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Abstract. Functions as the basic concept of mathematics have to be permanently renewed to satisfy
challenges, first of all, of modern industrial revolutions and science development. Oscillations and
recurrence are mostly needed for the theoretical research and applications. If oscillations are preferable
in engineering, the recurrence originates in celestial mechanics. The ultimate recurrence is the Poisson
stability. Nowadays, needs for functions with irregular behavior are exceptionally strong in neuroscience
and celestial dynamics, which is still in the developing mode. In the present research we have decided
to combine periodic dynamics with the phenomenon of Poisson stability. That is, one of the simplest
forms of oscillations is amalgamated with the most sophisticated recurrence type. The present products
of the design are modulo periodic Poisson stable functions and factor periodic Poisson stable functions.
The main results of the research are conditions for Poisson stability of the newly introduced functions.
Numerical simulations, which confirm the contribution of periodicity and recurrence in the behavior of

functions are provided.

Keywords. Poisson stability, modulo periodic Poisson stable functions, factor periodic Poisson stable

functions.

Introduction

The theory of differential equations and dynamical systems is, mainly, a doctrine on oscil-
lations and recurrence, which are basic in science and applications [1-5]. In literature, there
is no clear difference for oscillations and recurrence. Nevertheless, if the line of oscillations
contains periodic, quasi-periodic and almost periodic functions [6-10], the Poisson stable func-
tions are unique with the recurrence property, since they can be unbounded. The functions,
which in literature are called recurrent functions [4,5] belong to the both classes of functions.
It is clear that the process of invention of new types functions is unstoppable, to response
demands of the progress. In our research, we also have made contribution to the process. In
paper [11], to strengthen the role of recurrence as a chaotic ingredient we have extended the

2010 Mathematics Subject Classification: 26A06, 37B10, 37B20, 37B55.
© 2021 Kazakh Mathematical Journal. All right reserved.



Modulo and factor periodic Poisson stable functions 7

Poisson stability to the unpredictability property. Thus, the Poincaré chaos has been deter-
mined, and one can say that the unpredictability implies chaos now. The unpredictable point
in the functional space of the Bebutov dynamics is the unpredictable function [12-20]. Ac-
cordingly, we have provided a dynamical method, how to construct Poisson stable functions.
Deterministic and stochastic dynamics have been utilized. Deterministically unpredictable
functions have been constructed as solutions of hybrid systems, consisting of discrete and
differential equations [19], and randomly they are results of the Bernoulli process inserted
into a linear differential equation [18,20,21]. Unpredictable oscillations in neural networks
have been researched in [19,20,22-24].

In the papers [16-18] and books [19,20] discussing existence of unpredictable solutions, we
have developed a new method how to approve Poisson stable solutions, since unpredictable
functions are a subset of Poisson stable functions, and to verify the unpredictability one
has to check, if the Poisson stability is valid. The method is distinctly different than the
comparability method by character of recurrence introduced in [25] and later has been realized
in several articles [26-32].

Unlike the papers [12,14,16-24], the present research is busy with a new type of Poisson
stable functions. In the papers [26-29] and others, quasilinear systems are with constant
matrices of coefficients, and the newly introduced functions will allow to research systems with
periodic and, even with Poisson stable coefficients [33]. Another significant novelty, which is
achieved in the present paper as well as in our former studies [12,17,19,20] is the numerical
simulation of the Poisson stable functions and solutions. We believe that altogether, the
present suggestions can shape a new interesting science direction, not only in the theoretical
study of differential equations, but also about rich opportunities for applications in mechanics,
electronics, artificial neural networks, neuroscience.

Preliminaries

In this part of the paper, we introduce definitions for modulo periodic Poisson stable,
factor periodic Poisson stable, and modulo almost Poisson stable functions as well as for
compartmental Poisson stability.

Let us start with the definition of the Poisson stable function.

Definition 1 [5]. A continuous and bounded function #(t) : R — R" is called Poisson
stable, if there exists a sequence ti, which diverges to infinity such that the sequence 1 (t +t)
converges to () as k — oo uniformly on bounded intervals of R.

We shall call the sequence t, in Definition 1, the Poisson sequence for the function ) (t).
Definition 2. A function f(t) = ¢(t) + ¢ (t) is said to be the modulo periodic Poisson stable

(MPPS) function, if ¢(t) is an w-periodic continuous function and 1 (t) is a Poisson stable
function.

KAZAKH MATHEMATICAL JOURNAL, 21:3 (2021) 6-15



8 M. Akhmet, M. Tleubergenova, A. Zhamanshin

Definition 3 [10]. A continuous function ¢(t) is called quasiperiodic with periods
21w, 2T Jwa, - -+, 27 Jwy, if for every € > 0 there is a § = d(e) > 0 such that each num-
ber p satisfying the system of inequalities |wgp| < d(mod 27), k = 1,2,--- ,m, also satisfies

the inequality sup,cg ||@(t + p) — é(t)|| < €, that is, it is e-almost period of ¢(t).

