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Propagation of waves along the star-graph
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Communicated by: Makhmud Sadybekov
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Abstract. In this paper, we study a mixed problem for a wave equation on a star-graph with finite arc
lengths. The initial data is considered to be sufficiently smooth. In this case, the solution is determined
by the d'Alembert formula derived in this article. When the star-graph consists of only two arcs, the
d'Alembert formula given in the article coincides with the well-known d’Alembert formula for the mixed
problem for the wave equation on a finite interval. In the case of multipoint mixed problems for the
wave equation on an interval, similar formulas are given in the recent work of N.E. Tokmaganbetov,
B.E. Kanguzhin, B. Bekbolat.

Keywords. Eigenvalues, Kirchhoff conditions, star-graph, wave equation, d'Alembert formula.

1 Introduction

It is known [1] that the solution of the Cauchy problem for the wave equation is given
by the d’Alembert formula. The physical meaning of the d’Alembert formula corresponds to
wave propagation. It is important that solutions to the wave equation can have discontinuities
that propagate along the characteristics. Discontinuous solutions of the wave equation for
a string and a rod have no physical meaning. However, the same equation is satisfied by
the gas pressure in a long narrow pipe. The pressure can be discontinuous. Discontinuous
solutions of the wave equation in gas dynamics are called the shock waves.

The d’Alembert method or the method of incident and reflected waves allows solving not
only the Cauchy problem for the wave equation, but also finding solutions to mixed problems.
In the case of a semi-bounded string, the effect of reflected wave that depends on the form of
the boundary condition is observed. In the case of bounded strings, waves are also reflected,
but this effect occurs in a more complex scenario. Details of highlighted effects can be found
in the book of A.I. Komech [2].

2010 Mathematics Subject Classification: 35M99, 35R99, 53C35.
© 2021 Kazakh Mathematical Journal. All right reserved.



Propagation of waves along the star-graph 7

In [3,4], the d’Alembert formula was modified for the mixed multipoint problem for the
wave equation. In this case, the solution to the mixed multipoint problem is assumed to be
sufficiently smooth. An analogue of the d’Alembert formula for the mixed multipoint problem
for the wave equation with initial data of discontinuous first derivatives was derived in [5]. In
this paper, we state and prove the d’Alembert formula for strings representing a star-graph.

2 Basic concepts and notation

Let m be a fixed natural number. We consider the following mixed problem for the system
of wave equations

82um+1 (merly t) . 82um+1(33m+1a t)

=0, 0<2mt1 <bmg1, t >0,

ot2? 83072n+1
azum(xm, t) 32um(xm, t)
R = 0, 0< Ty < b, t>0, (1)

82U1($1, t) _ 82u1(:n1, t)
ot? Ox?

with conditions of the form (a)

=0, 0<x1 <by, t>0,

um+1(bm+1,t) = ul(O,t) =...= um(O,t), t>0,

8um+1(bm+1, t) _ Oul(O,t) i + 8um(0,t)

e t>0 2
0T i1 0z 0y > 5 (2)

and conditions of the form (b)
Um+1(0,t) =0, ui(by,t) =0, ..., Up(by,t) =0, t >0, (3)

and also the initial conditions

Um+1($m+1, 0) = (Pm—l-l(xm—i-l)a 0 < Tmy1 < bmaa,

0
aum—l—l(mm-‘rlv 0) = ¢m+1(37m+1)7 0< Tm+1 < bm—i—lu
U (T, 0) = @i (Tm), 0 < Ty < by,
0
aum(xma 0) = ¢m(xm), 0 <z < by, (4)

ul(xl,()) = (pl(l‘l), 0<x < bl,

KAZAKH MATHEMATICAL JOURNAL, 21:2 (2021) 6-14



8 Ghulam H. Aimal Rasa, Baltabek E. Kanguzhin, Zhalgas A. Kaiyrbek

0
aul(xl,O) = ¢1(Z’1), 0< a1 < by.

By the results of the works [6-8], the problem (1)—(4) can be interpreted as a mixed problem
for the wave equation on a star-graph I' = {V, E}. Here V represents the set of vertices,
numbered from 0 to (m + 1), and E is the set of arcs eq,...,ent1 [7], [8]. Each one of the
wave equations (1) holds on each arc. The vertex (m+1) € V is called the inner vertex of the
star-graph. The conditions of the form (a) means that the Kirchhoff laws hold at the inner
vertex [9]. The vertices 0, 1,...,m are called the boundary vertices of the star-graph (Fig.
1). Conditions of type (b) represent a set of boundary conditions. For m = 1 the problem
(1)—(4) coincides with the mixed problem for the wave equation

Pw  Ow

W—@:0,0<$<bl+b2,t>o, (5)
w(0,t) =0, w(by + be,t) =0, t >0, (6)
0 0
w(z,0) = p(z), w(a:?):w(m), 0 <z <by+bo. (7)
] e
i .:“\ .-.I-.’
e " e /
y Y/
M"-,. .-"'-I
[ x\. +] 4
0 " "‘T! ;‘,.-'“
L " vl

Fig. 1: Star-graph

KAZAKH MATHEMATICAL JOURNAL, 21:2 (2021) 6-14



Propagation of waves along the star-graph 9

In this case, the d’Alembert formula

_ _ x+t
w(,t) = 90(“”;”“” +% / Ve, 0< < by+bo, t>0, (8)

r—1

holds, here @(z) and ¢(z) are the continuations of the functions ¢(z) and t(z) from the
interval [0, by + be] to the entire real axis, which are obtained by the following algorithm:
1. first, we continue in an odd way from the interval [0, b; +b2] to the interval [—b; — b2, 0];
2. then we continue periodically from the interval [—b; — ba, b1 + b2] to the entire real axis.
In this paper, an analog of formula (8) is obtained for the mixed problem (1)-(4) on a
star-graph.
To do this, we need the dependence of the solution to the system of differential equations
on the spectral parameter

—y}'(a:j) = p2yj(xj), 0<z;<bj, 7=12,...,m+1, (9)

with conditions of the form (a)
Ym1(Om+1) = y1(0) = ... = ym(0),  Ymy1(bms1) = 31(0) + ...+ 4,(0) (10)

and conditions of the form (b)

ym+1(0) =0, ym(bm) =0, ym—l(bm—l) =0, ... yl(bl) =0. (11)

In the works [6], [7], the required dependence is presented. To formulate the result of [7],
we need the following notation. We denote by C(z;, A) and S;(x;, A) the solutions to equation
(9) with the conditions

S;(0,A) = C}(O7 A) =0, Cj(0,\) = S;(O, A) =1

for a fixed j from the set {1,2,...,m+1}. Really, these functions have explicit representations
Cj(zj, ) = cos pxj, Sj(zj, ) = M, PP =\
p

The following statement is proved in [7].
Statement 1. Let Ypmi1(Tmt1,A) = Smt1(Tmt1,A), Tmt1 € emt1. Then the solution to
system (9), (10), (11) has the following form

yj(xja >‘) = Serl(berla )\)C](l’], )‘) + BjS7/TL+1(bm+17 A)Sj(xjv )‘)a ] = 17 2a sy M (12)
Moreover, the constants By, Ba, ..., By, satisfy the relation

Bi+By+...+ B, =1. (13)

KAZAKH MATHEMATICAL JOURNAL, 21:2 (2021) 6-14



10 Ghulam H. Aimal Rasa, Baltabek E. Kanguzhin, Zhalgas A. Kaiyrbek

Let us denote by {\,, n > 1} the eigenvalues of problem (9),(10),(11). Then, relations
(11) imply the relations

Sm+1 (bm+1, )\)Cj(bj, )\) + BjS;n+1(bm+1, /\)Sj(bj, )\) =0, 7=1,2,...,m, (14)
for A = \,,. Hence

m bm 7>\n ba)\n .
By =~ Smn1lmet A)Cibis M) 5y

S7ln+1 (bm-i-l’ )‘n)Sj (ij An) 7

Then relation (13) implies the dispersion relation

S/ bm 7)\71 - 1 \Y5, \n
mir (b An) S5 G0 An) _ (15)
Serl (bm+17 )\n)

We denote the left-hand side of (15) by A(\,). We note that

m+41

AN = VA D cot(bVA).
j=1

Lemma 1. Zeros of an entire function A(X) are real and simple.
Proof. The simplicity of the eigenvalues follows from the inequality

m+1 1

A(n) = —3 > ) <0.

J=1

Example 1. We calculate the zeros of the function A(X) for m = 2, by = —, by =

)

5 4
™ s

by = 3 by the graphical method.
T
We find the first six zeros of the function A(\):

p12A21.23, pQZB:2.17, ngC:3.02, p4:D:3.7, p5:E:446, p62F2541

from Figure 2.

KAZAKH MATHEMATICAL JOURNAL, 21:2 (2021) 6-14



Propagation of waves along the star-graph 11

Fig. 2: Eigenvalues of the function A(\).

In this case, the corresponding system of eigenfunctions has the following form

sin VA, (b1 —
\/7\/()\7; 1) S2(627 )\n) . Sm(bm7 )\n)Sm+1(bm+17 )\'I‘L)a

sin v A (bo —
wQ(xla)‘n) - Sl(bla)‘n) \/&72

wm(frma >\n) = Sl(b17 An)SQ(b% )\n)SS(bfi; )\n) e
.. Sm—l(bm—h )\n)SIH m\;ﬁ\—m

wm—i—l(:pm—i-ly )\n) =5 (bla )\n)SZ(bQ’ )‘n)S3(b?n )\n) cee Sm(bma )\n)

wi(z1, An) =

2) S5(b3, An) - - - S (B, A ) St (g1, An),s

Tm
) Sm+1(bm+1a /\n)a

Sin v Ap T4l
vV An '
(16)

The work of N.P Bondarenko [10] implies that problem (9), (10), (11) is self-adjoint in Lo(T").
Therefore, system (16) represents an orthogonal basis in space La(I'). Recall that in Lo(I")
the inner product is introduced by the rule

m+1 m+1 b
(y,2) = Z yjaz] Z Yj x] Zj x] d(L’], Yy, 2 € Lo(T' )
j=1 =10

We denote by ® = (p1(x1), p2(22), ..., @mt1(Tm41)) and

KAZAKH MATHEMATICAL JOURNAL, 21:2 (2021) 6-14



12 Ghulam H. Aimal Rasa, Baltabek E. Kanguzhin, Zhalgas A. Kaiyrbek

= (Y1(x1), Y2(x2), - - - s Ym+y1(Tmy1)) the initial data (4). We denote by
Wy = (wl (xla )\n)7 w2 ($2, )‘n)v SRR wm—l—l(l'm—i-l» )‘n))

the eigenfunction corresponding to the eigenvalue \,. Further, we assume that the initial
data ®, ¥ are subject to the matching conditions (2) and (3). Then the functions ®, ¥ can
be expanded into the series with respect to the eigenfunctions

o= ZD W, U= ZD (17)

which converge uniformly in Ly(I"). A similar theorem for differential operators on an inter-
val is proved in the monograph of M.A Naymark [11]. This theorem holds for differential
operators defined on graphs. We note that the Fourier coefficients {D,,(®)}, {D,(¥)} are
determined by the standard formulas

(©, Wn)
(Wo, W)’

(v, W,,)

D, (®) = 7(Wn W)

D, (¥) =

Relations (17) can be rewritten in the coordinate-wise form
j(w5) =22 Dn(®)w;(5, An),
n

Ui(a5) = 3 Dal@)w; () An), = 1,2, m+1. (18)

Without loss of generality, we derive an analogue of the d’Alembert formula for ¥ # 0. Since
there is a standard technique for obtaining the d’Alembert formula for case W # 0, if the
formula is known at ® # 0 ¥ = 0. Let ¥ = 0. The solution of the mixed problem on the
graph (1)—(4) is sought in the form

Zd Jwi(zj, A\n), 0<x; <bj, j=1,....m+1.

