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2 B. S.BaizhanovLet M be an elementary submodel of N . The pair (M;N) is said to bea D-1-pair if, for eah � 2 N , the type tp(�/M) of � over M is de�nable.The pair (M;N) is said to be a D-pair if, for eah �nite tuple � of elementsof N , the type tp(�/M) is de�nable. We all M a D-1-model if every 1-typeover M is de�nable and a D-model if every type over M is de�nable. In [13℄,Van den Dries showed that every D-1-model of the theory of a real losed �eldis a D-model. In [17℄, Marker and Steinhorn proved that, for every o-mini-mal theory, eah D-1-pair is a D-pair and, onsequently, eah D-1-model isa D-model.In Setion 4, we onstrut aD-1-pair of models in an !-ategorial weaklyo-minimal theory that is not a D-pair (Theorem 37).Throughout the artile, we assume that M is a linearly ordered strutureof a �xed language L.De�nition 1. A partition (A;B) of M is alled a ut if A < B, i.e., forall a 2 A and b 2 B, we have a < b. A ut is said to be rational if either Apossesses a maximal element, or B possesses a minimal element, or one of thesesets is empty. We say that a ut is quasirational if A (and, onsequently, B)is de�nable (with parameters). A ut that is not quasirational is said to beirrational. We say that M is Dedekind omplete if every ut of M is rational.We say that M is quasi-Dedekind omplete if every ut of M is quasirational.Let M be an elementary submodel of N . We say that a ut (A;B) of M isrealized in N if A < � < B for some � 2 N nM .De�nition 2 [12, 20℄. A linearly ordered struture M is o-minimal ifevery de�nable (with parameters) subset of M is the union of a �nite familyof points in M and intervals (a; b), where a 2M [ f�1g and b 2M [ f1g.Observe that every quasirational ut of an o-minimal model is rational.De�nition 3 [17℄. LetM be an elementary submodel ofN , where N j= Tand T is an o-minimal theory. The modelM is Dedekind omplete in N if everyut of M realized in N is rational.De�nition 4. A subset A of a linearly ordered struture M is onvex ifevery element of M lying between two elements of A belongs to A. In parti-ular, the empty set and all singletons are onvex. We say that a formula �(x)is onvex if the set �(M) := �� 2M jM j= �(�)	 is onvex.De�nition 5 [11, 15℄. A linearly ordered strutureM is said to be weaklyo-minimal if every de�nable (with parameters) subset of M is the union of�nitely many onvex subsets.A theory T is weakly o-minimal if every model of T is weakly o-minimal.Observe that eah o-minimal model is weakly o-minimal.De�nition 6. LetM be an elementary submodel ofN , where N j= T andT is a weakly o-minimal theory. We say that M is quasi-Dedekind ompletein N if no irrational ut of M is realized in N .



De�nability of 1-Types in Weakly o-Minimal Theories 3De�nition 7. Let A be a set in a model M , where M j= T , andlet p 2 Sn(A) for some n < !. The type p is �( xn; v)-de�nable, where�( xn; v) 2 L( xn), if there exists a formula R�( v) 2 L(A) (i.e., an A-de�nableformula) suh that, for every a 2 A, we have �( xn; a) 2 p if and only ifM j= R�( a).Suh a formula R�( v) is alled a �( xn; v)-de�nition of p. We say thatthe type p is de�nable if p is �( xn; v)-de�nable for every formula �( xn; v) 2L( xn), n < !.A tuple  2 M is said to be ht-de�nable over A if its type over A isde�nable.In an o-minimal theory, for every ut of M , there exists a unique 1-typeover M extending the ut (see [17, Lemma 2.3℄). This type is de�nable if andonly if the ut is rational. Hene, an o-minimal model M is a D-1-model ifand only if M is Dedekind omplete. A pair (M;N) in an o-minimal theoryis a D-1-pair if and only if M is Dedekind omplete in N .Van den Dries studied de�nable types over a real losed �eld and provedthe followingTheorem 8 [13℄. Every type over (R;+; � ; 0; 1) is de�nable, where Rstands for the set of reals.Marker and Steinhorn generalized this result to the ase of o-minimaltheories.Theorem 9 [17℄. Let T be an o-minimal theory and let M j= T .(1) The model M is Dedekind omplete if and only if every type inS(M) := Sn<! Sn(M) is de�nable.(2) LetM be an elementary submodel of N . Then, for every � 2 N nM ,the type tp(�=M) is de�nable if and only ifM is Dedekind ompletein N .Let T be a weakly o-minimal theory. By Assertion 21, a pair (M;N)of models in T is a D-1-pair if and only if M is quasi-Dedekind ompletein N , and a model M of T is a D-1-model if and only if M is quasi-Dedekindomplete.Some general fats about de�nability of types. The notion of onvergeneof a formula to a type is entral to this artile.Let T be a omplete theory of language L, let N be a suÆiently saturatedmodel of T , let A � N , and let � 2 N . Let q 2 S(A) be a nonisolated typeand let �( x; y) be an A-de�nable formula. We say that the formula �( x;�b),�b 2 N , divides C � N l, where l is the length of the tuple x and C is notneessarily de�nable, if �(N l;�b) \ C 6= ? and :�(N l;�b) \ C 6= ?. We oftenwrite �(N;�b) instead of �(N l;�b).



4 B. S.BaizhanovWe say that an A-de�nable formula �( x; y) onverges weakly to a typeq( x) 2 S(A) and write WEC��( x; y); q( x)� if, for every � 2 q, there existsa 2 A suh that �( x; a) divides �(N).We say that an A-de�nable formula �( x; y) onverges strongly to a typeq( x) and write STC��( x; y); q( x)� if, for every � 2 q, there exists a 2 A suhthat �(N; a) � �(N). We usually omit x in the notation q( x).Assume that WEC��( x; y); q( x)� holds for some q 2 S(A). Let �( x; y)be the graph of an A-de�nable funtion f( y) �i.e., �( x; y) � x = f( y)�.Then STC��( x; y); q( x)� holds. In this ase, we say that the values of f( y)onverge to the type q and write STC�f( y); q�.We say that a tuple � is weakly orthogonal to a type q and write � ?w qif, for every A-de�nable formula �( x; y), the formula �( x; �) does not divideq(N) = T�2q �(N). We say that � is not weakly orthogonal to a type q andwrite � 6?w q if there exists an A-de�nable formula �( x; y) suh that �( x; �)divides q(N).Observe that �( x; �) divides q(N) if and only if, for every � 2 q, the for-mula �( x; �) divides �(N). In this ase, for all � and � with tp(�=A) =tp(�=A), we have � 6?w q () � 6?w q. We say that a type p 2 S(A) is weaklyorthogonal to a type q 2 S(A) and write p ?w q if there exists � 2 p(N)suh that � ?w q or, equivalently (see [21, De�nition V. 1.1 (i)℄), p( x) [ q( y)de�nes a omplete �l( x) + l( y)�-type. Observe that p 6?w q implies q 6?w p[21, Lemma V. 1.1 (i)℄.De�nition 10. Let � be a nonisolated and onsistent set of A-de�nableformulas. We say that � is a quasimodel set if, for every formula � 2 �, thereexists a 2 A suh that N j= �( a).Assertion 11. Let � be a nonisolated quasimodel set of formulas over A.Assume that � is losed under formation of �nite onjuntions. Then � anbe extended to a quasimodel type over A.Proof. For every A-de�nable formula Q( y), at least one of the sets �( y)[�Q( y)	, �( y) [ �:Q( y)	 is a quasimodel set. �Let q( x) 2 S(A), where A � N . We say that q is a stritly de�nable(or weakly isolated) type if, for every A-de�nable formula �( x; y), there existsan A-de�nable formula �( x) 2 q suh thatN j= 9 x ��( x) ^ �( x; a)�! 8 x ��( x)! �( x; a)�for every a 2 Al( y).It is lear that every isolated type is stritly de�nable. Every stritly de-�nable type q 2 S(A) is de�nable; moreover, there exists a formula � 2 q suhthat the A-de�nable formula 	�( y) := 8 x ��( x)! �( x; y)� is a �( x; y)-def-inition of q( x).



