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le, we prove a 
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2 B. S.BaizhanovLet M be an elementary submodel of N . The pair (M;N) is said to bea D-1-pair if, for ea
h � 2 N , the type tp(�/M) of � over M is de�nable.The pair (M;N) is said to be a D-pair if, for ea
h �nite tuple � of elementsof N , the type tp(�/M) is de�nable. We 
all M a D-1-model if every 1-typeover M is de�nable and a D-model if every type over M is de�nable. In [13℄,Van den Dries showed that every D-1-model of the theory of a real 
losed �eldis a D-model. In [17℄, Marker and Steinhorn proved that, for every o-mini-mal theory, ea
h D-1-pair is a D-pair and, 
onsequently, ea
h D-1-model isa D-model.In Se
tion 4, we 
onstru
t aD-1-pair of models in an !-
ategori
al weaklyo-minimal theory that is not a D-pair (Theorem 37).Throughout the arti
le, we assume that M is a linearly ordered stru
tureof a �xed language L.De�nition 1. A partition (A;B) of M is 
alled a 
ut if A < B, i.e., forall a 2 A and b 2 B, we have a < b. A 
ut is said to be rational if either Apossesses a maximal element, or B possesses a minimal element, or one of thesesets is empty. We say that a 
ut is quasirational if A (and, 
onsequently, B)is de�nable (with parameters). A 
ut that is not quasirational is said to beirrational. We say that M is Dedekind 
omplete if every 
ut of M is rational.We say that M is quasi-Dedekind 
omplete if every 
ut of M is quasirational.Let M be an elementary submodel of N . We say that a 
ut (A;B) of M isrealized in N if A < � < B for some � 2 N nM .De�nition 2 [12, 20℄. A linearly ordered stru
ture M is o-minimal ifevery de�nable (with parameters) subset of M is the union of a �nite familyof points in M and intervals (a; b), where a 2M [ f�1g and b 2M [ f1g.Observe that every quasirational 
ut of an o-minimal model is rational.De�nition 3 [17℄. LetM be an elementary submodel ofN , where N j= Tand T is an o-minimal theory. The modelM is Dedekind 
omplete in N if every
ut of M realized in N is rational.De�nition 4. A subset A of a linearly ordered stru
ture M is 
onvex ifevery element of M lying between two elements of A belongs to A. In parti
-ular, the empty set and all singletons are 
onvex. We say that a formula �(x)is 
onvex if the set �(M) := �� 2M jM j= �(�)	 is 
onvex.De�nition 5 [11, 15℄. A linearly ordered stru
tureM is said to be weaklyo-minimal if every de�nable (with parameters) subset of M is the union of�nitely many 
onvex subsets.A theory T is weakly o-minimal if every model of T is weakly o-minimal.Observe that ea
h o-minimal model is weakly o-minimal.De�nition 6. LetM be an elementary submodel ofN , where N j= T andT is a weakly o-minimal theory. We say that M is quasi-Dedekind 
ompletein N if no irrational 
ut of M is realized in N .



De�nability of 1-Types in Weakly o-Minimal Theories 3De�nition 7. Let A be a set in a model M , where M j= T , andlet p 2 Sn(A) for some n < !. The type p is �( xn; v)-de�nable, where�( xn; v) 2 L( xn), if there exists a formula R�( v) 2 L(A) (i.e., an A-de�nableformula) su
h that, for every a 2 A, we have �( xn; a) 2 p if and only ifM j= R�( a).Su
h a formula R�( v) is 
alled a �( xn; v)-de�nition of p. We say thatthe type p is de�nable if p is �( xn; v)-de�nable for every formula �( xn; v) 2L( xn), n < !.A tuple 
 2 M is said to be ht-de�nable over A if its type over A isde�nable.In an o-minimal theory, for every 
ut of M , there exists a unique 1-typeover M extending the 
ut (see [17, Lemma 2.3℄). This type is de�nable if andonly if the 
ut is rational. Hen
e, an o-minimal model M is a D-1-model ifand only if M is Dedekind 
omplete. A pair (M;N) in an o-minimal theoryis a D-1-pair if and only if M is Dedekind 
omplete in N .Van den Dries studied de�nable types over a real 
losed �eld and provedthe followingTheorem 8 [13℄. Every type over (R;+; � ; 0; 1) is de�nable, where Rstands for the set of reals.Marker and Steinhorn generalized this result to the 
ase of o-minimaltheories.Theorem 9 [17℄. Let T be an o-minimal theory and let M j= T .(1) The model M is Dedekind 
omplete if and only if every type inS(M) := Sn<! Sn(M) is de�nable.(2) LetM be an elementary submodel of N . Then, for every � 2 N nM ,the type tp(�=M) is de�nable if and only ifM is Dedekind 
ompletein N .Let T be a weakly o-minimal theory. By Assertion 21, a pair (M;N)of models in T is a D-1-pair if and only if M is quasi-Dedekind 
ompletein N , and a model M of T is a D-1-model if and only if M is quasi-Dedekind
omplete.Some general fa
ts about de�nability of types. The notion of 
onvergen
eof a formula to a type is 
entral to this arti
le.Let T be a 
omplete theory of language L, let N be a suÆ
iently saturatedmodel of T , let A � N , and let � 2 N . Let q 2 S(A) be a nonisolated typeand let �( x; y) be an A-de�nable formula. We say that the formula �( x;�b),�b 2 N , divides C � N l, where l is the length of the tuple x and C is notne
essarily de�nable, if �(N l;�b) \ C 6= ? and :�(N l;�b) \ C 6= ?. We oftenwrite �(N;�b) instead of �(N l;�b).



4 B. S.BaizhanovWe say that an A-de�nable formula �( x; y) 
onverges weakly to a typeq( x) 2 S(A) and write WEC��( x; y); q( x)� if, for every � 2 q, there existsa 2 A su
h that �( x; a) divides �(N).We say that an A-de�nable formula �( x; y) 
onverges strongly to a typeq( x) and write STC��( x; y); q( x)� if, for every � 2 q, there exists a 2 A su
hthat �(N; a) � �(N). We usually omit x in the notation q( x).Assume that WEC��( x; y); q( x)� holds for some q 2 S(A). Let �( x; y)be the graph of an A-de�nable fun
tion f( y) �i.e., �( x; y) � x = f( y)�.Then STC��( x; y); q( x)� holds. In this 
ase, we say that the values of f( y)
onverge to the type q and write STC�f( y); q�.We say that a tuple � is weakly orthogonal to a type q and write � ?w qif, for every A-de�nable formula �( x; y), the formula �( x; �) does not divideq(N) = T�2q �(N). We say that � is not weakly orthogonal to a type q andwrite � 6?w q if there exists an A-de�nable formula �( x; y) su
h that �( x; �)divides q(N).Observe that �( x; �) divides q(N) if and only if, for every � 2 q, the for-mula �( x; �) divides �(N). In this 
ase, for all � and � with tp(�=A) =tp(�=A), we have � 6?w q () � 6?w q. We say that a type p 2 S(A) is weaklyorthogonal to a type q 2 S(A) and write p ?w q if there exists � 2 p(N)su
h that � ?w q or, equivalently (see [21, De�nition V. 1.1 (i)℄), p( x) [ q( y)de�nes a 
omplete �l( x) + l( y)�-type. Observe that p 6?w q implies q 6?w p[21, Lemma V. 1.1 (i)℄.De�nition 10. Let � be a nonisolated and 
onsistent set of A-de�nableformulas. We say that � is a quasimodel set if, for every formula � 2 �, thereexists a 2 A su
h that N j= �( a).Assertion 11. Let � be a nonisolated quasimodel set of formulas over A.Assume that � is 
losed under formation of �nite 
onjun
tions. Then � 
anbe extended to a quasimodel type over A.Proof. For every A-de�nable formula Q( y), at least one of the sets �( y)[�Q( y)	, �( y) [ �:Q( y)	 is a quasimodel set. �Let q( x) 2 S(A), where A � N . We say that q is a stri
tly de�nable(or weakly isolated) type if, for every A-de�nable formula �( x; y), there existsan A-de�nable formula �( x) 2 q su
h thatN j= 9 x ��( x) ^ �( x; a)�! 8 x ��( x)! �( x; a)�for every a 2 Al( y).It is 
lear that every isolated type is stri
tly de�nable. Every stri
tly de-�nable type q 2 S(A) is de�nable; moreover, there exists a formula � 2 q su
hthat the A-de�nable formula 	�( y) := 8 x ��( x)! �( x; y)� is a �( x; y)-def-inition of q( x).



De�nability of 1-Types in Weakly o-Minimal Theories 5Assertion 12. A type q 2 S(A) is stri
tly de�nable if and only if, forevery formula �( x; y) of language L, we have :WEC��( x; y); q�.Assertion 13. Let q 2 S(A).(1) If there is an A-de�nable formula �( x; y) su
h that WEC��( x; y); q�holds then there exists a quasimodel type r 2 S(A) su
h that, for every� 2 r(N), the formula �(x; �) divides q(N), i.e., r 6?w q.(2) If r 6?w q for some quasimodel type r 2 S(A) then WEC��( x; y); q�holds for some A-de�nable formula �( x; y).Proof. (1) Denote by � the following set of A-de�nable formulas:nK(�)( y) j � 2 q; K(�)( y) := 9 x��( x; y)^�( x)�^9 x�:�( x; y)^�( x)�o:It is 
lear that � is a quasimodel set; moreover, � is 
losed under formationof �nite 
onjun
tions. By Assertion 11, there exists a quasimodel type r 2S(A) extending �. Hen
e, for every 
 2 r(N) � �(N), the formula �(x; �)divides q(N). Therefore, 
 6?w q and, 
onsequently, r 6?w q.(2) Let � 2 r(N) and let � 6?w q. Then, for some formula �( x; y),the formula �( x; �) divides q(N). Hen
e, �( x; �) divides �(N) for every�( x) 2 q. This means that N j= K(�)(�). Therefore, we have K(�)( y) 2 r.Sin
e r is a quasimodel type, there exists a 2 A su
h that N j= K(�)( a).Thus, WEC��( x; y); q� holds. �Assertion 14. Let r; q 2 S(A). Assume that r is a quasimodel typeand H( x; y) is an A-de�nable formula. If there exists 
 2 r(N) su
h thatH(N; 
) � q(N) then STC�H( x; y); q� holds.Proof. We have H(N; 
) � q(N) if and only if H(N; 
) � �(N) forevery formula � 2 q. The latter 
ondition is equivalent to the fa
t thatN j= 8 x�H( x; 
) ! �( x)� for every formula � 2 q. Sin
e 8 x�H( x; y) !�(�x)� 2 r and r is a quasimodel type, we 
on
lude that STC�H( x; y); q�holds. �For a weakly o-minimal theory, the notion of weak 
onvergen
e of a for-mula to a 1-type transforms into the notions of left, right, and two-sided
onvergen
es (
f. De�nition 28 and Lemma 36). These notions are used inthe formulations of the 
riterion for de�nability of a 1-type over an arbitraryset (Theorem 31) and of its 
orollary presenting the 
riterion for de�nabilityof a 1-type over the union of a model and a �nite sequen
e that is ht-de�nableover the model (Proposition 35).R ema r k . The notion of 
onvergen
e of a formula to a nonisolated typeis impli
itly used in proofs of theorems about ordered models (see [4, 6, 17, 19℄)and models of stable theories (see [1, 3, 8, 9, 14, 21℄). The notion of a quasimodeltype is impli
itly used in [2, 4℄. To 
on
lude the motivation for introdu
ing