Then it is easy to understand that

dp(t) = Dp(®)cos /Ay - t, n > 1.

Thus, the solution can be represented as follows

i(xj,t) ZD Jcos \/ Ant - wi(zj, An), 0<z;<b;, t>0, j=1,....m+1. (19)

The next lemma contains one useful property of the product cosv/A,t - w;(xj, A\y) with
fixed n and j.
Lemma 2. The following identity

1 1
COS \/ )\nt . wj(xj, )\n) = §w]’(Ij — t7 )\n) + iw]’(l‘j + t, )\n)

KAZAKH MATHEMATICAL JOURNAL, 21:2 (2021) 6-14



Propagation of waves along the star-graph 13

holds for fired n and j.
Proof. The identity

cos /Mt - sin v/ An(bj — ;) _ 1sin V(b — x5 + 1) i 1sin Vn(bj — aj — 1)
Vo 2 Van 2 Van

implies the proof of Lemma 2. The series (18) converge uniformly on the arc e; for each fixed
j=1,2,...,m+1.

Continuation by rule A: we continue the functions ¢;(z;) and v;(x;) from the arc e; for
the entire real axis x; € R, we will define their values by the right-hand sides of relations
(18). We denote the obtained corresponding extensions by ¢(z;) and 1;]- (xj) for z; € R.

Then Lemma 2 and formula (19) imply the main statement of this work.

Theorem 1. Let the initial data ® = (o1(z1),p2(22),. . s Om+1(Tms1)) and ¥ =
(V1(x1), Y2(2), -y Yms1(Tmy1)) be twice continuously differentiable functions on graph T
and satisfy conditions (2) and (3). Then the mized problem (1)—(4) on the graph has a unique
solution, which can be represented in the form

:I:j-‘rt

1. 1. 1 ~ .
uj(ﬂ%t):5@j($j+t)+§¢j($j+t)+§ / Y(EdE. j=1,2,...,m+1,
a:j—t

where ¢; and Jj are continuations of the functions p; and v; from the arc e to the entire
real axis by the rule A.
Acknowledgement
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Aiivasr Paca I'X., Kanryxun B.E., Kaitsip6ex 2K.A. 2KYJIJIBI3-TPA® BOUBIHIAFHI
TOJJKBIHHBIH, TAPAJTYbBI

Byn makaaga nqora y3bIHIBIFBL IIEKTE/ITeH JKYJIIbI3-rpadTarbl apajac TOJKBIH TeHIeYIHIH
ecebin 3eprTeiimiz. BacTankpl mapTrap KeTKUIKTI *KATBIK, OOJIbII caHasa bl byt karmaiina
mrerriM MakaJaaa kearipiaren larambep dpopmynaceina coiikec anbiKTa a6, 2Kyiab3-rpad
TeK €Ki JIoralaH TypraHiga, Makaaa Kearipiiren Jarambep dhopMmysrachl aKbIpJIbl KECIH i geri
TOJIKBIH TeHJeyi yirin 6enrim lamambep dopmystacbiMen coiikec kemei. Kecinmigeri TONKbIH
TeHJeyiHe apHaJraH KOl HYKTe I apaJiac ecernrep x)araaiibraa ykcac popmynantap H.E. Tok-
maranberos, B.E.Kanryxun, B. BekbonaTThiH, 2KyMBICBIHIA KEJITipiareH.

Kirrrix cezaep. MenmrikTi moniep, Kupxrod maprrapsr, xKyiae3-rpad, TOJIKLIH TEHIEY],
Hasrambep opmysiaco.

Aiiman Paca I'X., Kanryxun B.E., Kaitbipoex 2K.A. PACITPOCTPAHEHUE BOJIH
BJ1OJIb TPA®A-3BE3/1bI

B nanHoOit crarhe m3ydaeTcs CMeIaHHAs 3ajada Jijisi BOJHOBOIO ypaBHEHHUsI Ha rpade-
3Be3/le ¢ KOHEYHBIMU JIyTHHAME J1yT. HadaabHble JaHHbIe CINTAIOTCA JOCTATOYHA I IKuMu. B
TaKOM CJIydae PeIleHne OIPeesseTcsl COIJIaCHO BhIBeJAeHHO B ctaThe dpopmysie larambepa.
Korna rpad-3Be3ma cocronT TOIBLKO U3 ABYX /YT, IPUBEIeHHAs B cTaThe (hopMmysta larambepa
COBITQJIAET C U3BeCTHOM dopmyioil lasrambepa 1jist cMEIIaHHON 381891 JIJIS BOJTHOBOI'O yPaB-
HEHHNsA Ha KOHEYHOM OTPE3KeE. B CJIydae MHOI'OTOYE€YHBIX CMEHIaHHbIX 3a/ia9 JIJIsd BOJTHOBOI'O
ypaBHEHMS Ha OTPe3Ke I0/I00HbIe (DOPMYJIbI IPUBEIeHBI B HeaaBHel pabore H.E. Tokmaran-
6eroBa, B.E. Kanryxuna, b. Bek6osara.

Krouesnre ciioBa. CobecrBennbie 3Hadenust, yciaosust Kupxroda, rpad-38e31a, BOJHOBOE
ypasHerue, ¢popmysia Jlarambepa.
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Abstract. Earlier, in the works [1] and [2] the correctness of the Dirichlet boundary value problem for
the Burgers equation was established. In contrast to these works, in Sobolev spaces and in an angular
domain, we show the correctness of the boundary value problem for the Burgers equation with dynamic
boundary conditions. The methods of functional analysis, a priori estimates, and Faedo-Galerkin are

used.
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1 Introduction

The study of the Burgers equation has a long history, some of which is given in [1] and
[2], as well as in the monographs [3] and [4].

In the works [1] and [2] in Sobolev spaces, the correctness of the boundary value problem
for the Burgers equation was established. In this case, the domain of independent variables
degenerated according to a nonlinear law, and homogeneous Dirichlet conditions were set on
the boundary.

In angular domains, problems of linear thermal conductivity with time derivatives in
boundary conditions were studied in [5]. The correctness of the problems under consideration
was proved in weighted Holder classes. Further, these results were developed in [6]-[8].

The infiltration of the wetting front into a porous medium is a classical problem with
a free boundary. Historically, the first and best known example is the Green-Ampt model
for water flow in soils [9]. There is a huge variety of situations (chemically reacting media,
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16 Muvasharkhan Jenaliyev, Madi Yergaliyev

deformable media, capillarity effects, mass transfer, mixture flows, media with a complex
structure, pollution, reclamation, soil freezing, production of composite materials, brewing,
etc.).

As is known, nonlinear Burgers equations and their modifications are also suitable models
of fluid motion in porous media [10]-[15].

The range of application of boundary value problems for parabolic equations in a domain
with a boundary that changes over time is quite wide. Such problems arise in the study of
thermal processes in electrical contacts [16], the processes of ecology and medicine [17], in
solving some problems of hydromechanics [18], thermomechanics in thermal shock [19] and
SO On.

Extensive literature is devoted to the study of the solvability of linear and nonlinear
parabolic equations in cylindrical domains. However, as for nonlinear boundary value prob-
lems in degenerating non-cylindrical domains, they have been studied relatively little.

For angular domains in Lebesgue classes, there were studied boundary value problems
of heat conduction with the homogeneous Dirichlet boundary conditions and established
theorems on their solvability by reducing them to the Volterra singular integral equations of
the second kind [20], [21].

In [22] there were studied various cases of the nonhomogeneous Dirichlet type boundary
conditions. In these cases, it is shown that both unique solvability and non-unique solvability
for the corresponding boundary value problems takes place.

In this paper, in Sobolev classes, we study the solvability of the boundary value problem
for the Burgers equation in an angular domain with time derivatives in boundary conditions
(in a sense, an analogue of Solonnikov-Fasano problem [5] for the Burgers equation). We
are considering the case: when one part of the boundary is motionless, and the other part is
movable.

In Section 2, we give a statement of the boundary value problem under study. Here also,
this problem is reduced to the study of the solvability of two subproblems, and we formulate
the main results of the work. We study the questions of unique solvability of two auxiliary
boundary value problems for the Burgers equation in rectangular domains, which are used
in the proof of the main results of the work. Sections 3-7 are devoted to the first auxiliary
problem, in which its correctness in the Sobolev classes is established by the methods of
a priori estimates and Faedo-Galerkin. The correctness of the second auxiliary boundary
value problem is shown in Section 8. In Sections 9-11, we prove Theorem 1 on the unique
solvability of the problem posed in Section 2. A brief conclusion concludes the work.

2 Problem statement and main result

Let Qu = {z,t| 0 <z < kt, 0 <t <T < o0, k> 0} be adomain that degenerates at
t =0, and let € be a section of the domain @, for a fixed value of the variable t € (0,7). In
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On Burgers equation with dynamic boundary conditions in angular domain 17

the domain @),; we consider the following boundary value problem for the Burgers equation:

diu + udyu — vd*u = f, (1)
Lo0,8) + b | () — vopu| | _ =0 @)
dtu 3 0 3 U U =0 —

d 1,
%u(kt,t) - b [3(u) — uazu} ‘x:kt =0, (3)

where %u(«p(t),t) = [Opu(z,t) + @' (t) Oru(, )] gt

f € La(Qgut), v =const >0, by = const >0, by = const > 0. (4)

Remark 1. We believe that the presence of the nonlinear term u?/3 in the boundary
conditions (2)—(3) is dictated only by the presence of the convective component in the Burgers
equation, which provides a nonlinear "mass” transfer and exchange at the boundary. We
proceeded from the fact that in equation (1) the convective and diffusion terms can be written
in the form 9, (u2/2 — V@xu) .

Problem 1. Under conditions (4), establish the solvability of boundary value problem (1)-
(3)-

Theorem 1 (Main result). Let f € La(Qut) (4). Then boundary value problem (1)—(3)
has a unique solution

u € H*(Qqt) = {L2(0,T5 H*(0, kt)) N H'(0, T} Lo (0, kt)) }
u(kt,t), u(0,t) € HY(0,T).

The proof of Theorem 1 is given below.

3 The first auxiliary initial boundary value problem

In the domain Q. = {y,t| y € (0,1), t € (0,T')} we consider the following auxiliary initial
boundary value problem:

Orw + ot)woyw — B(t)agw +v(y,t)0yw = g, (5)
d by |«
—w(0,4) + Wot) “f)wz - ﬁ(t)f)yw} =0 =0 (6)

d b1 [af(t)
(L) a(lt) [ 2_
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18 Muvasharkhan Jenaliyev, Madi Yergaliyev

w(y,0) =0, 0<y<1, (8)

where by, b1 are given positive constants, and the given continuous functions «/(t), 5(t), v(y, t)
satisfy conditions

O/(t) S 07 a1 S a(t) S g, 61 S /B(t) S 527 h/(ya t)| S Y1, ’ay’Y(yatﬂ S Y1, Vt S [07T]) (9)

with the given positive constants o, B;, i = 1,2, 71, a(t) € C1([0,T]), dyv(y,t) € C(Qyt).