De�nability of 1-Types in Weakly o-Minimal Theories 5Assertion 12. A type q 2 S(A) is stritly de�nable if and only if, forevery formula �( x; y) of language L, we have :WEC��( x; y); q�.Assertion 13. Let q 2 S(A).(1) If there is an A-de�nable formula �( x; y) suh that WEC��( x; y); q�holds then there exists a quasimodel type r 2 S(A) suh that, for every� 2 r(N), the formula �(x; �) divides q(N), i.e., r 6?w q.(2) If r 6?w q for some quasimodel type r 2 S(A) then WEC��( x; y); q�holds for some A-de�nable formula �( x; y).Proof. (1) Denote by � the following set of A-de�nable formulas:nK(�)( y) j � 2 q; K(�)( y) := 9 x��( x; y)^�( x)�^9 x�:�( x; y)^�( x)�o:It is lear that � is a quasimodel set; moreover, � is losed under formationof �nite onjuntions. By Assertion 11, there exists a quasimodel type r 2S(A) extending �. Hene, for every  2 r(N) � �(N), the formula �(x; �)divides q(N). Therefore,  6?w q and, onsequently, r 6?w q.(2) Let � 2 r(N) and let � 6?w q. Then, for some formula �( x; y),the formula �( x; �) divides q(N). Hene, �( x; �) divides �(N) for every�( x) 2 q. This means that N j= K(�)(�). Therefore, we have K(�)( y) 2 r.Sine r is a quasimodel type, there exists a 2 A suh that N j= K(�)( a).Thus, WEC��( x; y); q� holds. �Assertion 14. Let r; q 2 S(A). Assume that r is a quasimodel typeand H( x; y) is an A-de�nable formula. If there exists  2 r(N) suh thatH(N; ) � q(N) then STC�H( x; y); q� holds.Proof. We have H(N; ) � q(N) if and only if H(N; ) � �(N) forevery formula � 2 q. The latter ondition is equivalent to the fat thatN j= 8 x�H( x; ) ! �( x)� for every formula � 2 q. Sine 8 x�H( x; y) !�(�x)� 2 r and r is a quasimodel type, we onlude that STC�H( x; y); q�holds. �For a weakly o-minimal theory, the notion of weak onvergene of a for-mula to a 1-type transforms into the notions of left, right, and two-sidedonvergenes (f. De�nition 28 and Lemma 36). These notions are used inthe formulations of the riterion for de�nability of a 1-type over an arbitraryset (Theorem 31) and of its orollary presenting the riterion for de�nabilityof a 1-type over the union of a model and a �nite sequene that is ht-de�nableover the model (Proposition 35).R ema r k . The notion of onvergene of a formula to a nonisolated typeis impliitly used in proofs of theorems about ordered models (see [4, 6, 17, 19℄)and models of stable theories (see [1, 3, 8, 9, 14, 21℄). The notion of a quasimodeltype is impliitly used in [2, 4℄. To onlude the motivation for introduing



6 B. S.Baizhanovthese notions, we present a simple fat whih explains the nature of onvergeneof a formula to a type in terms of well-known notions of the stability theory.Proposition 15. Let T be a stable theory, let N be a large saturatedmodel of T , let A � N , let q 2 S(A), and let �( x; y) be an A-de�nableformula. Then the following assertions hold:(1) If q is a quasimodel type then q is stationary.(2) If WEC(�( x; y); q) holds then there exists a quasimodel (stationary)type r 2 S(A) suh that r 6?a q.(3) Let M be an elementary submodel of N . Assume that p 2 S(N)and p does not fork over M . Then p1 := ��( x) 2 p �� �( x) isan (M [ �)-de�nable formula	 is a quasimodel type for every � 2N nM .(4) Let � be a tuple in N n A, let q = tp(�=A), and let the formula�( x; �) be divided over A (see [21, De�nition V.1.3℄). Then, for everyp 2 S(A) with p(N) \ �(N; �) 6= ?, we have p(N) \ :�(N; �) 6= ?,i.e., � 6?w p and, onsequently, q 6?w p.Proof. (1) By [21, De�nition III. 1.7, De�nition III. 4.1, Lemma III. 4.18,Corollary III. 2.9 (ii)℄, we onlude that q is a stationary type provided, forevery A-de�nable equivalene relation E( x; z) with �nitely many osets, thereexists a 2 A suh that E( x; a) 2 q.Let E( x; y) be an A-de�nable equivalene relation with �nitely manyosets. Put �0( x) := (9 z)E( x; z) 2 q. Sine q is a quasimodel type, thereexists a0 2 A suh that N j= (9 z)E( z; a0). If E( x; a0) =2 q then �1( x) :=9 z�E( x; z)^:E( x; a0)� is an A-de�nable formula and �1 2 q. Consider a1 2A suh that N j= �1( a1). Put �i( x) := 9 z�E( x; z)^Vj<i :E( x; aj)�. This isan A-de�nable formula; moreover, �i 2 q. Then N j= Vj 6=n<i :E( aj ; an). If,for every i < !, we have �i( x) =2 q then we arrive at a ontradition, beausethere exist only �nitely many osets modulo E.Thus, if E( x; z) is an A-de�nable equivalene relation with �nitely manyosets then q(N) is a subset of one of A-de�nable osets modulo E.(2) By [8, p. 143℄, two types p; q 2 S(A) are almost orthogonal, i.e., p ?a q,if arbitrary tuples � 2 p(N) and � 2 q(N) are A-independent; moreover,if p ?a r and at least one of these types is stationary then p ?w r. In viewof Assertion 13, there exists a quasimodel type r 2 S(A) suh that p 6?w r.Sine r is stationary, Proposition 15 (1) implies p 6?a r.(3) From [21, Theorem III. 0.1. (4), Corollary III. 4.10℄ it follows thata type p 2 S(N) does not fork over M , where M � N , if and only if p is�nitely satis�able in M �reall that p is �nitely satis�able in M if, for everyformula � 2 p, there exists a 2M suh thatN j= �( a)�. Consider an arbitrary(M [ �)-de�nable formula �( x; �) 2 p. Sine p is �nitely satis�able in M ,



De�nability of 1-Types in Weakly o-Minimal Theories 7there exists a 2M suh thatN j= �( a; �). This means that p1 is a quasimodeltype.(4) Let  be a tuple in p(N)\ �(N; �). The de�nition of division over Aimplies that there exist n < ! and �1; �2; : : : ; �n 2 q(N) suh that N j=:9 x��( x; �) ^V1�i�n �( x; �i)�. Then, for some �i, we have  =2 �(N; �i).Sine tp(�=A) = tp(�i=A) = q and  2 p(N), p 2 S(A), there exists i 2p(N) suh that i =2 �(N; �). This �nishes the proof of Proposition 15 (4). �2. Notations, de�nitions, and fatsIn the sequel, we assume thatM and N are models of a weakly o-minimaltheory T suh thatM � N and N is suÆiently saturated. Given A � N , putA+ := fx 2 N j 8 a 2 A; x > ag;A� := fx 2 N j 8 a 2 A; x < ag:For an arbitrary tuple hy1; : : : ; yni, we use the abbreviation y. Let l( y) denotethe length of suh a tuple, i.e., l( y) = n. We often write a 2 A instead ofa 2 Al( a).Let B be a set in a model N . By a B -de�nable formula we meanthe formula �( x;�b) obtained from an L-formula �( x; y) by substituting a tu-ple of parameters �b 2 Bl( y). A subset X � M l is said to be B -de�nableif X = �(M l;�b) := � a 2 M l j M j= �( a;�b)	 for some B -de�nable for-mula �( x;�b) with l( x) = l. We sometimes write \L(B)-formula" instead of\B -de�nable formula." Let B be an arbitrary (not neessarily de�nable) on-vex set. We say that a formula U(x) splits B if U(N) and :U(N) are onvexsets, U(N) \ B 6= ?, and :U(N) \ B 6= ?. Given A � M , let Sn(A) de-note the set of n-types over A and let S(A) = Sn<! Sn(A). We often write�rst-order formulas as relations between de�nable sets. For example,x < �(N) � 8 y��(y)! x < y�;x 2 (�1; �2) � �1 < x < �2;�(N) \ �(N) 6= ? � N j= 9 x��(x) ^ �(x)�;�(N) < �(N)+ � N j= 8 t�8 y��(y)! y < t�! 8 x��(x)! x < t��:We say that onvex sets C and D are separated by an element a (a-sepa-rated) if C < a < D or D < a < C. A family of onvex sets is E -separated ifthe sets of this family are pairwise separated by elements of E.Assertion 16 [2, 6℄. A theory T is weakly o-minimal if and only if, forevery formula �(x; y), there exists n� < ! suh that, for every M j= T andevery a 2M , the set �(M; a) is the union of less than n� onvex a-de�nable:�(M; a)-separated subsets.



8 B. S.BaizhanovRema r k 17. The intersetion of a family of onvex subsets of an ar-bitrary linearly ordered set is onvex. By Assertion 16, for every p 2 S1(A),where A � M j= T , the set p(M) is onvex. If the model M is jAj+ -satu-rated and the type p is nonalgebrai then p(M) possesses neither minimal normaximal elements.Assertion 16 and Remark 17 yieldR ema r k 18. If there exists an a-de�nable formula dividing a onvexset B then there exists an a-de�nable formula splitting B.Assertion 19. Let p 2 S1(A), where A is a set in a model M of T .The type p is de�nable if and only if p is �(x; y)-de�nable for eah for-mula �(x; y) suh that, for every �b 2 M , the set �(M;�b) is onvex.De�nition 20 [4℄. Let p 2 S1(A), where A is a set in a model Mof T . We say that p is right quasirational if there exists an A-de�nable onvexformula Up(x) 2 p suh that, for every suÆiently saturated model N � M ,we have Up(N)+ = p(N)+. We say that p is left quasirational if there existsan A-de�nable onvex formula Up(x) 2 p suh that, for every suÆientlysaturated model N � M , we have Up(N)� = p(N)�. If a type p is bothright and left quasirational then p is said to be isolated. A nonisolated 1-typeis quasirational if it is either right or left quasirational. If a 1-type p is neitherquasirational nor isolated then p is said to be irrational.Let p be an n-type over A and let F � p. We say that p is de�ned by F(or F de�nes p) if, for every formula �( x) 2 p, there exists �( x) 2 F suh thatN j= 8 x��( x)! �( x)�.We say that a 1-type p 2 S1(A[B) is de�ned by a quasirational ut (A;B)if p is de�ned by either �a < x ^ U(x) �� a 2 A	 or �x < b ^ :U(x) �� b 2B	, where U(x) is an (A [ B)-de�nable formula suh that A � U(N) andU(N) \ B = ?.Assertion 21 [4, 6℄. Let p 2 S1(M), where M j= T . Then(1) p is not de�nable if and only if p is irrational if and only if p is de�nedby an irrational ut in M ;(2) p is de�nable if and only if p is quasirational if and only if p is de�nedby a quasirational ut in M .Assertion 21 generalizes a similar fat about o-minimal theories whih wasproven by Marker and Steinhorn [17, Lemma 2.3℄. Observe that, for o-minimaltheories, de�nable 1-types over models are de�ned by rational uts.Proposition 22 [4℄. Let p; r 2 S1(A), where A is a set in a model Nof T . Assume that  2 N n A.(1) If p 6?w r then r 6?w p.(2) If  is ht-de�nable over A and  6?w p then p is de�nable.(3) If p 6?w r then p is de�nable if and only if r is de�nable.



