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Abstract. Functions as the basic concept of mathematics have to be permanently renewed to satisfy

challenges, first of all, of modern industrial revolutions and science development. Oscillations and

recurrence are mostly needed for the theoretical research and applications. If oscillations are preferable

in engineering, the recurrence originates in celestial mechanics. The ultimate recurrence is the Poisson

stability. Nowadays, needs for functions with irregular behavior are exceptionally strong in neuroscience

and celestial dynamics, which is still in the developing mode. In the present research we have decided

to combine periodic dynamics with the phenomenon of Poisson stability. That is, one of the simplest

forms of oscillations is amalgamated with the most sophisticated recurrence type. The present products

of the design are modulo periodic Poisson stable functions and factor periodic Poisson stable functions.

The main results of the research are conditions for Poisson stability of the newly introduced functions.

Numerical simulations, which confirm the contribution of periodicity and recurrence in the behavior of

functions are provided.

Keywords. Poisson stability, modulo periodic Poisson stable functions, factor periodic Poisson stable

functions.

Introduction

The theory of differential equations and dynamical systems is, mainly, a doctrine on oscil-
lations and recurrence, which are basic in science and applications [1–5]. In literature, there
is no clear difference for oscillations and recurrence. Nevertheless, if the line of oscillations
contains periodic, quasi-periodic and almost periodic functions [6–10], the Poisson stable func-
tions are unique with the recurrence property, since they can be unbounded. The functions,
which in literature are called recurrent functions [4,5] belong to the both classes of functions.
It is clear that the process of invention of new types functions is unstoppable, to response
demands of the progress. In our research, we also have made contribution to the process. In
paper [11], to strengthen the role of recurrence as a chaotic ingredient we have extended the

2010 Mathematics Subject Classification: 26A06, 37B10, 37B20, 37B55.
c© 2021 Kazakh Mathematical Journal. All right reserved.



Modulo and factor periodic Poisson stable functions 7

Poisson stability to the unpredictability property. Thus, the Poincaré chaos has been deter-
mined, and one can say that the unpredictability implies chaos now. The unpredictable point
in the functional space of the Bebutov dynamics is the unpredictable function [12–20]. Ac-
cordingly, we have provided a dynamical method, how to construct Poisson stable functions.
Deterministic and stochastic dynamics have been utilized. Deterministically unpredictable
functions have been constructed as solutions of hybrid systems, consisting of discrete and
differential equations [19], and randomly they are results of the Bernoulli process inserted
into a linear differential equation [18, 20, 21]. Unpredictable oscillations in neural networks
have been researched in [19,20,22–24].

In the papers [16–18] and books [19,20] discussing existence of unpredictable solutions, we
have developed a new method how to approve Poisson stable solutions, since unpredictable
functions are a subset of Poisson stable functions, and to verify the unpredictability one
has to check, if the Poisson stability is valid. The method is distinctly different than the
comparability method by character of recurrence introduced in [25] and later has been realized
in several articles [26–32].

Unlike the papers [12,14,16–24], the present research is busy with a new type of Poisson
stable functions. In the papers [26–29] and others, quasilinear systems are with constant
matrices of coefficients, and the newly introduced functions will allow to research systems with
periodic and, even with Poisson stable coefficients [33]. Another significant novelty, which is
achieved in the present paper as well as in our former studies [12,17,19,20] is the numerical
simulation of the Poisson stable functions and solutions. We believe that altogether, the
present suggestions can shape a new interesting science direction, not only in the theoretical
study of differential equations, but also about rich opportunities for applications in mechanics,
electronics, artificial neural networks, neuroscience.

Preliminaries

In this part of the paper, we introduce definitions for modulo periodic Poisson stable,
factor periodic Poisson stable, and modulo almost Poisson stable functions as well as for
compartmental Poisson stability.

Let us start with the definition of the Poisson stable function.

Definition 1 [5]. A continuous and bounded function ψ(t) : R → R
n is called Poisson

stable, if there exists a sequence tk, which diverges to infinity such that the sequence ψ(t+ tk)
converges to ψ(t) as k → ∞ uniformly on bounded intervals of R.

We shall call the sequence tk, in Definition 1, the Poisson sequence for the function ψ(t).

Definition 2. A function f(t) = φ(t) +ψ(t) is said to be the modulo periodic Poisson stable
(MPPS) function, if φ(t) is an ω-periodic continuous function and ψ(t) is a Poisson stable
function.

Kazakh Mathematical Journal, 21:3 (2021) 6–15



8 M. Akhmet, M. Tleubergenova, A. Zhamanshin

Definition 3 [10]. A continuous function φ(t) is called quasiperiodic with periods
2π/ω1, 2π/ω2, · · · , 2π/ωm if for every ǫ > 0 there is a δ = δ(ǫ) > 0 such that each num-
ber ρ satisfying the system of inequalities |ωkρ| < δ(mod 2π), k = 1, 2, · · · ,m, also satisfies
the inequality supt∈R ‖φ(t + ρ)− φ(t)‖ ≤ ǫ, that is, it is ǫ-almost period of φ(t).

Definition 4. A function f(t) = φ(t) + ψ(t) is said to be a modulo quasiperiodic Poisson
stable (MQPPS) function if φ(t) is a quasiperiodic function, and ψ(t) is a Poisson stable
function.

Definition 5. A function f(t) = φ(t) + ψ(t) is said to be a modulo almost periodic Poisson
stable (MAPPS) function if φ(t) is a continuous almost periodic function, and ψ(t) is a Poisson
stable function.