Theorem 2. Let g € La(Qyt) and conditions (9) be satisfied. Then boundary value problem
(5)—(8) has a unique solution

w € H*Y(Qye) = La2(0,T; H*(0,1)) N HY(0,T; L(0,1)), w(1,t), w(0,T) € H'(0,T).

To apply the Faedo-Galerkin method, we need to solve the following spectral problem:

—Y"(y) = N*Y(y), y € (0,1), (10)
Y'(0) + A?Y(0) = 0, (11)
Y'(1) = A2V (1) =0, (12)

obtained by applying the variable separation method (u(y,t) = F(t)Y (y)) from the following
problem
du—0ju=0, ye(0,1), te(0,T),

ou — 81u|y:0 =0, Ow+ 6;cu|y:1 =0,

4 Solving spectral problem (10)—(12)

We seek the general solution to equation (10) in the form
Y (y) = Cyexp{iry} + Caexp{—idy}, i = vV—1. (13)

Satisfying (13) to boundary conditions (11)—(12), we obtain

A
Yoi(y) =1, Xo1 =0, tan% = —Mo1, (14)
Aop—1(1 —2 Aop—
an—1(y) = COSs 2711(2?/)7 Aop_1 = (2n — 1)71' + €2p—1, tan -l —Xop_1, n €N,
(15)
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)\02(1 - 2y) 27 )\02 .

Yo2(y) = sin 5 , o2 & = cot 5 = 02, (16)
Yo (y) = sin M, Aoy, = 2nm + €9, cOt % = Aop, n € N. (17)
It is easy to see that the solutions of equations
tan% = —Xdop—1, n €N, (18)
and .
cot - = Aop, n €N, (19)

are, respectively, close to points (2n — 1)m and 2nm, n € N, and with the growth of n they
approach arbitrarily close from the right to the corresponding specified points (2n — 1)7 and
2nm, n € N, i.e. g, = 0+ at n — oo. If we introduce the notation 2z = (1 — 2y)x, then we
get: x € (—7/2,m/2).

By the Paley-Wiener theorem ([24], chapter V, 86, example), the system of functions (15)
and (17) is complete in Ly(0,1), since the system of functions:

V2cosz V2sin2x V2cos3zr /2sindx
ﬁ 9 ﬁ 9 ﬁ Y ﬁ PR
which is complete in Lo(—n/2,7/2), will differ little from it. For the latter system, it is
sufficient to make the replacement x; = x + 7/2. We get the system of sines:

V2sinz, V2sin2x;  V2sin3z;  V2sindzy
ﬁ ) ﬁ ) ﬁ ) ﬁ AR
which is complete in Ly (0, 7).
Note that the system of functions (15) and (17) is not orthogonal in Ls(0, 1).

(20)

Remark 2. The applicability of the Paley-Wiener theorem ([24], chapter V, 86, example)
follows from the relations:

A ~3.673, A\ —m~0.533, Mr=|\ —7| <0.54<In2~0.693, §=exp{Mr}—1<1.

5 Setting and solving the approximate problem

We multiply equation (5) scalarly in Ly(0,1) by function v € H'(0,1). As a result, taking
into account initial (8) and boundary conditions (6)—(7) we will have a weak statement of
problem (5)—(8):

1 1 1
/8twvdy—|—a(t)/waywvdy—i-ﬁ(t)/Gywayvdy/'y(y,t)aywvdy—l—
0 0 0 0

1
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a(t) d

alt) o
——w(l,t)v(l,t) — —= 1,t)v(l,t —_—— t t
L1 0u(1,1) = S, 00(L0) + ST (0,000,
1
aft) o _ 1
+ g W (0,t)v(0,t) = [ gvdy, Yv e H'(0,1), (21)
0
w(y,0) =0, y€(0,1). (22)
We introduce the following approximate solution
wa(yt) = Y ¢;(OYi(y)s waly,0) =D ¢;(0)¥;(y). (23)
j=1 j=1

Next, we will satisfy this solution to an approximate version of problem (21)-(22):

1 1 1 1
/atwandy+a(t)/wn8ywandy+B(t)/ﬁywn8ijdy+/’y(y,t)aywandy
0 0 0

0
20 L1073 - Sz 1,0v;0 + 2 L 0,070
1
+2u20.0%0) = [ gvia, (24)
0
wn(y,0) =0, y € (01), (25)

forall j =1,..,n,and ¢t € [0,T].
Lemma 1. Problem (24)-(25) has a unique solution wy(y,t).
Proof. Since the system of functions Y;(y), Y2(y), ... is a basis in L3(0, 1), we have

det{W,} = || ({¥(w). Ye(0), Ye(1)}. ¥ (9), ¥5(0), V(DI ||},_, # 0, ¥ finite n;

Wi is a Gram matrix, Vi(0) = Y2O2¥,(0), ¥i(1) = Y2E0vi(1), k=1,.m,

({¥2(9), Y (0), Yi(1)}, {Y5(w), Yi(0), Ye(1)}) = (Ye(w), Y5 () + (Ya(0)Y5(0)) + (Vi(1)Y;(1)) ,

(+,-) is the scalar product in Lo(0,1), An = (0yY%(y),0,Y;(y)),

wh (L, 1)Y;(1,8) = wp (0,8)Y5(0,8) = [ er()Ya(DPPY;(1) = [ en(t)Ya(0)]*Y;(0).
k=1 k=1

3
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Further, if we introduce the notation
Gn(t) = {gl(t)v "'vgn(t)}v Pn(t) = {pl(t)a "'7pn(t)}7 Hn(t) = {hl(t)v ...,hn(t)},
Cn(t) =A{c1(t),...,en(t)},

where
1 1 1
9;(t) = | gYi(y)dy, pj(t) =—a(t) | w.Oyw,Y;(y)dy — [ v(y,t)0ywn(y, t)Y;(y)dy,
O/ ! [
0= "W e OPY; (1) — 3 s Vil0)Y;(0),
k=1 k=1

for all j = 1,...,n, then problem (24)—(25) is equivalent to the following Cauchy problem for
a finite system of nonlinear ordinary differential equations

Cp(t) = Wy [=B(1) AnCu(t) + Pa(t) + Ha(t) + Gu(t)], Cn(0) =0. (26)

Note that the functions p;(t), h;(t) are well defined, and the function g;(t) is square integrable
(by virtue of g € La(Qy:)). Therefore, the Cauchy problem (26) is uniquely solvable on some
interval [0, 7], where T" < T. However, according to the a priori estimates established below,
we find that this solution Cy,(¢) continues to a finite time 7"

Thus, we find functions Cy(t) = {¢;(t), j = 1,...,n} as a solution to the Cauchy problem
(26) for each fixed finite n, and together with them the only approximate solution wy,(y,t)
to problem (24)—(25). Lemma 1 is completely proved.

6 A priori estimates

Lemma 2. There exists a positive constant K independent of n, such that for allt € [0, T
the following estimate takes place

(65} (65}
lwn (v, )75 0,1) + l71|7~vn(1nf)\2 + %Iwn(o,t)ﬁ + 51 / 10w (y, I, 0.0yd7 < K1o (27)

Proof. Multiplying (24) by c¢;(t), summing the result over j from 1 to n and using the
equality

1
[ 000,00 w0 0y = 0 (1.0) = Sud0.0),
0
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we obtain
. a(t) d , a(t)d
Zdt/m 1) Py + (1) /\awn v 0P dy + G0 L1 OP + 50 L 0,0
1 1
/ (s £)0y wn (9, ) (s )y + / oy, )wn(y, t)dy. (28)
0 0

First, note that due to property o/(t) < 0 inequalities

t

00 (1,0 > S0P, [ S (0.0 db > S fun(0,0)

o .

0

hold, which are obtained by integrating the left sides of the inequalities by parts.
Now, by integrating (28) with respect to ¢t from 0 to ¢ and using Cauchy inequality

2
v

Y(y, 1) Oywn (y, )wn(y, t)dy < *H@ wn (Y, )”L2 01) T ; ||wn(y,t)|]%2(0’1),
261

O\H

1 1
9(y, ywn(y, )y < Sllg( )1 7,001 + Fllwn(®: D750,

o _

we get

oq oq
lwn (s I, 0.1) + bj!wnﬂyt)\Q + bfolwn<07t)\2 + b / 18y wn (y, T, (0.1)T

! T
2
v
< (,8114_1) /Hwn(y;T)‘%2(071)61’7'4—/Hg(y,T)”%Q(O’l)dT_ (29)
0 0

From (29) follows

t T
2
g
o010 < (341) [ DBt + [ o R, e
0 0

By applying the Gronwall’s inequality, we obtain the estimate for ||wy,(y, t)||%2 0.1)° By using
this estimate in (29), we establish the required estimate for Lemma 2.
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Lemma 3. For a positive constant Ko independent of n, for all t € (0,T] the following
mnequality takes place:

t t
2 a1 d
||aywn(y»t)”L2(0,1) +blﬁ1/|d7 W(1, 7)) dT+ / (0, 7)[2dr
0 0
481 [ 0B, 7) I, 07 < Ko (30)
0

Proof. Taking into account equality
n n
DoY) = =D i) Yily) = ~djwa(y. 1),
Jj=1 j=1

which follows from (10) and (23), and multiplying equality (24) by c¢; >\2 and summing over j
from 1 to n, we obtain

1d
2dt”a wy(y, t )HL2 (0,1) + B(¢ )Hazwn(y,t)]\i(m)

= a(t) (wn(y, )0, wn(y 1), way, 1)) + (Y Dywnly, £), wa(y.1))
~ (90010 B (0:0) + (0 00,0 (. 0)|

SmKw@ﬁW%mW%wwﬁﬂ+%WMM%)3%@JH

L0+ 20
+ (00, 0), (v, 1) auﬂ+wowa 0] n(1,1)
a1 iw 2 4 a(t) —w
—%m@ﬁnmm Sl 0.0 P 0.0
3710000 OB o + o (L O + | (0.6

+&w%m%wmwlSaﬂ@%mw@wwxmﬁ%@@ﬂ
s (L PG (L O]+ 2 (0,7 (0.