De�nability of 1-Types in Weakly o-Minimal Theories 9Proof. (1) Reall that p ?w r if and only if p(x) [ r(y) is a omplete2-type.(2) Let K(x; y) be an A-de�nable formula suh that K(N; )\p(N) 6= ?and :K(N; ) \ p(N) 6= ?. By Remark 18, there exists an (A [ )-de�nableonvex formula H(x; y) suh that H(N; ) < :H(N; ); moreover, there exist�1; �2 2 p(N) with �1 < �2, �1 2 H(N; ), and H(N; ) < �2.Let �(x; z) be an arbitrary formula. In view of Assertion 19, we mayassume that, for every �b 2 N , the formula �(x;�b) is onvex. For every a 2Al( z), we have�(x; a) 2 p() (�1; �2) � p(N) � �(N; a)() N j= 8 x�x 2 (�1; �2)! �(x; a)�() N j= 9 x1; x2�H(x1; ) ^ :H(x2; ) ^ x1 < x2^ 8 x�x 2 (x1; x2)! �(x; a)��:Let Q(�)( ; a) denote the last formula. By De�nition 7, there exists an A-de-�nable formula RQ(�)( z) suh thatN j= Q(�)( ; a)()N j= RQ(�)( a):Put ��( z) := RQ(�)( z). We obtain�(x; �a) 2 p() N j= ��( a):(3) If p 6?w r then � 6?w r for every � 2 p(N). Hene, (3) follows from (1)and (2). �We present an easy onsequene of the de�nitions of a type and a saturatedmodel.Assertion 23. Let M be a model of a �rst-order theory and let M bejAj+-saturated for some A �M .(i) Let there exist n;m<!, an A-de�nable formula  ( x1; : : : ; xn), andp 2 Sm(A), where l( x1) = � � � = l( xn) = m, suh that M j=  (�1; : : : ; �n)for every �1; : : : ; �n 2 p(Mm). Then there exists �( x) 2 p suh that M j=8 x1; : : : ; 8 xn�V �( xi)!  ( x1; : : : ; xn)�.(ii) If p 2 Sm(A), where m < !, is a nonisolated type then the set p(Mm)is not M -de�nable.(iii) Let p; r 2 S(A), let � 2 p(M), let �1; �2 2 r(M), and let �( x; y) bean A-de�nable formula suh that M j= �(�1; �) ^ :�(�2; �). Then, for every� 2 r(M), there exist �1; �2 2 p(M) suh that M j= �(�; �1) ^ :�(�; �2).



10 B. S.BaizhanovDe�nition 24. A formulaK(x; y) inreases monotonially in y on a on-vex set B if the following ondition holds:8 b1; 8 b2�(b1 2 B ^ b2 2 B ^ b1 < b2)! K(N; b1) < K(N; b2)+�:Monotone dereasing formulas are de�ned in a similar way.Theorem 25 [4{6℄. If p(y) 6?w q(x) then there exists an A-de�nableformula K(x; y) satisfying the following onditions:(1) K(x; y) is monotone in y on some �(N), where �(y) 2 p, and ismonotone in x on some �(N), where �(x) 2 q;(2) K(x; �) splits q(N) and K(�; y) splits p(N) for all � 2 p(N) and� 2 q(N).In the ase of an o-minimal theory, the formula K(x; y) of Theorem 25 isthe graph of a suitable monotone funtion (see [2, 16, 18℄).Observe that Theorem 25 is valid in a more general ase, namely, if A isa subset of a weakly o-minimal model of �nite depth whose theory need notbe weakly o-minimal [7℄.Proposition 26 [4{6℄. Let p; q 2 S1(A) and let p 6?w q. Then the fol-lowing hold:(1) p is stritly de�nable if and only if q is stritly de�nable;(2) p is irrational if and only if q is irrational;(3) p is quasirational if and only if q is quasirational;(4) 6?w is an equivalene relation on S1(A).Proposition 26 generalizes a similar fat about 1-types over o-minimalmodels whih was proven by Marker in [16℄.3. De�nability of 1-typesThe main results of this setion are the riterion for unde�nability ofa 1-type (Theorem 31) and one of its versions (Proposition 35).Assertion 27. Every quasirational type p 2 S1(A) is de�nable.Proof. For de�niteness, assume that p is right quasirational. The ase inwhih p is left quasirational is similar. Let Up(x) be an A-de�nable formulasuh that Up(x) 2 p and Up(N)+ = p(N)+. Let '(x; y) be an arbitraryA-de�nable �l( y) + 1�-formula. Consider the A-de�nable l( y)-formula�'( y) := 9 x��'(x; y) ^ Up(x)� ^ 8 z�x < z < Up(N)+ ! '(z; y)��:It is lear that, for every a 2 Al( y), we have N j= �'( a)() '(x; a) 2 p. �Let q 2 S1(A), where A � N . We introdue the notations:L(q) := �G(x) j G(x) is an A-de�nable formula suh that G(N) < q(N)	;R(q) := �D(x) j D(x) is an A-de�nable formula suh that q(N) < D(N)	:



De�nability of 1-Types in Weakly o-Minimal Theories 11De�nition 28. Let q 2 S1(A), where A � N . Assume that �( y) andH(x; y) are A-de�nable formulas. Put X := ��N l( y)� \ Al( y).We say that the ondition of left onvergene of H(x; y) to the type q onthe set X or �( y) holds and writeLC�H(x; y); X; q� or LC�H(x; y); �( y); q�if the following is satis�ed:8G(x) 2 L(q); 9 a 2 X N j= 9 x�G(N) < x < H(N; a)+�; H(N; a) < q(N):We say that the ondition of right onvergene ofH(x; y) to q onX or �( y)holds and write RC�H(x; y); X; q� or RC�H(x; y); �( y); q� if the following issatis�ed:8D(x) 2 L(q); 9 a 2 X N j= 9 x�H(N; a) < x < D(N)�; q(N) < H(N; a)+:We say that the ondition of two-sided onvergene ofH(x; y) to q onX or�( y) holds andwriteC�H(x; y); X; q� orC�H(x; y); �( y); q� if bothLC(H;X; q)and RC(H;X; q) are satis�ed.In the de�nitions of left and right onvergenes of H(x; y), we have usedthe right bound of the formula H(x; a), �a 2 A. It is possible to de�neonvergene using the left bound of the formula but this will not be donein the present artile.Observe that in fat the artiles [17, 19℄ dealt with (left) onvergene ofthe values of a funtion to a type q.R ema r k 29. Let q 2 S1(A). If q is right quasirational then, forall A-de�nable formulas H(x; y) and �( y), we have :LC(H; �; q). If q isleft quasirational then, for all A-de�nable formulas H(x; y) and �( y), wehave :RC(H; �; q).In view of Remark 29, if C(H; �; q) holds for L(A)-formulas H(x; y) and�( y) and for a 1-type q 2 S1(A) then q must be irrational. In view ofAssertion 27, the question on unde�nability of a 1-type should be onsideredfor irrational types only.R ema r k 30. Let H(x; y) and �( y) be A-de�nable formulas suh thatC(H; �; q) holds for some q 2 S1(A). Then, for every A-de�nable formula �1( y),we have(i) if LC(H; �1; q) and :RC(H; �1; q) hold then RC�H; �( y)^:�1( y); q�holds;(ii) if j= 8 y��( y)! �1( y)� then C(H; �1; q) holds.



