u : [a,b] — R be an integrable function on [a,b], i.e. uw € Li(a,b). If u is a
convex function on [a,b], then the following inequalities for fractional integrals hold:

u(a) + u(b).
2

u < - b) < o (T0u(b) + Tgu(a)] < (5)

2 ) = 2(b— a)Bas (—A)

1
Proof. Since u is a convex function on [a, b], we get for z and y from [a, b] with p = 5

o(B1y) < del et “

ie, withx =ta+ (1 —t)b, y = (1 —t)a + tb,

2 (“‘2”7> < uta+ (1= 0)b) + u((1 = t)a + th). (7)

Multiplying both sides of (7) by Eq 1 (—At*), then integrating the resulting inequality with
respect to ¢ over [0, 1], we obtain

2o (—A)u <a ;r b)

1
/Ea,l _ %) [u(ta + (1 — £)b) + u((1 — t)a + b)) dt
0
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By (—At) u(ta + (1 — t)b)dt

)

As a result, we obtain

9B (—A)u (“ ‘; b) < - [T2u(b) + Tu(o)].

The first inequality of (5) is proved.

For the proof of the second inequality in (5) we first note that if u is a convex function,
then, for ¢ € [0, 1], it yields

u(ta+ (1 —t)b) < tu(a) + (1 — t)u(b)

and
u((1 —t)a+tb) < (1 —t)u(a)+ tu(b).

By adding these inequalities we get
u(ta+ (1 —t)b) + u((1 — t)a + tb) < u(a) + u(b). (8)

Then multiplying both sides of (8) by E,1 (—At) and integrating the resulting inequality
with respect to ¢ over [0, 1], we obtain

Eo2 (—A)[u(a) +u(d)] > /Ea,l (—At*) u(ta + (1 —t)b)dt
0

1
+/Ea,1 (—At*) u((1 — t)a + tb)dt,
0
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i.e.
«

b—a
and the second inequality in (5) is proved. The proof of Theorem 1 is completed. ]

25 u(b) + Zg'u(a)] < Eaz (= A) [u(a) + u(d)],

Corollary 1. Let u : [a,b] — R be a positive function with 0 < a < b and u € Li(a,b). If u
is a concave function on |a,b], then the following inequalities for fractional integrals hold:

u(a) + u(b)
2

a+b o ) )
u< 2 > % 2= a)Fag (—A) o ) w2

Remark 1. For a — 1, we get

1
lim @ =

a—12(b—a)Ea2(—A)  2(b—a)

Then the under assumptations of Theorem 1 with o = 1, we have Hermite-Hadamard in-
equality of (1).

3 Hermite-Hadamard-Fejér type inequality

Theorem 2. Let u: [a,b] — R be convex and integrable function with a < b. If v : [a,b] — R

is nonnegative, integrable and symmetric with respect to GTH’, i.e. v(a+b—1x)=v(x), then

the following inequalities hold

" (“ : b) [Z20(b) + T2v(a)]

u(a) + u(b)

< 25 (w) (b) + I (uv) (a)] < 5

[Z5v(b) + Zy'v(a)]. (9)

Proof. Since u is a convex function on [a,b], we have for all ¢ € [0;1] the inequality (7).
Multiplying both sides of (7) by

Eo1 (At v ((1 —t)a + tb), (10)

then integrating the resulting inequality with respect to t over [0, 1], we obtain

2 (a . b) O/IEa,l (CAE) 0 (1 = B+ th) dt

1
< /Ea,l (—At™)u (ta+ (1 — ) v (1 — t)a + tb) dt
0
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1
+ / Eo (—At) u ((1 = t)a + tb) v (1 — t)a + tb) dt
0

_ bia/EaJ (—1;a(b—s)“>u(s)v(a+b—s)ds

+- T3 u(a)e(a)) = (22 [u(a)v(a)] + T3 [u(a)v(a)])

i.e.

/‘\
\_/

1
/Ea,1 A0 (1 — Ba + tb) di
0

(0%

< 5 Za lu(@)v(a)] + I [u(a)v(a)]].

Since v is symmetric with respect to QTH’, then the following equalities hold

T30(b) = Tgvla) = 5 [T30(b) + To(a)]

Therefore, we have

u <a —2|— b) [Z¢0(b) + Ziv(a)] < Z9 [v (b) u(b)] + I [v (a) u(a)]

and the first inequality of Theorem 2 is proved.

For the proof of the second inequality in (9) we first note that if u is a convex function,
then, for all ¢ € [0; 1], it yields the inequality (8). Then multiplying both sides of (7) by (10)
and integrating the resulting inequality with respect to ¢ over [0; 1], we get

1
/Ea,1 S AV (ta+ (1 — 8B v (1 — t)a + b) dt
0

KAZAKH MATHEMATICAL JOURNAL, 20:2 (2020) 63-72



Some functional inequalities for convex functions ... 69

1
+/Ea,1 — At u (1= t)a + th) v (1 — t)a + tb) dt
0

1
/Ea1 —At) v (1 — t)a + tb) dt.
0

As a result, we obtain

+ u(b
72 o () u()] + 75 [va) u(@)] < O 17000 1 ()
Theorem 2 is proved. O
Corollary 2. Let u: [a,b] — R be concave and integrable function with a < b. If v : [a,b] —
R is nonnegative, integrable and symmetric to a—“’ i.e. v(a+b—1x) =v(x), then the following

inequalities hold

W(*57) Ee®) 4 o) > 22 (u0) )+ 73 (u0) (o)

< u(a) + u(b)

- 2
Remark 2. Under assumptations of Theorem 2 with o = 1, we have Hermite-Hadamard-
Fejér inequality of (2).

[Z5 v () + i v(a)).

4 Liu-Ngo-Huy inequality
Theorem 3. Let u and v be two positive continuous functions on [a,b] and v < v on [a,b].
u(x)
1
e

the inequality

is decreasing and u is increasing on [a,b], then for any convex function ¢; ¢(0) =0,

(11)

1s valid.