Definition 4. A function f(t) = ¢(t) + ¥(t) is said to be a modulo quasiperiodic Poisson
stable (MQPPS) function if ¢(t) is a quasiperiodic function, and (t) is a Poisson stable
function.

Definition 5. A function f(t) = ¢(t) + ¥(t) is said to be a modulo almost periodic Poisson
stable (MAPPS) function if ¢(t) is a continuous almost periodic function, and (¢) is a Poisson
stable function.

Definition 6. A product ¢(¢)1(t) is said to be a factor periodic Poisson stable (FPPS)
function, if ¢(t) is a continuous periodic and (t) is a Poisson stable functions.
Finally, we shall introduce definitions, which can also be useful in the future investigations.

Definition 7. A function f(¢) is said to be a compartmental periodic Poisson stable (CPPS)
function if f(t) = G(t,t), where G(u, s) is a continuous bounded function, periodic in u, and
Poisson stable in s.

Definition 8. A function f(t) is said to be a compartmental quasiperiodic Poisson sta-
ble (CQPPS) function if f(t) = G(t,t), where G(u,s) is a continuous bounded function,
quasiperiodic in u, and Poisson stable in s.

Definition 9. A function f(t) is said to be a compartmental almost periodic Poisson stable
(CAPPS) function if f(t) = G(¢,t), where G(u, s) is a continuous bounded function, almost
periodic in u, and Poisson stable in s.

In the present research, we will focus on MPPS and FPPS functions.

Main results

Theorem 1. For arbitrary sequence of positive real numbers ty, k = 1,2, ..., and a positive
number w there exists a subsequence ty,, | =1,2,..., and a number 7, 0 < 7, < w, such that
tr, = Tw(mod w) as | — oo.

Proof. Consider the sequence 7 such that ¢t = 7;(mod w), and 0 < 73, < w for all £ > 1. The
boundedness of the sequence 75, implies that there exists a subsequence 7,, which converges
to a number 7, [34]. O

Consider a Poisson stable function 1 (t), and the Poisson sequence t;. By Lemma 1 for
fixed w > 0 there exists a subsequence t;, and a number 7, such that t;, — 7,(mod w) as
[ — 00. In what follows, we shall call the number 7, as the Poisson shift for the function ) (t)
with respect to the w. The set of Poisson shifts 7, is not empty, in general case, it can consist
of several or even an infinite number of elements. The number x, = inf T,, 0 < K, < w,
is said to be a Poisson number for the function ¢(t) with respect to the number w. In what
follows, we shall call k,, simply the Poisson number.

KAZAKH MATHEMATICAL JOURNAL, 21:3 (2021) 6-15



Modulo and factor periodic Poisson stable functions 9

Lemma 1. K, € T,.

Proof. Assume on the contrary that s, is not in T,,. Then there exists a strictly decreas-
ing sequence 7,,, m > 1, in T, such that 7, — k. For each natural m, denote by ¢" a
subsequence of t; such that ¢/" — 7,,,(mod w) as i — 0.

Fix a sequence of positive numbers ¢, which converges to zero. One can find numbers i,
n=1,2,.., such that [t} — 7| < e,(mod w). It is clear that 7 — K, (mod w) as n — co. [
Remark 1. The last assertion implies that if K, = 0, then there ewists a subsequence ty,
such that ty, — 0(mod w) as | — oo.

Theorem 2. If f(t) = ¢(t) +(t) is an MPPS function, and k., = 0, then the function f(t)
is Poisson stable.

Proof. According to Lemma 1, there exists a subsequence tj, which tends to zero in modulus
w as | — oo. Without loss of generality assume that ¢, — 0(mod w) as k — oo. Fix a positive
number €, and bounded interval I C R. The periodic function ¢(¢) is uniformly continuous
on R. Consequently, there exists a number k; such that
€

ot + 1) — 6(0)] < 5

for all ¢ € R and k > ki. Moreover, there exists an integer ko such that

€

4606+ 1) = 90}l < 5

for t € I, k > ko. This is why,

1F(E+ k) = FOI < Mot + k) — SO + ([0 + ) — (D] <e,
if t € I and k > max(k1, k2). That is, the function f(¢) is Poisson stable. [J

Theorem 3. Assume that ¥ (t) is a Poisson stable function. If k, = 0, for some positive
number w, then ¥ (t) is an MPPS function.

Proof. Let us write ¢(t) = g(t) + (¥(t) — g(t)), where ¢(¢) is a continuous w—periodic
function. Since K, = 0, then the subtraction 1 (t) — g(t) is Poisson stable by Theorem 2. [J

Remark 2. The last result is a source for the optimization problem how to choose the function
g(t) and the period w to minimize the difference ¢ (t) — g(t). In other words, the problem of
approximation of Poisson stable functions with periodic ones. It is of exceptional interest for
celestial mechanics [2].

Theorem 4. If g(t) = ¢(t)y(t) is a FPPS function, and k, = 0, then the function g(t) is
Poisson stable.