Definition 6. A product φ(t)ψ(t) is said to be a factor periodic Poisson stable (FPPS)
function, if φ(t) is a continuous periodic and ψ(t) is a Poisson stable functions.

Finally, we shall introduce definitions, which can also be useful in the future investigations.

Definition 7. A function f(t) is said to be a compartmental periodic Poisson stable (CPPS)
function if f(t) = G(t, t), where G(u, s) is a continuous bounded function, periodic in u, and
Poisson stable in s.

Definition 8. A function f(t) is said to be a compartmental quasiperiodic Poisson sta-
ble (CQPPS) function if f(t) = G(t, t), where G(u, s) is a continuous bounded function,
quasiperiodic in u, and Poisson stable in s.

Definition 9. A function f(t) is said to be a compartmental almost periodic Poisson stable
(CAPPS) function if f(t) = G(t, t), where G(u, s) is a continuous bounded function, almost
periodic in u, and Poisson stable in s.

In the present research, we will focus on MPPS and FPPS functions.

Main results

Theorem 1. For arbitrary sequence of positive real numbers tk, k = 1, 2, ..., and a positive
number ω there exists a subsequence tkl , l = 1, 2, ..., and a number τω, 0 ≤ τω < ω, such that
tkl → τω(mod ω) as l → ∞.

Proof. Consider the sequence τk such that tk ≡ τk(mod ω), and 0 ≤ τk < ω for all k ≥ 1. The
boundedness of the sequence τk implies that there exists a subsequence τkl , which converges
to a number τω [34]. �

Consider a Poisson stable function ψ(t), and the Poisson sequence tk. By Lemma 1 for
fixed ω > 0 there exists a subsequence tkl and a number τω such that tkl → τω(mod ω) as
l → ∞. In what follows, we shall call the number τω as the Poisson shift for the function ψ(t)
with respect to the ω. The set of Poisson shifts Tω is not empty, in general case, it can consist
of several or even an infinite number of elements. The number κω = inf Tω, 0 ≤ κω < ω,
is said to be a Poisson number for the function φ(t) with respect to the number ω. In what
follows, we shall call κω simply the Poisson number.

Kazakh Mathematical Journal, 21:3 (2021) 6–15



Modulo and factor periodic Poisson stable functions 9

Lemma 1. κω ∈ Tω.

Proof. Assume on the contrary that κω is not in Tω. Then there exists a strictly decreas-
ing sequence τm, m ≥ 1, in Tω, such that τm → κω. For each natural m, denote by tmi a
subsequence of tk such that tmi → τm(mod ω) as i→ ∞.

Fix a sequence of positive numbers ǫn, which converges to zero. One can find numbers in,
n = 1, 2, ..., such that |tnin − τn| < ǫn(mod ω). It is clear that t

n
in → κω(mod ω) as n→ ∞. �

Remark 1. The last assertion implies that if κω = 0, then there exists a subsequence tkl
such that tkl → 0(mod ω) as l → ∞.

Theorem 2. If f(t) = φ(t)+ψ(t) is an MPPS function, and κω = 0, then the function f(t)
is Poisson stable.

Proof. According to Lemma 1, there exists a subsequence tkl, which tends to zero in modulus
ω as l → ∞. Without loss of generality assume that tk → 0(mod ω) as k → ∞. Fix a positive
number ǫ, and bounded interval I ⊂ R. The periodic function φ(t) is uniformly continuous
on R. Consequently, there exists a number k1 such that

‖φ(t+ tk)− φ(t)‖ <
ǫ

2

for all t ∈ R and k > k1. Moreover, there exists an integer k2 such that

‖ψ(t + tk)− ψ(t)‖ <
ǫ

2

for t ∈ I, k > k2. This is why,

‖f(t+ tk)− f(t)‖ ≤ ‖φ(t+ tk)− φ(t)‖+ ‖ψ(t + tk)− ψ(t)‖ < ǫ,

if t ∈ I and k > max(k1, k2). That is, the function f(t) is Poisson stable. �

Theorem 3. Assume that ψ(t) is a Poisson stable function. If κω = 0, for some positive
number ω, then ψ(t) is an MPPS function.

Proof. Let us write ψ(t) = g(t) + (ψ(t) − g(t)), where g(t) is a continuous ω−periodic
function. Since κω = 0, then the subtraction ψ(t) − g(t) is Poisson stable by Theorem 2. �

Remark 2. The last result is a source for the optimization problem how to choose the function
g(t) and the period ω to minimize the difference ψ(t) − g(t). In other words, the problem of
approximation of Poisson stable functions with periodic ones. It is of exceptional interest for
celestial mechanics [2].

Theorem 4. If g(t) = φ(t)ψ(t) is a FPPS function, and κω = 0, then the function g(t) is
Poisson stable.