Proof. The function ¢ is convex and ¢(0) = 0. Then the function $() is increasing. Since

u is increasing, then qﬁu) is also increasing. This and the fact that ZEB is decreasing yield
¢lu(s)) u(t) | ou(t)) uls) _ ¢(ut)) ut) _ d(u(s)) u(s)
u(s) wo(t + u(t) w(s) u(t) wo(t u(s) v(s) (12)
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for all s,t € [a,b].

Hence, we can write

O(u(s)) Bu(®)
ey () + S (s
) o sls)
ey w0 = E S Ru(s)(n) > 0 (13)

l—«

1
Now, multiplying both sides of (12) by —Fq 1 (— (x — s)a>, then integrating the re-
a

sulting inequality with respect to s over [a, b], we get

u(t)Z2 <¢%§))v(b)> " d’i“((t?)v(t)zgu(b)
) e (B0)
Loz - vozz (U um) >0 (1)
With the same argument as before, we obtain
Tou) T (‘Wv(b)) > T20(B)T2 ((u(b). (15)
Since u < v on [a, b], then using the fact that the function ¢E:) is increasing, we can write
Pu(s)) o o(v(s) oo
u(s) < o(s) € [a,b]. (16)
By virtue of (16), from (15) we obtain (11). O

Remark 3. Under assumptations of Theorem 3 with o = 1, we have Liu-Ngo-Huy inequality

of (3).
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Hamusip yken6aii, Bepik6os T. Tepebex BOJINIEK PETTI BENCHHI'YJISPJIBI
O3EI'l BAP UHTEI'PAJIABI KAMTUTHIH JOHEC ®YHKINAIAP YIIIH KENBIP
OYHKIMOHAJIABIK TEHCI3AIKTEP

MakaJsanbiH Herisri MakcaTsl — besiek perti Murrar-Jleddiep belicunrysisipiibt e3eri 6ap
MHTErpaJIAbIK, oleparopJap yimd dpmur-Anamap, dpmur-A gamap-PDeiiep xone Jlio-Hro-Xaii
TEKTEC TEHCI3TIKTEP/IL ay.

Kinrrix cezaep. dpmur-Amamap rercisairi, dpmur-Anamap-Peitep Tencizmairi, JIo-Hro-
Xait TeHCI3MIrI, sKaHa OOJIIIeK PeTTi MHTErPAJIIBIK OIepaTop, MHTErPAJIILIK TEHCI3IIKTED.

Hanusap Hywenbait, Bepuk6on T. Topebexk HEKOTOPBIE O®YHKIMOHAJIBHBIE
HEPABEHCTBA J1J1d BBHIITYKJIBIX ®YHKIINN, COAEPYKAIINE JJPOBHBIE NH-
TEI'PAJIBI C HECUHI'VJIAPHBIMU AJIPAMI

Hesp jgaHHON CTATBU — YCTAHOBUTH HEPABEHCTBA THIIA DPMUTA-Amamapa, IJpMUTa-
A namapa-®eitepa u JIro-Hro-Xast g5t IpoOHBIX HHTErPaIbHBIX OIIEPATOPOB C HECHHTYJISIPHBIM
snpom Mutrtar-Jleddiepa.

Kimrouespie cioBa. HepasencrBo Dpmura-AjamMapa, HepaBeHCTBO DpMuTa-AjamMapa-

Qeiiepa, nepasencTso Jlo-Hro-Xast, HOBBIH JpOOHBIII MHTErpaIbHDBIN ONEPATOD, MHTEIPAJIb-
HbI€ HEpaBEHCTBA.
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Let us consider the differential equation
Lu(z) =u'(z) +q(z)u(z) = f(z), z€(0,1). (1)

We will find a general solution of equation (1) in W3 (0, 1), which continuously depends on
f(x) € Ly(0,1). It is well-known that the general solution of the homogeneous equation (1)

Lug () = ugy (x) + q () up (z) =0, z € (0,1), (2)
can be represented as
fgq(ﬁ)di

up (x) =c-e

where ¢ = const, q(x) € C[0,1].
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Cauchy problem: Find a solution to equation (1) satisfying the homogeneous initial con-
dition

u (0) = 0. (3)
By calculation, we verify that the unique solution of Cauchy problem (1), (3) is given by the
formula

T~ Tande
uk (z) = L f (z) = / e © F(€)de.
0

Therefore, the general solution of equation (1) is representable as

u(@) = L' f (2) + uo (@),

ie.
7 —f (€1)dé1 _ T (€)de
u(x):L;gf(xHuo(x):/e e O dEtee b
0

Since the solution of equation (1) is continuously dependent on f () € Lo (0,1), then the
constant ¢ should continuously depend on f (z) € L2 (0,1), that is ¢ should be a linear contin-
uous functional of f, i.e. ¢ = c(f). According to the Riesz theorem on the representation of
a linear functional in the Hilbert space Lo (0, 1) there exists a unique element v (x) € Lo (0, 1)
such that

1
e(f)= [ 1@)vie)da,
0

Thus, the general solution of equation (1) is continuously dependent on f (z) € L2 (0,1) and
can be represented as

w(@) = L f (2) + uo (2)
*fq(&)d& : ffq(g)df
=/e : f(&)d&/f(&)v(&)dae ;
0

0

1 z 1 T
— [q(¢&1)d& — [q(&)d¢
=/0<x—s>e e -f(é)d£+/f(£)v(§)d£-e 1€
0 0

where 6 (z) is the Heaviside step function

1, z=2>0,
9(””):{ 0, z<0.
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We denote by Lg the closure in Ly (0, 1) of the differential operator (1) on a subset of the

0
function u € W3 (0,1), and by L the closure in Lo (0, 1) of the differential operator given by

LTov=——

0

on a subset v € W4 (0,1). By L} and (Lar)* denote the adjoint operators to Lo and L,
respectively. An operator L is called a correct restriction of maximal operator LS‘ if there
exists a bounded inverse operator L~!, on all of Ly(0,1) and L C LE{. We say that the
operator L is a boundary extension of Lg, if L is simultaneously the correct restriction of
the maximal operator L(f and the correct extension of the minimal operator Lg, that is,
LyC LCL§.

The theory of correct restrictions of the maximal operator and correct extensions of the
minimal operator for the case of ordinary differential operators was first developed by M.
Otelbaev [2], [3], and it was further developed in the works of his disciples.