KAZAKH MATHEMATICAL JOURNAL, 21:3 (2021) 6-15



10 M. Akhmet, M. Tleubergenova, A. Zhamanshin

Proof. Denote ng = max l6(t)|| and ny = sup ||¢(t)||. According to Lemma 1, there exists
€ teR

a subsequence tj,, which tends to zero in modulus w as | — oco. Without loss of generality
assume that t;, — 0(mod w) as k — oo. Fix a positive number €, and bounded interval I C R.
The periodic function ¢(t) is uniformly continuous on R. Consequently, there exists a number

k1 such that
€

ot +tr) — (B[ <

2m¢
for all £ € R and k > k1. Moreover, there exists an integer ko such that

€

¢+ t) = ¥l < 5
Mg

for t € I, k > ko. This is why

lg(t +tr) — g@)| = lo(t + tr)0(t + tx) — ¢() ()] <
my|d(t + k) = S| +mel[P(t + k) = YO <e,

if t € I and k > max(k1, k2). That is, the function g(¢) is Poisson stable. [J

Numerical examples

Let us take into account the logistic discrete equation
Ait1 = Flu(Ni), (1)

i € Z and F,(s) = ps(l — s). The interval [0,1] is invariant under the iterations of (1)
for p € (0,4]. It was shown in Theorem 4.1 [12] that the logistic map (1) possesses an
unpredictable solution for each p € [3 + (2/3)1/2,4].

Define the following integral

t
o(t) = / e 390 (s)ds, (2)
—0o0
where €)(t) is a piecewise constant function defined on the real axis through the equation
Q(t) =, for t € [i,1 + 1), i € Z. It is worth noting that ©(t) is bounded on the whole real
axis such that sup|©(t)| < 1/3. Moreover, it was proved in [15] that the function O(t) is
teR

Poisson stable.

Next, we shall use the property of the function O(t) to construct MPPS and FPPS
functions, which are Poisson stable by Theorems 2 and 4.

An example of the modulo periodic Poisson stable function. Consider the MPPS function

G(t) = 0.55in(0.027t) + 1.502(t). (3)

KAZAKH MATHEMATICAL JOURNAL, 21:3 (2021) 6-15



Modulo and factor periodic Poisson stable functions 11

Figure 1 — The graph of the function F(t).

One can easily verify that the conditions of Theorem 2 are true for the function. We do
not reliably know the initial value of the Poisson stable function ©(t), so we cannot visualize
the MPPS function G(t) precisely, but we can show a function F'(¢), which approaches G(t)
as time increases.

In Figure 1 the function

F(t) = 0.55in(0.027t) + 1.50°(t), (4)

with initial value F(0) = 1.51%(0) is shown. The function F(t) asymptotically converges to
the MPPS function G(t), and 7(t) is the solution of the differential equation 2’ = —3z + Q(t)
with the initial value n(0) = 0.6 [17,22,23].

An example of the factor periodic Poisson stable function. In Figure 2 the function V(t)
with initial value V(0) = 0.6 is illustrated, which approximates the following FPPS function

W (t) = cos(0.04t)O(t). (5)

The conditions of Theorem 4 for the function W (t) are easily verifiable.

Acknowledgments

M. Akhmet and A. Zhamanshin have been supported by 2247-A National Leading Re-
searchers Program of TUBITAK, Turkey, N 120C138. M. Tleubergenova has been supported

by the Science Committee of the Ministry of Education and Science of the Republic of Kaza-
khstan (grants No. AP09258737 and No. AP08856170).

KAZAKH MATHEMATICAL JOURNAL, 21:3 (2021) 6-15



12 M. Akhmet, M. Tleubergenova, A. Zhamanshin

V(1)
°
T

I I I I I I I I |
0 50 100 150 200 250 300 350 400 450 500
t

Figure 2 — The graph of the function V (¢).
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Axwmer M., Tieybeprernosa M., 2Kamanmua A. IIEPUOJTHI KOCBL/ITBIIITHI 2KOHE
NEPUOATHEI KOSOOUIIMEHTTI IIYACCOH BOWBIHIIA OPHBLIKTHI OYHKIIMSI-
JIAP