Kazakh Mathematical Journal, 21:3 (2021) 6–15



10 M. Akhmet, M. Tleubergenova, A. Zhamanshin

Proof. Denote nφ = max
t∈R

‖φ(t)‖ and nψ = sup
t∈R

‖ψ(t)‖. According to Lemma 1, there exists

a subsequence tkl , which tends to zero in modulus ω as l → ∞. Without loss of generality
assume that tk → 0(mod ω) as k → ∞. Fix a positive number ǫ, and bounded interval I ⊂ R.
The periodic function φ(t) is uniformly continuous on R. Consequently, there exists a number
k1 such that

‖φ(t+ tk)− φ(t)‖ ≤
ǫ

2mψ

for all t ∈ R and k > k1. Moreover, there exists an integer k2 such that

‖ψ(t+ tk)− ψ(t)‖ ≤
ǫ

2mφ

for t ∈ I, k > k2. This is why

‖g(t + tk)− g(t)‖ = ‖φ(t+ tk)ψ(t+ tk)− φ(t)ψ(t)‖ ≤

mψ‖φ(t+ tk)− φ(t)‖+mφ‖ψ(t+ tk)− ψ(t)‖ < ǫ,

if t ∈ I and k > max(k1, k2). That is, the function g(t) is Poisson stable. �

Numerical examples

Let us take into account the logistic discrete equation

λi+1 = Fµ(λi), (1)

i ∈ Z and Fµ(s) = µs(1 − s). The interval [0, 1] is invariant under the iterations of (1)
for µ ∈ (0, 4]. It was shown in Theorem 4.1 [12] that the logistic map (1) possesses an
unpredictable solution for each µ ∈ [3 + (2/3)1/2, 4].

Define the following integral

Θ(t) =

∫ t

−∞

e−3(t−s)Ω(s)ds, (2)

where Ω(t) is a piecewise constant function defined on the real axis through the equation
Ω(t) = ψi for t ∈ [i, i + 1), i ∈ Z. It is worth noting that Θ(t) is bounded on the whole real
axis such that sup

t∈R
|Θ(t)| ≤ 1/3. Moreover, it was proved in [15] that the function Θ(t) is

Poisson stable.
Next, we shall use the property of the function Θ(t) to construct MPPS and FPPS

functions, which are Poisson stable by Theorems 2 and 4.
An example of the modulo periodic Poisson stable function. Consider the MPPS function

G(t) = 0.5sin(0.02πt) + 1.5Θ2(t). (3)

Kazakh Mathematical Journal, 21:3 (2021) 6–15
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Figure 1 – The graph of the function F (t).

One can easily verify that the conditions of Theorem 2 are true for the function. We do
not reliably know the initial value of the Poisson stable function Θ(t), so we cannot visualize
the MPPS function G(t) precisely, but we can show a function F (t), which approaches G(t)
as time increases.

In Figure 1 the function

F (t) = 0.5sin(0.02πt) + 1.5η2(t), (4)

with initial value F (0) = 1.5η2(0) is shown. The function F (t) asymptotically converges to
the MPPS function G(t), and η(t) is the solution of the differential equation x′ = −3x+Ω(t)
with the initial value η(0) = 0.6 [17,22,23].

An example of the factor periodic Poisson stable function. In Figure 2 the function V (t)
with initial value V (0) = 0.6 is illustrated, which approximates the following FPPS function

W (t) = cos(0.04t)Θ(t). (5)

The conditions of Theorem 4 for the function W (t) are easily verifiable.
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Ахмет М., Тлеубергенова М., Жаманшин А. ПЕРИОДТЫ ҚОСЫЛҒЫШТЫ ЖӘНЕ
ПЕРИОДТЫ КОЭФФИЦИЕНТТI ПУАССОН БОЙЫНША ОРНЫҚТЫ ФУНКЦИЯ-
ЛАР

Математиканың негiзгi ұғымы ретiнде функциялар, ең алдымен, қазiргi өнеркәсiп
пен ғылымның дамуының мiндеттерiне жауап беру үшiн үнемi толықтырылып отыруы
керек. Тербелiстер мен рекуренттiлiк негiзiнен теориялық зерттеулер мен қолданулар
үшiн қажет. Техника саласында тербелiстер қолайлы болса, рекурренттiлiк аспан ме-
ханикасында пайда болды. Ең қиын рекурренттiлiк – бұл Пуассон бойынша орнықты-
лық болып табылады. Бүгiнгi таңда нейробиология мен аспан механикасы сынды дамып
келе жатқан салаларда реттелмеген функцияларға қажеттiлiк артуда. Бұл зерттеуде
бiз периодтылықты Пуассон бойынша орнықтылық құбылысымен бiрiктiрудi ұсынамыз.
Яғни, тербелiстiң қарапайым жағдайларының бiрi рекуренттiлiктiң ең күрделi түрiмен
бiрiктiрiлген. Дәлiрек айтқанда, зерттеудiң объектiлерi периодты қосылғышты Пуассон

бойынша орнықты және периодты коэффициенттi Пуассон бойынша орнықты функ-
циялар болып табылады. Мақалада анықталған функциялардың Пуассон бойынша ор-
нықтылығының шарттары зерттеудiң негiзгi нәтижелерi болып есептеледi. Жаңа функ-
циялардың әрекетiндегi периодтылық пен рекурренттiлiктiң рөлiн көрсету үшiн сандық
талдау жүргiзiлдi.

Кiлттiк сөздер. Пуассон бойынша орнықтылық, периодты қосылғышты Пуассон бой-
ынша орнықты функциялар, периодты коэффициенттi Пуассон бойынша орнықты функ-
циялар.