Otelbaev’s theorem [2]. Let L{ be a mazimal linear operator in L2(0,1), Lx any known
correct restriction of the operator Lar and K an arbitrary linear bounded operator in Ly(0,1),
satisfying the following condition R(K) C Ker(LS‘). Then the operator L™, defined by the
formula L™'f = Lilf + K f describes the inverse to all possible correct restrictions of L
mazximal operator L0 , te. L C Lar.

The closest topics to what in this article can be found from [1], [5]-[11]. In the work
[1], correct restrictions and some of their spectral properties for an ordinary differential
operator of the first order were considered. As for ordinary differential operators, in [5]-[10],
the spectral properties of correct restrictions and extensions were considered for the partial
differential operators. In [11], the criterion of Volterra property of well-posed boundary value
problems for the Sturm-Liouville operator was proved. This criterion is the condition of
symmetry of the least coefficient of the equation.

In this paper, we study the question of Volterra invariant subspaces for the correct re-
strictions of an ordinary differential operator of the first order.

The correct restriction of the operator (LJ )* is given by the integral form:

L ~ atende /
L= [oa-9e < F @ w@- [F@v©d W
0 0
~ Jae)ae . . o
where ug (x) =€ 0 . We will find an adjoint operator to the correct restriction

1
(L7 (a /f g(x)de
0
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~ Fa(en)de
0 X

; ; — [ a(€n)des ;
=/f<x> /0<x—5>e e -g(€)d€+/g(€)v(§)d€-e
0 0

. - Jatende ; /
—/f(aa)/@(ac—f)e : -g(ﬁ)dﬁdwr/f(w)/g(i)v(é)dff-uo(fv)dw,
0 0 0 0

h / Jaterydes 1
EYs@= [o-ne g@de+u@ - [s@u@d. )
0

0

In work [12], Kalmenov T.Sh., Otelbaev M. proved that a correct restriction is a regular
boundary extension if and only if L* C L, that is, (L_l)* g is a solution of the equation
L*v = g (x). From the representation (5) we find this only if the function v(z) = vo(z) is a
solution of the adjoint homogeneous equation

(-2 s) e o

This proves that:

Theorem 1. For arbitrary v(z) € L2 (0,1) formula (4) defines the correct restriction of
(LS‘)*, and forv = vg (z) € ker (Lg)* the representation (4) gives elements of reqular boundary
extension.

It should be noted that the arbitrary function v(z) € L2 (0, 1) in formula (4) determines
an arbitrary correct restriction of (L('f )* and a regular boundary extension in the case of
v =g (x) € ker (Lo)*.

To determine a boundary condition of regular boundary extension, we assume that
vo (§) € ker (LSF)*, ie. Livg (&) = —%vo (&) +q(§)vo(€) = 0. The general solution of
the homogeneous equation can be represented as

[ a(en)de:
vo () = ¢ - €0 ,

where ¢y = const. Substituting in equality (4) f (§) = d%u (&) +q (&) u (&) for z = 0, we notice
that

u(0)= / (6 + @) u©w(©)as

0
1 1
— (@) (@) — / w(€) Loy () de + / w(€) g (€) vo (€) de
0 0
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1
:u@m@m+/ﬁ@wfi+q@>m@wg
0

1
:uawuw—umwam—/ﬁ@wO%
0

=u(1)vo (1) —u(0)vg (0).

1
S a(€1)dér
Since vg (0) = ¢g, vo (1) = ¢p - €0 , then the general regular boundary condition can be
rewritten as )
S a(€1)d&
(14 co) - u(0) =co - € ~u(l), (6)

where ¢y = const.

Theorem 2. The reqular boundary condition for equation (1) is given by formula (6), where
co 18 an arbitrary constant.

Now we will solve the spectral problem with the regular boundary condition (6)

Lu = %u () + q(x)u = Au(x). (7)

Remark. For co =0 or 1 4+ ¢y = 0, we obtain Cauchy boundary conditions v (0) = 0 or
u(l) = 0. The Cauchy problem is Volterra, i.e. does not have a spectrum. The general
solution of equation (7) is a function

- Fa@)de+ra
u(x)=c-e qu . (8)

Then satisfying u () boundary condition (6) and since

1

— [ a(§)de+A
u(l)=c-e © ,
assuming that co - (1 + ¢o) # 0, we will get
1 1
1 —Jal®)ds — [ a(§)de+A
u(l)y=—=-e 0 c=c-e 0 )
s
1
A
e =—,
B

KAZAKH MATHEMATICAL JOURNAL, 20:2 (2020) 73-84



78 Tynysbek Sh. Kal'menov, Nurbek Kakharman

Apn=—Inp+2mni, n € Z, (9)
where § =

is

n = —Inf+2mni
- fQ(f)d§+(f In f+27ni)x
un(z)=e ¢ : (10)
Obviously, the set of {u, ()} forms a Riesz basis in L9 (0, 1) which proves the following:

Theorem 3. The eigenvalue of the regular boundary-value problem (7), (6) is given by for-
mula (9), and the eigenfunction defined by formula (10) form the Riesz basis in Lo (0,1).

Now we are considering the spectral questions of correct restrictions. In this case, assume
that the function v (z) determining the correct restriction by formula (4) does not belong to
v (z) ¢ ker L.

Let v (z) € Wy (0,1) and v (z) = 0 when = € («a, 1), where 0 < a < 1. Then we transform
formula (4) to the form

i ~ [ atends
L= [0@—g)e ¢ F(€)d +uo () - [ F(€ (11)
Jo Jre
As f (&) = geu (&) +q(§)u(§), integrating by parts (11) we get
T fq(él)dél a
u@ =L =fe ¢ f@de+uo@) [ (§+a©)u©v©de
z - [a€)ds ;i
—fe T p©ds+un @) [u@ @) - w00 - ful©) (# - 0(©) v O]
0 0

When x = 0, from (23) it follows

Consider the following spectral problem

Lu = (CZE +4q (ﬂ?)) u = A\u, (12)
w(0) = u(@)efa) ~ u(0)o(0) + [0 (© (—jg tq <»s>) (&) de. (13)
0
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Substantiate the general solution of equation (12) in the form of (8) in equation (13)

m

i —f(I(fl)dﬁl-i-)\E( d

2+ q<5>) v (€) de.