+m ‘(Gywn(y, t), 6 wp(y ‘ + |( y,t),0 wn(y,t))‘. (31)

KAZAKH MATHEMATICAL JOURNAL, 21:2 (2021) 15-46



24 Muvasharkhan Jenaliyev, Madi Yergaliyev

First, we consider the estimates of the nonlinear terms from (31). First of all, we have
[ (wnly, 08,00y, 0), 0200y, 1)) | < Ty, )20, 10500 (. Ol 21 0.0 10y, Dl 40,1

< Nlwa(ys Ol a0, 10y wn (Y, Ol 11 (0,1) 18y wn (5 D)l Lo 0,1)- (32)

Further, taking into account the interpolation inequality from ([25], Theorems 5.8-5.9, p.140—
141)
) t <C|d NP0 2V t) e H'(0,1
az|Bywn(y, )l Ls(0,1) < CllOywn(y, D) g1 1y 10ywny, Il 0.1y, ¥ Oywnly,t) € H(0,1),

from (32) we obtain

2 | (a5 D0y (y. 1), (v 1))

< Cllwn(, )| zao.1) 19w, DIt 0.0 10y0n (0 )1 o

b B
< §|]8§wn(y,t)||%2(071)+ §+02||wn(yvt)”4L4(o,1) 10y wn (y, t)H%Q(o,l)- (33)

Here we have used Young’s inequality (p~! +¢ ' =1):

B
— 1/p /92 p q
|AB| (a A) (a a)‘ 24P + qaq 1B|Y, (34)
where
B 3/2 1/2 R
A=0ywn(y, i B=Cllwny, Ol on 10wn(y, Dl 00, a=75 p=3, a=4

Note that for two nonlinear terms on the right-hand side of (31) the following estimates
hold:

o0 1Wn 1, n 1 = Wn, 7. %n 17
a1 O] (L] £ (L O+ 5] Srun(1,8)
bio2 Q d
2 1ty 1
—wp(1,t

118ﬁ10&1 2b161 dtw ( )| (35)
23 d 1, > d
35 1n 00| Zun 0, t)\_lgﬂ (0,0 + 5| rwn (0,0

2 boos | d e (36)

1 18ﬁ10&1 2b051 dt
In inequalities (35)—(36) estimate (27) from Lemma 2 is used.
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Further, for the last two terms from (31) we will have:
Oywn(y, 1), Oywn(y,t) )| < éH82 W Ol 20,1 + CallOywn(y, )17 (37)
gt yWn Y, 1), ywn Y, =g ywn Y, L2(0,1) 3[|OywWn\Y, Ly(0,1)

‘(g(gﬁt)? aan y7 )l < — l ”aswn(y?t)nig(o,l) + C4Hg(y7t)”%2(0,l)' (38)
From (31), (33)—(38) we obtain

d 2 a;  d 2 2 2
T10,0n(0. Dl ) + g G 0n (L O + o om0, + Brln(y, D1 0

bﬁ

b1

< 2C4l|g(y, )HL2 o1 T +202Hwn(y, )||L401 +2Cs | [|0ywy(y, )||L201)+K0a (39)

where
Ko = K2 bia3 + K2 biaj
98101 198104

or, by integrating (39) with respect to t from 0 to ¢, we will have

, K is the constant from Lemma, 2,

t t

aq d
”aywn(y,t)ui(m) + blﬂl/‘dT W (1, 7)2dr + / (0, 7)|%dr

0 0

t

+61/Haf/wn(yﬂ—)”%g(o,l)dT =< A4\g(y,t)\liz(@+/A5(T)||3ywn(y7T)H%z(o,ndTJrKoTv (40)
0 0

where

ﬁ

Ay =20y, As(t) = ! + 2Cs ||wn (y, )||L4(0 1) +2C3.

From inequality (40) in the same way as in the proof of Lemma 2 we obtain the desired
estimate (30). Lemma 3 is completely proved.

Lemma 4. For positive constants K3, Ky and K independent of n, for all t € (0,T] the
following inequalities hold:

10w (3. )17, < K3, (41)
d

Hdtwn(l t)HLQ o1 < Ka, (42)
d

| n 0,012 01) < K. (43)
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Proof. Let us write down initial boundary value problem (5)—(8) for the approximate solution

wn(y7t)
Oywn + a(t)wndyw — B(t)02wy + (y, t)dywn = g, (44)
b
%wn(o,t) + W(;) [a;())t)wi - 6(t)8ywn] ‘y:O =0, (45)
d b t
%wn(l,t) — Wlt) [aé)wi — ,B(t)aywn] ‘y:l =0, 0<t<T, (46)
wp(y,0) =0, 0 <y<1. (47)

From the equation and boundary conditions (44)—(47) respectively, we obtain

10cwnl| £y(Qy0) < O3llwndywnllLy(@,0) + B2llOewnll £o(0y0) + V1O wnll Loy + 191l 22 (@) (48)

d bOa? 1/2 boﬁz

gl < 5= lwn(o, Dl Rom + 2 210,10, 0) | (o) (49)
d blo@ 1/2 51,82

H%wnHLQ(O,T) < 7||wn(1 t)HL/4 oyt —— ||0ywn(1 O Lo(0.1)- (50)

According to embedding H*(0,1) — Loo(0,1) 1nequahty lwnll L0,y < Cllwnllgi(o,)
holds. Hence, taking into account Lemmas 2 and 3, we obtain

WOy wnllLy(@ye) < Cllwnll Lo 0,81 0,0) 10y w0nll Loy - (51)

Estimate (41) follows from (48), (51) and from the statements of Lemmas 2 and 3. Estimates
(42)—(43) follow, respectively, from (49)—(50) and the statements of Lemmas 2 and 3. Lemma
4 is completely proved.

7 Unique solvability of the first auxiliary problem (5)—(8)

Lemmas 2-4 show that the sequences of Galerkin approximations
{wn(y,t), wy(1,t), w,(0,t),n=1,2,3,...}
are bounded in the direct product of spaces
Loo(0,T; H'(0,1)) N L2(0, T; H*(0,1)) X Leo(0,T) x Leo(0,7T),

and the sequences

d

d
{atwn(?/,t)7 %’U}n(17t), &wn(ovy)) n = 1)2)37"'}
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are bounded in

LZ(Ov T; L2(07 1)) X L2(O7 T) X L2(07 T)7

respectively.

Thus, we can extract weakly convergent subsequences (we preserve the notation of the
index n for the subsequences):

wa(y,t) = w(y,t) weakly in Ly (0,T; H*(0,1)) N H'(0,T; Ly(0, 1)), (52)
wn(y,t) = w(y,t) strongly in L2(0,7; L2(0,1)) and almost everywhere in Q¢,  (53)
{wn(1,1), w,(0,8)} = {w(1,t), w(0,t)} weakly H'(0,T)x H'(0,T), (54)
{wn(1,t), wy(0,t)} — {w(1,t), w(0,t)} strongly in Lo(0,7") x L2(0,T). (55)

Lemma 5. Let conditions (9) be satisfied and g € La(Qy:). Then initial boundary value
problem (5)-(8) has a weak solution in space H*1(Qyt).

Proof. Let ¢(t) € D((0,T)), i.e. from the class of infinitely differentiable finite functions.
We introduce the notation v;(y,t) = ¢(¢)Y;(y), where Y;(y) € H'(0,1). Now, multiplying
integral identity (24) by the function ¢(t) € D((0,7)) and integrating the result obtained
with respect to t from 0 to T', we obtain

T 1
// [Orwn + a(t)wypdywy, — ﬁ(t)(?;wn +y(y, t)Oywy | v; dy dt
00

T
+/ [ﬁ(t)aywn(l,t)vLab(lt)(iwn(l,t)—Oé:(:)wi(l,t)] v;(1,t) dt

0

’ t) d t
+/ [B(t)aywn(O,t)+ ab(o)dtwn(o’tHa;(),)wi(ovt)] v;(0,t) dt

0

T 1
://gvjdydt, Vot) € D((0,T)), Vj=1,...n. (56)

0 0
Since D((0,T); H(0,1)) is dense in Ly(0,T; H'(0,1)), then integral identity (56) can be
rewritten as

T 1
// Gtwn + ot)wpOywy, — 6(75)65@0” + ’y(y,t)aywn] vdy dt
0 0
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alt) d

_l’_

by dt

—~—

[5(t)8ywn(1,t) + wy(1,t) — a(t)wi(l,t)] v(1,t) dt

3

- [ B(t)Oywn(0,t) + b(ot)jt n(0,1) + O‘gf)wﬁ(o,t)] v(0,t) dt

O\ﬁo

T 1
://gvdydt Vo(y,t) € Ly(0,T; H(0,1)). (57)
00

In integral identity (57) we pass to the limit as n — oco. In the expressions corresponding
to the linear terms of equation (5) and boundary conditions (6)—(7), passing to the limit is

carried out according to relations (52) and (54). As for the nonlinear terms, here we have
the following:

/T/IO‘ £y )0ynu, )0y, £) dy df = /a /lum (y.1) = w(y, )]dywaly, tyoly. 1) dy dt
0 0 0

1

1 T
/a /w t)0ywn (y, t)v( dydt—>/a /w t)oyw(y, t)v(y,t)dydt,  (58)
0 0

0
since according to (53) and (52) the following limit relation holds

1
/a ) [ (0 0) = w00y ()00, 1) dy e = 0.
0
Further, according to (55) and (54), similarly to the previous one, we will have
T T
/ n(1, t)w,(1,t)v /wn (1,t) — w(l,t)|w,(1,t)v(1,t) dt
0 0
T T
+/w(1,t)wn(1,t)v(1,t)dt — /w2(1,t)v(1,t) dt, (59)
0 0

T
/wn((), Hw, (0,t)v(0,t)dt = [ [wy(0,t) — w(0,t)]w,(0,t)v(0,t) dt
0

St~
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T

T
+ [ w(0,t)w, (0, t)v(0,t)dt — [ w?(0,t)v(0,t)dt. (60)
/ /

So, passing to the limit at n» — oo in integral identity (57), taking into account limit
relations (58)—(60), as well as in initial condition (25), we get

1
/8tw+a tywdyw — B(t)0pw + (y, t)Oyw] v dy dt
0

— o

+0 [B(t)ayw(l,t)—l—b(let (1,t)—aét)w2(1,t)] v(1,t)dt
i t) d t
+/ [ B(t)0yw(0,t) + b(o)dt (0,t) + a:()))w2(0,t)} v(0,t) dt
0
T 1
//gvdydt Yo(y,t) € Ly(0,T; H(0,1)). (61)
0 0
1
/w y)dy =0, Yy € Ly(0,1). (62)

Note that integral identity (61) is also valid for any test function wv(y,t) €
Ly(0,T; Hg(0,1)) C L2(0, T; H'(0,1)).

Further, returning to (61) and taking into account that traces v(1,¢) and v(0,t) from
L2(0,T) of test function v € Ly(0,T; H'(0,1)) are independent of each other and are arbi-
trary, in this case identities

T 1
// (0w + a(t)ywdyw — B(t)0 w+7(y, t)0yw — g] vdydt =0, Vu(y,t) € Ly(0,T; H}(0,1)),
0 0

(63)

a(t) d a(t)

[ﬁ(t)ayw(l,t) + b—la w(l,t) — 3w2(1,t)} P1(t)dt =0, Vii(t) € Lo(0,7), (64)

{—5(t)8yw(0,t) ab((f);if (0,t) + aét)wQ(O,t)} Yo(t)dt =0, Viho(t) € L2(0,T), (65)

St~ o
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follow from (57), that is, the integrands in square brackets from (63)—(65) define zero function-
als over spaces Lo (0,T; H}(0,1)) and Ly(0, T), and belong to spaces 0 € Lo(0,T; H~1(0,1)) C
D'(Qyt) and 0 € Ly(0,7) € D'((0,T)). Thus, from (63)—(65) we obtain that the weak limit
function w(y,t) satisfies equation (5) and boundary conditions (6)—(7), and from (62) it
follows that it satisfies initial condition (8). This completes the proof of Lemma 5.

Lemma 6. Under the conditions of Lemma 5 the solution w € H>1(Qyt) of initial boundary
value problem (5)—(8) is unique.