Ахмет М., Тлеубергенова М., Жаманшин А. ФУНКЦИИ УСТОЙЧИВЫЕ ПО ПУАС-
СОНУ С ПЕРИОДИЧЕСКИМИ КОЭФФИЦИЕНТОМ И СЛАГАЕМЫМ

Функции как основная концепция математики должны постоянно пополнятся, чтобы
отвечать на вызовы, современной промышленной революции и развитию науки. С этой
целью в теоретических исследованиях и приложениях необходимы колебания и рекур-
рентность. Если колебания предпочтительнее в технике, то рекуррентность появилась
в небесной механике. Наиболее сложная рекуррентность — это устойчивость по Пуас-
сону. Сегодня потребность в функциях с нерегулярным поведением особенно высока в
нейробиологии и небесной механике, которая все еще находится в стадии развития. В
настоящем исследовании мы предлагаем совместить периодичность с устойчивостью по
Пуассону. То есть одна из простейших форм колебаний сочетается с наиболее слож-
ным типом рекуррентности. Более точно, объектами исследования являются функции

устойчивые по Пуассону с периодическим слагаемым и функции устойчивые по Пуассо-

ну с периодическим коэффициентом. Основными результатами исследования являются
условия устойчивости по Пуассону для функций, определенных в статье. Осуществлен
численный анализ, иллюстрирующий роль периодичности и рекуррентности в поведении
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новых функций.

Ключевые слова. Устойчивость по Пуассону, функции устойчивые по Пуассону с пе-
риодическим слагаемым, функции устойчивые по Пуассону с периодическим коэффици-
ентом.

Kazakh Mathematical Journal, 21:3 (2021) 6–15



Kazakh Mathematical Journal ISSN 2413–6468

21:3 (2021) 16–26

Cauchy problem for the Jacobi fractional heat
equation

Bayan Bekbolat1,2,3,4,a, Niyaz Tokmagambetov1,2,4,b

1Al–Farabi Kazakh National University, Almaty, Kazakhstan
2Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

3Suleyman Demirel University, Kaskelen, Kazakhstan
4Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Belgium

ae-mail: bekbolat@math.kz, be-mail: tokmagambetov@math.kz

Communicated by: Makhmud Sadybekov

Received: 10.07.2021 ? Final Version: 10.09.2021 ? Accepted/Published Online: 15.09.2021

Abstract. In this work we study a Cauchy problem for the Jacobi fractional heat equation. The well-

posedness results and a priori estimates are obtained in the Sobolev type spaces W s,p
e (R+, να,β).
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1 Introduction

In this paper we consider a Cauchy problem for the Heat equation associated with the
Jacobi operator

∆α,β = A−1α,β(t)
d

dt

(
Aα,β(t)

d

dt

)
, t ∈ (0,+∞), (1)

here Aα,β(t) = 22ρ(sinh(t))2α+1(cosh(t))2β+1, ρ = α+ β + 1, with α ≥ −1/2 and β ∈ R.

We can rewrite the expression (1) in the form

∆α,β =
d2

dt2
+ g(t)

d

dt
,

where g(t) = (2α+ 1) coth(t) + (2β + 1) tanh(t).

The singular points for ∆α,β are 0 and +∞. limt→+∞ g(t) = 2α+ 2β+ 2 = 2ρ. The spec-
tral decomposition of the Jacobi operator was considered by M. Flensted-Jensen in 1972 [1].
There were obtained a generalization of the classical Paley-Wiener Theorem and a generalized

2010 Mathematics Subject Classification: Primary 35R11; Secondary 35B44, 35A01.
Funding: This research was funded by the Science Committee of the Ministry of Education and Science

of the Republic of Kazakhstan (Grant No. AP08052028).
c© 2021 Kazakh Mathematical Journal. All right reserved.



Cauchy problem for the Jacobi fractional heat equation 17

Fourier transform Fα,β, called Jacobi-Fourier transform. For more information about har-
monic analysis associated with the Jacobi operator, we refer the readers to the papers [2–7].

Let 0 < γ < 1. The aim of this paper is to study Cauchy problem for the non-homogeneous
time-fractional heat equation associated with the Jacobi operator:

Dγ
0+,t

u(t, x)−∆α,βu(t, x) +mu(t, x) = f(t, x), x ∈ R+, 0 < t < T < +∞,

where m is a positive number and Dγ
0+,t

, 0 < γ < 1, is the left-sided Caputo fractional
derivative, under the condition

u(0, x) = φ(x), x ∈ R+.

The contents of this paper as follows. In Section 2, we collect some results about harmonic
analysis associated with the Jacobi operator on R+ and here we introduce the Sobolev type
space W r,s

e (R+, να,β), also give some necessary information about fractional derivative. In
Section 3, we prove our main Theorem 3 about the solvability of Cauchy problems associated
with the Jacobi operator on R+.

2 Preliminaries
2.1 The Jacobi operator. The eigenfunction of the operator ∆α,β is a unique solution of
the equation [1]

∆α,βϕ
α,β
λ (t) + (λ2 + ρ2)ϕα,βλ (t) = 0, λ ∈ C,

satisfying

ϕα,βλ (0) = 1,
d

dt
ϕα,βλ (0) = 0

and given by the expression

ϕα,βλ (t) = F
(1

2
(ρ+ iλ),

1

2
(ρ− iλ);α+ 1;− sinh2 t

)
, (2)

where F is the Gauss hypergeometric function [8] and ρ = α+β+1. The eigenfunction ϕα,βλ (t)

(2) is called the Jacobi function. The Jacobi function ϕα,βλ (t) is analytic for t ∈ [0,+∞) and

ϕα,βλ (t) = ϕα,β−λ (t) and ϕα,βλ (t) = ϕα,β
λ

(t).

In particularly, we have

ϕ
− 1

2
, 1
2

λ (t) = cos(λt) and ϕ
1
2
, 1
2

λ (t) =
sin(λt)

λ sinh t
.