MareMaTUKaHbBIH HEri3ri yFbIMBI peTiHe (QYyHKIUSIAD, €H aJIbIMEH, KAa3ipri eHepKoCim
IIeH FBUIBIMHBIH, JIAMYyBbIHBIH MiHJETTEpiHe Kayall Oepy VIIMH YHEMi TOJIBIKTBIPBLILII OTHIPYbI
Kepek. TepbemicTep MeH PEKyPEHTTLIIK HEri3iHeH TeOPUJIbIK 3epTTeyJiep MEH KOJIIaHyIap
VIIiH KaxkeT. TexXHWKa caslachlHa TepOeicTep KOJIailyibl 60jica, PeKypPPEeHTTIIIK aciaH Me-
XaHUKACBIHIA Taiina 6osinbl. EH KublH pekyppeHTTiaik — 6y [lyaccon OoiibiHITa OPHBIKTHI-
JIBIK, 60JIBIIT TabbLIa/Abl. Byrinri Tanga HeipoOnoJIorns MeH aclaH MEXaHUKACHI CHIHIIbI JTAMbIII
KeJie 2KaTKaH cajajaplia perTejiMeren (byHKIUIAPFa KAaXKeTTUTK apryia. bysa 3eprreyie
613 epnoATHLIBIKTEI [Iyaccon OOMBIHINIA OPHBIKTHLILIK, KYObLIBICHIMEH OipIKTIpY/Ii YChIHAMBIS.
Aruu, TepbesticTiy, KapanafibiM KargaiiapblHbIH Oipi PEKYyPEHTTLIIKTIH eH Kypaeal TypiMeH
Gipikripinren. Hosipek afiTKanga, 3ePTTEYIIH O0bEKTLIEP Nepuodmo, Kocvlazviumo, Ilyaccon
60UbIHULG OPHBIKMDL YKoHE nepuodmobt koapduyuenmmi [yaccon botiviHwa opHvkmo, PyHK-
nusap OoJein TabbLIa bl. Makasaga anbikTaarad GyHKmusaapasia [Iyaccon GolibiHIma op-
HBIKTBLIBIFBIHBIH, IIAPTTAPhI 3€PTTEY/IIH, Heri3ri HoTuKeaepi 0ol ecenresieni. zKaHa pyHK-
UATIAPABIH OPEKETIHIEeTT TEPUOATHIIBIK ITeH PEKYPPEHTTUTIKTIH, POJIIH KOPCETY YIITiH CaH/IbIK,
TaJIIay KYPriziii.

Kisrrrix ceznep. 1lyaccon GoiibIHIIA OPHBIKTBIIBIK, TEPUOITHI KOCBLIFLIITHL [Iyaccon 6oii-
BIHIITA OPHBIKTEI DY HKITULIAD, TePUoAThl KodddurmenTTi [Iyaccon 6oibIHIIA OPHBIKTHI (PYHK-
IHLIaP.

Axwmer M., Trey6eprenosa M., 2Kamammun A. ©YHKIINN YCTONYUBHIE I10 ITYAC-
COHY C NIEPUOJINYECKNMUN KOOPUITMEHTOM U CJTATAEMBIM

QyHKINN KaK OCHOBHAsT KOHTIETITINAST MATEMATHKH JOJYKHBI TIOCTOSTHHO TIOTIOJTHSITCST, ITOOBI
OTBEYATH Ha BBI30BBI, COBPEMEHHOI MTPOMBIILIEHHOW PEBOJIONUN U pa3BuTuio Hayku. C 3Toii
METBI0 B TEOPETUIECKUX UCCICTOBAHUAX W TPUIOKEHUSIX HEOOXOIUMBI KOJEOAHUS U PEKYP-
PEHTHOCTD. EC.HI/I KOJIe6aHI/Iﬂ OpeJarodTuTe/ibHee B TeXHUKe, TO PEKYPPEHTHOCTH IIOABUJIACH
B Hebectoit Mexannke. Hambosiee coXKHash peKyppeHTHOCTbh — 5TO YCTOWIMBOCTEL 1o Ilyac-
cony. Cerojiisi HOTpeOHOCTL B (DYHKIMSAX C HEPEryISAPHBLIM IIOBEJIEHUEM OCODEHHO BBICOKA B
meitpobuosornn u HeGECHOM MeXaHWKe, KOTOpas BCe eIe HAXOAWTCS B CTAQINN Pa3BUTHS. B
HaCTOAIIEeM UCCJ/IeJJOBaAHUU MBI IIpe/jiaraeM COBMECTUTHb IIEPUOJUIHOCTL C YCTOIZ‘{I/IBOCTI)IO 110
ITyaccony. To ectb omma m3 mpocreifmux GopMm KojaebaHuit coderaercs ¢ HamboOJee CIIOXK-
HBIM TUIIOM PeKyppeHTHOocTU. Bojiee TOUHO, 0ObEeKTAMU UCCAEIOBAHUS SIBJISIIOTCS PYHKUUL
yemotivuewie no Ilyaccony ¢ nepuoduveckum caazaemvim 1 Gyrryuy yemotuusse no Ilyacco-
HY ¢ nepuoduveckum Koappuuyuermom. OCHOBHBIMUA Pe3yJIbTATAMY UCCJIEIOBAHUS SBJISIOTCS
ycyioBust ycroiaupoctu 10 Ilyaccony jyist pyHKIWmit, onpeiesieHHbX B craTbe. OcyiiecTBieH
YUCTEHHBIN aHATN3, WITIOCTPUPYIOIIH POJIb IEPUOIMTHOCTH W PEKYPPEHTHOCTH B MTOBEICHUH

KAZAKH MATHEMATICAL JOURNAL, 21:3 (2021) 6-15
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HOBBIX (DYHKITHIA.