12 B. S.BaizhanovTheorem 31. Let A be a set in a model M of a weakly o-minimaltheory T . Let q be an irrational 1-type over A. Then the following onditionsare equivalent:(i) q is not de�nable;(ii) there exists an A-de�nable formulaH(x; y) suh that, for every A-de-�nable formula �( y), we haveC�H(x; y); �( y); q� _ C�H(x; y);:�( y); q�:Proof. The ondition \q is irrational" means that there is no greatestformula in L(q) and there is no least formula in R(q). We briey outlinethe proof. The ruial point in the proof of neessity is the observation that atleast one of the bounds (either left or right) for the formula with unde�nabilityof the type approximates both L(q) and R(q) on using onstants in A. To provesuÆieny, we start with a formula approximating both L(q) and R(q) andonstrut a formula proving that q is not de�nable.N e  e s s i t y . Let '(x; y) be an A-formula suh that q is not '(x; y)-de-�nable. In view of Assertion 19, we may assume that, for every b 2 M ,the set '(x; b) is onvex. PutH1(x; y) := x < '(N; y); H2(x; y) := '(x; y):Then Hi(x; y), i = 1; 2, are A-de�nable formulas.Let �( y) be an arbitrary A-formula.R ema r k 32. Given j = 1; 2, we have :RC(Hj ; �; q) if and only if thereexists Dj(x) 2 R(q) suh that8 a 2 ��N l( y)� \ Al( y)hN j= 9x�Hj(N; a)<x<Dj(N)�()Hj(N; a)<q(N)i:Rema r k 33. For j = 1; 2, we have :LC(Hj; �; q) if and only if thereexists Gj(x) 2 L(q) suh that8 a 2 ��N l( y)�\Al( y)hN j= 9 x�Gj(N)<x<Hj(N; a)+�()q(N)<Hj(N; a)+i:We laim that at least one of the formulas H1, H2 satis�es (ii). Assumethe ontrary, i.e., let there exist A-formulas �1( y) and �2( y) suh that:C(H1; �1; q); :C(H1;:�1; q); :C(H2; �2; q); :C(H2;:�2; q):From the de�nition of two-sided onvergene, we obtain�:LC(H1; �1; q) _ :RC(H1; �1; q)�^ �:LC(H1;:�1; q) _ :RC(H2;:�1; q)�^ �:LC(H2; �2; q) _ :RC(H2; �2; q)�^ �:LC(H2;:�2; q) _ :RC(H2;:�2; q)�:



De�nability of 1-Types in Weakly o-Minimal Theories 13For the onditions :RC(Hi; �i; q) and :RC(Hi;:�i; q), i = 1; 2, letDi;1(x)and Di;2(x) denote the A-formulas whose existene is mentioned in Remark 32.For the onditions :LC(Hi; �i; q) and :LC(Hi;:�i; q), i = 1; 2, let Gi;1(x)and Gi;2(x) denote the A-formulas whose existene is mentioned in Remark 33.We introdue the notations:�1;1( y) := 8><>: 9 x�H1(N; y) < x < D1;1(N)� if :RC(H1; �1; q);H(N; y) < G1;1(N)+ if RC(H1; �1; q)and :LC(H1; �1; q);�1;2( y) := 8><>: 9 x�H1(N; y) < x < D1;2(N)� if :RC(H1;:�1; q);H(N; y) < G1;2(N)+ if RC(H1;:�1; q)and :LC(H1;:�1; q);�2;1( y) := 8><>: D2;1(N)� < H2(N; y)+ if :RC(H2; �2; q);9 x�G2;1(N) < x < H(N; y)+� if RC(H2; �2; q)and :LC(H2; �2; q);�2;2( y) := 8><>: D2;2(N)� < H2(N; y)+ if :RC(H2;:�2; q);9 x�G2;2(N) < x < H(N; y)+� if RC(H2;:�2; q)and :LC(H2;:�2; q):It is lear that �1;1, �1;2, �2;1, and �2;2 are A-formulas. Consider the A-for-mula �( y) := 9 x'(x; y) ^ ��1( y)! �1;1( y)� ^ �:�1( y)! �1;2( y)�^ ��2( y)! �2;1( y)� ^ �:�2( y)! �2;2( y)�:In view of Remarks 32 and 33, we have8 a 2 Al( y) �N j= �( a)() H1(N; a) < q(N) < H2(N; a)+�:Reall that'(x; a) 2 q () q(N) � '(N; a)() '(N; a)� < q(N) < '(N; a)+() H1(N; a) < q(N) < H2(N; a)+:Hene, 8 a�N j= �( a)() '(x; a) 2 q�. Therefore, q is '(x; y)-de�nable,whih is a ontradition.S u f f i  i e n  y . Let H(x; y) be an A-formula satisfying (ii). Take an ar-bitrary A-formula D(x) suh that q(N) < D(N).Put '(x; y) := H(N; y) < x < D(N). We show that the type q is not'(x; y)-de�nable.



14 B. S.BaizhanovAssume that there exists an A-formula �( y) suh that�N j= �( a)() '(x; a) 2 q� (�)for every a 2 Al( y). Sine�N j= �( a)() '(x; a) 2 q () H(N; a) < q(N)�for every a 2 Al( y), we obtain the following ondition:(1) LC(H; �; q), :RC(H; �; q).Consider an arbitrary formula G 2 L(q). By Remark 33, we have:LC(H;:�; q). In view of ondition (ii) of the theorem, ondition (1) above,and Remark 30 (i), we obtain the following ondition:(2) RC(H;:�; q), :LC(H;:�; q).If both (1) and (2) hold then:C(H; �; q) ^ :C(H;:�; q);whih ontradits the hoie of H(x; y). Thus, ondition (�) annot hold;hene, the type q is not '(x; y)-de�nable.Assertion 34�. Let � be a tuple in N nM , let tp(�=M) be de�nable,and let LC�H(x; y; �);�( y; �); q� hold. Then there exists anM -formula �( y)suh that LC�H(x; y; �); �( y); q� holds.Proof. By the de�nition of tp(�=M), there exists an M -formula ��( y)suh that 8 a 2 M �N j= �( a; �) () M j= ��( a)�. To hek onvergene,it suÆes to onsider tuples of elements of M only. �Proposition 35. Let � be a tuple in N nM , let tp(�=M) be de�nable,let � 2 N n (M [ �), and let q := tp(�=M [ �) be an irrational type that isnot stritly de�nable. Then the following onditions are equivalent:(i) there exist (M [ �)-de�nable formulas H(x; y) and �( y) suh thateither LC(H;�; q); :RC(H;�; q) or :LC(H;�; q); RC(H;�; q) hold;(ii) the type q is de�nable.Proof. (i) ) (ii). Assume that LC(H;�; q) and :RC(H;�; q) hold.The ase in whih :LC(H;�; q) and RC(H;�; q) hold is similar. We mayassume (see Assertion 34) that �( y) is an M -formula. Put X := �(Mk) andZ := �(Nk). We have H(N; a; �) < q(N) for every a 2 X. Let '(x; y; �) bean (M [ �)-formula suh that, for every  2 N , the set �(N; ; �) is onvex.Put S1( z; y1; �) := '(N; z; �)� < H(N; y1; �)+ ^ �1( y1);S2( z; y2; �) := '(N; z; �) < H(N; y2; �)+ ^ �1( y2):� For the ase of o-minimal theories, this assertion was proven in [17℄.



De�nability of 1-Types in Weakly o-Minimal Theories 15Sine tp(�=M) is de�nable, there areM -formulasQ1( z; y1) andQ2( z; y2)suh that N j= S1( a; b1; �)()M j= Q1( a; b1 );N j= S2( a; b2; �)()M j= Q2( a; b2 )for all a; b1; b2 2M . PutQ( z) := 9 y1Q1( z; y1) ^ :9 y2Q2( z; y2):We have 8 a 2M l( z) �M j= Q( a)() '(x; a; �) 2 q�:Indeed, M j= Q( a) implies that there exists b1 2M suh thatM j= Q1( a; b1 ) and M j= 8 y2:Q2( a; y2):It remains to notie that the following equivalenes are valid:�M j= Q1( a; b1 )() '(N; a; �)� < q(N)�;�M j= 8 y2:Q2( a; y2)() q(N) < '(N; a; �)+�:Impliation (i) ) (ii) is proven.(ii) ) (i). In the proof of this impliation, we will need the �rst part ofthe followingLemma 36. Let q 2 S1(A), where A is a set in a model N , and let�(x; y) be a parameter-free formula.(a) If WEC��(x; y); q� holds thenLC�H(x; �y); y = y; q� and/or RC�H(x; y); y;= y; q�;whereH(x; y) is either �(x; y) or �(x; y)� := :�(x; y)^x < �(N; y).(b) If STC��(x; y); q� holds thenLC��(x; y)�; y = y; q� and RC��(x; y); y;= y; q�:Proof. (a) For every L-formula �(x; y), we de�ne formulas �i, i < !, byindution as follows:�0(x; y) := �(x; y) ^ 8 x1h��(x1; y) ^ x1<x�!8 z�x1<z <x! �(z; y)�i;�i+1(x; y) := �(x; y) ^ �i(N; y) < x ^ 8 x1h��(x1; y) ^ �i(N; y) < x1 < x�! 8 z�x1 < z < x! �(z; y)�i:By this de�nition, for every i < ! and �b 2 N , the set �(N; b) is onvex (notiethat the empty set is onvex by de�nition).