Remark 1 [1, Proposition 1, p. 144]. For each fixed t ∈ (0,+∞), ϕα,βλ (t) is an entire
function as a function of λ,.

Kazakh Mathematical Journal, 21:3 (2021) 16–26



18 Bayan Bekbolat, Niyaz Tokmagambetov

Properties of the Jacobi functions ϕα,βλ (t) are:
i) For all λ ∈ C and t ∈ [0,+∞) with |Imλ| ≤ ρ, we have ( [1, Lemma 11, p. 153])

|ϕα,βλ (t)| ≤ 1.

ii) For all n ∈ Z+ there exists Kn > 0 such that ( [1, Theorem 2, p. 145])

| d
n

dtn
ϕα,βλ (t)| ≤ Kn(1 + t)(1 + |λ|)ne(|Imλ|−ρ)t

and

| d
n

dλn
ϕα,βλ (t)| ≤ Kn(1 + t)n+1e(|Imλ|−ρ)t

for all λ ∈ C, t ∈ [0,+∞).
Let us introduce the following function spaces ( [1, p. 146-147], [5, Notations, p. 368]).
Let Se(R) be the space of even, infinitely differentiable, and rapidly decreasing functions

on R, equipped with usual Schwartz topology, and Sre (R) = {(cosh t)
−2ρ
r Se(R)}, 0 < r ≤ 2,

be the space, equipped with the topology defined by the semi-norms

Nn,k(f) = sup
t≥0

(cosh t)
2ρ
r (1 + t)n| d

k

dtk
f(t)|.

It is clear that Sre (R) is invariant under ∆α,β and the semi-norms defined by

Nn,k(f) = sup
t≥0

(cosh t)
2ρ
r (1 + t)n|∆k

α,βf(t)|

are continuous on Sre (R).
Let Lp(R+, µα,β), 1 ≤ p < +∞, be the space of measurable functions f on R+ = [0,+∞)

such that

‖f‖pp,µ =

∫ +∞

0
|f(t)|pdµα,β(t) < +∞,

where dµα,β(t) = (2π)−
1
2 22ρ(sinh t)2α+1(cosh t)2β+1dt or dµα,β(t) = (2π)−

1
2Aα,β(t)dt.

Remark 2 [1, p. 146]. Notice that Sre (R) ⊂ Lr(R+, µα,β) for all 0 < r ≤ 2.
Let Lp(R+, να,β), 1 ≤ p <∞ be the space of measurable functions f on R+ such that

‖f‖pp,ν =

∫ +∞

0
|f(λ)|pdνα,β(λ) < +∞,

where dνα,β(λ) = (2π)−
1
2 |cα,β(λ)|−2dλ. Here, cα,β(λ) is the Harish-Chandra’s function, given

by

cα,β(λ) =
2ρ−iλΓ(iλ)Γ(α+ 1)

Γ(ρ+iλ2 )Γ(α−β+1+iλ
2 )

.
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Note that for real λ, α, β, we have cα,β(λ) = cα,β(−λ).

We will use Lp(µ) and Lp(ν) instead of Lp(R+, µα,β) and Lp(R+, να,β), respectively for
our convenience.

For f ∈ L1(µ) the Fourier-Jacobi transform Fα,β of f is defined by ( [1, Proposition 3, p.
146], [5, Definition 1.1, p. 369])

f̂(λ) = (Fα,βf)(λ) =

∫ +∞

0
f(t)ϕα,βλ (t)dµα,β(t) (3)

and for f ∈ L1(ν) the inverse Fourier-Jacobi transform F−1α,β is given by

f(t) =
(
F−1α,β f̂

)
(t) =

∫ +∞

0
f̂(λ)ϕα,βλ (t)dνα,β(λ), (4)

where ϕα,βλ (t) is the Jacobi functions (2).

Proposition 1 ( [1, Proposition 3, p. 146]). Fourier-Jacobi Transform Fα,β is a linear,
norm-preserving map of L2(µ) onto L2(ν).

In particularly, we have the Plancherel’s identity

‖f̂‖2,ν = ‖f‖2,µ. (5)

Remark 3. For α = β = −1
2 , we have the Fourier-cosine transform

f̂c(λ) = (Fcf)(λ) =
1√
2π

∫ +∞

0
cos(λt)f(t)dt,

and the inverse Fourier-cosine transform is defined by

f(t) =
(
F−1c f̂c

)
(t) =

4√
2π

∫ +∞

0
cos(λt)f̂c(λ)dλ.

Remark 4 [5, Remark, p. 370]. It is clear that for all f ∈ Sre (R), we have

Fα,β(∆α,β(f)) = −(λ2 + ρ2)Fα,β(f).

Notation [6, Definition 3.2, p. 175]. For s ∈ R, we denote by W s,p
e (R+, να,β) the space of

functions satisfying∫ +∞

0
(λ2 + ρ2)ps |Fα,β(u)|p dνα,β(λ) < +∞ for all u ∈ S2e (R).

Kazakh Mathematical Journal, 21:3 (2021) 16–26
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The norm of W s,p
e (R+, να,β) can be taken by

‖u‖p
W s,p
e (R+,να,β)

=

∫ +∞

0
(λ2 + ρ2)ps |Fα,β(u)|p dνα,β(λ). (6)

This is the Sobolev type space on R+. We will use W s,p
e (ν) instead of W s,p

e (R+, να,β) for
our convenience.