Kurogesnie cioBa. Ycroitauocts 110 [lyaccony, dyuknun ycroituussie 1o Ilyaccony c me-
PUOIUYIECKUM CJIaraeMbIM, pyHKIMHN ycToitausble 1o [lyaccony ¢ nepuommyeckum Koddpduiim-
€HTOM.
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Abstract. In this work we study a Cauchy problem for the Jacobi fractional heat equation. The well-

posedness results and a priori estimates are obtained in the Sobolev type spaces W*(RT, v, 5).
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1 Introduction

In this paper we consider a Cauchy problem for the Heat equation associated with the
Jacobi operator

d d
— Al il
By = Ah0) 5 (Aas(t) 3, 1€ (0,+00) 1)

here A, s(t) = 22 (sinh(#))2*"(cosh(t))?**!, p=a + B+ 1, with « > —1/2 and B € R.
We can rewrite the expression (1) in the form

d? d
Ang=— t)—
where ¢(t) = (2a + 1) coth(t) + (26 + 1) tanh(¢).
The singular points for A, g are 0 and +o00. lim, 4 g(t) = 2a+25+2 = 2p. The spec-
tral decomposition of the Jacobi operator was considered by M. Flensted-Jensen in 1972 [1].
There were obtained a generalization of the classical Paley-Wiener Theorem and a generalized
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Cauchy problem for the Jacobi fractional heat equation 17

Fourier transform F, g, called Jacobi-Fourier transform. For more information about har-
monic analysis associated with the Jacobi operator, we refer the readers to the papers [2-7].

Let 0 < v < 1. The aim of this paper is to study Cauchy problem for the non-homogeneous
time-fractional heat equation associated with the Jacobi operator:

Dng,tU(t,fU) — Ay pu(t,z) + mu(t,z) = f(t,z), z€RT, 0<t<T < +oo,

where m is a positive number and Dg+ »0 < 7 < 1, is the left-sided Caputo fractional
derivative, under the condition

uw(0,7) = ¢(x), x€RT.

The contents of this paper as follows. In Section 2, we collect some results about harmonic
analysis associated with the Jacobi operator on Rt and here we introduce the Sobolev type
space W¢*(RT, v, ), also give some necessary information about fractional derivative. In
Section 3, we prove our main Theorem 3 about the solvability of Cauchy problems associated
with the Jacobi operator on RT.

2 Preliminaries
2.1 The Jacobi operator. The eigenfunction of the operator A, 5 is a unique solution of
the equation [1]
Do () + (N + 073 (1) =0, A€,
satisfying
aBn) — By —
P (0) - 17 =P (0) =0

and given by the expression
&3 (8) = F(S(p+iN), 3(p — iN)sa + 15— sinh?t), (2)

where F' is the Gauss hypergeometric function [8] and p = a++1. The eigenfunction (p(;f’ﬁ (t)
(2) is called the Jacobi function. The Jacobi function cp?\"ﬂ (t) is analytic for ¢ € [0, +00) and

A7) =™ and @370 = 037 (1),
In particularly, we have

. 11 sin(At)
1 B 22 —
@y 277 (t) = cos(At) and @37 (t) = Asinht’

[V

Remark 1 [1, Proposition 1, p. 144]. For each fized t € (0,400), go?\“ﬁ(t) is an entire
function as a function of A,.
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18 Bayan Bekbolat, Niyaz Tokmagambetov

Properties of the Jacobi functions go‘;’ﬂ (t) are:
i) For all A € C and ¢ € [0, 4+00) with |[Im\| < p, we have ( [1, Lemma 11, p. 153])

37 ()] < 1.

ii) For all n € Z* there exists K,, > 0 such that ( [1, Theorem 2, p. 145])
A aBi < n,(TmA|—p)t
P50 < KoL+ )1+ N

and

dn
D
forall A e C, t € [0, +00).
Let us introduce the following function spaces ( [1, p. 146-147], [5, Notations, p. 368]).
Let S¢(R) be the space of even, infinitely differentiable, and rapidly decreasing functions
on R, equipped with usual Schwartz topology, and S.(R) = {(cosh t)_TQpSe(]R)}, 0<r<2,
be the space, equipped with the topology defined by the semi-norms
dk

Ni i (f) = Stlzlg(cosh t)7 (L+ )" = fO)l.

@i’ﬁ(t)‘ < Kn(l +t)n+1e(\lm)\|fp)t

It is clear that S/ (R) is invariant under A, g and the semi-norms defined by
2
N (f) = Sgg(cosh 67 (14 0)"|AL £ (1))
t>
are continuous on S; (R).
Let LP(RY, pa,g),1 < p < 400, be the space of measurable functions f on R* = [0, +00)
such that

—+o00
wz#:A () Pdpas(t) < +oo,

where dpq g(t) = (2%)_%22p(sinh t)29% (cosh t)2PF1dt or dp, p(t) = (2#)_%Aa,5(t)dt.