16 B. S.BaizhanovIn view of Assertion 16, we have�(x; y) � _i<n� �i(x; y)for some n� < !. We show that validity of WEC��(x; y); q� yields existeneof i < n� suh that WEC��i(x; y); q� holds. Assume the ontrary, i.e., let:WEC��i(x; y); q� hold for every i < n�. Then there exist L(A)-formulas�i(x) 2 q, i < n�, suh that, for eah b 2 A and eah i < n�, we have either�i(N; b)\�i(N) = ? or �i(N) � :�i(N; b). Put �(x) := V�i(x). It is obviousthat �(x) 2 q. Fix an arbitrary tuple b 2 A. Assume that �i(N; b)\�i(N) = ?for all i < n�. Sine �(N) � �i(N), we have �i(N; b) \ �(N) = ?. Hene,�(N; b) \ �(N) =[i ��i(N; b) \ �(N)� = ?and, onsequently, �(x; b) does not divide �(N).If �i(N) � �i(N; b) for some i < n� then�(N) � �i(N) � �i(N; b) �[i �i(N; b) = �(N; b)and, onsequently, �(x; b) does not divide �(N). In both ases, �(x; b) doesnot divide �(N), whih ontradits validity of WEC��(x; y); q� beause b 2 Ais arbitrary.Thus, we assume in the sequel that the formula �(x; y) in the onditionWEC��(x; y); q� possesses the following additional property: �(x; b) is onvexfor every b 2 N .Consider a onvex L(A)-formula �(x) suh that �(x) 2 q. The lattermeans that q(N) � �(N). Sine q is an irrational 1-type, there exist 1; 2 2�(N) suh that 1 < q(N) < 2:Hene, �(N) falls into three unde�nable (by formulas) onvex subsets, �(N) =X1(�) [ q(N) [X2(�); moreover,X1(�) < q(N) < X2(�):Sine WEC��(x; y); q� holds, there exists b 2 A suh that �(x; b) divides�(N). Sine q is irrational, neither left nor right bound of the onvex set q(N)is de�nable by formulas. Hene, the following assertion holds.(�) If a onvex formula �(x; b) divides �(N) then �(x; b) annot passalong the bounds of q(N) and must divide at least one of the onvexsets �(N), X1(�), X2(�).



De�nability of 1-Types in Weakly o-Minimal Theories 17Assume that �(x; b) divides X1(�). Sine the de�nable set �(N; b) andunde�nable set X1(�) are onvex, we have either �(N; b)<q(N) or q(N) ��(N; b). If, for every onvex L(A)-formula �(x) 2 q, there exists b 2 A suhthat �(x; b) divides X1(�) and �(N; b) < q(N) then we obtain LC��(x; y);y = y; q�. If, for every onvex L(A)-formula �(x) 2 q, there exists b 2 A suhthat �(x; b) divides X1(�) and q(N) � �(N; b) then we obtain LC��(x; y)�;y = y; q�, where �(x; y)� := :�(x; y) ^ x < �(N; y).If, for some onvex L(A)-formula �(x) 2 q and every b 2 A suhthat �(x; b) divides X1(�), we have :�q(N) � �(N; b)� and, onsequently,�(N; b) < q(N) then, for every onvex L(A)-formula �0(x) 2 q with �0(N) ��(N) and every b 2 A suh that �(x; b) divides X1(�0), we have :�q(N) ��(N; b)� and, onsequently, �(N; b) < q(N). In other words,(��) if, for every onvex L(A)-formula �(x) 2 q, there exists b 2 A suhthat �(x; b) divides X1(�) then :LC��(x; y)�; y = y; q� impliesLC��(x; y); y = y; q�.In a similar way, we obtain the following assertion.(��)0 If, for every onvex L(A)-formula �(x) 2 q, there exists b 2 A suhthat �(x; b) divides X2(�) then :RC��(x; y)�; y = y; q� impliesRC��(x; y); y = y; q�.Assume that there exists a onvex L(A)-formula �(x) 2 q suh that�(x; b) does not divide X2(�) for any b 2 A. Then, for every b 2 A suhthat �(x; b) divides �(N), the formula �(x; b) divides X1(�).Moreover, let �0(x) 2 q be a onvex L(A)-formula suh that �0(N) � �(N)and let b 2 A be suh that �(x; b) divides �0(N). Then the formula �(x; b)does not divide X2(�0) but divides X1(�0).Let both onditions :RC��(x; y); y = y; q� and :RC��(x; y)�; y = y; q�hold. Then there exists a onvex formula �(x) 2 q suh that, for any b 2 A,if �(x; b) divides �(N) then �(x; b) does not divide X2(�) but divides X1(�).The latter, in view of WEC��(x; y); q�, (�), and (��), means that the followinghold:(� � �) LC��(x; y); y = y; q� and/or LC��(x; y)�; y = y; q�.From (�), (��), and (� � �) we readily obtain assertion (a) of Lemma 36.The proof of assertion (b) is similar. �Sine the irrational type q is not stritly de�nable, from Lemma 36 (a)it follows that LC�H(x; y); y = y; q� and/or RC�H(x; y); �y = y; q� hold.If the formula y = y does not satisfy requirements on �( y) in ondition (i)then C�H(x; y); y=�y; q� must hold. Sine q is a de�nable type, we apply



18 B. S.BaizhanovTheorem 31 and �nd the required L(M [ �)-formula �( y) for the formulaH(x; y). � 4. An example of a D-1-pair of modelsin a weakly o-minimal theory whih is not a D-pairTheorem 37. There exists a weakly o-minimal theory T with two modelsMb �M suh that the type tp(�=Mb) is not de�nable for some tuple � 2M ,while the model Mb is quasi-Dedekind omplete in M .Proof. We simultaneously onstrut a model (M;L0) and prove thatthe elementary theory Th(M;L0) of (M;L0) is weakly o-minimal. We desribethis theory in terms of a �nite set of axioms T0 and prove that T0 gives riseto a onsistent, omplete, and weakly o-minimal theory. Our proof falls intothe following stages:4.1. The set T0 of axioms. If T0 is a onsistent set then the theory derivedfrom T0 is !-ategorial.4.2. Constrution of a model (M;L), L�L0, with T0 `L T := Th(M;L).4.3. A proof of the fats that T admits quanti�er elimination and is weaklyo-minimal.4.4. An example of a pair of models (Mb; L) � (M;L) suh that (Mb;M)is a D-1-pair but is not a D-pair.4.1. Set T0 of axioms. If T0 is a onsistent set then the theory derivedfrom T0 is !0 -ategorial.Let T0 stand for the set of axioms Ax (I){Ax (IX) of language L0 :=f=; P 1; <2; E3g.Ax (I). The relation < is a dense linear order without endpoints.Ax (II). The following sentene holds:8 x 8 y���P (x) ^ :P (y)�! y < x� ^ 8 z 8 x 8 y�P (z)!:E(x; y; z)��:Ax (III). For every z, if :P (z) then E(x; y; z) is an equivalene relation(with respet to x and y) on P , eah oset modulo Ez is a nonempty onvexset without endpoints, the indued order on the set of osets modulo Ez isdense, there exists a minimal oset modulo Ez but there is no maximal osetmodulo Ez.Ax (IV). For all z, t, and x, if P (x)^ :P (z) ^:P (t) ^ z < t holds theneah oset modulo Ez from x is ontained in some oset modulo Et from x,eah oset modulo Et (exept for the minimal oset) ontains neither minimalnor maximal osets modulo Ez, and the minimal oset modulo Et ontainsthe minimal oset modulo Ez but ontains no maximal osets modulo Ez.



De�nability of 1-Types in Weakly o-Minimal Theories 19We denoteH2(x; z) := P (x) ^ :P (z) ^ 8 y��P (y) ^ y < x�! E(x; y; z)�;"2(x; y) := 9 z�:P (z) ^ E(x; y; z) ^ :H(x; z)�:The formula H2(x; z) says that x is ontained in the minimal oset modulo Ez.The formula "2(x; y) says that x and y do not belong to the minimal osetmodulo Ez for some z 2 :P .Ax (V). The following sentene holds:8 x 8 y�"2(x; y)$ 8z�H(x; z)$ H(y; z)��:Axioms Ax (V) and Ax (IV) mean that "2 is an equivalene relation on P .Moreover, eah oset modulo "2 is an in�nite onvex set and the induedorder on the set of osets modulo "2 is a dense linear order without end-points. These assertions an be written as �rst-order formulas and derivedfrom Ax (I){Ax (V).Ax (VI). The following sentenes hold:(i) 8 x 8 y��"2(x; y) ^ x 6= y�! 9 z�:P (z) ^ :E(x; y; z)��;(ii) 8 x 8 y 8 z��E(x; y; z) ^ :H(x; z)�! 9 t�t < z ^ E(x; y; t)��.We denote"4(x; y; u; v) := x < y ^ u < v ^ "2(x; y) ^ "2(y; u) ^ "2(u; v)^ 8 z�:P (z)! �E(x; y; z)$ E(u; v; z)��:Observe that "4 is an equivalene relation on the set of ordered pairs ofosets modulo "2; moreover, eah oset modulo "4 gives rise to a partitionof :P into two onvex sets without endpoints (splits :P ). For every orderedpair (a1; a2) whose omponents belong to the same oset modulo "2, the onvexset of elements b 2 :P suh that a1 and a2 belong to the same oset modulo Eban serve as an \indiator of nearness" of a1 and a2: the larger suh a onvexset, the \loser" a1 to a2. We also notie that, for all a1; a2; a3 2 P , the for-mulas "4(a1; a2; x; a3), "4(a1; a2; a3; x), "4(a1; a2; x; a2), and "4(a1; a2; a1; x) areonvex.