Without loss of generality we assume that v(«) = 1 and v(0) = 0, then to determine A we
will solve the next transcendental equation

« o 3
— [q(&)dé+Aa — [q(&1)d&1+X¢ d
lee 0" +/e 0 -(—d§+q(g)>v(§)dg. (14)

0

Integrating by parts, we get

3
o —({Q(&)ldfl

3
— [ a(€),de1+X¢
p LT (- +a©)v@de= [ (—fk +0(9) v (© feeag

a
[e
0

«

¢ §
= Ja@nde+ae a — [ a(€),d&
=t (k@)@ —3Jed | (< +a©) v de
¢ e p
- [a(€),de1+2¢ ® ~Ja@hda
:% . oq (—d%—FQ(O)U(E) _([e)\fd% e Oq <_di£+q(§)>v(€) dg |.
0

Therefore, for large A the asymptotic behavior of the spectrum is determined by the main
term of (14):

~ [ a©)de+ra
l=¢ O .
From the above it follows that
[ a(&)de
e)\ g 60 ,
hence
(e}
Aa = /q(ﬁ) d¢ +2mni, n=1,2,3, ...,
0
i.e.
Ja(e)d
q . .
2 2
>\n=0 wn226+ 7Tm7 0<a<l,
« « «
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[ ate)de
where § = ——. The corresponding eigenfunctions are given as

x

= [ a(€)de+(q+ 2 )z
up () =e © .

Since a < 1 the eigenfunctions u,, (x) are incomplete in L (0, 1), and complete in L2 (0, @),
similarly, it can be established that the eigenfunctions of the initial problem are represented
in the form

Ty () = <un (z) + iu#)

Hence we can see that the system w, (x) is incomplete in L9 (0, 1), but it is complete and a
basis in the space Ls (0, @) according to the criteria of N. Bari.
Let

[0, ze(a,l),
h(x)_{h(a:);éo, re0,a)

Then, due to the incompleteness of the eigenfunctions @, (x) in Ls (a, 1) it follows that there
exists h (z) such that

(h (x) s tn () 1,(0,1) = 0-

Then the function h (z) is orthogonal to all root vectors {u, (x)}. Therefore, adjoint operator
to the operator L™! according to Keldysh M.V. theorem is a Volterra invariant operator on
elements of arbitrary h (x) Lu. Denote by Ly a root subspace of the correct restriction of L,
and by Lf an orthogonal complement to Ly. M.V. Keldysh showed that the adjoint operator
L* to Lf is a Volterra operator. Using the Keldysh’s theorem, we can prove:

Theorem 4. There is a correct restriction of L such that its root vectors are incomplete in
L2 (0,1) and the adjoint operator to L is an invariant Volterra operator on L)L\.

Now, consider the case v (z) =0, x € («,1). In this case, as a fixed correct restriction we
take the solution of the Cauchy problem

Lu(z) =4 (z) +q@)u(z) = f(z), z¢€(a,1), (15)

u(l) =0. (16)

By the direct calculation, we find that the solution to problem (15)—(16) can be represented
as

x

., / — [q(é1)d&
we =Lk = e £ p @ de
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Therefore, as above, the solution continuously dependent on f (&) € Ly (0,1) can be repre-
sented as:

xT

u(x):L[_(if(a:)—i-c-uo(x):/e

o

- Jatenden 1
O w @ [f@u@an o)
(&7
where ug (x) is an arbitrary solution of the homogeneous equation
Lug () = ug (z) + q () ug (z) = 0,

i.e.

and v (x) € Lo (0,1) is an arbitrary function.

Now, we will find the regular boundary condition (17) for this, substituting in the equality
(17) x =1 and Lu = v/ (z) + ¢ (z) u (x), we get

(18)

Since ug (1) = 1, assume that (1) - (1 — v (1)) = k, then the last equality of (18) takes the
following form

1

d
b= —v@ula)+ | [u© (5 -a©@u©) o]
Thus, we will study the spectral problem
Lu=u+q(x)u=\u, (19)
i d
b= —u@o(@+ [u© (-0 v (20)
Substituting the solution to equation (19)

= [ a(§)dé+A(z—1)
u(r)=-e 1 ,
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from the equality (20) we have

~ fa(©de+ra-1) 1 - Jaeds
k=—e 1 via)+ [e 1 (d% —q (5)) v () %d%e’\(g_l)dﬁ
- [a(§)dé+X(a—1) — [a(&)de+X(E-1)
=—e vi@) =} fe (~%+a(©)v(© (21)

¢ (6
- [a(&1)d&
N (D KIGL3

We assume that v (z) € W$ (0,1) , from (21) we have

,f YdE+A(a—1) Lk
k=e 1q (1—1>,

1
1 )\—ld
_LfeNend,
«

A

where k1 = k1 (v) is a bounded number, what is more ’%\1 # 1. Hence

[ a(€)d
Le{q(@ ¢ _ nla—D+2mi 193 (22)
(%)

We take the logarithm of both sides

k
An (= 1) +27mni =Inky —In (1—)\1>

Since for large A,

then we rewrite equality (22) in the form

o= (ammivo (1)) (12

Therefore, as n — oo we have

Ay = é”_ml) <1 +0 <W>2> (23)

The eigenfunction corresponding to the eigenvalue is represented as

E4 2
_ifq ds_._ (27rnz (1+O<(gw:zli)> )(CE—I)

Up = €

Therefore, for 0 < o < 1 the system of eigenfunctions given by formulas (23) is incomplete
in L9(0,1). Thus proved:
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Theorem 5. The eigenvectors of the correct restriction generated by the function v(x) €
L5 (0,1) are incomplete in L2(0,1).
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Komvenos T.IIL, Kaxapman H. BIP ©JIIIEM/II JTNOOEPEHIMAJIBIK OIIEPA-
TOPJIAP YIIIH PETY/ISPJIBI IIETTIK ECENTEPAIH TYBIPJIK BEKTOPIAPDI-
HBIH TOJIBIKTHITBl TYPAJIBI