6 B. S.Baizhanovthese notions, we present a simple fa
t whi
h explains the nature of 
onvergen
eof a formula to a type in terms of well-known notions of the stability theory.Proposition 15. Let T be a stable theory, let N be a large saturatedmodel of T , let A � N , let q 2 S(A), and let �( x; y) be an A-de�nableformula. Then the following assertions hold:(1) If q is a quasimodel type then q is stationary.(2) If WEC(�( x; y); q) holds then there exists a quasimodel (stationary)type r 2 S(A) su
h that r 6?a q.(3) Let M be an elementary submodel of N . Assume that p 2 S(N)and p does not fork over M . Then p1 := ��( x) 2 p �� �( x) isan (M [ �)-de�nable formula	 is a quasimodel type for every � 2N nM .(4) Let � be a tuple in N n A, let q = tp(�=A), and let the formula�( x; �) be divided over A (see [21, De�nition V.1.3℄). Then, for everyp 2 S(A) with p(N) \ �(N; �) 6= ?, we have p(N) \ :�(N; �) 6= ?,i.e., � 6?w p and, 
onsequently, q 6?w p.Proof. (1) By [21, De�nition III. 1.7, De�nition III. 4.1, Lemma III. 4.18,Corollary III. 2.9 (ii)℄, we 
on
lude that q is a stationary type provided, forevery A-de�nable equivalen
e relation E( x; z) with �nitely many 
osets, thereexists a 2 A su
h that E( x; a) 2 q.Let E( x; y) be an A-de�nable equivalen
e relation with �nitely many
osets. Put �0( x) := (9 z)E( x; z) 2 q. Sin
e q is a quasimodel type, thereexists a0 2 A su
h that N j= (9 z)E( z; a0). If E( x; a0) =2 q then �1( x) :=9 z�E( x; z)^:E( x; a0)� is an A-de�nable formula and �1 2 q. Consider a1 2A su
h that N j= �1( a1). Put �i( x) := 9 z�E( x; z)^Vj<i :E( x; aj)�. This isan A-de�nable formula; moreover, �i 2 q. Then N j= Vj 6=n<i :E( aj ; an). If,for every i < !, we have �i( x) =2 q then we arrive at a 
ontradi
tion, be
ausethere exist only �nitely many 
osets modulo E.Thus, if E( x; z) is an A-de�nable equivalen
e relation with �nitely many
osets then q(N) is a subset of one of A-de�nable 
osets modulo E.(2) By [8, p. 143℄, two types p; q 2 S(A) are almost orthogonal, i.e., p ?a q,if arbitrary tuples � 2 p(N) and � 2 q(N) are A-independent; moreover,if p ?a r and at least one of these types is stationary then p ?w r. In viewof Assertion 13, there exists a quasimodel type r 2 S(A) su
h that p 6?w r.Sin
e r is stationary, Proposition 15 (1) implies p 6?a r.(3) From [21, Theorem III. 0.1. (4), Corollary III. 4.10℄ it follows thata type p 2 S(N) does not fork over M , where M � N , if and only if p is�nitely satis�able in M �re
all that p is �nitely satis�able in M if, for everyformula � 2 p, there exists a 2M su
h thatN j= �( a)�. Consider an arbitrary(M [ �)-de�nable formula �( x; �) 2 p. Sin
e p is �nitely satis�able in M ,



De�nability of 1-Types in Weakly o-Minimal Theories 7there exists a 2M su
h thatN j= �( a; �). This means that p1 is a quasimodeltype.(4) Let 
 be a tuple in p(N)\ �(N; �). The de�nition of division over Aimplies that there exist n < ! and �1; �2; : : : ; �n 2 q(N) su
h that N j=:9 x��( x; �) ^V1�i�n �( x; �i)�. Then, for some �i, we have 
 =2 �(N; �i).Sin
e tp(�=A) = tp(�i=A) = q and 
 2 p(N), p 2 S(A), there exists 
i 2p(N) su
h that 
i =2 �(N; �). This �nishes the proof of Proposition 15 (4). �2. Notations, de�nitions, and fa
tsIn the sequel, we assume thatM and N are models of a weakly o-minimaltheory T su
h thatM � N and N is suÆ
iently saturated. Given A � N , putA+ := fx 2 N j 8 a 2 A; x > ag;A� := fx 2 N j 8 a 2 A; x < ag:For an arbitrary tuple hy1; : : : ; yni, we use the abbreviation y. Let l( y) denotethe length of su
h a tuple, i.e., l( y) = n. We often write a 2 A instead ofa 2 Al( a).Let B be a set in a model N . By a B -de�nable formula we meanthe formula �( x;�b) obtained from an L-formula �( x; y) by substituting a tu-ple of parameters �b 2 Bl( y). A subset X � M l is said to be B -de�nableif X = �(M l;�b) := � a 2 M l j M j= �( a;�b)	 for some B -de�nable for-mula �( x;�b) with l( x) = l. We sometimes write \L(B)-formula" instead of\B -de�nable formula." Let B be an arbitrary (not ne
essarily de�nable) 
on-vex set. We say that a formula U(x) splits B if U(N) and :U(N) are 
onvexsets, U(N) \ B 6= ?, and :U(N) \ B 6= ?. Given A � M , let Sn(A) de-note the set of n-types over A and let S(A) = Sn<! Sn(A). We often write�rst-order formulas as relations between de�nable sets. For example,x < �(N) � 8 y��(y)! x < y�;x 2 (�1; �2) � �1 < x < �2;�(N) \ �(N) 6= ? � N j= 9 x��(x) ^ �(x)�;�(N) < �(N)+ � N j= 8 t�8 y��(y)! y < t�! 8 x��(x)! x < t��:We say that 
onvex sets C and D are separated by an element a (a-sepa-rated) if C < a < D or D < a < C. A family of 
onvex sets is E -separated ifthe sets of this family are pairwise separated by elements of E.Assertion 16 [2, 6℄. A theory T is weakly o-minimal if and only if, forevery formula �(x; y), there exists n� < ! su
h that, for every M j= T andevery a 2M , the set �(M; a) is the union of less than n� 
onvex a-de�nable:�(M; a)-separated subsets.



8 B. S.BaizhanovRema r k 17. The interse
tion of a family of 
onvex subsets of an ar-bitrary linearly ordered set is 
onvex. By Assertion 16, for every p 2 S1(A),where A � M j= T , the set p(M) is 
onvex. If the model M is jAj+ -satu-rated and the type p is nonalgebrai
 then p(M) possesses neither minimal normaximal elements.Assertion 16 and Remark 17 yieldR ema r k 18. If there exists an a-de�nable formula dividing a 
onvexset B then there exists an a-de�nable formula splitting B.Assertion 19. Let p 2 S1(A), where A is a set in a model M of T .The type p is de�nable if and only if p is �(x; y)-de�nable for ea
h for-mula �(x; y) su
h that, for every �b 2 M , the set �(M;�b) is 
onvex.De�nition 20 [4℄. Let p 2 S1(A), where A is a set in a model Mof T . We say that p is right quasirational if there exists an A-de�nable 
onvexformula Up(x) 2 p su
h that, for every suÆ
iently saturated model N � M ,we have Up(N)+ = p(N)+. We say that p is left quasirational if there existsan A-de�nable 
onvex formula Up(x) 2 p su
h that, for every suÆ
ientlysaturated model N � M , we have Up(N)� = p(N)�. If a type p is bothright and left quasirational then p is said to be isolated. A nonisolated 1-typeis quasirational if it is either right or left quasirational. If a 1-type p is neitherquasirational nor isolated then p is said to be irrational.Let p be an n-type over A and let F � p. We say that p is de�ned by F(or F de�nes p) if, for every formula �( x) 2 p, there exists �( x) 2 F su
h thatN j= 8 x��( x)! �( x)�.We say that a 1-type p 2 S1(A[B) is de�ned by a quasirational 
ut (A;B)if p is de�ned by either �a < x ^ U(x) �� a 2 A	 or �x < b ^ :U(x) �� b 2B	, where U(x) is an (A [ B)-de�nable formula su
h that A � U(N) andU(N) \ B = ?.Assertion 21 [4, 6℄. Let p 2 S1(M), where M j= T . Then(1) p is not de�nable if and only if p is irrational if and only if p is de�nedby an irrational 
ut in M ;(2) p is de�nable if and only if p is quasirational if and only if p is de�nedby a quasirational 
ut in M .Assertion 21 generalizes a similar fa
t about o-minimal theories whi
h wasproven by Marker and Steinhorn [17, Lemma 2.3℄. Observe that, for o-minimaltheories, de�nable 1-types over models are de�ned by rational 
uts.Proposition 22 [4℄. Let p; r 2 S1(A), where A is a set in a model Nof T . Assume that 
 2 N n A.(1) If p 6?w r then r 6?w p.(2) If 
 is ht-de�nable over A and 
 6?w p then p is de�nable.(3) If p 6?w r then p is de�nable if and only if r is de�nable.