20 B. S.BaizhanovAx (VII). The following sentenes hold:(i) 8 u2 8 u4 �"2(u2; u4) ^ u2 < u4�! 9 u1 9 u3 9 u5� î<j ui < uj ^ "2(u1; u5)^ ^1�i<j<k<r�5E(ui; uj; uk; ur)�!;(ii) 8 u2 8 u3 8 u4 �"2(u2; u4) ^ u2 < u3 < u4�! 9 u1 9 u5�u1 < u3 < u5 ^ "4(u2; u4; u1; u3)^ "4(u2; u4; u3; u5)�!;(iii) 8 u2 8 u4��"2(u2; u4) ^ u2 < u4�! 9 u1 9 u3 9 u03 9 u5(u1 < u2 < u3 < u30 < u4 < u5)^ 8 u 8 u0�(u1 � u � u3 ^ u30 < u0 < u5)! �"4(u2; u4; u; u4) ^ "4(u2; u4; u2; u0)���:From Axiom Ax (VII) it follows that eah oset modulo "4 is in�nite anddense with respet to the indued order; moreover, if elements a1; a2; a3 2 Pbelong to the same oset modulo "2 and satisfy the ondition a1 < a3 < a2then the formulas"4(a1; a2; x; a2); "4(a1; a2; a1; x); "4(a1; a2; x; a3); "4(a1; a2; a3; x)de�ne nonempty onvex sets without endpoints.Ax (VIII). The following sentene holds:8 x 8 y 8 u 8 v��"2(x; y) ^ "2(u; v) ^ x < y ^ u < v ^ :"2(x; u)�! 9 z�:P (z) ^ ��E(x; y; z) ^ :E(u; v; z)�_ �E(u; v; z) ^ :E(x; y; z)����:Axiom Ax (VIII) says that two distint osets modulo "2 are \separated"by the relation Ez for some z 2 :P .



De�nability of 1-Types in Weakly o-Minimal Theories 21Ax (IX). The following sentene holds:8 x 8 y 8 u�P (x) ^ P (u) ^ "2(x; y) ^ :"2(x; u)! 9 z��H(u; z) ^ :E(x; y; z)� _ �:H(u; z) ^ E(x; y; z)���:Axiom Ax (IX) says that eah element of P that does not belong to a givenoset modulo "2 is \separated" from this oset by the relations Hz and Ez forsome z 2 :P .Proposition 38. If T0 is a onsistent set then the theory derived from T0is !-ategorial.Proof. Let M be a model of T0. Consider the set N onsisting of osetsmodulo "2, osets modulo "4, and elements satisfying :P . On this set, a linearorder / an be de�ned. The resultant linearly ordered set is alled a modelof language L0 = f=; /g. This model is denoted by (N;L0). For arbitraryountable models (M1; L0) and (M2; L0) of T0, we onstrut an isomorphism gusing an isomorphism t between (N1; L0) and (N2; L0). These two isomorphismswill be onstruted simultaneously by indution on n < !. Eah of them isthe union of an inreasing hain of partial isomorphisms.Let (M;L0) be an arbitrary model of T0. Put A := P (M), B := :P (M),and C := �(a; a0) j a; a0 2 A;M j= "2(a; a0) ^ a < a0	. We introduethe following notations for elements of C. Given  = (a1; a2) 2 C, let  =(a1; a2), l() = a1, and r() = a2. We have M j= "2�l(); r()� ^ l() < r()for every  2 C.Let a 2 A and let  2 C. Putb := "4(M2; ) = �0 2 C jM j= "4(0; )	; bC := fb j  2 Cg;ba := "2(M; a) = �a0 2 A jM j= "2(a0; a)	; bA := fba j a 2 Ag:From the de�nitions of "2 and "4 it follows that8 1 2 C 8 2 2 C h�b1 = b2 ! l̂(1) = l̂(2) = br (1) = br (2)�i:We de�ne a model as follows:(N;L0) := � bA [ bC [B;=; /�:Let a; a1 2 A, b; b1 2 B, and ; 1 2 C. Then



22 B. S.BaizhanovN j= b / b1 ,M j= b < b1;N j= ba / ba1 ,M j= :"2(a; a1) ^ a < a1;N j= b / b ,M j= E�l(); r(); b�;N j= b / b ,M j= :E�l(); r(); b�;N j= ba / b ,M j= H(a; b);N j= b / ba ,M j= :H(a; b);N j= b / ba ,M j= 9 x�:P (x) ^ E�l(); r(); x� ^ :H(a; x)�;N j= ba / b ,M j= 9 x�:P (x) ^ :E�l(); r(); x� ^H(a; x)�;N j= b1 / b2 ,M j= 9 x�:P (x) ^ E�l(1); r(1); x� ^ :E�l(2); r(2); x��:The de�nitions of "2, "4, and H2 together with axioms Ax (I){Ax (IX)imply that / is well de�ned.From the de�nition of / we immediately obtainN j= b / ba , 9 b 2 B N j= b / b ^ b / ba;N j= ba / b , 9 b 2 B N j= ba / b ^ b / b;N j= b1 / b2 , 9 b 2 B N j= b1 / b ^ b / b2:We put Cl(a) := � 2 C j l() = a	 and Cr(a) := � 2 C j r() = a	.Assertion 39.(i)0 For all a 2 A and 1; 2 2 Cl(a), if N j= b1 / b2 then r(1) < r(2)and b�r(1); r(2)� = b2.(i)00 For all a 2 A and 1; 2 2 Cr(a), if N j= b1 / b2 then l(1) < l(2)and b�l(1); l(2)� = b2.(ii) The strutures � bA;=; /�, (B;=; /), and � bC;=; /� are dense linearlyordered sets without endpoints.(iii) The relation / is a dense linear order on bA [ bC [B; moreover, eahof the sets bA, bC, and B is /-dense in bA [ bC [B.(iv)0 For every a 2 A, we have bCl(a) = bCr(a).(iv)00 For every a 2 A, the set bCl(a) is dense in (�1; ba)N .Proof. (i)0 Let N j= b1 / b2. Then, for some b0 2 B, we haveM j= E�a; r(1); b� ^ :E�a; r(2); b0� and a < r(1); a < r(2):Sine E(a;M; b0) is onvex, we �nd that r(1) < r(2).



De�nability of 1-Types in Weakly o-Minimal Theories 23Show that b�r(1); r(2)� = b2. Let b 2 B and let M j= E�a; r(2); b�.Sine eah oset modulo Eb is a onvex set and a < r(1) < r(2), we obtainM j= E�r(1); r(2); b�.Assume that there exists b1 2 B suh thatM j= E�r(1); r(2); b1� ^ :E�a; r(2); b1�:Then E(M; a; b1)^E�M; r(1); b1� = ? and, onsequently, r(1) =2 E(M; a; b1).In view of Ax (IV), the latter means that E(M; a; b1) � E(M; a; b0) and b1 <b0. Sine r(1) 2 E(M; a; b0), from Ax (IV) it follows that E�M; r(1); b1� �E(M; a; b0). If r(2) 2 E�M; r(1); b1� then r(2) 2 E�M; r(1); b0�, whihontradits the hoie of b0. Hene, for every b 2 B, we havehM j= E�a; r(2); b�()M j= E�r(1); r(2); b�i:The proof of assertion (i)00 is similar.(ii) From Ax (I) and Ax (II) it follows that (B;=; /) is a dense linearlyordered set without endpoints. From Ax (I){Ax (V) it follows that ( bA;=; /)is a dense linearly ordered set without endpoints. We show that ( bC;=; /)possesses the required properties. The relation / on bC is antireexive inview of the de�nitions of "4 and /. We show that this relation is transitive.Let 1; 2; 3 2 C and let N j= b1 / b2 ^ b2 / b3. Then there exist b; b1 2 Bsuh thatM j= E�l(1); r(1); b� ^ :E�l(2); r(2); b� ^ E�l(2); r(2); b1�^ :E�l(3); r(3); b1�:Sine M j= :E�l(2); r(2); b� ^ E�l(2); r(2); b1�, from Ax (IV) we obtainb < b1. Sine M j= :E�l(3); r(3); b1� ^ b < b1, from Ax (IV) we obtain M j=:E�l(3); r(3); b�. From M j= E�l(1); r(1); b� it follows that N j= b1 / b3.The relation / annot be symmetri beause it is transitive and antireexive.We prove that this order relation is dense. Let N j= b1 / b2. Then thereexists b 2 B suh thatM j= E�l(1); r(1); b� ^ :E�l(2); r(2); b�:By Ax (VI) (ii), there exists b1 suh that b1 < b and M j= E�l(1); r(1); b1�.In view of Ax (IV), there exists a 2 E�l(1);M; b� n E�l(1);M; b1� suhthat a > E�l(1);M; b1�. Let  denote the pair �l(1); a�. Then N j= b1 / b.Sine M j= E�l(1); a; b� ^ :E�l(2); r(2); b�, we obtain N j= b / b2.(iii) Let b; b1 2 B and let M j= b < b1. From Ax (IV) it follows thatH(M; b1) n H(M; b) 6= ?. Take an element a 2 H(M; b1) n H(M; b). Then