Theorem 1. [6, Theorem 3.3, p. 176]. For s ∈ R and 1 ≤ p < +∞ the space S2e (R) is dense
in W s,p

e (ν).

Theorem 2 [6, Theorem 3.4, p. 177]. For s, t ∈ R, t < s and 1 ≤ p < +∞ the space W s,p
e (ν)

is continuously included in the space W t,p
e (ν).

Also, we deal with the spaces C([0, T ],W 1,2
e (ν)) and C([0, T ], L2(µ)) with the norms

‖u‖2
C([0,T ],W 1,2

e (ν))
:= max

0<t<T
‖u(t, ·)‖2

W 1,2
e (ν)

and
‖u‖2C([0,T ],L2(µ)) := max

0<t<T
‖f(t, ·)‖22,µ,

respectively.

2.2 Fractional differentiation operators. In this subsection, we introduce fractional dif-
ferentiation operators and other conceptions. We refer the readers to the papers [9–12] to get
acquainted with some new results for diffusion equations with Caputo fractional derivative.

Definition 1 [13, p. 69]. Let [a, b] (−∞ < a < b <∞) be a finite interval on the real axis R.
The left and right Riemann-Liouville fractional integrals Iγ

a+
and Iγ

b− of order γ ∈ R (γ > 0)
are defined by

Iγ
a+

[f ](t) :=
1

Γ(γ)

∫ t

a
(t− s)γ−1f(s)ds, t ∈ (a, b],

and

Iγ
b− [f ](t) :=

1

Γ(γ)

∫ b

t
(t− s)γ−1f(s)ds, t ∈ [a, b),

respectively. Here Γ denotes the Euler gamma function.

Definition 2 [13, p. 70]. The left and right Riemann-Liouville fractional derivatives Dγ
a+

and Dγ
b− of order γ ∈ R (0 < γ < 1) are given by

Dγ
a+

[f ](t) :=
d

dt
I1−γ
a+

[f ](t), ∀t ∈ (a, b],

and

Dγ
b− [f ](t) := − d

dt
I1−γ
b− [f ](t), ∀t ∈ [a, b),
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respectively.

Definition 3 [13, p. 91]. The left and right Caputo fractional derivatives Dγ
a+

and Dγ
b− of

order γ ∈ R (0 < γ < 1) are defined by

Dγ
a+

[f ](t) := Dγ
a+

[f(t)− f(a)], t ∈ (a, b],

and

Dγ
b− [f ](t) := Dγ

b− [f(t)− f(b)], t ∈ [a, b),

respectively.

Definition 4 [14]. Let X be a Banach space. We say that u ∈ Cγ([0, T ], X) if u ∈ C([0, T ], X)
and Dγt u ∈ C([0, T ], X).

The classical Mittag-Leffler function Eγ,1(t) and the Mittag-Leffler type function Eγ,γ(t)
are given by the expressions

Eγ,1(t) :=
∞∑
k=0

tk

Γ(γk + 1)
Eγ,γ(t) :=

∞∑
k=0

tk

Γ(γk + γ)
.

In the case γ = 1, we obtain E1,1(t) = et. For more information about the classical Mittag-
Leffler function Eγ,1(t) and the Mittag-Leffler type function Eγ,γ(t) see e.g. [9, p. 40 and p.
42].

In [15] the following estimate for the Mittag-Leffler function is proved, when 0 < γ < 1
(not true for γ ≥ 1)

1

1 + Γ(1− γ)t
≤ Eγ,1(−t) ≤

1

1 + Γ(1 + γ)−1t
, t > 0.

Then it follows

0 < Eγ,1(−t) < 1, t > 0.

If γ = 1, we know that 0 < e−t < 1, when t > 0.

3 Main problem
The section deals with a Cauchy problem for the time-fractional heat equation generated

by the Jacobi operator ∆α,β (1).
Let 0 < γ < 1. We consider the non-homogeneous time-fractional heat equation

Dγ
0+,t

u(t, x)−∆α,βu(t, x) +mu(t, x) = f(t, x), x ∈ R+, 0 < t < T, (7)

with initial condition

u(0, x) = φ(x), x ∈ R+, (8)
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where the functions f and φ are given functions. Our aim is to find a unique solution u of
the problem (7)-(8).

Theorem 3. Let 0 < γ < 1. Suppose that f ∈ C1([0, T ], L2(µ)) and φ ∈ W 1,2
e (ν). Then the

problem (7)-(8) has a unique solution u ∈ Cγ([0, T ], L2(µ)) ∩ C([0, T ],W 1,2
e (ν)) and can be

represented by the formula

u(t, x) =

∫ +∞

0

∫ +∞

0

∫ t

0
(t− τ)γ−1Eγ,γ

(
−(λ2 + ρ2)(t− τ)γ

)
f(τ, y)

×ϕα,βλ (y)ϕα,βλ (x)dτdµα,β(y)dνα,β(λ)

+

∫ +∞

0

∫ +∞

0
Eγ,1

(
−(λ2 + ρ2)tγ

)
φ(y)ϕα,βλ (y)ϕα,βλ (x)dµα,β(y)dνα,β(λ).