Remark 2 [1, p. 146]. Notice that SL(R) C L"(RT, pio,8) for all 0 < r < 2.
Let LP(RY,v4.5),1 < p < o be the space of measurable functions f on RT such that

+oo
wwwzé FO)Pdva (A) < +oo,

where dvy g(N) = (27r)7é|ca75()\)|_2d)\. Here, cq 8(N) is the Harish-Chandra’s function, given

by A
( 20T (A (o + 1)
Ca,p\N) = i - A
(252D (=)
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Cauchy problem for the Jacobi fractional heat equation 19

Note that for real A, o, 8, we have ¢, g(A) = co,8(—A).

We will use LP(u) and LP(v) instead of LP(R™, i, ) and LP(RY, v, g), respectively for
our convenience.

For f € L'(u) the Fourier-Jacobi transform F, 5 of f is defined by ( [1, Proposition 3, p.
146], [5, Definition 1.1, p. 369])

o~ +OO
T = (Fash)N) = /0 O (1) dpo p(2) (3)

and for f € L*(v) the inverse Fourier-Jacobi transform .7-";}3 is given by

N +OO o~
10 = (F50) 0 = [ F0es W s, (4)

where gp/\”B( t) is the Jacobi functions (2).

Proposition 1 ( [1, Proposition 3, p. 146]). Fourier-Jacobi Transform Fo g is a linear,
norm-preserving map of L*(u) onto L?(v).

In particularly, we have the Plancherel’s identity
112 = 1 ll2,0- (5)

Remark 3. Fora=p0= , we have the Fourier-cosine transform

~ +oo
Fih) = (Fen) = o= / cos(A) £ (¢)dt,

and the inverse Fourier-cosine transform is defined by

. +00
10 = (FR)0 = = [ st i
Remark 4 [5, Remark, p. 370]. It is clear that for all f € SI(R), we have
Fap(Bap(f) ==\ + p*) Faa(f)-

Notation [6, Definition 3.2, p. 175]. For s € R, we denote by WP (R™,v,,8) the space of
functions satisfying

—+00
/0 (A* + 0" | Fap(u)l” dva p(A) < 400 for all u € S(R).

KAZAKH MATHEMATICAL JOURNAL, 21:3 (2021) 16-26



20 Bayan Bekbolat, Niyaz Tokmagambetov

The norm of WP (RT, v, ) can be taken by
T, o
Il = [, 02+ PP s ). (6)

This is the Sobolev type space on RT. We will use WP (v) instead of WP (R, v, 5) for
our convenience.

Theorem 1. [6, Theorem 3.3, p. 176]. For s € R and 1 < p < +oo the space S?(R) is dense
in WP (v).

Theorem 2 [6, Theorem 3.4, p. 177]. For s,t € R,t < s and 1 < p < +oo the space W' (v)
is continuously included in the space WEP(v).

Also, we deal with the spaces C([0,T], We*(v)) and C([0,T], L2(1)) with the norms

2 — A2
HUHC’([O,T],W51’2(V)) = oliltiXT ||u(t, )HWel’Q(u)
and
2 — 2
HUHC([O,T],LQ(M)) = o@i}% £t 2,
respectively.

2.2 Fractional differentiation operators. In this subsection, we introduce fractional dif-
ferentiation operators and other conceptions. We refer the readers to the papers [9-12] to get
acquainted with some new results for diffusion equations with Caputo fractional derivative.

Definition 1 [13, p. 69]. Let [a,b] (—oo < a < b < 00) be a finite interval on the real axis R.
The left and right Riemann-Liouville fractional integrals Ig+ and Ig_ of order y € R (v > 0)
are defined by

fLUW%zré%/@—sW%ﬂ@%,temﬁL
and
b
B0 = 55 | = s el

respectively. Here I' denotes the Euler gamma function.

Definition 2 [13, p. 70]. The left and right Riemann-Liouville fractional derivatives DZ+
and DZ_ of order y € R (0 <y < 1) are given by

d

DA = LIDU®, Ve (],
and p
D) = = LB, Ve fa.b),
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respectively.

Definition 3 [13, p. 91]. The left and right Caputo fractional derivatives DZ+ and DZ, of
order v € R (0 <y < 1) are defined by

DL, f)(t) = DLIF(t) — fa)]. ¢ € (a0,

and
Dy [fI(t) = D) [f(t) = f(b)], tE€E [ab),
respectively.

Definition 4 [14]. Let X be a Banach space. We say thatu € C7([0,T], X) ifu € C(]0,T], X)
and Dju € C([0,T], X).

The classical Mittag-Leffler function E. ;(¢) and the Mittag-Leffler type function E, ,(¢)
are given by the expressions

Eya(t) == kz::o Tk+1) Eqyqy(t) := k:Z:O Tk +7)

In the case v = 1, we obtain E; 1(t) = e!. For more information about the classical Mittag-
Leffler function E, ;(¢) and the Mittag-Leffler type function E, ,(t) see e.g. [9, p. 40 and p.
42].