By xymbicra 6i3 6ip esmemai audpepeHIuaIBIK OepaTopiap YIIH Peryssp/ibl IeT-
TiK ecenTep/IiH, BOJbTEPPAIbIK WHBAPUAHTTHI IIKIKEHICTINH KypablK. Bipinmi perTi omepa-
TOPJIBIH, CHIFBLITYIAPBIHBIH, BOJIBTEPPAJIBIFBIHBIH KpuTepuiii |1] xKymbIcbiana mosesenren. bis,
Kesiblrsig, TeopeMachit 1aiijiaiana orbipslil, La(0, 1)-1e MeHIIKTI BeKTOPJIapbl TOJIBIK €MeC
60JIATBIH KUCBIHIBI CHIFBLIY Oap eKkeHiH, conjaii-ak Lo (0, 1)-/e MeHIIKTI BEKTOPJIAPBI TOJIBIK,
00JIaTBIH KUCHIH/IBI CBHIFBLIYJIAp Ja 6ap eKeHiH Jpjesne k. BoabreppalblK THBAPUAHTTHI illl-
KIKeHICTIKTeP/IiH, CUIaTTaMachl Oepii.

Kinrrix ce3mep. BoibreppaJsblK MHBAPUAHTTHI MKIKEHICTIKTEP, KUCBIHBI CHIFBLIYJIAD,
KeHeiTysep, 6ip emmemal auddepeHIuaIIbK onepaTopJiap.

Kanpmenos T.I1I., Kaxapman H. O IIOJIHOTE KOPHEBBIX BEKTOPOB PEI'VJIAP-
HBIX KPAEBBIX 3AJIAY J1JIAd OJHOMEPHBIX JNOOEPEHIINMAJIBHBIX OITEPA-
TOPOB

B sr0it pabore MBI MOCTPOMJIM BOJILTEPPOBOE MHBAPUAHTHOE IIOAIPOCTPAHCTBO PErYJIAp-
HBIX KPaeBbIX 3aJad Jlsl OJHOMepHbIX jnddepeHnuaibHbix onepaTopos. B [1] 6w moka-
3aH KPUTEPHUil BOJIBTEPPOBOCTU CY>KEHHII ollepaTopa IepBOro mnopsijka. VMcnoab3yst TeopemMmy
Kenmpimmma Mbl 10Ka3a/1H, ITO CYIIECTBYIOT KOPPEKTHBIE CY2KEHUST MAKCUMAJILHOTO OIIEPATOPA,
COOCTBEHHBIE BEKTOPA KOTOPBIX SIBIAIOTCs HemogHbIMU B Lo(0,1); B TO »Ke BpeMsi TakzxKe Cy-
IIIECTBYIOT KOPPEKTHBIE CY2KEHUsT MAKCUMAJIHLHOTO OIIEPATOPa, COOCTBEHHBIE BEKTOPA KOTOPBIX
nosubl B Lo(0,1). Jano onucanue BoJbTEPPOBBIX NHBAPUAHTHBIX HOIIPOCTPAHCTB.

Krrouesbre ciioBa. BoabTeppoBoe HHBAPUAHTHOE IMTOAIIPOCTPAHCTBO, KOPPEKTHBIE CyYKEHUSI,
pacIiupenusi, oJfHOMepHbIe auddepeHInaIbHbIE OTIePATOPDI.
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Abstract. In this article, one deterministic model of the kinetics of chemical reactions is considered. A
mathematical model of this chemical kinetics has been constructed. For the given experimental data of
reaction speeds, i.e. parameters (coefficients) of the model, the exact optimal parameters (coefficients)
of the model were found using the least-squares methods. For one concentration (blood concentration)
and for the reaction rate of this concentration an optimal parameter, that is, the reaction rate of this
concentration was found. The task is practical and is of great importance in chemical kinetics and in

medicine.

Keywords. Chemical kinetics, ODEs system, optimization, least-squares method, reaction, concentra-

tion, rate.

1 Introduction

Chemical kinetics can be defined as a science that studies the flow rates of chemical
reactions and the factors affecting them. The task of the mathematical theory of the kinetics
of a chemical reaction is the description of the change in the concentrations of reacting
substances with time, moreover, the concentration is defined as the number of molecules in
a certain constant volume. In the classical deterministic theory of concentration, they are
described using real continuous functions of time, and the reaction mechanism is modeled by
a system of differential (or integral) equations [1].

In a probabilistic theory, the basic random variables are the concentrations of the reacting
substances at time ¢, and the task is to determine the distributions of these concentrations.
Probabilistic models were considered in the works: [2]-[4].

Montroll and Schuler [5], developed a general theory of the kinetics of chemical reactions
based on the theory of first-time distribution. Some stochastic models were considered in [6].

Other deterministic models of chemical kinetics are solved by S.I. Kabanikhin and his
scientists and PhD students [7], [8].

2010 Mathematics Subject Classification: 34A55, 37N40, 93E24.
© 2020 Kazakh Mathematical Journal. All right reserved.



86 Kanat K. Shakenov, llyas K. Shakenov

Some probabilistic models of chemical kinetics are the simple model of an autocatalytic
reaction, the unimolecular reaction, the bimolecular reaction and the law of effective masses,
and the sequence of monomolecular reactions of the form
I

A B 2, C

A B C,

I3 lg

where [y and [y are constants characterizing the rate of the direct reaction, I3 and l4 are
constants characterizing the rate of backlash.

In this article, we considered a deterministic model of the kinetics of chemical reactions
[10]. We consider one inverse problem of pharmacokinetics and pharmacodynamics (PK
& PD): finding unknown optimal coefficients (parameters) of the process of the dynamics
(reactions) of chemical kinetics. According to practical experiments and observations, the
processes of chemical kinetics in pharmacokinetics and pharmacodynamics proceed according
to the following scheme: there are 4 chambers A, B, C, D and the kinetics of the reaction
system are described in Schemes: 1.

A-bBsB M, c

and 2.

B2, D

B«+—D

k4
(PK & PD) model of these schemes has the form
8 £ )
Aly] —— Bly2] —— Clys]

and i
Blyz] —— Dly4]

(2)

Bly:] A Dy,

Comment to scheme (2). The concentration in chamber B is equal to y2 and this concen-
tration flows into chamber D with speed ks, that is, is described by the scheme

Blys) —— D[y].