Proof. Let 0 < γ < 1. We first prove that the problem (7)-(8) has only one solution, if the
later exists. Suppose the proposition is false. Assume that there exist two different solutions
u1(t, x) and u2(t, x). Denote u0(t, x) = u1(t, x)−u2(t, x). Then u0(t, x) satisfies the following
equation

Dγ
0+,t

u0(t, x)−∆α,βu0(t, x) +mu0(t, x) = 0, x ∈ R+, 0 < t < T, (9)

u0(0, x) = 0, x ∈ R+. (10)

The problem (9)-(10) has the only trivial solution. This implies uniqueness of the solution.
Let us prove the existence of the solutions. Using the Fourier-Jacobi transform Fα,β (3)

on both sides of (7)-(8) we have

Dγ
0+,t

û(t, λ) + (λ2 + ρ2 +m)û(t, λ) = f̂(t, λ), (11)

û(0, λ) = φ̂(λ), (12)

for all λ ∈ R and 0 < t < T . The solution (see [13, ex. 4.9, p. 231]) of the problem (11)-(12)
is given by

û(t, λ) =

∫ t

0
(t−τ)γ−1Eγ,γ

(
−(λ2 + ρ2 +m)(t− τ)γ

)
f̂(τ, λ)dτ+φ̂(λ)Eγ,1

(
−(λ2 + ρ2 +m)tγ

)
,

(13)
where Eγ,1(z) is the classical Mittag-Leffler function and Eγ,γ(z) is the Mittag-Leffler type
function. Now using the inverse Fourier-Jacobi transform F−1α,β (4) to (13), we obtain the
formula for the solution of the problem (7)-(8), given by

u(t, x) =

∫ +∞

0

∫ +∞

0

∫ t

0
(t− τ)γ−1Eγ,γ

(
−(λ2 + ρ2 +m)(t− τ)γ

)
f(τ, y)
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×ϕα,βλ (y)ϕα,βλ (x)dτdµα,β(y)dνα,β(λ)

+

∫ +∞

0

∫ +∞

0
Eγ,1

(
−(λ2 + ρ2 +m)tγ

)
φ(y)ϕα,βλ (y)ϕα,βλ (x)dµα,β(y)dνα,β(λ).

Using the property

d

dτ
(Eγ,1(cτγ)) = cτγ−1Eγ,γ(cτγ), c = constant,

of the Mittag-Leffler function, we obtain

∂

∂τ

(
Eγ,1

(
−(λ2 + ρ2 +m)(t− τ)γ

))
= (λ2 + ρ2 +m)(t− τ)γ−1Eγ,γ

(
−(λ2 + ρ2 +m)(t− τ)γ

)
and we can write (13) in the form

û(t, λ) =

∫ t

0
(t−τ)γ−1Eγ,γ

(
−(λ2 + ρ2 +m)(t− τ)γ

)
f̂(τ, λ)dτ+ φ̂(λ)Eγ,1

(
−(λ2 + ρ2 +m)tγ

)
=

1

λ2 + ρ2 +m

∫ t

0

∂

∂τ

(
Eγ,1

(
−(λ2 + ρ2 +m)(t− τ)γ

))
f̂(τ, λ)dτ+φ̂(λ)Eγ,1

(
−(λ2 + ρ2 +m)tγ

)
=

f̂(t, λ)

λ2 + ρ2 +m
−
f̂(0, λ)Eγ,1

(
−(λ2 + ρ2 +m)tγ

)
λ2 + ρ2 +m

− 1

λ2 + ρ2 +m

∫ t

0
Eγ,1

(
−(λ2 + ρ2 +m)(t− τ)γ

) ∂
∂τ
f̂(τ, λ)dτ + φ̂(λ)Eγ,1

(
−(λ2 + ρ2 +m)tγ

)
using the rule of integration by parts and Eγ,1(0) = 1.

Let f ∈ C1([0, T ], L2(µ)), φ ∈W 1,2
e (ν), then we can estimate u as follows

‖u(t, ·)‖2
W 1,2
e (ν)

=

∫ +∞

0

∣∣(λ2 + ρ2)û(t, λ)
∣∣2 dνα,β(λ) .

∫ +∞

0

∣∣∣∣∣(λ2 + ρ2)f̂(t, λ)

λ2 + ρ2 +m

∣∣∣∣∣
2

dνα,β(λ)

+

∫ +∞

0

∣∣∣∣∣(λ2 + ρ2)f̂(0, λ)Eγ,1
(
−(λ2 + ρ2 +m)tγ

)
λ2 + ρ2 +m

∣∣∣∣∣
2

dνα,β(λ)

+

∫ +∞

0

∣∣∣∣∣
∫ t

0

(λ2 + ρ2)Eγ,1
(
−(λ2 + ρ2 +m)(t− τ)γ

)
λ2 + ρ2 +m

∂

∂τ
f̂(τ, λ)dτ

∣∣∣∣∣
2

dνα,β(λ)

+

∫ +∞

0

∣∣∣(λ2 + ρ2)φ̂(λ)Eγ,1
(
−(λ2 + ρ2 +m)tγ

)∣∣∣2 dνα,β(λ)

.
∫ +∞

0

∣∣∣f̂(t, λ)
∣∣∣2 dνα,β(λ) +

∫ +∞

0

∣∣∣f̂(0, λ)
∣∣∣2 dνα,β(λ)

Kazakh Mathematical Journal, 21:3 (2021) 16–26



24 Bayan Bekbolat, Niyaz Tokmagambetov

+

∫ +∞

0

(∫ t

0

∣∣∣∣ ∂∂τ f̂(τ, λ)

∣∣∣∣ dτ)2

dνα,β(λ) +

∫ +∞

0

∣∣∣(λ2 + ρ2)φ̂(λ)
∣∣∣2 dνα,β(λ)