24 B. S.BaizhanovN j= b / ba^ ba/ b1. In view of Ax (VI) (i), there exist a1 2 "2(M; a) and b2 2 Bsuh that M j= :E(a; a1; b) ^ E(a; a1; b2). This means thatN j= b / b(a; a1) ^ b (a; a1) / b2;E(M; a; b2) � "2(M; a) � H(M; b1), and b2/b1. Sine / is transitive, we obtainN j= b / b / b1.In a similar way, we an prove that(d; d 0) \ bA 6= ?; (d; d 0) \ B 6= ?; (d; d 0) \ bC 6= ?for all d, d 0 2 bA [ bC [ B with d / d 0.(iv)0 Let  2 Cl(a). By Ax (VII), there exist a1 and a suh that a1 < aand b = b (a1; a). Sine (a1; a) 2 Cr(a), we have bCl(a) � bCr(a). In a similarway, we onlude that bCr(a) � bCl(a).(iv)00 Let b1; b2 2 (�1; ba). Then N j= b1 / ba ^ b2 / ba. Hene, M j=:H(a; b1) ^ :H(a; b2). Assume that b1 < b2. Then E(M; a; b1) � E(M; a; b2).Let a1; a2 2 E(M; a; b2)nE(M; a; b1) and let a2 < E(M; a; b1) < a1. ThenN j= b1 / b1 ^ b1 / b2 ^ b1 / b2 ^ b2 / b2;where 1 = (a; a1) 2 Cl(a) and 2 = (a2; a) 2 Cr(a). It remains to hoosearbitrary b1; b2 2 B. �Let (M1; L0) and (M2; L0) be arbitrary ountable models of T0. Let(N1; L0) and (N2; L0) be models of language L0. Reall that the universe ofsuh a model is the union of the orresponding sets Bi and the sets of osetsmodulo "2 and "4. Using indution on n, we de�ne a sequene of partialisomorphisms gn : �M (n)1 ; L0�! �M (n)2 ; L0�;tn : �N (n)1 ; L00� ! �N (n)2 ; L0�; n < !;so that the �nite setsM (n)i �Mi and N (n)i � Ni, onstruted at Step n remainunhanged in the sequel and the following onditions hold:(U1) gn�1 � gn, tn�1 � tn, gn is a bijetive map preserving < and P 1,and tn is an L0 -isomorphism;(U2) tn(ba) = bgn(a) for every a 2 A(n)1 � A1;(U3) tn(b) = b�g�l()�; g�r()�� for every  2 C \ A(n)1 � A(n)1 .Here  is an element of �=�(�1; �2) �� �1; �2 2 A2; M j=�1<�2 ^ "2(�1; �2)	.At Step n, we de�ne gn if n is even and g�1n if n is odd. Fix arbitrarynumberings m and � of M1 and M2, i.e., letM1 = fmi j i < !g; M2 = f�i j i < !g:



De�nability of 1-Types in Weakly o-Minimal Theories 25S t e p n. Let n be even. The ase of an odd n is similar. In M1 n (A(n)1 [B(n)1 ), we hoose the element with the least m-number. Consider two ases.C a s e 1. Let an 2 A1 n A(n)1 be the element with the least m-number.Consider the set "2(M1; an)\A(n�1)1 . The following three subases are possible:1.1. "2(M1; a) \ A(n�1)1 = ?;1.2. ��"2(M1; a) \ A(n�1)1 �� = 1;1.3. ��"2(M1; a) \ A(n�1)1 �� � 2.1.1. Consider d; d 0 2 N (n�1)1 suh that ban 2 (d; d 0)/ and (d; d 0)/ \N (n�1)1 = ?, where (� ; �)/ denotes an interval with respet to /. Let tn(ba2n) 2�tn�1(d ); tn�1(d 0)�/ \ bA2 be arbitrary. Sine tn�1 is an L0 -isomorphism, wehave �tn�1(d ); tn�1(d 0)�/ \N (n�1)2 = ?.Let tn(ban) = b� for some � 2 A2. Choose an arbitrary �n 2 "2(M2; �)and put gn(an) = �n.1.2. Let ai 2 A(n�1)1 and let "2(M; an) \ A(n�1)1 = faig, i < n.Assume that ai < an. Let d; d 0 2 N (n�1)1 , let b(ai; an) 2 (d; d 0)/, and let(d; d 0)/ \ N (n�1)1 = ?. In view of Ax (VIII), Ax (IX), and Assertion 39 (iii),suh elements d and d 0 exist. From Assertions 39 (iv)0 and 39 (iv)00 it followsthat b (ai; an) / ban = bai. Hene, we obtain either d 0 / bai = ban or d 0 = bai.By (U2), we have either tn�1(d 0) / tn�1(bai) = bgn�1(ai) = b�i or tn�1(d 0) = bai.By Assertion 39 (iv)00, the set �l(�i) is dense in �tn�1(d ); tn�1(d 0)�/. Let  2�t(d ); t(d 0)�/ \ �l(�i). It is lear that l() = �i. Put tn(ban) := , gn(an) :=r(), and �n := r().The ase in whih an < ai is similar.1.3. Putbn = min/ nb j  = (an; ai) or  = (ai; an); ai 2 A(n�1)1 ; M j= "2(an; ai)o:Consider the following two possible subases:1.3 (a) there exist ak; aj 2 A(n�1)1 suh that b (ak; aj) = bn;1.3 (b) bn 6= b (ak; aj) for all ak; aj 2 A(n�1)1 .1.3 (a) Let ak < aj and let n = (an; ai). Assume that ak <an<aj <ai.Sine bn is minimal, from Ax (VII) we obtainb (ak; an) = b(an; aj) = b (an; ai) = b (ak; aj):Therefore, we may assume that an 2 (ak; aj)/ and (ak; aj) \ A(n�1)1 = ?.



26 B. S.BaizhanovIn a similar way, using Ax (VII) and the fat that bn is minimal, weonlude that the following three subases are possible:(1) �n 2 (ai; aj), (ai; aj) \ A(n�1)1 = ?;(2) an < ai, (an; ai) \ A(n�1)1 = ?;(3) aj < an, (aj ; an) \ A(n�1)1 = ?.(1) Let �i = gn�1(ai) and let �j = gn�1(aj). Find an external �n 2(�i; �j) suh that b(�i; �n) = b(�n; �j) = b(�i; �j). Suh an element existsin view of Ax (VII). Put gn(an) := �n.(2) Find an external �n < �i suh that b(�n; �i) = b(�i; �j) = b(�n; �j).Suh an element exists in view of Ax (VII). Put gn(an) := �n.(3) The reasoning is similar to (2).In eah of the above ases, we have N (n�1)1 = N (n)1 beause bAn = bai,b (an; aj) = b (ai; aj), and, for every as 2 A(n�1)1 , the fat that bn is mini-mal implies either b (an; as) = b (ai; as) or b (as; an) = b (as; aj) (see Asser-tions 39 (i)0 and 39 (i)00).1.3 (b) We onsider the ase in whih an < ai, bn = b (an; ai), i < n, andai 2 A(n�1)1 .Sine bn is minimal, from Assertions 39 (i)0 and 39 (i)00 it follows that8 j < nh�b(aj ; an) = b (aj ; ai) _ b (an; aj) = b (an; ai)�^ (an; ai) \ A(n�1)1 = ?i:Let d; d 0 2 N (n�1)1 , let b (an; ai) 2 (d; d 0)/, and let (d; d 0)/ \N (n�1)1 =?. Suhelements d and d 0 exist beause N (n�1)1 is bounded. Observe that d 0 / bai.Hene, tn�1(d 0) � tn�1(bai) = bgn�1(ai) = b�i. Therefore, �r(�i) is densein �t(d ); t(d 0)�/.Put �n := l(), t�b(an; aj)� = b = b(�n; �i), and g(an) = �n.C a s e 2. Let bn 2 B1 nB(n�1)1 be the element with the least m-number.Take elements d; d 0 2 N (n�1)1 suh that bn 2 (d; d 0)/ and (d; d 0)\N (n�1)1 = ?.Consider the interval �tn�1(d ); tn�1(d 0)�/. Sine tn�1 is a partial L0 -isomor-phism, we have �tn�1(d ); tn�1(d 0)�/ \ N (n�1)1 = ?. Let �n be an arbitraryelement of �t(d ); t(d 0)�/ \ B2. Put tn(bn) = gn(bn) = �n.We now return to the proof of Proposition 38. For eah d 2 N (n�1)1 ande 2 M (n�1)1 , put tn(d ) = tn�1(d ) and gn(e) = gn�1(e). From the de�nitionand the hoie of the elements gn(an), gn(bn), tn�b(an; ai)�, tn(ban), and tn(bn)



De�nability of 1-Types in Weakly o-Minimal Theories 27it follows that gn and tn satisfy (U1){(U3). By (U1), we onlude thatg = [n<! gn : �M1;=; <; P 1�! �M2;=; <; P 1�;t = [n<! tn : �N1;=; /�! �N2;=; /�;g is an L00 -isomorphism, and t is an L0 -isomorphism, where L00 = f=; <; P1g.We prove that g is an L0 -isomorphism. Let a; a0 2 A1 and let b 2 B1.Then M1 j= E(a; a0; b) ^ a < a0() N1 j= b (a; a0) / b() N2 j= t�b (a; a0)� / g(b)() N2 j= b�g(a); g(a0)� / g(b) by (U3)()M2 j= E�g(a); g(a0); g(b)� ^ g(a) < g(a0):Therefore, M1 j= E(a; a; b)()M2 j= E�g(a); g(a); g(b)�. �From the proof of Proposition 38, we immediately obtain the followingAssertion 40. Assume that T0 is onsistent. Let M be a model of T0.Then every irrational ut (B1; B2) in (B;<) is M -de�nable in (M;L0) if andonly if either 9a 2 P (M)(B1 / ba /B2) or 9a1; a2 2 P (M)�B1 / b (a1; a2) /B2�.4.2. We onstrut a model (M;L) suh that L � L0 and T0 `L T :=Th(M;L). Fix the language L := f=; P 1; <2; E3; H2; "2; "4; S4; S3g. PutM :=K [ Q , where Q is the set of rational numbers and K is de�ned by indution.Constrution of K. Let R be the set of real numbers, put I := �C jC � R, C \ Q = ?, C is ountable and dense in R	, and let J be a subsetof I suh that jJ j > ! and, for all C1; C2 2 J , we have C1 \ C2 = ? providedC1 6= C2. LetS := na j a = (: : : ; ab; : : : )b2Q0 ; �8 b 2 Q 0 ; ab 2 Q�; Q 0 � Q ;if Q 0 � Q then 9 e 2 R n Q , 8 b 2 Q�b < e! b 2 Q 0�obe the set of all Q -sequenes of rational numbers and let2<! := n� ��� 9n < !; � = ��(1); : : : ; �(n)�; 8 i (1 � i � n); �(i) 2 f0; 1go:We onstrut K and funtions g and C suh that the following onditionsare satis�ed:(Z1) We have K = Sn<!Kn � S, Kn \Kn+1 = ?, and jKnj = !.