Proof. Let boundary value problem (5)-(8) have two different solutions w((y,t) and
w® (y,t). Then their difference w(y,t) = w(y,t) — w®(y,t) will satisfy the following
homogeneous problem:

dw + a(t)wd,w® + a(t)w(2)8yw — B(t)@jw =0, (66)
d b falt) (o), @ _
700+ 15 [ o (w tw ) B(1dw| [, =0, (67)
d b ) o, ,@) _
= o [ W (w tw ) BBow| | _, =0. (68)

According to Lemmas 2 and 3 we have
w®(y,1) € Loo(0,T; H'(0,1)) N Ly(0,T; H*(0, 1)),
w?(1,t) and  w(0,t) € Loo(0,T), i=1,2. (69)

Multiplying equation (66) by function w(y,t) scalarly in Ly(0,1) and taking into account
(67)—(69), we obtain

1d ar d ) d
—— t
570D 0 + 5 WP + S T

010,010 < (1, 2 [ (1, 1) + 0 (1,1)]
1
+L)\w(o £)2 [ (0, 1) +w® (0, t)] —a(t) / [wQwa(l) + w<2>wayw} dy.  (70)
0
Now we estimate the right-hand side of (70). According to (69) and by Lemma 2 we have:

w00 + w1, 0)] ot o)

< 22 [, Ollzmor) + WP WD) (1O < Glo P, (71)
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Oé:(;) [w(l)(o’t) +w(2)(0,t)} |w(0,t)|2
< % [Hw (0, )| w0, + 100, t)”Loo(OT] |w(0,1)]* < Calw(0,1)[%, (72)
1
/ (020,00 + wPwdyw| dy = a®) [Jw(t,HPw(1,8) ~ w0, ) Pu(0,1)]
0

1
/ —20 Y wd,w + wPwd w} dy < Cs|w(1,1)|*> + Cy|w(0,t)[?
0

o3 2 b1
#3210 Oz + 1P iiay0] NeliEon + 5100 00
B
< Cyfu(L, 1) + Calw(0,0) + Cs |y, D301 + 210,013, 0.1 (73)

Based on relations (70)—(73) we establish

Oéld

— 1,t)?
bldt\( )!+

d
oy, Ol 0 + w (0,02 + 1 18,0 DIl 0

bdt

< 2(C1 + Cs)|w(1,1)]* + 2(Ca + Co)[w(0,8)[ + 2Cs | w(y, 1)]|7 (0.0, V1 € (0,T].

Hence, applying Gronwall’s inequality, we obtain:
lw(y, 17,01 + [w(1,8)]* + [w(0,8)* = 0, V¢ € (0, T].

This means that w™® (y, ) = w® (y,t) in La(Qye), wM(1,t) = w(1,t) and wM(0,t) =
w?(0,t) in Ly(0,T), i.e. the solution to initial boundary value problem (5)—(8) can be only
one. Lemma 6 is completely proved.

Thus, the statement of Lemmas 5 and 6 implies the validity of Theorem 2. Theorem 2 is
completely proved. Theorem 2 will also be used in the following sections to solve Problem 1,
i.e. in the proof of Theorem 1.

8 The second auxiliary initial boundary value problem

In the domain Qur = {z,t| 0 <z < to+kt, 0 <t <T, ty > 0}, we consider the following
initial boundary value problem

du + udyu — vd*u = f, (74)

%U(O t) + bo [:1))( — V@xu} ’m:O =0, (75)
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d 1
gu(to + kt,t) — by [3(u)2 - V@xu} | 0, (76)

r=to+kt
with initial condition

u(z,0) =0, x € (0,t), (77)

where v, by, by are given positive constants, and the function f(z,t) satisfy condition

f € La(Qut). (78)

Problem 2. Prove the unique solvability of initial boundary value problem (74)—(77) under
condition (78).
Using the reversible transformation of independent variables

xT

T t=t x= t) = y(to + kt), t = t:
P ;v =x(y,t) = y(to + kt), ;

y= y(x’t) =

we move from {z,t} to {y,t}. In this case, the domain @, is transformed into a rectangular
domain Q¢ = {y,t: 0 <y <1, 0 <t < T} Problem 2 takes the following form:

1 v 2 Y
P - - = t
Orw + Py ktwayw (o T FL2 W r— ktayw g(y,t), (79)
d 1 v
_ t b - 2 v _
dtw(()’ )+ bo [B(w) to—i—ktayw} ’y=0 0, (80)
d 1 v
_ 1 _ - 2 v _ 1
dtw( 1) — by [S(w) o —i—ktayw} ‘y:l 0, (81)
with the initial condition
w(y,0) =0, y € (0,1), (82)

where w(y, t) = u(z(y, 1), 1), g(y,t) = f(z(y,1),1).
Initial boundary value problem (79)—(82) is a particular case of the first auxiliary problem
(5)—(8), where

1 v ky
H=— B(t)= ——— t) =
a(t) Pyl B(t) (o £ RI2 v(y,t) Pyl

and conditions (9) are provided. Therefore, as a consequence of Theorem 2 we obtain
Theorem 3. Let condition (78) be satisfied and g € La(Qy:). Then initial boundary value
problem (79)-(82) is uniquely solvable in space

{w(y,t), w(l,t), w(0,t)} € H*(Qy) x H'(0,T) x H'(0,T).
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Further, taking into account the correspondence of spaces in domains 0z and Qy;:

9 € La(Qyt) <= f € La(Quar),
w e H*(Qy) = L2(0,T; H*(0,1)) N H'(0,T; L2(0,1)) <= u € H*' (Qur)
= Lo(0,T; H*(0,to + kt)) N HY(0,T; Ly(0, tg + kt)),
w(1,t) € H'(0,T) <= u(to + kt,t) € H'(0,T),
w(0,t) € HY(0,T) <= u(0,t) € H(0,T),

we establish the following statement

Theorem 4. Let condition (78) be satisfied and f € Lo(Qqzt). Then initial boundary value
problem (74)-(77) is uniquely solvable in space

{u(z,t), u(to + kt,t), u(0,t)} € H*Y(Qu) x H(0,T) x H*(0,T).

9 To solving Problem 1

To the domain Qg = {z,t] 0 < x < kt, 0 < t < T} from Section 2 we will put a family
of domains Q) = {z,t|0 <z <kt,1/n<t<T}, neN'={neN|n>n;1/n <T},
representing the trapezoids, and €2 is a section of Q?, for a given value of the variable
t € (1/n,T). Note that at the point t = 1/n the domain Q7 no longer degenerates to a
point, in addition, between the original domain )+ and the domains @7, the strict inclusions

m C QM C ... C Qu take place and, it is obvious, that nll_}ngo QY = Qut.

On the trapezoid Q7; we consider the following boundary value problems for the Burgers

equation with respect to the functions uy,(z,t):

O ttn + UpOzpty — Vagun = fn, (83)
iu (0,t) +b 1(u )2 — vdu | _,=0 (84)
dt n\Y, 0 3 n cUn | |p=0 —
%un(kt, t) — by g(uln) — vOzup ‘z:kt =0, (85)
with initial conditions
up(x,1/n) =0, = € (0,k/n). (86)

For each fixed n € N*, initial boundary value problems (83)—(86) are problems of the form
(74)—(77) under condition (78), for which Theorem 4 is valid. From Theorem 4 we obtain
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Theorem 5. Let f, € La(QY,). Then, for each fixzed n € N* initial boundary value problems
(83)-(86) are uniquely solvable in the space

{un(z,t), un(kt,t), u,(0,8)} € H>1(Q%,) x H (1/n,T) x H'(1/n,T).

To continue the proof of Theorem 1 we need the following statement:

Theorem 6. Under the conditions of Theorems 1 and 5 the following estimate holds

et (. D12 gy + et k) + e 0,211y < Clldn(@s Dlngomy- (87)

To prove Theorem 6 we will establish a number of lemmas.

Lemma 7. There exists a positive constant K independent of n, such that for allt € [1/n,T]
the following estimate takes place

”un(%t)nig(o,kt) + |un(ktat)’2 + \un((),t)‘z + / ||amun(xa7—)”%2(0,kt)d7— < Kl”fn(wat)H%g(Qggt)'
1/n
(83)

Proof. Multiplying equation (83) by wy(z,t) scalarly in L2(0, kt) and using the following
equalities

kt
/un(x,t)axun(x,t)un(a:,t)d :1)) ud (kt, t) — %un(o t),
0

kt
d
E\\“n(ﬂ?,t)”%z(o,kt) = 2/8tun(37at) Un (@, t) dz + klup (kt, 1),

we get

1 1
n(z, t)d n (Kt )2 + — —|un (0, ¢
2dt/|“ 7, 1)l ST dt’“( LT dt'“ ©.5)F

+I//|8wun(x,t)\2dx: /fn(:c,t)un(x,t)dac—i—g\un(kt,t)|2,
0

or

df(t)

EE 20 0run(, )13, 0.0y < Ko [l DI 0 +08)]
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where
2 1 2 1 2
0(t) = llun(z, Oll7, 000 + a\un(kt,t)] + %|un(0,t)] , Ko = const > 0.

Note that Ky does not depend on n.
From this we obtain two inequalities

do(t
o) < o [l D oy +00)] . 00) =0, (89)
200t )y < Ko [ DI, oy + om0 ] - (90)

Finally, applying Gronwall’s inequality from (89)—(90), we obtain estimate (88). This
completes the proof of Lemma 7.

Lemma 8. There exists a positive constant Ky independent of n, such that for allt € [1/n,T]
the following estimate takes place

t

d d

2 2 2

ortunte s+ [ |13 ualhr, I + | a0, a
1/n

t
+|Opun (Kt )] + / 102 (2, 7|7 0,00y 4T < Kol (2, 0)][7 m, - (91)
1/n

Proof. Multiplying equation (83) by —0%u,(z,t) scalarly in Lo (0, kt) and using the following
equality:

kt

d
dﬂ@%@ﬁﬁmm:2/@m%mﬂ@%@@mwM@Mme,
0

we obtain L4
§Effazun($at)”%2(o,kt) +V”a§un(xatm%2(0,kt)

= (Un(xv t)azun(ma t)? 83“"(1:’ t)) N

=kt

(e £), B, 1)) + Do, D0un(, D]+ 2D k1, 1)

=0

< ‘(un(m,t)@mun(x,t)ﬂiun(x,t))‘ + |(fn(x,t),8§un(x,t))‘
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1 |d S| ) )
“o 2" un (Kt 8)| o fun (kt, 1) Oy (Kt )] — K|y (Kt 1)]
1 |d 2 d k
0,¢ —nOt 0,8)] + = |0pun(kt, t)|?,
"o at" un(0,8) + o—lun( )I\dt n(0,0) + 5 |0sun(kt, )]
or 9 9
1d 1 |d
Optin (2,1 — | —up(kt, t — | —u,(0,t
5 g1l Ol e + | 1m0+ o[G0

k
+§’axun(ktv ) + v Oun(z, t)”%Q(O,kt) < ‘(“n(% £) By (z, 1), Ozun (2, t))’

1 1
+37|Un(kta t)‘2|atun(ktv t)‘ + Siylun(ov t)‘2|atun(07 t)’ + ’ (fn(xv t)’ aa%un(xv t)) | . (92)
First, we consider the estimates of the nonlinear terms from (92). First of all, we have
‘(un(x,t)axun(x,t), 8§un(x,t))‘