. ‖f̂(t, ·)‖22,ν + ‖f̂(0, ·)‖22,ν +

∫ T

0
‖ ∂
∂t
f̂(t, ·)‖22,νdt+ ‖φ‖2

W 1,2
e (ν)

= ‖f(t, ·)‖22,µ + ‖f(0, ·)‖22,µ +

∫ T

0
‖ ∂
∂t
f(t, ·)‖22,µdt+ ‖φ‖2

W 1,2
e (ν)

,

here we have used the Cauchy-Schwarz inequality, Fubini’s theorem and a . b denotes a ≤ cb
for some positive constant c independent of a and b. Thus

‖u(t, ·)‖2
W 1,2
e (ν)

. ‖f(t, ·)‖22,µ + ‖f(0, ·)‖22,µ +

∫ T

0
‖ ∂
∂t
f(t, ·)‖22,µdt+ ‖φ‖2

W 1,2
e (ν)

.

Then we obtain

‖u‖2
C([0,T ],W 1,2

e (ν))
. ‖f‖2C1([0,T ],L2(µ)) + ‖φ‖2

W 1,2
e (ν)

< +∞.

Let us estimate the function Dγ
0+,t

u:

‖Dγ
0+,t

u(t, ·)‖22,µ = ‖Dγ
0+,t

û(t, ·)‖22,ν =

∫ +∞

0

∣∣∣Dγ0+,tû(t, ·)
∣∣∣2 dνα,β(λ)

=

∫ +∞

0

∣∣∣f̂(t, λ)− (λ2 + ρ2 +m)û(t, λ)
∣∣∣2 dνα,β(λ)

.
∫ +∞

0

∣∣∣f̂(t, λ)
∣∣∣2 dνα,β(λ) +

∫ +∞

0

∣∣(λ2 + ρ2 +m)û(t, λ)
∣∣2 dνα,β(λ)

. ‖f̂(t, ·)‖22,ν +

∫ +∞

0

∣∣(λ2 + ρ2)û(t, λ)
∣∣2 dνα,β(λ).

Thus we have
‖Dγ

0+,t
u(t, ·)‖22,µ . ‖f(t, ·)‖22,µ + ‖u(t, ·)‖2

W 1,2
e (ν)

and
‖Dγ

0+,t
u‖2C([0,T ],L2(µ))

. ‖f‖2C([0,T ],L2(µ)) + ‖u‖2
C([0,T ],W 1,2

e (ν))
. ‖f‖2C1([0,T ],L2(µ)) + ‖φ‖2

W 1,2
e (ν)

< +∞.

It is obvious that ‖u‖2C([0,T ],L2(µ)) < +∞ (Plancherel’s identity and Theorem 2). Consequently
we get

‖u‖2Cγ([0,T ],L2(µ)) < +∞.

This ends the proof.
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Remark 5. Now, we show that in the limit case, i.e. γ = 1, Theorem 3 holds. Let γ = 1.
Then instead of the problem (7)-(8), we consider a problem

ut(t, x)−∆α,βu(t, x) +mu(t, x) = f(t, x), x ∈ R+, 0 < t < T, (14)

u(0, x) = φ(x), x ∈ R+, (15)

where the functions f and φ are given and sufficiently smooth functions. Using the Fourier-
Jacobi transform Fα,β (3) on both sides of the problem (14)-(15), we obtain

ût(t, λ) + (λ2 + ρ2 +m)û(t, λ) = f̂(t, λ), (16)

û(0, λ) = φ̂(λ), (17)

for all λ ∈ R and 0 < t < T . If we solve the problem (16)-(17) relative to the variable t for
every λ, we obtain a unique solution given by the expression

û(t, λ) =

∫ t

0
f̂(τ, λ)e−(λ

2+ρ2+m)(t−τ)dτ + φ̂(λ)e−(λ
2+ρ2+m)t, (18)

which can be obtained from (13), when γ = 1, taking into account E1,1(t) = et. Then for this
solution (18) all the above inequalities hold. And hence Theorem 3 based on these inequalities
holds.
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Бекболат Б., Тоқмағамбетов Н.Е. ЯКОБИ БӨЛШЕК РЕТТI ЖЫЛУӨТКIЗГIШТIК
ТЕҢДЕУI ҮШIН КОШИ ЕСЕБI

Бұл жұмыста бiз Якоби бөлшек реттi жылуөткiзгiштiк теңдеуi үшiн Коши есебiн қа-
растырдық. Шешiмнiң тұрақтылық нәтижелерiн және алдын ала бағалауларды Соболев
типтес W s,p

e (R+, να,β) кеңiстiктерiнде алдық.
Кiлттiк сөздер. Якоби операторы, бөлшек реттi жылуөткiзгiштiк теңдеуi, Фурье-

Якоби түрлендiруi, керi Фурье-Якоби түрлендiруi, Соболев типтес кеңiстiктер.

Бекболат Б., Тоқмағамбетов Н.Е. ЗАДАЧА КОШИ ДЛЯ ДРОБНОГО УРАВНЕНИЯ
ТЕПЛОПРОВОДНОСТИ ЯКОБИ

В этой работе мы изучаем задачу Коши для дробного уравнения теплопроводности
Якоби. Результаты корректности и априорные оценки получены в пространствах типа
Соболева W s,p

e (R+, να,β).
Ключевые слова. Оператор Якоби, дробное уравнение теплопроводности, преобразо-

вание Фурье-Якоби, обратное преобразование Фурье-Якоби, пространство типа Соболе-
ва.
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