De�nability of 1-Types in Weakly o-Minimal Theories 9Proof. (1) Re
all that p ?w r if and only if p(x) [ r(y) is a 
omplete2-type.(2) Let K(x; y) be an A-de�nable formula su
h that K(N; 
)\p(N) 6= ?and :K(N; 
) \ p(N) 6= ?. By Remark 18, there exists an (A [ 
)-de�nable
onvex formula H(x; y) su
h that H(N; 
) < :H(N; 
); moreover, there exist�1; �2 2 p(N) with �1 < �2, �1 2 H(N; 
), and H(N; 
) < �2.Let �(x; z) be an arbitrary formula. In view of Assertion 19, we mayassume that, for every �b 2 N , the formula �(x;�b) is 
onvex. For every a 2Al( z), we have�(x; a) 2 p() (�1; �2) � p(N) � �(N; a)() N j= 8 x�x 2 (�1; �2)! �(x; a)�() N j= 9 x1; x2�H(x1; 
) ^ :H(x2; 
) ^ x1 < x2^ 8 x�x 2 (x1; x2)! �(x; a)��:Let Q(�)( 
; a) denote the last formula. By De�nition 7, there exists an A-de-�nable formula RQ(�)( z) su
h thatN j= Q(�)( 
; a)()N j= RQ(�)( a):Put ��( z) := RQ(�)( z). We obtain�(x; �a) 2 p() N j= ��( a):(3) If p 6?w r then � 6?w r for every � 2 p(N). Hen
e, (3) follows from (1)and (2). �We present an easy 
onsequen
e of the de�nitions of a type and a saturatedmodel.Assertion 23. Let M be a model of a �rst-order theory and let M bejAj+-saturated for some A �M .(i) Let there exist n;m<!, an A-de�nable formula  ( x1; : : : ; xn), andp 2 Sm(A), where l( x1) = � � � = l( xn) = m, su
h that M j=  (�1; : : : ; �n)for every �1; : : : ; �n 2 p(Mm). Then there exists �( x) 2 p su
h that M j=8 x1; : : : ; 8 xn�V �( xi)!  ( x1; : : : ; xn)�.(ii) If p 2 Sm(A), where m < !, is a nonisolated type then the set p(Mm)is not M -de�nable.(iii) Let p; r 2 S(A), let � 2 p(M), let �1; �2 2 r(M), and let �( x; y) bean A-de�nable formula su
h that M j= �(�1; �) ^ :�(�2; �). Then, for every� 2 r(M), there exist �1; �2 2 p(M) su
h that M j= �(�; �1) ^ :�(�; �2).



10 B. S.BaizhanovDe�nition 24. A formulaK(x; y) in
reases monotoni
ally in y on a 
on-vex set B if the following 
ondition holds:8 b1; 8 b2�(b1 2 B ^ b2 2 B ^ b1 < b2)! K(N; b1) < K(N; b2)+�:Monotone de
reasing formulas are de�ned in a similar way.Theorem 25 [4{6℄. If p(y) 6?w q(x) then there exists an A-de�nableformula K(x; y) satisfying the following 
onditions:(1) K(x; y) is monotone in y on some �(N), where �(y) 2 p, and ismonotone in x on some �(N), where �(x) 2 q;(2) K(x; �) splits q(N) and K(�; y) splits p(N) for all � 2 p(N) and� 2 q(N).In the 
ase of an o-minimal theory, the formula K(x; y) of Theorem 25 isthe graph of a suitable monotone fun
tion (see [2, 16, 18℄).Observe that Theorem 25 is valid in a more general 
ase, namely, if A isa subset of a weakly o-minimal model of �nite depth whose theory need notbe weakly o-minimal [7℄.Proposition 26 [4{6℄. Let p; q 2 S1(A) and let p 6?w q. Then the fol-lowing hold:(1) p is stri
tly de�nable if and only if q is stri
tly de�nable;(2) p is irrational if and only if q is irrational;(3) p is quasirational if and only if q is quasirational;(4) 6?w is an equivalen
e relation on S1(A).Proposition 26 generalizes a similar fa
t about 1-types over o-minimalmodels whi
h was proven by Marker in [16℄.3. De�nability of 1-typesThe main results of this se
tion are the 
riterion for unde�nability ofa 1-type (Theorem 31) and one of its versions (Proposition 35).Assertion 27. Every quasirational type p 2 S1(A) is de�nable.Proof. For de�niteness, assume that p is right quasirational. The 
ase inwhi
h p is left quasirational is similar. Let Up(x) be an A-de�nable formulasu
h that Up(x) 2 p and Up(N)+ = p(N)+. Let '(x; y) be an arbitraryA-de�nable �l( y) + 1�-formula. Consider the A-de�nable l( y)-formula�'( y) := 9 x��'(x; y) ^ Up(x)� ^ 8 z�x < z < Up(N)+ ! '(z; y)��:It is 
lear that, for every a 2 Al( y), we have N j= �'( a)() '(x; a) 2 p. �Let q 2 S1(A), where A � N . We introdu
e the notations:L(q) := �G(x) j G(x) is an A-de�nable formula su
h that G(N) < q(N)	;R(q) := �D(x) j D(x) is an A-de�nable formula su
h that q(N) < D(N)	:



De�nability of 1-Types in Weakly o-Minimal Theories 11De�nition 28. Let q 2 S1(A), where A � N . Assume that �( y) andH(x; y) are A-de�nable formulas. Put X := ��N l( y)� \ Al( y).We say that the 
ondition of left 
onvergen
e of H(x; y) to the type q onthe set X or �( y) holds and writeLC�H(x; y); X; q� or LC�H(x; y); �( y); q�if the following is satis�ed:8G(x) 2 L(q); 9 a 2 X N j= 9 x�G(N) < x < H(N; a)+�; H(N; a) < q(N):We say that the 
ondition of right 
onvergen
e ofH(x; y) to q onX or �( y)holds and write RC�H(x; y); X; q� or RC�H(x; y); �( y); q� if the following issatis�ed:8D(x) 2 L(q); 9 a 2 X N j= 9 x�H(N; a) < x < D(N)�; q(N) < H(N; a)+:We say that the 
ondition of two-sided 
onvergen
e ofH(x; y) to q onX or�( y) holds andwriteC�H(x; y); X; q� orC�H(x; y); �( y); q� if bothLC(H;X; q)and RC(H;X; q) are satis�ed.In the de�nitions of left and right 
onvergen
es of H(x; y), we have usedthe right bound of the formula H(x; a), �a 2 A. It is possible to de�ne
onvergen
e using the left bound of the formula but this will not be donein the present arti
le.Observe that in fa
t the arti
les [17, 19℄ dealt with (left) 
onvergen
e ofthe values of a fun
tion to a type q.R ema r k 29. Let q 2 S1(A). If q is right quasirational then, forall A-de�nable formulas H(x; y) and �( y), we have :LC(H; �; q). If q isleft quasirational then, for all A-de�nable formulas H(x; y) and �( y), wehave :RC(H; �; q).In view of Remark 29, if C(H; �; q) holds for L(A)-formulas H(x; y) and�( y) and for a 1-type q 2 S1(A) then q must be irrational. In view ofAssertion 27, the question on unde�nability of a 1-type should be 
onsideredfor irrational types only.R ema r k 30. Let H(x; y) and �( y) be A-de�nable formulas su
h thatC(H; �; q) holds for some q 2 S1(A). Then, for every A-de�nable formula �1( y),we have(i) if LC(H; �1; q) and :RC(H; �1; q) hold then RC�H; �( y)^:�1( y); q�holds;(ii) if j= 8 y��( y)! �1( y)� then C(H; �1; q) holds.



12 B. S.BaizhanovTheorem 31. Let A be a set in a model M of a weakly o-minimaltheory T . Let q be an irrational 1-type over A. Then the following 
onditionsare equivalent:(i) q is not de�nable;(ii) there exists an A-de�nable formulaH(x; y) su
h that, for every A-de-�nable formula �( y), we haveC�H(x; y); �( y); q� _ C�H(x; y);:�( y); q�:Proof. The 
ondition \q is irrational" means that there is no greatestformula in L(q) and there is no least formula in R(q). We brie
y outlinethe proof. The 
ru
ial point in the proof of ne
essity is the observation that atleast one of the bounds (either left or right) for the formula with unde�nabilityof the type approximates both L(q) and R(q) on using 
onstants in A. To provesuÆ
ien
y, we start with a formula approximating both L(q) and R(q) and
onstru
t a formula proving that q is not de�nable.N e 
 e s s i t y . Let '(x; y) be an A-formula su
h that q is not '(x; y)-de-�nable. In view of Assertion 19, we may assume that, for every b 2 M ,the set '(x; b) is 
onvex. PutH1(x; y) := x < '(N; y); H2(x; y) := '(x; y):Then Hi(x; y), i = 1; 2, are A-de�nable formulas.Let �( y) be an arbitrary A-formula.R ema r k 32. Given j = 1; 2, we have :RC(Hj ; �; q) if and only if thereexists Dj(x) 2 R(q) su
h that8 a 2 ��N l( y)� \ Al( y)hN j= 9x�Hj(N; a)<x<Dj(N)�()Hj(N; a)<q(N)i:Rema r k 33. For j = 1; 2, we have :LC(Hj; �; q) if and only if thereexists Gj(x) 2 L(q) su
h that8 a 2 ��N l( y)�\Al( y)hN j= 9 x�Gj(N)<x<Hj(N; a)+�()q(N)<Hj(N; a)+i:We 
laim that at least one of the formulas H1, H2 satis�es (ii). Assumethe 
ontrary, i.e., let there exist A-formulas �1( y) and �2( y) su
h that:C(H1; �1; q); :C(H1;:�1; q); :C(H2; �2; q); :C(H2;:�2; q):From the de�nition of two-sided 
onvergen
e, we obtain�:LC(H1; �1; q) _ :RC(H1; �1; q)�^ �:LC(H1;:�1; q) _ :RC(H2;:�1; q)�^ �:LC(H2; �2; q) _ :RC(H2; �2; q)�^ �:LC(H2;:�2; q) _ :RC(H2;:�2; q)�:



De�nability of 1-Types in Weakly o-Minimal Theories 13For the 
onditions :RC(Hi; �i; q) and :RC(Hi;:�i; q), i = 1; 2, letDi;1(x)and Di;2(x) denote the A-formulas whose existen
e is mentioned in Remark 32.For the 
onditions :LC(Hi; �i; q) and :LC(Hi;:�i; q), i = 1; 2, let Gi;1(x)and Gi;2(x) denote the A-formulas whose existen
e is mentioned in Remark 33.We introdu
e the notations:�1;1( y) := 8><>: 9 x�H1(N; y) < x < D1;1(N)� if :RC(H1; �1; q);H(N; y) < G1;1(N)+ if RC(H1; �1; q)and :LC(H1; �1; q);�1;2( y) := 8><>: 9 x�H1(N; y) < x < D1;2(N)� if :RC(H1;:�1; q);H(N; y) < G1;2(N)+ if RC(H1;:�1; q)and :LC(H1;:�1; q);�2;1( y) := 8><>: D2;1(N)� < H2(N; y)+ if :RC(H2; �2; q);9 x�G2;1(N) < x < H(N; y)+� if RC(H2; �2; q)and :LC(H2; �2; q);�2;2( y) := 8><>: D2;2(N)� < H2(N; y)+ if :RC(H2;:�2; q);9 x�G2;2(N) < x < H(N; y)+� if RC(H2;:�2; q)and :LC(H2;:�2; q):It is 
lear that �1;1, �1;2, �2;1, and �2;2 are A-formulas. Consider the A-for-mula �( y) := 9 x'(x; y) ^ ��1( y)! �1;1( y)� ^ �:�1( y)! �1;2( y)�^ ��2( y)! �2;1( y)� ^ �:�2( y)! �2;2( y)�:In view of Remarks 32 and 33, we have8 a 2 Al( y) �N j= �( a)() H1(N; a) < q(N) < H2(N; a)+�:Re
all that'(x; a) 2 q () q(N) � '(N; a)() '(N; a)� < q(N) < '(N; a)+() H1(N; a) < q(N) < H2(N; a)+:Hen
e, 8 a�N j= �( a)() '(x; a) 2 q�. Therefore, q is '(x; y)-de�nable,whi
h is a 
ontradi
tion.S u f f i 
 i e n 
 y . Let H(x; y) be an A-formula satisfying (ii). Take an ar-bitrary A-formula D(x) su
h that q(N) < D(N).Put '(x; y) := H(N; y) < x < D(N). We show that the type q is not'(x; y)-de�nable.



14 B. S.BaizhanovAssume that there exists an A-formula �( y) su
h that�N j= �( a)() '(x; a) 2 q� (�)for every a 2 Al( y). Sin
e�N j= �( a)() '(x; a) 2 q () H(N; a) < q(N)�for every a 2 Al( y), we obtain the following 
ondition:(1) LC(H; �; q), :RC(H; �; q).Consider an arbitrary formula G 2 L(q). By Remark 33, we have:LC(H;:�; q). In view of 
ondition (ii) of the theorem, 
ondition (1) above,and Remark 30 (i), we obtain the following 
ondition:(2) RC(H;:�; q), :LC(H;:�; q).If both (1) and (2) hold then:C(H; �; q) ^ :C(H;:�; q);whi
h 
ontradi
ts the 
hoi
e of H(x; y). Thus, 
ondition (�) 
annot hold;hen
e, the type q is not '(x; y)-de�nable.Assertion 34�. Let � be a tuple in N nM , let tp(�=M) be de�nable,and let LC�H(x; y; �);�( y; �); q� hold. Then there exists anM -formula �( y)su
h that LC�H(x; y; �); �( y); q� holds.Proof. By the de�nition of tp(�=M), there exists an M -formula ��( y)su
h that 8 a 2 M �N j= �( a; �) () M j= ��( a)�. To 
he
k 
onvergen
e,it suÆ
es to 
onsider tuples of elements of M only. �Proposition 35. Let � be a tuple in N nM , let tp(�=M) be de�nable,let � 2 N n (M [ �), and let q := tp(�=M [ �) be an irrational type that isnot stri
tly de�nable. Then the following 
onditions are equivalent:(i) there exist (M [ �)-de�nable formulas H(x; y) and �( y) su
h thateither LC(H;�; q); :RC(H;�; q) or :LC(H;�; q); RC(H;�; q) hold;(ii) the type q is de�nable.Proof. (i) ) (ii). Assume that LC(H;�; q) and :RC(H;�; q) hold.The 
ase in whi
h :LC(H;�; q) and RC(H;�; q) hold is similar. We mayassume (see Assertion 34) that �( y) is an M -formula. Put X := �(Mk) andZ := �(Nk). We have H(N; a; �) < q(N) for every a 2 X. Let '(x; y; �) bean (M [ �)-formula su
h that, for every 
 2 N , the set �(N; 
; �) is 
onvex.Put S1( z; y1; �) := '(N; z; �)� < H(N; y1; �)+ ^ �1( y1);S2( z; y2; �) := '(N; z; �) < H(N; y2; �)+ ^ �1( y2):� For the 
ase of o-minimal theories, this assertion was proven in [17℄.



De�nability of 1-Types in Weakly o-Minimal Theories 15Sin
e tp(�=M) is de�nable, there areM -formulasQ1( z; y1) andQ2( z; y2)su
h that N j= S1( a; b1; �)()M j= Q1( a; b1 );N j= S2( a; b2; �)()M j= Q2( a; b2 )for all a; b1; b2 2M . PutQ( z) := 9 y1Q1( z; y1) ^ :9 y2Q2( z; y2):We have 8 a 2M l( z) �M j= Q( a)() '(x; a; �) 2 q�:Indeed, M j= Q( a) implies that there exists b1 2M su
h thatM j= Q1( a; b1 ) and M j= 8 y2:Q2( a; y2):It remains to noti
e that the following equivalen
es are valid:�M j= Q1( a; b1 )() '(N; a; �)� < q(N)�;�M j= 8 y2:Q2( a; y2)() q(N) < '(N; a; �)+�:Impli
ation (i) ) (ii) is proven.(ii) ) (i). In the proof of this impli
ation, we will need the �rst part ofthe followingLemma 36. Let q 2 S1(A), where A is a set in a model N , and let�(x; y) be a parameter-free formula.(a) If WEC��(x; y); q� holds thenLC�H(x; �y); y = y; q� and/or RC�H(x; y); y;= y; q�;whereH(x; y) is either �(x; y) or �(x; y)� := :�(x; y)^x < �(N; y).(b) If STC��(x; y); q� holds thenLC��(x; y)�; y = y; q� and RC��(x; y); y;= y; q�:Proof. (a) For every L-formula �(x; y), we de�ne formulas �i, i < !, byindu
tion as follows:�0(x; y) := �(x; y) ^ 8 x1h��(x1; y) ^ x1<x�!8 z�x1<z <x! �(z; y)�i;�i+1(x; y) := �(x; y) ^ �i(N; y) < x ^ 8 x1h��(x1; y) ^ �i(N; y) < x1 < x�! 8 z�x1 < z < x! �(z; y)�i:By this de�nition, for every i < ! and �b 2 N , the set �(N; b) is 
onvex (noti
ethat the empty set is 
onvex by de�nition).



16 B. S.BaizhanovIn view of Assertion 16, we have�(x; y) � _i<n� �i(x; y)for some n� < !. We show that validity of WEC��(x; y); q� yields existen
eof i < n� su
h that WEC��i(x; y); q� holds. Assume the 
ontrary, i.e., let:WEC��i(x; y); q� hold for every i < n�. Then there exist L(A)-formulas�i(x) 2 q, i < n�, su
h that, for ea
h b 2 A and ea
h i < n�, we have either�i(N; b)\�i(N) = ? or �i(N) � :�i(N; b). Put �(x) := V�i(x). It is obviousthat �(x) 2 q. Fix an arbitrary tuple b 2 A. Assume that �i(N; b)\�i(N) = ?for all i < n�. Sin
e �(N) � �i(N), we have �i(N; b) \ �(N) = ?. Hen
e,�(N; b) \ �(N) =[i ��i(N; b) \ �(N)� = ?and, 
onsequently, �(x; b) does not divide �(N).If �i(N) � �i(N; b) for some i < n� then�(N) � �i(N) � �i(N; b) �[i �i(N; b) = �(N; b)and, 
onsequently, �(x; b) does not divide �(N). In both 
ases, �(x; b) doesnot divide �(N), whi
h 
ontradi
ts validity of WEC��(x; y); q� be
ause b 2 Ais arbitrary.Thus, we assume in the sequel that the formula �(x; y) in the 
onditionWEC��(x; y); q� possesses the following additional property: �(x; b) is 
onvexfor every b 2 N .Consider a 
onvex L(A)-formula �(x) su
h that �(x) 2 q. The lattermeans that q(N) � �(N). Sin
e q is an irrational 1-type, there exist 
1; 
2 2�(N) su
h that 
1 < q(N) < 
2:Hen
e, �(N) falls into three unde�nable (by formulas) 
onvex subsets, �(N) =X1(�) [ q(N) [X2(�); moreover,X1(�) < q(N) < X2(�):Sin
e WEC��(x; y); q� holds, there exists b 2 A su
h that �(x; b) divides�(N). Sin
e q is irrational, neither left nor right bound of the 
onvex set q(N)is de�nable by formulas. Hen
e, the following assertion holds.(�) If a 
onvex formula �(x; b) divides �(N) then �(x; b) 
annot passalong the bounds of q(N) and must divide at least one of the 
onvexsets �(N), X1(�), X2(�).