< Nun (@, )| Ly 0,60) |0 tn (2, )| 110 0) 1O tin (2, )| £y 0,51)
< lun (@, )| 2y 0,60 100 tn (2, 0) L1 (0,) | O tin (2, ) || Lo 0,18) - (93)

Further, taking into account the interpolation inequality from ([25], Theorems 5.8-5.9, p.140—
141)

1/2

(| Oxtin (2, t)”L4(O,kt) < C||0zun(x, t)HHl(Qk

1/2
t)Hawun(x,t)HL/Q oty ¥ Oytin () € H' (0, kt),

from (93) we obtain

‘ (un(a:, t)Optin(z, 1), a2un(I’ t)) ‘

3/2 2
< Clun (@, ) 1 0.00) | Bt (@, )37 oy 1Ot (. )1 S
1%
< §||6§un(z, t)”%g((),kt) + [g + CZHUn(ﬂC,t)HLlM(o,kt)} ”89:%(%75)”%2(0,“)- (94)

Here we have used Young’s inequality (34), where a = v/6, p =4/3, q =4,

3/2 1/2

= 100tun (@, Ol ey + B = C (@, D) 1,00y 1Ot (@ )1 T

Note that for two nonlinear terms on the right-hand side of (92) the following estimates
hold:

1 2 bl 4 1 2
S < — -
BV\un(kt,tﬂ |Opun, (Kt t)] 18V]un(k:t,t)\ + 2b1V]8tun(kt,t)\

251

<K
Iy T

by 1 .d k2
Wkt 1) < K2 | —up (kt, t)]? + — Oy (kt, t)|?
IatU( )l 1181/+b1u|dtu( ,)|+b1V|3U( 5 (95)
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1 2 bo 4 1 2
- < — -
3V\un(0,t)\ |0un (0, )] 18V\un(0,t)\ + QbOV\atun(O,t)\

bO bo 1 d
< Ki— Opun(0,1))* = K7 ——
Uigy T gy 1m0 0 = Kiqg + 57l
In inequalities (95)—(96), estimate (88) from Lemma 7 is used.
n (95), it is necessary to estimate the last term on the right. Taking into account the
interpolation inequality from ([25], Theorem 5.9, p.140-141), we get

un (0, 1) (96)

k2 k2 k2K?
bTny”n(’*ﬁtvt)\z < bTyHaxun(l’yt)”%m(o,kt) by —— 10z un | 51 (0,50) 10 tn | Lo (0,10)
2k%2 K2
< b [Ha’cunHLz(O,kt) + ||a§UnHL2(0,kt)] Haﬂ»‘unHLz(O,kt)

2k2K? 2k2K?
7”3 UnHL2(0 kt) + TH82U"1HL2 Okt)”a unHL2 (0,kt)

2k2K? 32k K1 9
blV b%l/?’ HaﬂﬁunHLg(O,kt)v (97)

where K is a constant from Theorem 5.9, p.140-141 [25].
Further, for the last term from (92) we will have:

Vig2 (2
< g”axunHLQ(o,kt) +

!(fn(x,t),82un (z,1) )‘ < - ‘821‘71(35 t)HLQ (0,kt) + Cyl| fu(, t)HLQ (0,kt)* (98)

From (92), (94)—(98) we obtain

2 2

d 1 1 |d
allazun(x,t)\\i(o,kt) +o— b ‘dt n(kt, )| + bov %un(ovt) + VHagun(xat)H%Q(o,kt)
< 204 fula, )2y 0y + C5 (Ol|Osun (@ DI y000) + Ko, (99)

where

o A ARPK? 64k K* 2bo o ln
C5(t) = 7+ 2C[lun(@, Ol 1,040 + b 23 Ko =Kig, +Kig,
or, by integrating (99) with respect to ¢ from 1/n to ¢, we will have
| Oz un (1, t)”LQ(O kt) + / ‘ n(kt, T) dT+ boiV / ‘ o

1/n
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t t
s [ o2 e,y < Adlale OB g + [ As(rtn (7)1, 0y + KT
1/n 1/n

(100)
where A4 = 2C}y.

From inequality (100) in the same way as in the proof of Lemma 7 we obtain desired
estimate (91). Lemma 8 is completely proved.

Lemma 9. There exists a positive constant K3 independent of n, such that the following
estimate takes place

1Beun(, )7, (qn ) + V105U (x, )17, o) < Ksll falz, )17, 0n)- (101)

Proof. From equation (83) we will have

”fn”%,Q(Q;lt) = (atun + Una:cun - Vaa%una atun + unaxun - Vagun)Lz( )

= ||atun||%z(Q§t) + VQHagUnH%Q(Qgt) + ||“naxun||%,2(Q;t)
—2v (D4, Ggun)LQ(Qnt) + 2v (O, “nax“n)LQ(Q;t) — 2v (unOpun, Ggun)LQ(Qnt) ,
or

Hatun‘|%2(Q7th) + V2”8§Un||%2(Qgt) = anH%g(Qgt) - ||Un8xun||%2(Qgt)
+2v (un&vun, (ﬁun)LQ(Qgt) — 2 (0¢un, un&pun)h(QZt) + 2u (Gtun, 82“”)L2(Qgt) ) (102)

We estimate two terms from (102), by using the Cauchy’s inequality:

1 2 2
< 5”‘9tunHL2(Q;t) + 2[JunOpunllz,(gn,)» (103)

‘_2 (Ottn, unOtin),(qn,)

’21/ (unﬁzun, agun)Lz(

Qi)

Now, for the last term from (102) we have:

2
v
< 4Hunamun||%g(QZt) + ZHaa%unH%z(Qﬁt)' (104)

T kt T
) B o=kt
(6tUm 81‘””)L2(Q2t) = - / /81% (8mun) Oz dz dt + / [815“”81“”] =0 dt
1/n O 1/n
] kt T T
=5 [@uunla ) dot [ Ouun(ht, )00kt~ [ Drun(0,)0,,(0.) .
0 1/n 1/n
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Since from boundary conditions (84)—(85) we have

Dtin(kt, ) = by [?1) (un(kt, £))2 — vy un (it t)] — kOyun(kt, 1),

S un(0,1) = D,un(0,) = ~bo B (un (0, £))% — Vaxun(o,t)] ,

then

kt
1
(@1t 0200) gy =~ [ 1stinlin TP
0

T T
+l;1/|un(kt,t)\28xun(kt,t)dt—(blV‘Fk)/a:cun(kt7t)|2dt

1/n 1/n

T T
/n 1/n

and the following inequality holds

T
2%
wn(kt, 1) Dpun (Kt £) dt + TOV n (0, 1)Dyun (0, 1) dt.

1/n

< 2[)11/
La(Qy) — 3
1

2u (atun, Oiun)

§\H

(105)

We need the norm of the operator of the following embedding of the Sobolev space in

the space of continuous functions: H'(0,kt) — C([0,kt]), i.e. there exists a number B
independent of v(z), such that

lv(@)leqor) < Bllv(@) i ox, Volx) € HY(0,kt), Yt € [1/n,T). (106)

Let us estimate the terms on the right-hand side of inequality (105). We have
1

T
[t 000 t,0) < Caer) 0 ) + 110t B O By (10T
/n

T
/ un (0, 1)9pun (0,t) dt < CO<50)HU7L(Oat)H%Q(l/n,T) + 50H8mun(07t)”%z(l/n,T)v (108)
1/n
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where 2,/e0Ch(eg) =1, 24/£1C1(e1) = 1.

Now, taking into account (106) and choosing €y > 0 and 1 > 0 so that equality %(boeo—l—
bie1) = v holds, from (102)—(105) we obtain the estimate

4b1vC (e 4bovCy(eg
+1:))(1)”Un(kt,t)"%2(1/ny) + 3()\|un(0,t)\|12(1/nm, (109)

According to (88) from Lemma 7 we have the estimates

lan(kt, O30 oy < KTl a2y 1 (001200 mry < KaTllfulionye (110)

where K is constant from Lemma 7.
It remains to estimate the term 12||un8xun||%2(Qnt) in (109). Using embedding

HY(0,kt) — Loo(0, kt) with embedding constant Cp and estimate (91) from Lemma 8, we
obtain

T
Huna&sun‘%z(QZt)S/HURH%OO(O,kt)HazvunH%g(o,kt) dt
1/n

T
<y / ||un‘|%11(o,kt)||8zun||%2(0,kt) dt
1/n
< Collunlll 1 jmrsmr 0, 10xunl T, @ny < CoRall 17, (0un 10xtunll?, 0 k) At (111)

since || fnllzo(@n,) < 1l 22(Q.) by definition (where K is the constant from Lemma 8).
Based on inequalities (109)—(111) we establish estimate (101) of Lemma 9. This completes
the proof of Lemma 9.

Lemma 10. For positive constants K3, K4 and Ks independent of n, for all t € (1/n,T] the
following inequalities take place:

100wn (@, D11z, gz, < Ksllfullzaz,: (112)
d 9 )

H@un(kt,t)”Lg(l/n,T) < K4an”L2(Q;t)a (113)
d 9 )

Iy un (0, D251 /m,7) < K5l fullzoqr,)- (114)
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Proof. Estimate (112) follows from (101) in Lemma 9. It remains to prove the validity of
estimates (113)—(114). From boundary conditions (84)—(85) we obtain

1/2

d
I un (0, ) 2201 mm) < *Hun(O Oy ynry T bo¥102un (0, ) [ Lyaymry,  (115)

d 1/2
I (ks Ol agajmy < (k152 oy + st Dl iy (16)

Estimates (113)—(114) follow, respectively, from (115)—(116) and from the statements of
Lemmas 7 and 8. Lemma 10 is completely proved.

Taking into account the obvious inequality

I fallLa@r,) < Nflla@uy Y € N7,

from Lemmas 7-10 we directly obtain the validity of estimate (87) from Theorem 6. Thus,
we have proved the validity of Theorem 6.