The concentration in chamber D is equal to y4 and this concentration flows back to chamber
B at a speed ky4, that is, is described by the scheme

Blyo] A D[y4].
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A model of schemes (1) and (2) was constructed in [10]

yld(;) = —kiyi(2), )

de(;) = k11 (t) — (kaya(t) + kaya(t)) + kaya(t), )
y:;it) = kaya(t), (5)

y4d(tt) = kigyg(t) - k4y4(t)7 (6)

y1(0) = yo, ")

y2(0) =0, ®)

y3(0) =0, )

ya(0) =0, (10

where y;(t), i = 1,2, 3,4, are concentrations of components in A, B, C, D respectively, at the
moment of time ¢ € [0, T ], are the coefficients (parameters) of the velocities in the individual
reaction stages, y1(0) = yp is the given initial concentration.

Some ill-posed inverse problems with respect to the initial conditions of the heat equation
were considered in [9)].

2 General mathematical formulation of the problem

Let us be given the experimental data of the parameters k;, ¢ = 1,2, 3,4, and the initial
condition yo for yi(t), as well as restrictions on the parameters k;, i = 1,2,3,4, of the
velocities: 0 < k; < k;, i = 1,2,3,4, for given k;, i = 1,2,3,4. The given experimental data
are: yo = 50, k1 = 5, ks = 2, ks = 3, ks = 4 and also k; = 10, i = 1,2,3,4. We denote
by y;™" (¢, kj,v0), i,j = 1,2,3,4, the solutions with experimental data yo = 50, k1 = 5, ko =
2, k3 =3, ky=4fort e [0,7].

I. It is required to find the optimal coefficients (parameters) k;, i = 1,2,3,4, from the
condition of minimization of the functional

4
Z (yfﬂfp(t,kj7yo) —vi(t, kj,y0)>2 .

=1

(11)

min .
t,j=1,2,3,4

IT. Investigate the effect of the initial data y1(0) = yo, ¥(0) = 0, ¢ = 2,3,4, on the
experimental solution y;"” (t, k;, yo), 1,7 =1,2,3,4.
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3 Solution

We solve system (3)—(10) considering k;, i = 1,2,3,4, as parameters of the solution of
system (3)—(10). We denote this solution by y; (¢, k1, ka2, k3, k4,90), @ = 1,2,3,4. The initial
condition gy is also considered as the solution parameter. We need to find optimal parameters
Yo, ki, i = 1,2, 3,4, with least squares constraints, that is (11)

4
2
> (47 1 k) =ity 0)) >, min,
=1 1 T

Let the parameters k;, i = 1,2,3,4, be are given experimental data. We consider the
Cauchy problem for these given parameters k1 = 5, ko = 2, k3 = 3, k4 = 4 and for the initial
value y1(0) = 50. So we have the ODEs system

exp
t
yl ( ) — _5yfxp(t)’

dt
ygxp( ) — 5y SP (¢ 50E%P (¢ AyE%P (¢
O () — gm0 + 4T )
exp
ys (1) exp (y
=2 12
O _ ), (12)
exp
t
U sy —aygr ),
t
yfxp(o) = 50,
57(0) =0,
The exact solution of this problem (12) has the form y{™(t) = 50e~%, y5™P(t) =
1000 g 375, 125 5 ey _ 375, 250 Sy 25 g o
37521 254(—) 12 ¢ 1—2|—566 , Ys (t) = -t g 3 € + 50, y, " (t) =
et T—e 8 — "¢ and their graphs are plotted.

14 € 7 © 2
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501 251
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30 154
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10 59
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0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
t t
Figure 1 — y{™"(t) Figure 2 — y5*?(t)

Next, let us consider only the concentration ys(t) (the blood concentration) and the
parameter ko (the speed parameter corresponding to this concentration). Let now ko be an
unknown parameter. Consider the same problem, i.e. for ky =5, ks =z, k3 = 3, kg = 4 the
following Cauchy problem with the same initial condition y;(0) = yo = 50 for the system of
differential equations:

yld(:) = —5y1(),
ya(t) 5 _
= (t) — zya(t) + 4ya(t),
W0 ), (13)
yﬁ;? — 3ya(t) — dya(t),

y1(0) = 50,
y2(0) =0,
y3(0) =0,
y4(0) = 0.

Solving the problem (13), we find o (t, k1,2, ks, Ky, yo). Now we minimize the functional
for yo = 50:

2
(95 (& Fo o, R o) = wa (8 B, K, oty go) ) — mimyego 7 (14)
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1004 251
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60 154
»3 v
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t t
Figure 3 — y3*?(t) Figure 4 — y;""(t)

As a result of minimization, we obtained min = 5.7028731921070653610 - 1072 ¢ =
2.61941764237572228, x = 1.99999999999967138.

Hence it is clear that x = k3 = 2 and indeed ks = 2 is an optimal parameter. Graphs of
two functions y5"? (t, ki, ko, ks, ka, yo) and yo (t, ki,x, ks, kq, yo) almost coincide.

Next, we investigate the influence of the initial condition. We consider the same prob-
lem with initial conditions 1. y1(t) = yo = 55 and 2. y1(t) = yo = 45. For this, solv-
ing the corresponding Cauchy problems with the corresponding parameters and initial data
(kl,z, k:g,k‘4,55) and (k;l,:v,kg,k4,45), we find yo (k‘l,l‘,k‘g, k:4,55) and yg(k’l,x, k‘g,k‘4,45).

1. As a result of minimizing the functional

2
(ygxp (tu kl: k25 k;37 k47 50) — Y2 (t7 kla Z, k37 k47 55)) — minte[0,7],x (15)

for y1(t) = yo = 55 we find min = 8.79178738841243450 - 10722, ¢ = 3.44254019385341570,
x = 2.06251146631368298.
2. As a result of minimizing the functional

2
(9577 (8 Fo o, s o, 50) = (£ oy, s, Ky, 45) ) — mimyego 7)o (16)

for y1(t) = yo = 45 we find min = 1.20124267659072705 - 10~ 24, ¢+ = 0.558371362474722188,
x = 1.62283110817454901.