De�nability of 1-Types in Weakly o-Minimal Theories 17Assume that �(x; b) divides X1(�). Sin
e the de�nable set �(N; b) andunde�nable set X1(�) are 
onvex, we have either �(N; b)<q(N) or q(N) ��(N; b). If, for every 
onvex L(A)-formula �(x) 2 q, there exists b 2 A su
hthat �(x; b) divides X1(�) and �(N; b) < q(N) then we obtain LC��(x; y);y = y; q�. If, for every 
onvex L(A)-formula �(x) 2 q, there exists b 2 A su
hthat �(x; b) divides X1(�) and q(N) � �(N; b) then we obtain LC��(x; y)�;y = y; q�, where �(x; y)� := :�(x; y) ^ x < �(N; y).If, for some 
onvex L(A)-formula �(x) 2 q and every b 2 A su
hthat �(x; b) divides X1(�), we have :�q(N) � �(N; b)� and, 
onsequently,�(N; b) < q(N) then, for every 
onvex L(A)-formula �0(x) 2 q with �0(N) ��(N) and every b 2 A su
h that �(x; b) divides X1(�0), we have :�q(N) ��(N; b)� and, 
onsequently, �(N; b) < q(N). In other words,(��) if, for every 
onvex L(A)-formula �(x) 2 q, there exists b 2 A su
hthat �(x; b) divides X1(�) then :LC��(x; y)�; y = y; q� impliesLC��(x; y); y = y; q�.In a similar way, we obtain the following assertion.(��)0 If, for every 
onvex L(A)-formula �(x) 2 q, there exists b 2 A su
hthat �(x; b) divides X2(�) then :RC��(x; y)�; y = y; q� impliesRC��(x; y); y = y; q�.Assume that there exists a 
onvex L(A)-formula �(x) 2 q su
h that�(x; b) does not divide X2(�) for any b 2 A. Then, for every b 2 A su
hthat �(x; b) divides �(N), the formula �(x; b) divides X1(�).Moreover, let �0(x) 2 q be a 
onvex L(A)-formula su
h that �0(N) � �(N)and let b 2 A be su
h that �(x; b) divides �0(N). Then the formula �(x; b)does not divide X2(�0) but divides X1(�0).Let both 
onditions :RC��(x; y); y = y; q� and :RC��(x; y)�; y = y; q�hold. Then there exists a 
onvex formula �(x) 2 q su
h that, for any b 2 A,if �(x; b) divides �(N) then �(x; b) does not divide X2(�) but divides X1(�).The latter, in view of WEC��(x; y); q�, (�), and (��), means that the followinghold:(� � �) LC��(x; y); y = y; q� and/or LC��(x; y)�; y = y; q�.From (�), (��), and (� � �) we readily obtain assertion (a) of Lemma 36.The proof of assertion (b) is similar. �Sin
e the irrational type q is not stri
tly de�nable, from Lemma 36 (a)it follows that LC�H(x; y); y = y; q� and/or RC�H(x; y); �y = y; q� hold.If the formula y = y does not satisfy requirements on �( y) in 
ondition (i)then C�H(x; y); y=�y; q� must hold. Sin
e q is a de�nable type, we apply



18 B. S.BaizhanovTheorem 31 and �nd the required L(M [ �)-formula �( y) for the formulaH(x; y). � 4. An example of a D-1-pair of modelsin a weakly o-minimal theory whi
h is not a D-pairTheorem 37. There exists a weakly o-minimal theory T with two modelsMb �M su
h that the type tp(�=Mb) is not de�nable for some tuple � 2M ,while the model Mb is quasi-Dedekind 
omplete in M .Proof. We simultaneously 
onstru
t a model (M;L0) and prove thatthe elementary theory Th(M;L0) of (M;L0) is weakly o-minimal. We des
ribethis theory in terms of a �nite set of axioms T0 and prove that T0 gives riseto a 
onsistent, 
omplete, and weakly o-minimal theory. Our proof falls intothe following stages:4.1. The set T0 of axioms. If T0 is a 
onsistent set then the theory derivedfrom T0 is !-
ategori
al.4.2. Constru
tion of a model (M;L), L�L0, with T0 `L T := Th(M;L).4.3. A proof of the fa
ts that T admits quanti�er elimination and is weaklyo-minimal.4.4. An example of a pair of models (Mb; L) � (M;L) su
h that (Mb;M)is a D-1-pair but is not a D-pair.4.1. Set T0 of axioms. If T0 is a 
onsistent set then the theory derivedfrom T0 is !0 -
ategori
al.Let T0 stand for the set of axioms Ax (I){Ax (IX) of language L0 :=f=; P 1; <2; E3g.Ax (I). The relation < is a dense linear order without endpoints.Ax (II). The following senten
e holds:8 x 8 y���P (x) ^ :P (y)�! y < x� ^ 8 z 8 x 8 y�P (z)!:E(x; y; z)��:Ax (III). For every z, if :P (z) then E(x; y; z) is an equivalen
e relation(with respe
t to x and y) on P , ea
h 
oset modulo Ez is a nonempty 
onvexset without endpoints, the indu
ed order on the set of 
osets modulo Ez isdense, there exists a minimal 
oset modulo Ez but there is no maximal 
osetmodulo Ez.Ax (IV). For all z, t, and x, if P (x)^ :P (z) ^:P (t) ^ z < t holds thenea
h 
oset modulo Ez from x is 
ontained in some 
oset modulo Et from x,ea
h 
oset modulo Et (ex
ept for the minimal 
oset) 
ontains neither minimalnor maximal 
osets modulo Ez, and the minimal 
oset modulo Et 
ontainsthe minimal 
oset modulo Ez but 
ontains no maximal 
osets modulo Ez.



De�nability of 1-Types in Weakly o-Minimal Theories 19We denoteH2(x; z) := P (x) ^ :P (z) ^ 8 y��P (y) ^ y < x�! E(x; y; z)�;"2(x; y) := 9 z�:P (z) ^ E(x; y; z) ^ :H(x; z)�:The formula H2(x; z) says that x is 
ontained in the minimal 
oset modulo Ez.The formula "2(x; y) says that x and y do not belong to the minimal 
osetmodulo Ez for some z 2 :P .Ax (V). The following senten
e holds:8 x 8 y�"2(x; y)$ 8z�H(x; z)$ H(y; z)��:Axioms Ax (V) and Ax (IV) mean that "2 is an equivalen
e relation on P .Moreover, ea
h 
oset modulo "2 is an in�nite 
onvex set and the indu
edorder on the set of 
osets modulo "2 is a dense linear order without end-points. These assertions 
an be written as �rst-order formulas and derivedfrom Ax (I){Ax (V).Ax (VI). The following senten
es hold:(i) 8 x 8 y��"2(x; y) ^ x 6= y�! 9 z�:P (z) ^ :E(x; y; z)��;(ii) 8 x 8 y 8 z��E(x; y; z) ^ :H(x; z)�! 9 t�t < z ^ E(x; y; t)��.We denote"4(x; y; u; v) := x < y ^ u < v ^ "2(x; y) ^ "2(y; u) ^ "2(u; v)^ 8 z�:P (z)! �E(x; y; z)$ E(u; v; z)��:Observe that "4 is an equivalen
e relation on the set of ordered pairs of
osets modulo "2; moreover, ea
h 
oset modulo "4 gives rise to a partitionof :P into two 
onvex sets without endpoints (splits :P ). For every orderedpair (a1; a2) whose 
omponents belong to the same 
oset modulo "2, the 
onvexset of elements b 2 :P su
h that a1 and a2 belong to the same 
oset modulo Eb
an serve as an \indi
ator of nearness" of a1 and a2: the larger su
h a 
onvexset, the \
loser" a1 to a2. We also noti
e that, for all a1; a2; a3 2 P , the for-mulas "4(a1; a2; x; a3), "4(a1; a2; a3; x), "4(a1; a2; x; a2), and "4(a1; a2; a1; x) are
onvex.



20 B. S.BaizhanovAx (VII). The following senten
es hold:(i) 8 u2 8 u4 �"2(u2; u4) ^ u2 < u4�! 9 u1 9 u3 9 u5� î<j ui < uj ^ "2(u1; u5)^ ^1�i<j<k<r�5E(ui; uj; uk; ur)�!;(ii) 8 u2 8 u3 8 u4 �"2(u2; u4) ^ u2 < u3 < u4�! 9 u1 9 u5�u1 < u3 < u5 ^ "4(u2; u4; u1; u3)^ "4(u2; u4; u3; u5)�!;(iii) 8 u2 8 u4��"2(u2; u4) ^ u2 < u4�! 9 u1 9 u3 9 u03 9 u5(u1 < u2 < u3 < u30 < u4 < u5)^ 8 u 8 u0�(u1 � u � u3 ^ u30 < u0 < u5)! �"4(u2; u4; u; u4) ^ "4(u2; u4; u2; u0)���:From Axiom Ax (VII) it follows that ea
h 
oset modulo "4 is in�nite anddense with respe
t to the indu
ed order; moreover, if elements a1; a2; a3 2 Pbelong to the same 
oset modulo "2 and satisfy the 
ondition a1 < a3 < a2then the formulas"4(a1; a2; x; a2); "4(a1; a2; a1; x); "4(a1; a2; x; a3); "4(a1; a2; a3; x)de�ne nonempty 
onvex sets without endpoints.Ax (VIII). The following senten
e holds:8 x 8 y 8 u 8 v��"2(x; y) ^ "2(u; v) ^ x < y ^ u < v ^ :"2(x; u)�! 9 z�:P (z) ^ ��E(x; y; z) ^ :E(u; v; z)�_ �E(u; v; z) ^ :E(x; y; z)����:Axiom Ax (VIII) says that two distin
t 
osets modulo "2 are \separated"by the relation Ez for some z 2 :P .