10 Proof of Theorem 1. Existence

Proof of Theorem 1 is based on Theorem 6. In boundary value problem (83)-
(86) we continue with zeros each element of the sequence {uy,(x,t), fn(z,t), {z,t} €
Qs up(kt,t), u,(0,t), t € (1/n,T); n € N*}, respectively, over the entire domain Q,; and
for the entire interval (0,7"). As a result, we obtain a sequence of functions that we denote
by

P e

{un(a:,t), Fu(@ot), un(kt 1), un(0,8), n € N*}. (117)

Obviously, each four functions from sequence (117) in the domain @, satisfy boundary value
problem (1)—(3) according to the statement of Theorems 5-6. In addition, note that estimate

(87) will be strengthened if we replace || fn/(;:;)H La(Quy) ON its right-hand side by expression
||f(l’, t) ||L2(th)v since

[fn (@ D)l 2(Qun) < (5 0)][Lo(@ur), for Vm € N

Therefore, we obtain a bounded sequence of functions (117), from which we can extract a
weakly convergent subsequence (we preserve the notation of the index n for the subsequence),
i.e. we will have

Un(z,t) — u(z,t) weakly in H*1(Qgu), (118)
un (kt, t) = 2z1(t) = u(kt,t) weakly in H(0,T), (119)
un (0,t) = 20(t) = u(0,t) weakly in H(0,T). (120)
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From (118)—(120), respectively, it follows that

un(x,t) = u(x,t) strongly in Lo(Qgu), (121)
u,j(;tjt) — 21(t) = u(kt,t) strongly in Lo(0,T), (122)
un(0,t) = 2o(t) = u(0,t) strongly in Lo(0,T). (123)

Then, according to (118)—(123) in the following integral identities we can pass to the limit as
n — oo:

/Pwd 1)+t (o), 0) — VP (2. 1) — J (1)) W 1) e
Qut

— / [atu(x,t) + u(z, t)Opu(z, t) — v u(x,t) — f(w,t)] Y(x,t)dedt =0, Vo € Lo(Qut),

ta
(124)

Yo(t) dt

z=0

T
/ [atun )+ 2 (an,1)° bouaxunTE,/w}
0

Yo(t)dt =0 Yo € La(0,T), (125)

z=0

S /T [atu<x,t>+b??(u(x,t)ﬁ—bov@xu(w,t)]
0

/T[atu" _%l(un/(;'/t)) +b11/un(:13,t)]
0

T
-f/km@ﬂ—gw@ﬁf+mmm@] Uty dt =0 ¥on € Lo(0,T).  (126)
0

=kt

So, we have established that boundary value problem (1)—(3) has the solution ui(z,t) €
H?'(Q.) in the sense of integral identities (124)—(126). The existence part of Theorem 1
has been proved.

11 Proof of Theorem 1. Uniqueness

Let boundary value problem (1)-(3) have two different solutions u™(x,t) and u® (z, ).
Then their difference u(z,t) = v (z,t) — u® (z,t) will satisfy the following homogeneous
problem:

Ovu + udput) + u(2)0xu — V@iu =0, (127)
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d

fhal - (1 ) _ —

dtu(() t) + bo [3u (u +u ) V@xu] ‘:pzo 0, (128)
iu(k:t t) — b 1u (u(l) + u(2)) — vozu ‘ = 0. (129)
a7 3 o=kt

According to Lemmas 7 and 8 we have
u (2,t) € Loo (0, T; H(0, kt)) N Ly (0, T; H?(0, kt)), (130)
uD (kt,t) and u?(0,t) € Loo(0,T), i =1,2. (131)

Multiplying equation (127) by function u(z,t) scalarly in L9(0, kt) and taking into account
(128)—(131), we obtain

1d 1

2l 12, 0y + 5 5 (kO + 5 (0,0

2bg dt

1
0 |0l ) oy < glulkt, ) [ul) (Kt 8) + u (ke )]

kt
—i—%\u(O,t)]Q uM (0, ) + u(Z)(O,t)} — / [uQ&Eu(l) + u(2)u8$u] dx + klu(kt, t)|>.  (132)
0

Here we have used the following equality

kit
d
EHU(fUat)H%z(o,kt) = 2/3tu($at) u(z,t) da + klu(kt, t)[>.

Let us estimate the right-hand side of (132). According to (130)—(131) and Lemma 7, we
have:

% [ Gt 1)+ u® (k)] fulht, 1)

< L[k o) + [ Do) ke O < Cofulht O, (13)
% [uD0,1) +u®(0,0)] [u(0, 1)
< L0010 + OO 0] WODE < Colu(0. 0, (134

kt
/[uQam ) uPudu] do = [Ju(kt, 1) Pu® ke, 1) — [u(0, D2 (0,1)
0

KAZAKH MATHEMATICAL JOURNAL, 21:2 (2021) 15-46



44 Muvasharkhan Jenaliyev, Madi Yergaliyev

kt
+/ [—2u(1)u8$u + u(2)u8xu] dzx < Cslu(kt, t)]* + Cylu(0,t)?
0

1 1 2 2 2 v 2
o (2O ) + 18PN iun] N1 000y + 210l 0
12
< Calu(kt, t)[* + Calu(0,)|* + Csllu(z, )17, 040 + §II3xUH%2(o,kt)- (135)

Based on relations (132)—(135) we establish
d 1d 1d
EHu(xvt)H%Q(O,kt) + EE’UU“J)F + %E]u(o,t)\Z + v |0z u(@, )17, 000

< 2(Ch + Cy)ukt, )] + 2(Ca + Ca)[u(0,1)|* + 2Cs |u(z, )17, 040> ¥Vt € (0,T].  (136)

Now we estimate the penultimate term from (136). Taking into account the interpolation
inequality form ([25], Theorem 5.9, p.140-141), we will have

QCSHU(JUJ)H%Q(O,M) < 205K2H“||H1(0,k:t)HUHLZ(O,kt)
< ACSK? [[[ull py00.kt) + 1020l 1 0,56)] 10l 2o (0 k0)

= 4C5 K ||ull7 (0 ) + 4C5 K100l Ly 0 1) |10 L (0. 00)
8CZK*

v

14
< §||awu||%2(0,kt) + |[4C5K? + HUH%Q(O,kt)? (137)

where K is the constant from Theorem 5.9, p.140-141 [25].
From (136)—(137), applying Gronwall’s inequality, we obtain:

s (2, )13 0 50y + [ (kD + [un (0, 0) = 0, ¥t € (0,£°].

This means that u)(z,t) = u? (z,t) in Lo(Qyu), vV (kt,t) = u® (kt,t) and u1(0,t) =
u®(0,t) in L(0,T), i.e. the solution to initial boundary value problem 1 (1)—(3) can be only
one. The uniqueness is proved.

Thus, we have proved the main result of our work, Theorem 1.

12 Conclusion

In this work, in the Sobolev classes, we have established the solvability theorems for
boundary value problem for the Burgers equation in a degenerating domain, the degeneration
point of which is at the origin. Moveover, the moving part of the boundary obeys a linear
law. The established results can be useful in the problems of modeling (a) nonlinear thermal
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fields in high voltage contact devices, (b) nonlinear processes of diffusion and propagation of
foreign inclusions in the flows of water and atmospheric areas, etc.
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Kuenammes M. T., Epramues M.I. BYPHIIIITHI OBJIBICTATHI BIOPTEPC TEH/IE-
VIHE KOWBIJIFAH JVMHAMUKAJIBIK IITAPTTAPHI BAP IIIEKAPAJIBIK ECEIT TV-
PAJIBI

Byran geitin [1| xone [2| kymbicrapsinga Broprepe rengeyi ymiin Jupuxiie mekapasbik,
ecebiHIH KMCBIHIbI MenmiMIiIir opaarerad. OJ XKyMBICTAPIaH OChl *KYMBICTBIH epPeKIIe;Ii-
ri 6i3 CoboJieB KeHicTiriHe )koHe OyphINTHI 00JibIcTa Bioprepe Teneyi I JuHAMIKAIBIK,
IeKapaJbIK IIapTTaphbl 0ap MeKapaJsblK eCelTiH KUCHIHIbI MeIniMIiIirie kepceremi3. OyHK-
IMOHAJIIBIK, TAJIIAY, AllPUOPJILI baraiayiap kome Paemno-l'aepKuH oici KO IaHbIIAIb.

Kinrrix ceznep. Broprepc Tengeyi, CobosieB KEHICTIr, a3rbIHAAJIATBIH O0JIbIC, JTUHAMUKA-
JIBIK, IIIEKAPAJIBIK, [IIAPTTapP, AIIPUOPJILI Darajayiap.

Hoxenasues M.T., Epramues M.I. O TPAHUYHON 3AJAYE C JMHAMNYECKNMU
YCJIOBUSAMU J1/11 YPABHEHMST BIOPTEPCA B YIJIOBOI OBJIACTU

Panee B paborax [1] u [2| 6pu1a ycraHOB/IeHA KOPPEKTHOCTH MPaHUYHON 3aaaqu lupuxiie
Jutst ypapHeHust broprepca. B omimaune or atux pabor, B mpocrpancTeax CobojieBa u B yriIoBoi
00J1aCTH MBI IIOKA3bIBAEM KOPPEKTHOCTH I'PAHUYHON 3aja4u Jjisd ypaBHeHus Broprepca ¢ ju-
HaMUYI€CKUMU I'PaAHUYIHBIMU YyCJIOBUAMMU. I/ICHOJIBByIOTCH MeTOAbl (byHKI_H/IOHaJIbHOFO aHaJIn3a,
alpUOPHBIX orneHoK u Pazno-lamepkuna.

Kirrouesbre ciioBa. Ypasaenne bBroprepca, npocrpanctso CobosieBa, BRIPOXKIAOIIAICS 00-
JIACTD, TUHAMWYECKAE TPAHNYIHBIE YCJIOBUS, AIlPUOPHBIE OIEHKU.
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Abstract. In this work the best approximation of functions in weighted Orlicz spaces have been inves-

tigated. Also, we study the inverse problem of approximation theory in weighted Orlicz spaces.
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1. Introduction

Let T denote the interval [—m, 7|, C the complex plane. We denote by LP(T), 1 < p < oo,
the Lebesgue space of all measurable 2m-periodic functions, for which the norm

1/p

1£1, = / F@)Pdr| < oo
T

A convex and continuous function M : [0,00) —. [0, 00) which satisfies the four conditions
M(0) =0, M(u) >0 for u >0, M(u)/u = 0if u — 0, and M(u)/u — oo if u = o0
is called an N-function. The complementary N-function to M is defined by N(v) =
max {uv — M (u) : w > 0} if v > 0. We will say that M satisfies the As-condition if M (2u) <
c¢M (u) for any u > ug > 0 with some constant ¢, independent of u.

Let T denote the interval [—m,m|, C the complex plane, and L,(T), 1 < p < oo, the
Lebesgue space of measurable complex-valued functions on T.
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For a given Young function M, let EM(T) denote the set of all Lebesgue measurable
functions f : T — C for which

/M(\f(x)!)d:v < 0.
T

Let N be the complementary Young function of M. It is well-known [1, p. 69], [2, pp.
52-68] that the linear span of Ly (T) equipped with the Orlicz norm

11y = sp / F(@)g(x)| da : g € Ln(T), / N(lg(@))de <1,
T

T

becomes a Banach space. This space is denoted by Lj(T) and is called an Orlicz space
[1, p. 26]. The Orlicz spaces are known as the generalizations of the Lebesgue spaces
Ly(T), 1 <p< oc.

If we choose M (u) = uP/p (1 < p < 00), then the complementary function is N(u) = u?/q
with 1/p+ 1/¢ = 1 and we have the relation

ullz, ey < llllzy,m [l ry -

1/p
where |lull, ) = (i‘[ lu(x) P d:c> denotes the usual norm of the space Ly(T).

The Orlicz space Ly, (T) is reflezive if and only if the N-function M and its complementary
function N both satisfy the As-condition [2, p. 113].

Let M~1:]0,00) — [0,00) be the inverse function of the N-function M. The lower and
upper indices

L log h(t) o log h(t)
oM = logt ’ Py = toot  logt
of the function
Mfl
h:(0,00) = (0,00], h(t):= lim sup W) t>0,

y—oo T MHty)

first considered by Matuszewska and Orlicz [3], are called the Boyd indices of the Orlicz
space Lys(T).

It is known that the indices ajp; and By satisfy 0 < ap < By < l,any + By = 1,
apr+ By = 1 and the space Lys(T) is reflexive if and only if 0 < apr < Sy < 1. The detailed
information about the Boyd indices can be found in [4] - [7].