In [15] the following estimate for the Mittag-Leffler function is proved, when 0 < v < 1
(not true for v > 1)

1 1

— < E, (-t < , t>0.
1+T(1—9)t — il )_1+F(1+’y)—1t

Then it follows
0<E\i(-t)<1, t>0.

If v = 1, we know that 0 < e~ < 1, when t > 0.

3 Main problem

The section deals with a Cauchy problem for the time-fractional heat equation generated
by the Jacobi operator A, g (1).

Let 0 < v < 1. We consider the non-homogeneous time-fractional heat equation

Dgttu(t,:n) — Ay pu(t,z) +mu(t,z) = f(t,z), R, 0<t<T, (7)

with initial condition

uw(0,7) = ¢(z), xeRT, (8)
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where the functions f and ¢ are given functions. Our aim is to find a unique solution u of
the problem (7)-(8).

Theorem 3. Let 0 < v < 1. Suppose that f € C1([0,T], L%(n)) and ¢ € Wo(v). Then the
problem (7)-(8) has a unique solution u € C7([0,T), L2(1)) N C([0,T), We*(v)) and can be
represented by the formula

“+o00 “+o00 t
ult, ) = /0 /0 /0 (t— 7V By (~ (A2 + )t — 7)) F(7.1)

xS ()" (@) drdpta, p(y)dve, s (V)

+oo +oo
+ / / Bt (02 + p2)8) 6) 05 ()65 (2)dpten 5 (4) A 5 (V).
0 0

Proof. Let 0 < v < 1. We first prove that the problem (7)-(8) has only one solution, if the
later exists. Suppose the proposition is false. Assume that there exist two different solutions
ui(t, z) and ua(t, z). Denote ug(t,x) = uy(t,x) —ua(t,x). Then ug(t, ) satisfies the following
equation

Dg+7tu0(t,:n) — Ay guo(t,z) + mug(t,z) =0, zeRY, 0<t<T, (9)

up(0,2) =0, =z €RT. (10)

The problem (9)-(10) has the only trivial solution. This implies uniqueness of the solution.
Let us prove the existence of the solutions. Using the Fourier-Jacobi transform F, g (3)
on both sides of (7)-(8) we have

~

Dyt A) + (A2 + p” +m)a(t, A) = f(t,N), (11)

u(0,A) = ¢(X), (12)
for all A € R and 0 < t < T. The solution (see [13, ex. 4.9, p. 231]) of the problem (11)-(12)
is given by
F(r, Ndr+ (A Eq 1 (=(A2 + p* + m)t7)
(13)
where E, (%) is the classical Mittag-LefHler function and E,,(z) is the Mittag-LefHer type
function. Now using the inverse Fourier-Jacobi transform .7-";}5 (4) to (13), we obtain the
formula for the solution of the problem (7)-(8), given by

u(t, \) = /Ot(t_T)'ylE%W (_()‘2 +0t+ m)(t — 7)7)

+o0o +o0o t
u(t,x) = /0 /0 /0 (t — T)VflEAm (—(/\2 + p2 +m)(t — T)'Y) f(ry)
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Cauchy problem for the Jacobi fractional heat equation 23

x5 ()3 (@) drdpa, 5 () dve 5 ()

400 +o0
+ / / Ey 1 (—(A2+ 02 +m)t?) o) ()03 () dbta,s(y)dva, s (V).
0 0

Using the property

d
ar (Ey1(ct)) = e’ 'E, ,(cr7), ¢ = constant,
.

of the Mittag-Leffler function, we obtain
0
= (B (0% + 2 b m)(t = 7)) = OF 2 ) (¢ = 1) By (8 o g2 4 m) ¢~ 7))

and we can write (13) in the form

~

amM:Aa~wﬁmﬁp@%whmmpmm (7, N7+ S(NE- 1 (—(02 4+ 9 + m)17)
1 ' 2 2 7Y\ £ - 2 2 v
= /\2—|—p2+m/0 o7 (Erg (=N + 0" +m)(t —7)7)) F(1, NdT+d(AN)Eq1 (—(A° + p° + m)t?)

O JwN FONE (0% 4 P+ m)t)
N+ +m Nt p2+m

1 ! 2 2 ¥ 9
_)\2+p2+m/o B (ZXT 4 m)E -1 57

using the rule of integration by parts and E 1(0) = 1.
Let f € CL([0,T], L(n)), ¢ € W2 (v), then we can estimate u as follows

FmNdr + GAE 1 (=(A% + p? + m)t?)