De�nability of 1-Types in Weakly o-Minimal Theories 21Ax (IX). The following senten
e holds:8 x 8 y 8 u�P (x) ^ P (u) ^ "2(x; y) ^ :"2(x; u)! 9 z��H(u; z) ^ :E(x; y; z)� _ �:H(u; z) ^ E(x; y; z)���:Axiom Ax (IX) says that ea
h element of P that does not belong to a given
oset modulo "2 is \separated" from this 
oset by the relations Hz and Ez forsome z 2 :P .Proposition 38. If T0 is a 
onsistent set then the theory derived from T0is !-
ategori
al.Proof. Let M be a model of T0. Consider the set N 
onsisting of 
osetsmodulo "2, 
osets modulo "4, and elements satisfying :P . On this set, a linearorder / 
an be de�ned. The resultant linearly ordered set is 
alled a modelof language L0 = f=; /g. This model is denoted by (N;L0). For arbitrary
ountable models (M1; L0) and (M2; L0) of T0, we 
onstru
t an isomorphism gusing an isomorphism t between (N1; L0) and (N2; L0). These two isomorphismswill be 
onstru
ted simultaneously by indu
tion on n < !. Ea
h of them isthe union of an in
reasing 
hain of partial isomorphisms.Let (M;L0) be an arbitrary model of T0. Put A := P (M), B := :P (M),and C := �(a; a0) j a; a0 2 A;M j= "2(a; a0) ^ a < a0	. We introdu
ethe following notations for elements of C. Given 
 = (a1; a2) 2 C, let 
 =
(a1; a2), l(
) = a1, and r(
) = a2. We have M j= "2�l(
); r(
)� ^ l(
) < r(
)for every 
 2 C.Let a 2 A and let 
 2 C. Putb
 := "4(M2; 
) = �
0 2 C jM j= "4(
0; 
)	; bC := fb
 j 
 2 Cg;ba := "2(M; a) = �a0 2 A jM j= "2(a0; a)	; bA := fba j a 2 Ag:From the de�nitions of "2 and "4 it follows that8 
1 2 C 8 
2 2 C h�b
1 = b
2 ! l̂(
1) = l̂(
2) = br (
1) = br (
2)�i:We de�ne a model as follows:(N;L0) := � bA [ bC [B;=; /�:Let a; a1 2 A, b; b1 2 B, and 
; 
1 2 C. Then



22 B. S.BaizhanovN j= b / b1 ,M j= b < b1;N j= ba / ba1 ,M j= :"2(a; a1) ^ a < a1;N j= b
 / b ,M j= E�l(
); r(
); b�;N j= b / b
 ,M j= :E�l(
); r(
); b�;N j= ba / b ,M j= H(a; b);N j= b / ba ,M j= :H(a; b);N j= b
 / ba ,M j= 9 x�:P (x) ^ E�l(
); r(
); x� ^ :H(a; x)�;N j= ba / b
 ,M j= 9 x�:P (x) ^ :E�l(
); r(
); x� ^H(a; x)�;N j= b
1 / b
2 ,M j= 9 x�:P (x) ^ E�l(
1); r(
1); x� ^ :E�l(
2); r(
2); x��:The de�nitions of "2, "4, and H2 together with axioms Ax (I){Ax (IX)imply that / is well de�ned.From the de�nition of / we immediately obtainN j= b
 / ba , 9 b 2 B N j= b
 / b ^ b / ba;N j= ba / b
 , 9 b 2 B N j= ba / b ^ b / b
;N j= b
1 / b
2 , 9 b 2 B N j= b
1 / b ^ b / b
2:We put Cl(a) := �
 2 C j l(
) = a	 and Cr(a) := �
 2 C j r(
) = a	.Assertion 39.(i)0 For all a 2 A and 
1; 
2 2 Cl(a), if N j= b
1 / b
2 then r(
1) < r(
2)and b
�r(
1); r(
2)� = b
2.(i)00 For all a 2 A and 
1; 
2 2 Cr(a), if N j= b
1 / b
2 then l(
1) < l(
2)and b
�l(
1); l(
2)� = b
2.(ii) The stru
tures � bA;=; /�, (B;=; /), and � bC;=; /� are dense linearlyordered sets without endpoints.(iii) The relation / is a dense linear order on bA [ bC [B; moreover, ea
hof the sets bA, bC, and B is /-dense in bA [ bC [B.(iv)0 For every a 2 A, we have bCl(a) = bCr(a).(iv)00 For every a 2 A, the set bCl(a) is dense in (�1; ba)N .Proof. (i)0 Let N j= b
1 / b
2. Then, for some b0 2 B, we haveM j= E�a; r(
1); b� ^ :E�a; r(
2); b0� and a < r(
1); a < r(
2):Sin
e E(a;M; b0) is 
onvex, we �nd that r(
1) < r(
2).



De�nability of 1-Types in Weakly o-Minimal Theories 23Show that b
�r(
1); r(
2)� = b
2. Let b 2 B and let M j= E�a; r(
2); b�.Sin
e ea
h 
oset modulo Eb is a 
onvex set and a < r(
1) < r(
2), we obtainM j= E�r(
1); r(
2); b�.Assume that there exists b1 2 B su
h thatM j= E�r(
1); r(
2); b1� ^ :E�a; r(
2); b1�:Then E(M; a; b1)^E�M; r(
1); b1� = ? and, 
onsequently, r(
1) =2 E(M; a; b1).In view of Ax (IV), the latter means that E(M; a; b1) � E(M; a; b0) and b1 <b0. Sin
e r(
1) 2 E(M; a; b0), from Ax (IV) it follows that E�M; r(
1); b1� �E(M; a; b0). If r(
2) 2 E�M; r(
1); b1� then r(
2) 2 E�M; r(
1); b0�, whi
h
ontradi
ts the 
hoi
e of b0. Hen
e, for every b 2 B, we havehM j= E�a; r(
2); b�()M j= E�r(
1); r(
2); b�i:The proof of assertion (i)00 is similar.(ii) From Ax (I) and Ax (II) it follows that (B;=; /) is a dense linearlyordered set without endpoints. From Ax (I){Ax (V) it follows that ( bA;=; /)is a dense linearly ordered set without endpoints. We show that ( bC;=; /)possesses the required properties. The relation / on bC is antire
exive inview of the de�nitions of "4 and /. We show that this relation is transitive.Let 
1; 
2; 
3 2 C and let N j= b
1 / b
2 ^ b
2 / b
3. Then there exist b; b1 2 Bsu
h thatM j= E�l(
1); r(
1); b� ^ :E�l(
2); r(
2); b� ^ E�l(
2); r(
2); b1�^ :E�l(
3); r(
3); b1�:Sin
e M j= :E�l(
2); r(
2); b� ^ E�l(
2); r(
2); b1�, from Ax (IV) we obtainb < b1. Sin
e M j= :E�l(
3); r(
3); b1� ^ b < b1, from Ax (IV) we obtain M j=:E�l(
3); r(
3); b�. From M j= E�l(
1); r(
1); b� it follows that N j= b
1 / b
3.The relation / 
annot be symmetri
 be
ause it is transitive and antire
exive.We prove that this order relation is dense. Let N j= b
1 / b
2. Then thereexists b 2 B su
h thatM j= E�l(
1); r(
1); b� ^ :E�l(
2); r(
2); b�:By Ax (VI) (ii), there exists b1 su
h that b1 < b and M j= E�l(
1); r(
1); b1�.In view of Ax (IV), there exists a 2 E�l(
1);M; b� n E�l(
1);M; b1� su
hthat a > E�l(
1);M; b1�. Let 
 denote the pair �l(
1); a�. Then N j= b
1 / b
.Sin
e M j= E�l(
1); a; b� ^ :E�l(
2); r(
2); b�, we obtain N j= b
 / b
2.(iii) Let b; b1 2 B and let M j= b < b1. From Ax (IV) it follows thatH(M; b1) n H(M; b) 6= ?. Take an element a 2 H(M; b1) n H(M; b). Then



24 B. S.BaizhanovN j= b / ba^ ba/ b1. In view of Ax (VI) (i), there exist a1 2 "2(M; a) and b2 2 Bsu
h that M j= :E(a; a1; b) ^ E(a; a1; b2). This means thatN j= b / b
(a; a1) ^ b
 (a; a1) / b2;E(M; a; b2) � "2(M; a) � H(M; b1), and b2/b1. Sin
e / is transitive, we obtainN j= b / b
 / b1.In a similar way, we 
an prove that(d; d 0) \ bA 6= ?; (d; d 0) \ B 6= ?; (d; d 0) \ bC 6= ?for all d, d 0 2 bA [ bC [ B with d / d 0.(iv)0 Let 
 2 Cl(a). By Ax (VII), there exist a1 and a su
h that a1 < aand b
 = b
 (a1; a). Sin
e 
(a1; a) 2 Cr(a), we have bCl(a) � bCr(a). In a similarway, we 
on
lude that bCr(a) � bCl(a).(iv)00 Let b1; b2 2 (�1; ba). Then N j= b1 / ba ^ b2 / ba. Hen
e, M j=:H(a; b1) ^ :H(a; b2). Assume that b1 < b2. Then E(M; a; b1) � E(M; a; b2).Let a1; a2 2 E(M; a; b2)nE(M; a; b1) and let a2 < E(M; a; b1) < a1. ThenN j= b1 / b
1 ^ b1 / b
2 ^ b
1 / b2 ^ b
2 / b2;where 
1 = (a; a1) 2 Cl(a) and 
2 = (a2; a) 2 Cr(a). It remains to 
hoosearbitrary b1; b2 2 B. �Let (M1; L0) and (M2; L0) be arbitrary 
ountable models of T0. Let(N1; L0) and (N2; L0) be models of language L0. Re
all that the universe ofsu
h a model is the union of the 
orresponding sets Bi and the sets of 
osetsmodulo "2 and "4. Using indu
tion on n, we de�ne a sequen
e of partialisomorphisms gn : �M (n)1 ; L0�! �M (n)2 ; L0�;tn : �N (n)1 ; L00� ! �N (n)2 ; L0�; n < !;so that the �nite setsM (n)i �Mi and N (n)i � Ni, 
onstru
ted at Step n remainun
hanged in the sequel and the following 
onditions hold:(U1) gn�1 � gn, tn�1 � tn, gn is a bije
tive map preserving < and P 1,and tn is an L0 -isomorphism;(U2) tn(ba) = bgn(a) for every a 2 A(n)1 � A1;(U3) tn(b
) = b
�g�l(
)�; g�r(
)�� for every 
 2 C \ A(n)1 � A(n)1 .Here 
 is an element of �=�(�1; �2) �� �1; �2 2 A2; M j=�1<�2 ^ "2(�1; �2)	.At Step n, we de�ne gn if n is even and g�1n if n is odd. Fix arbitrarynumberings m and � of M1 and M2, i.e., letM1 = fmi j i < !g; M2 = f�i j i < !g:



De�nability of 1-Types in Weakly o-Minimal Theories 25S t e p n. Let n be even. The 
ase of an odd n is similar. In M1 n (A(n)1 [B(n)1 ), we 
hoose the element with the least m-number. Consider two 
ases.C a s e 1. Let an 2 A1 n A(n)1 be the element with the least m-number.Consider the set "2(M1; an)\A(n�1)1 . The following three sub
ases are possible:1.1. "2(M1; a) \ A(n�1)1 = ?;1.2. ��"2(M1; a) \ A(n�1)1 �� = 1;1.3. ��"2(M1; a) \ A(n�1)1 �� � 2.1.1. Consider d; d 0 2 N (n�1)1 su
h that ban 2 (d; d 0)/ and (d; d 0)/ \N (n�1)1 = ?, where (� ; �)/ denotes an interval with respe
t to /. Let tn(ba2n) 2�tn�1(d ); tn�1(d 0)�/ \ bA2 be arbitrary. Sin
e tn�1 is an L0 -isomorphism, wehave �tn�1(d ); tn�1(d 0)�/ \N (n�1)2 = ?.Let tn(ban) = b� for some � 2 A2. Choose an arbitrary �n 2 "2(M2; �)and put gn(an) = �n.1.2. Let ai 2 A(n�1)1 and let "2(M; an) \ A(n�1)1 = faig, i < n.Assume that ai < an. Let d; d 0 2 N (n�1)1 , let b
(ai; an) 2 (d; d 0)/, and let(d; d 0)/ \ N (n�1)1 = ?. In view of Ax (VIII), Ax (IX), and Assertion 39 (iii),su
h elements d and d 0 exist. From Assertions 39 (iv)0 and 39 (iv)00 it followsthat b
 (ai; an) / ban = bai. Hen
e, we obtain either d 0 / bai = ban or d 0 = bai.By (U2), we have either tn�1(d 0) / tn�1(bai) = bgn�1(ai) = b�i or tn�1(d 0) = bai.By Assertion 39 (iv)00, the set �l(�i) is dense in �tn�1(d ); tn�1(d 0)�/. Let 
 2�t(d ); t(d 0)�/ \ �l(�i). It is 
lear that l(
) = �i. Put tn(ban) := 
, gn(an) :=r(
), and �n := r(
).The 
ase in whi
h an < ai is similar.1.3. Putb
n = min/ nb
 j 
 = (an; ai) or 
 = (ai; an); ai 2 A(n�1)1 ; M j= "2(an; ai)o:Consider the following two possible sub
ases:1.3 (a) there exist ak; aj 2 A(n�1)1 su
h that b
 (ak; aj) = b
n;1.3 (b) b
n 6= b
 (ak; aj) for all ak; aj 2 A(n�1)1 .1.3 (a) Let ak < aj and let 
n = (an; ai). Assume that ak <an<aj <ai.Sin
e b
n is minimal, from Ax (VII) we obtainb
 (ak; an) = b
(an; aj) = b
 (an; ai) = b
 (ak; aj):Therefore, we may assume that an 2 (ak; aj)/ and (ak; aj) \ A(n�1)1 = ?.



26 B. S.BaizhanovIn a similar way, using Ax (VII) and the fa
t that b
n is minimal, we
on
lude that the following three sub
ases are possible:(1) �n 2 (ai; aj), (ai; aj) \ A(n�1)1 = ?;(2) an < ai, (an; ai) \ A(n�1)1 = ?;(3) aj < an, (aj ; an) \ A(n�1)1 = ?.(1) Let �i = gn�1(ai) and let �j = gn�1(aj). Find an external �n 2(�i; �j) su
h that b
(�i; �n) = b
(�n; �j) = b
(�i; �j). Su
h an element existsin view of Ax (VII). Put gn(an) := �n.(2) Find an external �n < �i su
h that b
(�n; �i) = b
(�i; �j) = b
(�n; �j).Su
h an element exists in view of Ax (VII). Put gn(an) := �n.(3) The reasoning is similar to (2).In ea
h of the above 
ases, we have N (n�1)1 = N (n)1 be
ause bAn = bai,b
 (an; aj) = b
 (ai; aj), and, for every as 2 A(n�1)1 , the fa
t that b
n is mini-mal implies either b
 (an; as) = b
 (ai; as) or b
 (as; an) = b
 (as; aj) (see Asser-tions 39 (i)0 and 39 (i)00).1.3 (b) We 
onsider the 
ase in whi
h an < ai, b
n = b
 (an; ai), i < n, andai 2 A(n�1)1 .Sin
e b
n is minimal, from Assertions 39 (i)0 and 39 (i)00 it follows that8 j < nh�b
(aj ; an) = b
 (aj ; ai) _ b
 (an; aj) = b
 (an; ai)�^ (an; ai) \ A(n�1)1 = ?i:Let d; d 0 2 N (n�1)1 , let b
 (an; ai) 2 (d; d 0)/, and let (d; d 0)/ \N (n�1)1 =?. Su
helements d and d 0 exist be
ause N (n�1)1 is bounded. Observe that d 0 / bai.Hen
e, tn�1(d 0) � tn�1(bai) = bgn�1(ai) = b�i. Therefore, �r(�i) is densein �t(d ); t(d 0)�/.Put �n := l(
), t�b
(an; aj)� = b
 = b
(�n; �i), and g(an) = �n.C a s e 2. Let bn 2 B1 nB(n�1)1 be the element with the least m-number.Take elements d; d 0 2 N (n�1)1 su
h that bn 2 (d; d 0)/ and (d; d 0)\N (n�1)1 = ?.Consider the interval �tn�1(d ); tn�1(d 0)�/. Sin
e tn�1 is a partial L0 -isomor-phism, we have �tn�1(d ); tn�1(d 0)�/ \ N (n�1)1 = ?. Let �n be an arbitraryelement of �t(d ); t(d 0)�/ \ B2. Put tn(bn) = gn(bn) = �n.We now return to the proof of Proposition 38. For ea
h d 2 N (n�1)1 ande 2 M (n�1)1 , put tn(d ) = tn�1(d ) and gn(e) = gn�1(e). From the de�nitionand the 
hoi
e of the elements gn(an), gn(bn), tn�b
(an; ai)�, tn(ban), and tn(bn)



De�nability of 1-Types in Weakly o-Minimal Theories 27it follows that gn and tn satisfy (U1){(U3). By (U1), we 
on
lude thatg = [n<! gn : �M1;=; <; P 1�! �M2;=; <; P 1�;t = [n<! tn : �N1;=; /�! �N2;=; /�;g is an L00 -isomorphism, and t is an L0 -isomorphism, where L00 = f=; <; P1g.We prove that g is an L0 -isomorphism. Let a; a0 2 A1 and let b 2 B1.Then M1 j= E(a; a0; b) ^ a < a0() N1 j= b
 (a; a0) / b() N2 j= t�b
 (a; a0)� / g(b)() N2 j= b
�g(a); g(a0)� / g(b) by (U3)()M2 j= E�g(a); g(a0); g(b)� ^ g(a) < g(a0):Therefore, M1 j= E(a; a; b)()M2 j= E�g(a); g(a); g(b)�. �From the proof of Proposition 38, we immediately obtain the followingAssertion 40. Assume that T0 is 
onsistent. Let M be a model of T0.Then every irrational 
ut (B1; B2) in (B;<) is M -de�nable in (M;L0) if andonly if either 9a 2 P (M)(B1 / ba /B2) or 9a1; a2 2 P (M)�B1 / b
 (a1; a2) /B2�.4.2. We 
onstru
t a model (M;L) su
h that L � L0 and T0 `L T :=Th(M;L). Fix the language L := f=; P 1; <2; E3; H2; "2; "4; S4; S3g. PutM :=K [ Q , where Q is the set of rational numbers and K is de�ned by indu
tion.Constru
tion of K. Let R be the set of real numbers, put I := �C jC � R, C \ Q = ?, C is 
ountable and dense in R	, and let J be a subsetof I su
h that jJ j > ! and, for all C1; C2 2 J , we have C1 \ C2 = ? providedC1 6= C2. LetS := na j a = (: : : ; ab; : : : )b2Q0 ; �8 b 2 Q 0 ; ab 2 Q�; Q 0 � Q ;if Q 0 � Q then 9 e 2 R n Q , 8 b 2 Q�b < e! b 2 Q 0�obe the set of all Q -sequen
es of rational numbers and let2<! := n� ��� 9n < !; � = ��(1); : : : ; �(n)�; 8 i (1 � i � n); �(i) 2 f0; 1go:We 
onstru
t K and fun
tions g and C su
h that the following 
onditionsare satis�ed:(Z1) We have K = Sn<!Kn � S, Kn \Kn+1 = ?, and jKnj = !.