A measurable function w : T — [0, 00] is called a weight function if the set w=! ({0, 00})
has Lebesgue measure zero. With any given weight w we associate the w-weighted Orlicz
space Ly (T,w) consisting of all measurable functions f on T such that

”fHLM(TM) = ||waLM(T) < .
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Let 1 <p<oo, 1/p+1/p' =1 and let w be a weight function on T. w is said to satisfy
Muckenhoupt’s Ap,-condition on T [8] - [10] if

1/p 1/
1 / 1 ot
sup | — [ WP (t)dt /w Pr(t) dt < 00,
7\ /] /]
J J

where J is any subinterval of T and |.J| denotes its length.

Let us denote by A, (T) the set of all weight functions satisfying Muckenhoupt’s A,-
condition on T.

Note that by [11, Lemma 3.3], and [12, Section 2.3] if Ly (T) is reflexive and w weight
function satisfies the condition w € A;,,, (T) N Ay g,, (T), then the space Ly (T,w) is also

reflexive.
Let Ly (T,w) be a weighted Orlicz space, let 0 < apr <y <landletwe A1 (T)N

A% (T). For f € Ly (T,w) we set "
M

h
(onf) () ::21h/f(x—|-t)dt, O<h<m zeT.
“h

By [10, Lemma 1] the shift operator oy, is a bounded linear operator on Ly (T,w):

”Uh (f)HL]\/[(T,w) S C ||f”LA{(T,UJ) :

The function

k

H(I_Uhi)f

=1

L 0>0, k=1,2,...,
Ly (T,w)

k
T (6,f):= sup
0<h; <o
1<i<k

is called k-th modulus of smoothness of f € Ly (T,w), where I is the identity operator.
It can easily be shown that Q]fw,w (-, f) is a continuous, nonnegative and nondecreasing
function satisfying the conditions

lim O, (8, ) =0, Qe (6, +9) < gy (0,F) + Uiy (8,9), >0,

for f,g € Ly (T,w).
Let

T+ A, f) (1)
k=1

be the Fourier series of the function f € Li(T), where
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Ag(z, f) = (ag (f) coskx + by, (f) sin kx),
ar(f) and bg(f) are Fourier coefficients of the function f € Li(T).
We denote by [], the class of trigonometric polynomials of degree at most n. The best
approximation of f € Ly (T, w) by trigonometric polynomials is defined as

Bn(Dagge =8 {If =Tl s T [T}

We use the constants ¢, ¢1, ca, ... (in general, different in different relations) which depend
only on the quantities that are not important for the questions of interest.
To prove the main results we need the following theorem [10].

Theorem 1.1. Let Ly (T, w) be a weighted, Orlicz space with Boyd indices 0 < ay < By <
1, andletwe A 1 (T)ﬂA% (T).
ap M

M

If f € Ly (T,w), then the inequality

s (:L f) < % {Eo G v”“Eu(f)M,w} (2)

v=1

holds with a constant c1 > 0, independent of n.

2. Main Results

The problems of approximation theory in weighted and non-weighted Orlicz spaces have
been investigated by several authors (see, for example, [10], [13] - [26]).

In this work we investigate the problem of the best approximation in the weighted Orlicz
spaces. Also, we prove the inverse theorem of approximation theory in weighted Orlicz spaces.
Similar approximation problems in the space of continuous functions have been investigated
in [27], [28], [30] and [32]. Also, similar results in weighted generalized grand Lebesgue spaces
and weighted Smirnov classes have been obtained in [29] and in [31], respectively.

Our main results are the following.

Theorem 2.1. Let Ly (T,w) be a weighted Orlicz space with Boyd indices 0 < ay < Bar <
1, andlet we A 1 (']I‘)HA% (T), let
M

N
a o0
f(z) ~ ?0 + Z (an cosnz + by, sinnx) (3)
n=1
be its Fourier series and let -
> En(fmwn® ' < oo, (4)
n=1
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where o € R.
Then the series

o0
a :
50 + g n® (ap, cosnz + by, sin nx) (5)

n=1

is the Fourier series of the some function f € Ly (T, w) and for this feLy (T, w) the
estimates

En(f)M,w < ¢

Eun(f)arwn®+ Y Ek(f)M,wka—ll (n=1,2,..), (6)

k=n+1

EO(f)M,w é

Bo(faw+ 3 Ek<f>M,wka—1] , (7)
k=1

hold with a constant co > 0, which does not depend on f and n.

Note that in [14, Theorem 5] we can find the proof of the inequality (6) for o« = 2r, r € N,
with another restrictions on function M and weight w.

Corollary 2.2. Under the conditions of Theorem 1.1 the estimate

1 = 1 g a— G a—
QIJC\/[,L,.; <n7 f) <ecy {n% ZV%JF lEy—l(f)M,w + Z S 1Es(f)M,w} (8)
v=1 s=n+1
holds with a constant c4 > 0, which depends on o and k.

Note that a similar estimate in the Lebesgue spaces for modulus of continuity was proved
in [30]. Also, in [18, Theorem 1] was proved inequality (8) for o = r € N, with the same
restrictions on functions M and w.

3. Proofs of the theorems

Proof of Theorem 2.1. Let s, and $,, be the n-th partial sums of (3) and (5), respectively,
and let p, =n® (n=1,2,...). Using Abel transformation, we find that

m—1

Sm— = (si— H)Apit (sm—f) pm  (m=12,..),

i=1
where Ap; = 1 — iy1.
It is clear that |Ap;| < ¢i® L. Then for a fixed n = 1,2... and for every k = 0, 1... we have

2k+1p_1

§2k+1n - ggkn = Z (si - f)A/Lz + (S2k+1n - f)/@k*ln - (52’“11 - f):u2’“n (9)

i=2kn
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Considering [14], the inequality

[ SnHLM(m w) = s En(f)mw (10)
holds. Then from (9) and (10) we obtain

S
2k+1n 2kn, LA{(T#’U)

2k+1p_q

<co Y. Ei(f)mewl® "t + crByen (f)arw(260)®

1=2kn
< 82" n By, (£)arw(20) 7 + ¢ (2°1)* Bory, () M
= ¢10(2"n)* By, (f) M-

The last inequality yields
> |
k=0

On the other hand the following inequality holds:

<11 Y (2°0) By (f) - (11)
0

o " L (Tow)

el
Il

> @2 0) Egrn (Nt S 12 Y kT Ep(f) b (12)

k=1 k=n+1

Consideration of (11) and (12) gives us
> |
k=0

By (4), it follows that the series

< ci3
LM(T w)

En(f)M,wna+ Z ka_lEkQC)M,w . (13)

k=n-+1

Sokt1y,

oo
gn + Z(§2k+1n o §2kn)
k=o

converges in the sense of the metric L (T,w) to some function f € Ly (T,w) . Tt is clear that
the series (5) is the Fourier series of the function f. We can write the following inequality

Bulfares < || =) B
(f)M, <|f-s5 Las(Tw) kZ: ok+1,,

n Lag (T, w)

KAZAKH MATHEMATICAL JOURNAL, 21:2 (2021) 47-56



Approximation in weighted Orlicz spaces 53
Now combining (13) and last relation, we obtain the inequality (6) of Theorem 2.1.
Now, we estimate Ey(f) .. The inequality
B P < 7= 3y <=3 e+ 5= 3 ti
o(arw < |1 L (Tw) f=s Lu(rw) N7 L (Tw) (14)
holds. From (10) and (6) we have
. . o
-3 < ek <ci5 | B E ket 15
|F=5], . SeuBrDane < s | Bi(Hanw + 3 Bulfare ] (15)
It is known that
Hz - 7HLM(M = llay cos@ + bsinzl gy < 2 (Jas] + [bil) (16)
We choose a number o, such that ||f —toll,,, (1) = £o(f)mw- Then we obtain
2 2
a1 = /f(x) coszdr| = /[f(x) — to] cos xdx
0 0
< asllf —toll e = cr6Eo(f)mw-
The last inequality yields
c
1] < 2 Eo(f) e (17)
Similar to the above, we obtain
c
b1l <~ Eo(f)are (18)

Using (14),(15)-(18), we obtain the inequality (7) of Theorem 2.2.
Proof of Corollary 2.2. Taking into account the relations (2), (6) and (7), we get

0k, (if) <2 {Eo(f Mw+2u2’f LB, (N, }

v=1

C
<20

Mw+ZE )MV ]
ffziZ p2

Py 3 B ]

s=v+1
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n 0o
C22 _ _
< n2k [Z 2k+a— 1Eu 1 )M,w + ZVQk 1 Zsa lEs(f)M,w]
v=1 s=v
C23
ngk [Z 2k+a-1p —l(f) ]
c 00
24 _
+W 2](: 1 [Z §O 1E M,w + Z e 1Es<f)M,w]
s=n+1

1 n B S 3
< o { %Z 2htolp L (f )M’”+WZSQ lEs(f)M,wZVza 1}
s=1 v=1

v=1
oo
+ Z Sa_lEs(f)Mw
s=n-+1
n n
= {Qk Z(V + 1)2k+a—1E (f)M,w + — Z SQk’-l—oc—lE (f)M,w}
v=0 s=1
oo
+ Z Sa_lEs(f)M,w
s=n+1
1 n oo
< cor {n% S v B, (et Y SalEs(f)M,w} ;
v=1 s=n+1

which finishes the proof.
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Kadapos C.3. CAJIMAKTHI OPJINY KEHICTIKTEPIH/IEI'T EH 2KAKCBI TPU-
T'OHOMETPUAJIBIK KYBIKTAY YIIIH KENBIP TEHCI3AIKTEP »KOHE ®YPLE
KOOONINEHTTEPI

By xxymbicta camMarTbl OpJind KeHICTIKTEPiHIer! (DYHKIIUSIHBIH €H, YKAKChl XKy bIayJIaphl
zeprreseni. ConbiMen Oipre cajmmakTbl Opiind KeHICTIKTEpIHIerl 2Ky bIKTaYIap TEOPUICHIHBIH,
Kepi ecebi 3epesieHe .

Kinrrix cezgep. Opaud Kenicrikrepi, cajmakTbl Opind KeHicrikrepi, Boiin uHaekci, re-
ricTiK MOJIyJI, €H >KaKChl XKYBIKTay, Kepi TeopeMa.

Hxadapos C.3. HEKOTOPBIE HEPABEHCTBA /I HAWJIYHIIETI'O TPUT'OHO-
METPUYECKOI'O ITPUBJIM2KEHUA 11 KOSOOUIVEHTEI ®YPHE B BECOBLIX
[MPOCTPAHCTBAX OPJIMYA

B sroit pabore uccienyrorcs nHauwmydiine mpubIMKeHnss (PYHKINA B BECOBBIX MMPOCTPAH-
crBax Opinda. TakxKe msydaercss obpaTHas 3aada TEOPUH IPUOIMKEHUI B BECOBBIX IIPO-
crpancTBax Opinda.

Kinouesnbre ciiosa. [Ipoctpancrsa Opaunya, BecoBble ipoctpancTsa Opiuda, HHIAEKCH Boii-
J1a, MOJYJIb IVIAJKOCTH, HAMJIyUIllee TPUOIuKeHne, oOpaTHas TeOpPeMa.
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