2

dve g(N)

ool (A2 4 ) F(t, )

A2 +pP+m

+00 R 9
. Mypoy = [ 102+ Yt N s 5 [

—+o0
+/
0

‘/WV+W%E“(%V+WLHMG_TW)aﬂTAMT
0 A+ pr4+m or "’

~

(A% + p) (0, VE, 1 (—(A + p? + m)t7)
A2 +p*+m

2
dve, g(N)

2
dve g(N)

—+o00
+/
0

400 R 2
+/O ‘(V + P2V (N Eqy1 (N2 +p* + m)ﬂ)‘ dVa,5(N)

< [ RN drap+ [ [FON)] )

KAZAKH MATHEMATICAL JOURNAL, 21:3 (2021) 16-26



24 Bayan Bekbolat, Niyaz Tokmagambetov

YA

SIf)

~

2 +00 .
S Frar) s+ [0+ 20| )

T
-~ 0 ~
3+ IFO B0+ [ g B e+ 101212,
0

T
0
= I+ 15O+ [ 15Nt + B0l

here we have used the Cauchy-Schwarz inequality, Fubini’s theorem and a < b denotes a < cb
for some positive constant ¢ independent of a and b. Thus

T o
ot Wy S 106N+ 1O+ [ 18

%,,udt + ||¢”%,Vel,2(y)
Then we obtain

HUHZ c([o,T7, w2 (v < Hf”Cl ([0,T],L2 (1 + HQSH2 12 < +o0.

Let us estimate the function Dg+ LU
2 2 2
D3 B = 105 0 = [ 25 e vy
+oo | 2
- / | f(t,/\)—()\2+p2+m)ﬁ(t,)\)’ v 5(N)
0
+oo | 2 +o0 9 9 R 9
,5/ Fe) dya,ﬁ(xw/ (2 4 9%+ m)a(t, )| dvas(A)
0 0

—+o00
i~ —~ 2
<1 B + /0 2 + o)t N[ dva s (V).

Thus we have

H,D()+ it ( )’ 2,0~ Hf( )H%,u + Hu(ta )H%/VJZ(V)

and
2
D5+ celleo,7),22 )
S o2 + N oy 2y S 112 oy 2oy + 16132, < +00.
It is obvious that Hu”c([o L2 () < TO° (Plancherel s identity and Theorem 2). Consequently
we get
2
[l o7, 22 () < F00-
This ends the proof.
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Remark 5. Now, we show that in the limit case, i.e. v = 1, Theorem & holds. Let v = 1.
Then instead of the problem (7)-(8), we consider a problem

ue(t, ) — Ay pu(t,z) + mu(t,z) = f(t,z), zeRT, 0<t<T, (14)

u(0,2) = ¢(z), x€RT, (15)

where the functions f and ¢ are given and sufficiently smooth functions. Using the Fourier-
Jacobi transform Fy g (3) on both sides of the problem (14)-(15), we obtain

~

at(t7 )‘) + (/\2 + p2 + m)a(tv )‘) = (t’ )‘)7 (16)

(0,) = 6(\), (17)

forall X € R and 0 < t < T. If we solve the problem (16)-(17) relative to the variable t for
every A, we obtain a unique solution given by the expression

t o~ o~
Ut ) = / Fr, e VHPHmIE) g g G(\)e~ WHP7Hm)t, (18)
0

which can be obtained from (13), when v = 1, taking into account By 1(t) = e'. Then for this

solution (18) all the above inequalities hold. And hence Theorem 3 based on these inequalities
holds.
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Bekbomar B., Tokmaramberos H.E. IKOBU BOJIIITEK PETTI 2KBIJIVOTKI3T'TIITIK
TEHAEYI YHITH KOIIIN ECEBI

Byut xxymbicTa 6i3 Akobu GeJiiiek perTi KbUTyoTKI3NMTIK TeH ey yiurin Ko ecebin Ka-
pacteipabik. [lemiMHIH TYPaKTHLIBIK, HOTHYKEJIEPIH YKoHe aJiJIbiH asia barajayapasl CoboJieB
tunrrec WP (R™, v, ) KenicTikTepinge aiipik.

Kinrrik cesznep. fAxobu orneparopbl, OeJiiek pPeTTi KbLIyOTKI3rimTik Tenmeyi, Pypbe-
Axobu Typaernipyi, kepi Pypbe-Axkodbu Typieraipyi, CoboseB TUIITEC KEHICTIKTED.

Bexkb6omar Bb., Tokmaramberos H.E. 3AJTAYA KOIIIU JIJI4A IPOBHOT'O YPABHEHU {1
TEILIOITPOBOJHOCTU AKOBU

B sroit pabore mbr n3yuaem 3amaay Ko st 1poGHOTO ypaBHEHUST TEILIOTPOBOIHOCTH
Axobu. PesynbraTbl KOPPEKTHOCTU M AIIPUOPHBIC OIEHKU OJIYUYEHBI B IMPOCTPAHCTBAX THIIA
Cobonesa WP (R, v ).

Krouesnre ciioa. Oneparop Axkobu, npobHOE ypaBHEHHE TEILIONPOBOIHOCTH, TPeodbpaso-
Bauue Oypoe-Akobu, obparroe npeobpasoBanue Pypbe-Axkodbu, mpocrparcTso Tuna CoboJte-
Ba.
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