The influence of the initial condition on kg for yi(t) = yo = 55 is less than for y;(f) =
yo = 45. But the impact is palpable.

Further, without changing the initial condition y;(t) = yo = 50 and assuming the two
parameters to be unknown k; = u and ks = v, we solve the corresponding Cauchy problem
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and find yo (t, u,v, ks, ky, yo). Then we minimize the functional

2
(y;acp(t’ ]{31,]{2,/{?3,]{4,3/0) —yg(t,u,'l},kg,k4,yo)) — min . (17)
te[0,7], u, v
As a result, we obtained the following optimal parameters:
k1 = u = 0.914833719634728482, ko = v = 0.984369761310716518 for ¢t = 0.819339355572412
776, and at these values min = 1.52723471250787886 - 10~2".
Further, also without changing the initial condition y;(¢) = yo = 50 and considering three
variables as unknown k1 = u, ko = v and k3 = w, we solve the corresponding Cauchy problem
and find o (t, u, v, W, ky, yo). Then we minimize the functional

2
(?/;xp(ta k17k2,k37k4790) — Y2 (ta u7v7w7k47y0)> — min . (18)
te[0,7], u, v, w
As a result, we obtained the following optimal parameters:
k1 = u = 0.899429404474657690, ko = v = 1.00326990573297814 and k3 = w = 0.746891529
779095676 for t = 0.661375832090767335 and at these values min = 1.33177371090744570 -
10721,
Finally, without changing the initial condition y;(t) = yo = 50 and considering four
parameters as unknown k; = u, ko = v, ks = w and kg4 = z, we solve the corresponding
Cauchy problem and find s (t, U, U, W, 2, yo). Then we minimize the functional

2
(9577 (8 R o, s o, o) = w (80,0, 2,30) ) — Mo 7 0, (19)

As a result, we obtained the following optimal parameters:
k1 = u = 0.870035291306964886, ko = v = 1.04421255971011662, ks = w = 0.984995940722
765974 and ks = z = 1.16027804673082446 for ¢t = 0.781021983948520848 and at these values
min = 4.77387065403547504 - 1026,

Then we compare graphically y5™? (¢, k1, k2, ks, k1, yo) and y2 (¢, u, v, w, z, o) for the initial
condition yo = 50 and for ¢t € [0, 7] for parameters k1 = 5, ko = 2, ks = 3, ky = 4
in y5"? (t, k1, ko, ks, ka,yo) and for parameters k; = u = 0.870035291306964886, ky = v =
1.04421255971011662, k3 = w = 0.984995940722765974, k4 = z = 1.16027804673082446 in
Y2 (t, U, UV, W, 2, yo).

Graphical solution of y5” (¢, k1, k2, ks, k4, y0) and y2(t,u, v,w, z,50). (See Figure 5). Red
line is y5' " (t, k1, ko, ks, k4, yo) and blue line is yo (t, u, v, W, 2, yo). Further, since we are more
interested in the concentration yo (t, ki, ko, ks, k4, yo) and parameter ko, for different values
of only ks we plotted the solution y, in order to compare them with y5*” (t, ki, ko, ks, ka, yo),
that is, we plotted the graphs of

yQ(t) = |y;$P(t, ki, k2, ks, k4>y0) — Y2 (t7 klvjv ks, k4, yO)‘ for J =29, 4,3,1.5,1.2.
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Figure 5 — Red line is y, (t, ki, ko, ks, kg, yo) and blue line is yo (t, U, V, W, 2, yo)
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Figure 6 — 7, (¢) for ko =5 Figure 7 — 7, (t) for ko =4
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Figure 8 — 7y (t) for ko =3
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Figure 9 — 7, (t) for ks = 1.5

Figure 10 — 4 (t) for ko = 1.2
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Figure 11 — Red line is y{*" (¢, k1, k2, k3, k4, o) and blue line is yoPt (t,u,v,w,2,y0)

3 Conclusion

An analytic investigation of the solution ys(t) showed that the solution y2(t) is stable for
ko — 10 2 and unstable for ko < 2. Note that this result does not affect the finding of the
actual values of the optimal parameters k;, i = 1,2, 3,4. Optimal parameters k;, i = 1,2, 3,4,
may be different.

Finally, we consider the general problem. Without changing the initial condition y;(t) =
1o = 50 and considering four parameters as unknown ki = u, ko = v, k3 = w and k4 = z, we
solve the corresponding Cauchy problem and find y; (t,u, v, W, 2, yo), 1 =1,2,3,4. Then we
minimize the functional

2
<yfmp(t,k1,k2,k3,k4,y0)—yi(t,u,v,w,z,y0)> —>t€ min . (20)

[0,7),u,v,w,2

4

=1
As a result, we obtained the following optimal parameters:

ki = w = 3.17221257981978, ke = o = 1.0712973632105791, k3 = w =

—0.0019837608531703696 and ks = z = 0.6859574034351494 for ¢t = 9.85692203652167 and

at these values min = 1.22371719355872573 - 10~17. But, for these optimal parameters, the

solution y3” ¢ (t,u,v,w,z,yo) turned out to be exponentially fast growing, and the solution
Y (t,u,v,w, 2,90) is negative, and parameter k3 = w = —0.0019837608531703696 is nega-

tive. Therefore, we compared only solutions yi"" (¢, k1, ks, k3, ks, yo) and y{” t (t,u,v,w,2,10),

erp

Yo (taklakQak3ak47y0) and ygpt(t,u,v,w,z,yo).
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Figure 12 — Red line is y5"7 (¢, k1, k2, k3, k4, o) and blue line is yoPt (t,u,v,w,2,90)

Remark 1. The effect of the initial condition yo on the solution yy'" is investigated numer-
ically. See formulas (15) and (16).

Remark 2. Analytic expressions for solutions ys (t,kl,x,kg,k4,yo), yg(t,u,v,k3,k4,yo),
Yo (t,u,v,w,k4,yo) Y2 (t,u,v,w,z,yg) are exponential and very cumbersome, and therefore,
they and their difference from y5™* are investigated numerically and graphically. See formulas

(17), (18), (19) and Figure 5.