28 B. S.Baizhanov(Z2) The fun
tion g maps Kn into (R n Q)n+1 . For every d 2 Kn, letg(d ) = �g0(d ); : : : ; gn(d )�. Then g0(d ) > g1(d ) > � � � > gn(d ).(Z3) The fun
tion C maps K into J . Let C(d) := Cd. Then Cd1 6= Cd2for all d1; d2 2 K with d1 6= d2.Fix an arbitrary element a = (: : : ; ab; : : : )b2Q of S.S t e p 0. Fix an arbitrary element C0 2 J . For every 
 2 C0, leta
 = (: : : ; a
b ; : : : )b2Q; b<
 be an element of S su
h that a
b = ab for all b 2 Qwith b < 
. Put K0 := fa
 j 
 2 C0g, g0(a
) := 
, and g(a
) := (
).S t e p n + 1. For all d 2 Kn, 
 2 Cd with 
 < gn(d ), and � 2 2<!, wede�ne d
� := (: : : ; d
�b : : : )b2Q; b<g0(d ) as follows:8 b 2 Q"�
 < b<g0(d )) d
�b = db� ^ b<
 ) d
�b = db+ l(� )Xi=1 (�1)� (i)(n+ 2)i!#:We putKn+1 := �d
� �� d 2 Kn; 
 2 Cd; 
 < gn(d ); � 2 2<!	; g(d
� ) := �g(d ); 
�:Sin
e jKnj = ��Sd2Kn Cd�� = j2<!j = !, we have jKn+1j = !.Sin
e jJ j > !, we 
an de�ne a map C : Kn+1 ! J . Observe that8 
; d 2 K; 8 b 2 Q h�b < g0(d ) = g0(
) ^ db = 
b�) 8 b0 2 Q�b < b0 < g0(d )) db0 = 
b0�i:De�nition of (M;L). Let d; 
; e; f; b 2M . The following relations hold:hM j= P 1(d )() d 2 Ki;"M j= d <2 
() �fd; 
g � Q ^ d < 
� _ (d 2 Q ^ 
 2 K)_ �fd; 
g � K^ �g0(d ) < g0(
)_ �g0(d ) = g0(
) ^ 9 x 2 R n Q^ 9 b0 2 Qhb0 < x < g0(d )^ 8 b 2 Q��x < b < g0(d )) 
b = db�^ �b0 < b < x) db < 
b��i���#;
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; d; b)() f
; dg � K ^ b 2 Q^ �b > max�g0(d ); g0(
)	 _ �b < g0(d ) = g0(
) ^ 
b = db���;hM j= H2(d; b)() d 2 K ^ b 2 Q ^ g0(d ) < bi;hM j= "2(
; d)() f
; dg � K ^ g0(
) = g0(d )i;"M j= "4(d; 
; e; f)() fd; e; 
; fg � K ^ 9n < !gn(d ) = gn(
) = gn(e) = gn(f) ^ gn+1(d ) 6= gn+1(
) ^ gn+1(e) 6= gn+1(f);9 x 2 R n Q ; 9 b0 2 Q�b0 < x < gn(d ) ^ 8 b 2 Q��x < b < gn(d )) (
b = db ^ eb = fb)�^ �b0 < b < x) (db < 
b ^ eb < fb)���#;"M j= S41(d; 
; e; f)() fd; 
; e; fg � K^ g0(d ) = g0(
) ^ g0(e) = g0(f) ^ 9 b 2 Q (db = 
b ^ eb 6= fb) ^ 9 x 2 R n Q^ 9 b0 2 Q�b0 < x < g0(d ) ^ 8 b 2 Q��x < b < g0(d )) 
b = db�^ �b0<b<x) db<
b��� ^ 9 x2R n Q^ 9 b0 2 Q�b0 < x < g0(e) ^ 8 b 2 Q��x < b < g0(e)) eb = fb�^ �b < b < x) eb < fb���#;"M j= S32(d; 
; f)() fd; 
; fg � K ^ g0(d )= g0(
) ^ �g0(d ) > g0(f)! 9 b 2 Q�b < g0(f) ^ db = 
b�� ^ 9 x 2 R n Q^ 9 b0 2 Q�b0 < x < g0(d ) ^ 8 b 2 Q��x < b < g0(d )) 
b = db�^ �b0 < b < x) db < 
b���#:



30 B. S.BaizhanovObserve that the relations "2, "4, S41 , S32 , and H2 are de�ned in �M;=; P 1;<2; E3�; moreover, (M;L0) satis�es Ax (I){Ax (IX).Let a; a1; a2; a3 2 P (M) and let N be the model 
onstru
ted in Proposi-tion 38. Then the following 
onditions hold:(F1) [M j= S3(a1; a2; a)() N j= b
(a1; a2) / ba ℄;(F2) [M j= S4(a; a1; a2; a3)() N j= b
 (a; a1) / b
 (a2; a3)℄;(F3) [M j= :"2(a1; a2) ^ a1 < a2 () N j= ba1 < ba2℄.4.3. We prove that T admits quanti�er elimination and is weakly o-min-imal.Proposition 41. The theory T = Th(M;L) is !-
ategori
al and �nitelyaxiomatizable, admits quanti�er elimination, and is weakly o-minimal.Proof. Let M be a 
ountable model of T . Consider subsets Ai � P (M)and Bi � :P (M), i = 1; 2, su
h that the set (A1 [ B1) is �nite and (A1 [B1; L) �= (A2 [ B2; L). Introdu
tion of H2, "2, "4, S3, and S4 allows us tode�ne �nite L0 -stru
tures �N(Ai [ Bi);=; /� and an L0 -isomorphismt : �N(A1 [ B1);=; /�! �N(A2 [ B2);=; /�in su
h a way that t satis�es (U2) of Proposition 38.Indeed, let a; a1; a2; a3 2 A and let b 2 B. Then ba is de�ned via "2 andb
 (a; a1) is de�ned via "4, "2, and <2. Moreover, ba and b are /-
omparableon using H2; ba and b
 (a1; a2) are /-
omparable on using S3 (see (F1)); b andb
 (a1; a2) are /-
omparable on using S3; b
 (a; a1) and b
 (a2; a3) are /-
ompa-rable on using S4 (see (F2)); ba1 and ba2 are /-
omparable on using "2 and <2(see (F3)).Employing the method of the proof of Proposition 38, we 
an extendan isomorphism between (A1 [ B1; L) and (A2 [ B2; L) to an automorphismof (M;L). This means that T admits quanti�er elimination [10℄. We provethat T is weakly o-minimal. Sin
e T is !-
ategori
al (see Proposition 38) andadmits quanti�er elimination, it suÆ
es to show that every atomi
 1-formulawith parameters is 
onvex. Observe that every 1-formula de�nable by a �niteset of parameters from (A[B) is a Boolean 
ombination of (A[B)-de�nableatomi
 1-formulas. Atomi
 1-formulas of the formx < a(b); a(b) < x; P (x); H(x; b); H(a; y); E(x; a; b); E(a; x; b);E(a1; a2; y); "2(x; a); "2(a; x); "4(x; a1; a2; a3); "4(a1; x; a2; a3);"4(a1; a2; x; a3); "4(a1; a2; a3; x); S3(x; a1; a2); S3(a1; x; a2); S3(a1; a2; x);S4(x; a1; a2; a3); S4(a1; x; a2; a3); S4(a1; a2; x; a3); S4(a1; a2; a3; x)
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onvex in view of Ax (I){Ax (IX) and the properties of the linear order /on N . Indeed, let a01, a1, a001 , a2, and a3 be elements of P (M) su
h thatM j= S3(a01; a2; a3) ^ S3(a001; a2; a3) ^ a01 < a1 < a001 :By (F1), we have N j= b
 (a01; a2; a3) / ba3 ^ b
 (a001; a2) / ba3. Sin
e a01 < a1 < a001,from the de�nitions of "4 and / it follows thatN j=�b
 (a01; a2) / b
 (a1; a2) _ b
 (a01; a2) = b
 (a1; a2)�^ �b
 (a1; a2) / b
 (a001; a2) _ b
 (a1; a2) = b
 (a001; a2)�:Sin
e / is transitive, we �nd that N j= b
 (a1; a2) / ba3. By (F1), we haveM j= S3(a1; a2; a3) whi
h means that S3(x; a2; a3) is 
onvex. In a similar way,we 
an verify that all atomi
 1-formulas of the form S3 and S4 are 
onvex.For the remaining atomi
 1-formulas, the required assertion is immediate fromde�nitions and axioms. �4.4. An example of a pair of models (Mb; L) � (M;L) su
h that (Mb;M)is a D-1-pair but is not a D-pair.Let (M;L) be the model 
onstru
ted at Stage 4.2 and let b be an arbitraryelement of Q �i.e., :P (M)�. Let Qb denote the set fx 2 Q j x < bg andlet Kb denote the set Sb0<bH(M; b0). Put Mb = Qb [ Kb. It is easy tosee that (Mb; L) is a submodel of (M;L). Sin
e Th(M) admits quanti�erelimination, we have (Mb; L) � (M;L).Assertion 42. Let d1; d2 2 P (M) nMb and let d1 6= d2. If there existsn < ! su
h that n > 0 and gn(d1) = gn(d2) < b then the type tp(d1d2=Mb) isnot de�nable.Proof. In view of axiom Ax (VII), the formula E(d1; d2; x) is de�ned bysome irrational 
ut (B1; B2) in (Q ; <) and the 
onditions gn(d1) = gn(d2) < band B1 < b. Hen
e, the irrational 
ut �B1; �B2\fbg�M �[P (Mb)� is not de�n-able in (Mb; L). This is a 
onsequen
e of Assertion 40 and 
ondition (Z3) fromthe 
onstru
tion of K (
f. Stage 4.2). There exists a unique 1-type p 2 S1(Mb)extending the 
ut �B1; �B2 \ fbg�M� [ P (Mb)�. In view of Proposition 26,we have p ?w tp(d1=Mb) be
ause p is irrational while tp(d1=Mb) is quasir-ational. Put q := tp(d2=Mb [ d1) and take p0 2 S1(Mb [ d1) with p � p0.We have d1d2 6?w p. Hen
e, q 6?w p0 be
ause p(M) = p0(M). Observe that p0is an irrational type de�ned by a 
ut. Therefore, p0 is not de�nable. By Propo-sition 22, q is not de�nable either. Thus, tp(d1d2=Mb) is not de�nable. Thismeans that (Mb;M) is not a D-pair. �Observe that (Mb; L) is a quasi-Dedekind 
omplete model in (M;L). In-deed, we have P (M) n P (Mb) > P (Mb) and :P (M) n :P (Mb) > :P (Mb).Thus, Assertion 42 implies Theorem 37. �
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