Remark 3. The influence of the parameter ko (different values of kz) on the solution ys**
is investigated graphically. See Figures 6, 7, 8, 9, 10.

Remark 4. Analytic expressions for solutions y; (t,u,v,w, z,yo) foralli=1,2,3,4 are also
exponential and very cumbersome, and therefore, these solutions are compared with experi-
mental solutions y;'" for all i =1,2,3,4 graphically. See Figures 11 and 12.

The obtained results are quite acceptable for two concentrations y;(t) and ya(t).
Some other models of the process of chemical kinetics in pharmacokinetics and pharma-
codynamics can be found in [11], [12].
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Iaxenos K.K., Ilakernos M. K. XUMUASIBIK PEAKITUSITAP KUHETUKACHIH
TUIMIEH/IIPY/IIH BIP ECEBI TYPAJTBI

By makasmama XUMUSITIBIK, PeaKInaIap KHHETUKACBIHBIH JeTepMUHIeHIipiareH 6ip Mometi
KapacTbIpbLaa ibl. OCbl XUMUSIIBIK, KHHETHKAHBIH, MATEMATUKAJIBIK, MOJE/ KypbULIbl. Peak-
MUsiIap KbLIIAMIBIKTAPbIHBIH, KeJITIPLINeH 3KCIEPUMEHTTIK MoJIIMeTTepl — MOJIeJJIiH Iapa-
MerpJiepi (KoaddunumenTrepi) yImn — eH a3 mapuiblIap 9IiciH maigasany apKbLIbl MOIEJTIH,
HAKTBl THIM/ napamerpsepi (koaddunuenrrepi) tabbuiasl. Bip KoHIEHTpammst — KaHarbl
KOHIIEHTPAIINS YIITiH — YKOHE OChI KOHITEHTPAINSHBIH, PeaKIns KbIIJaMIBIFBl VITIH THIMI] Ta-
paMeTp — OChbl KOHIIEHTPAIUSTHBIH, PEeAKITNs KbLIIAMILIFBI TaObLIIbI. 2K YMbIC TPaKTUKAJIBIK,
BOJIBIIT CaHAJIA bl KOHE XUMUSJIBIK KHHETUKA MEH MEJUIUHAJIA YIIKEH MaHBI3bI Oap.

Kinrrix ceznep. Xumusiiblk, kKuanetnka, 2K 1T xyiteci, TuiMaeHIipy, €H Killli IIapIrbLiap
9JIicl, peakIus, KOHIIEHTPAIIUS, YKbLJIJIaMJIbIK.

[Iakenos K.K., Hlakenos N1.K. OB OJHON 3AJAYE OIITUMU3ALINUI KUHETUKIN
XUMNYECKIX PEAKIINIT

B nmammoit cTaThe paccMaTpPUBAETCS OJHA JIETEPMUHUPOBAHHASA MO/I€/Ib KUHETUKNA XIMUIe-
ckux peaximii. [TocTpoena MareMaTuyecKkasi MOJIE/b 9TOM XUMUYeCKo# kuHeTuku. st mpuse-
JIEHHBIX SKCIIEPUMEHTAIbHBIX JIAHHBIX CKOPOCTel peakiuii — napaMerpos (Ko3dduimenros)
MOJIEJIM — TOYHBIE ONITUMAJIbHBIE HapaMeTpbl (K03 duInenTs) Mojean 6bLIn HANJEHBI C UC-
MIOJIb30OBAHMEM METOI0B HAMMEHBININX KBaIpaToB. It OqHOI KOHIIEHTPAIINN — KOHIIEHTPAIINI
B KPOBU — ¥ JJIsi CKOPOCTH PEAKIINN ITOM KOHIEHTPAIMH ObLI HailIeH ONTUMAJILHBIN TapaMeTp
— CKOPOCTb PEaKIIUU TOI KOHIEHTpAIMU. 3aja4da, ABJIeTCs IPAKTUIECKON 1 nMeeT 60JIbIIoe
3HaYEeHUE B XUMHUYECKOII KUHETUKE U B MeIUIINHE.

Kirouesnble ciioBa. Xummdeckast Kunerunka, cucrema OJLY, onTuMusanins, MeTO HAUMEHb-
MUX KBaJIPaTOB, PeaKInsl, KOHIIEHTPAaIlusl, CKOPOCTh.

KAZAKH MATHEMATICAL JOURNAL, 20:2 (2020) 85-97



KAZAKH MATHEMATICAL JOURNAL

20:2 (2020)

Co6ereennuk "Kazakh Mathematical Journal":
WucruTyT MaTeMaTUKA U MATEMATHIECKOINO MOJIEJINPOBAHISI

2KypHrau nojnucan B nedarb
U BbICTaBJIeH Ha caifire http://kmj.math.kz / Mucruryra Mmaremaruku u
MaTeMaTUIeCKOr0 MOJICIHPOBAHNA
30.06.2020 r.

Tupazk 300 sk3. O6bem 98 cTp.
®opmar 70x100 1/16. Bymara odcernas Ne 1

A ipec Tunorpadun:
WucTuTyT MareMaTuki U MaTeMaTHIeCKOIO MOJIETHPOBAHIS
r. Anmatser, yiu. [lymkuna, 125
Ten. /dakc: 8 (727) 2 72 70 93
e-mail: math journal@math.kz
web-site: http://kmj.math.kz



(G260-2891 NSSI) 1.00Z 2duls Bullapojy [edljewaLjely pue sonewsyle|y Jo sjnjisu] sy}

Jeaf Jad sanss| Jnoj paysignd Aq paysiignd si yaiym ‘, jewnor [eanewsyiep, [ewnol yyezey syi uo paseq si jewinol sy
[edipoliad 610¢ €0t} Pelep sjedliiad

[ewnol ss823e uado pamainsl-1aad -06G.1 3N UeSUyezeY Jo olignday 8y} JO SUOREJIUNWLIOY) PUB UCKBULIOLU| JO A1SIUI
:ddAL NOILYOINgNd Japun sspiLIWIo) uoleulioju| 8y} Aq paisisibe i [ewinor [eaewayiely yyezey ey