28 B. S.Baizhanov(Z2) The funtion g maps Kn into (R n Q)n+1 . For every d 2 Kn, letg(d ) = �g0(d ); : : : ; gn(d )�. Then g0(d ) > g1(d ) > � � � > gn(d ).(Z3) The funtion C maps K into J . Let C(d) := Cd. Then Cd1 6= Cd2for all d1; d2 2 K with d1 6= d2.Fix an arbitrary element a = (: : : ; ab; : : : )b2Q of S.S t e p 0. Fix an arbitrary element C0 2 J . For every  2 C0, leta = (: : : ; ab ; : : : )b2Q; b< be an element of S suh that ab = ab for all b 2 Qwith b < . Put K0 := fa j  2 C0g, g0(a) := , and g(a) := ().S t e p n + 1. For all d 2 Kn,  2 Cd with  < gn(d ), and � 2 2<!, wede�ne d� := (: : : ; d�b : : : )b2Q; b<g0(d ) as follows:8 b 2 Q"� < b<g0(d )) d�b = db� ^ b< ) d�b = db+ l(� )Xi=1 (�1)� (i)(n+ 2)i!#:We putKn+1 := �d� �� d 2 Kn;  2 Cd;  < gn(d ); � 2 2<!	; g(d� ) := �g(d ); �:Sine jKnj = ��Sd2Kn Cd�� = j2<!j = !, we have jKn+1j = !.Sine jJ j > !, we an de�ne a map C : Kn+1 ! J . Observe that8 ; d 2 K; 8 b 2 Q h�b < g0(d ) = g0() ^ db = b�) 8 b0 2 Q�b < b0 < g0(d )) db0 = b0�i:De�nition of (M;L). Let d; ; e; f; b 2M . The following relations hold:hM j= P 1(d )() d 2 Ki;"M j= d <2 () �fd; g � Q ^ d < � _ (d 2 Q ^  2 K)_ �fd; g � K^ �g0(d ) < g0()_ �g0(d ) = g0() ^ 9 x 2 R n Q^ 9 b0 2 Qhb0 < x < g0(d )^ 8 b 2 Q��x < b < g0(d )) b = db�^ �b0 < b < x) db < b��i���#;



De�nability of 1-Types in Weakly o-Minimal Theories 29�M j= E3(; d; b)() f; dg � K ^ b 2 Q^ �b > max�g0(d ); g0()	 _ �b < g0(d ) = g0() ^ b = db���;hM j= H2(d; b)() d 2 K ^ b 2 Q ^ g0(d ) < bi;hM j= "2(; d)() f; dg � K ^ g0() = g0(d )i;"M j= "4(d; ; e; f)() fd; e; ; fg � K ^ 9n < !gn(d ) = gn() = gn(e) = gn(f) ^ gn+1(d ) 6= gn+1() ^ gn+1(e) 6= gn+1(f);9 x 2 R n Q ; 9 b0 2 Q�b0 < x < gn(d ) ^ 8 b 2 Q��x < b < gn(d )) (b = db ^ eb = fb)�^ �b0 < b < x) (db < b ^ eb < fb)���#;"M j= S41(d; ; e; f)() fd; ; e; fg � K^ g0(d ) = g0() ^ g0(e) = g0(f) ^ 9 b 2 Q (db = b ^ eb 6= fb) ^ 9 x 2 R n Q^ 9 b0 2 Q�b0 < x < g0(d ) ^ 8 b 2 Q��x < b < g0(d )) b = db�^ �b0<b<x) db<b��� ^ 9 x2R n Q^ 9 b0 2 Q�b0 < x < g0(e) ^ 8 b 2 Q��x < b < g0(e)) eb = fb�^ �b < b < x) eb < fb���#;"M j= S32(d; ; f)() fd; ; fg � K ^ g0(d )= g0() ^ �g0(d ) > g0(f)! 9 b 2 Q�b < g0(f) ^ db = b�� ^ 9 x 2 R n Q^ 9 b0 2 Q�b0 < x < g0(d ) ^ 8 b 2 Q��x < b < g0(d )) b = db�^ �b0 < b < x) db < b���#:



30 B. S.BaizhanovObserve that the relations "2, "4, S41 , S32 , and H2 are de�ned in �M;=; P 1;<2; E3�; moreover, (M;L0) satis�es Ax (I){Ax (IX).Let a; a1; a2; a3 2 P (M) and let N be the model onstruted in Proposi-tion 38. Then the following onditions hold:(F1) [M j= S3(a1; a2; a)() N j= b(a1; a2) / ba ℄;(F2) [M j= S4(a; a1; a2; a3)() N j= b (a; a1) / b (a2; a3)℄;(F3) [M j= :"2(a1; a2) ^ a1 < a2 () N j= ba1 < ba2℄.4.3. We prove that T admits quanti�er elimination and is weakly o-min-imal.Proposition 41. The theory T = Th(M;L) is !-ategorial and �nitelyaxiomatizable, admits quanti�er elimination, and is weakly o-minimal.Proof. Let M be a ountable model of T . Consider subsets Ai � P (M)and Bi � :P (M), i = 1; 2, suh that the set (A1 [ B1) is �nite and (A1 [B1; L) �= (A2 [ B2; L). Introdution of H2, "2, "4, S3, and S4 allows us tode�ne �nite L0 -strutures �N(Ai [ Bi);=; /� and an L0 -isomorphismt : �N(A1 [ B1);=; /�! �N(A2 [ B2);=; /�in suh a way that t satis�es (U2) of Proposition 38.Indeed, let a; a1; a2; a3 2 A and let b 2 B. Then ba is de�ned via "2 andb (a; a1) is de�ned via "4, "2, and <2. Moreover, ba and b are /-omparableon using H2; ba and b (a1; a2) are /-omparable on using S3 (see (F1)); b andb (a1; a2) are /-omparable on using S3; b (a; a1) and b (a2; a3) are /-ompa-rable on using S4 (see (F2)); ba1 and ba2 are /-omparable on using "2 and <2(see (F3)).Employing the method of the proof of Proposition 38, we an extendan isomorphism between (A1 [ B1; L) and (A2 [ B2; L) to an automorphismof (M;L). This means that T admits quanti�er elimination [10℄. We provethat T is weakly o-minimal. Sine T is !-ategorial (see Proposition 38) andadmits quanti�er elimination, it suÆes to show that every atomi 1-formulawith parameters is onvex. Observe that every 1-formula de�nable by a �niteset of parameters from (A[B) is a Boolean ombination of (A[B)-de�nableatomi 1-formulas. Atomi 1-formulas of the formx < a(b); a(b) < x; P (x); H(x; b); H(a; y); E(x; a; b); E(a; x; b);E(a1; a2; y); "2(x; a); "2(a; x); "4(x; a1; a2; a3); "4(a1; x; a2; a3);"4(a1; a2; x; a3); "4(a1; a2; a3; x); S3(x; a1; a2); S3(a1; x; a2); S3(a1; a2; x);S4(x; a1; a2; a3); S4(a1; x; a2; a3); S4(a1; a2; x; a3); S4(a1; a2; a3; x)



De�nability of 1-Types in Weakly o-Minimal Theories 31are onvex in view of Ax (I){Ax (IX) and the properties of the linear order /on N . Indeed, let a01, a1, a001 , a2, and a3 be elements of P (M) suh thatM j= S3(a01; a2; a3) ^ S3(a001; a2; a3) ^ a01 < a1 < a001 :By (F1), we have N j= b (a01; a2; a3) / ba3 ^ b (a001; a2) / ba3. Sine a01 < a1 < a001,from the de�nitions of "4 and / it follows thatN j=�b (a01; a2) / b (a1; a2) _ b (a01; a2) = b (a1; a2)�^ �b (a1; a2) / b (a001; a2) _ b (a1; a2) = b (a001; a2)�:Sine / is transitive, we �nd that N j= b (a1; a2) / ba3. By (F1), we haveM j= S3(a1; a2; a3) whih means that S3(x; a2; a3) is onvex. In a similar way,we an verify that all atomi 1-formulas of the form S3 and S4 are onvex.For the remaining atomi 1-formulas, the required assertion is immediate fromde�nitions and axioms. �4.4. An example of a pair of models (Mb; L) � (M;L) suh that (Mb;M)is a D-1-pair but is not a D-pair.Let (M;L) be the model onstruted at Stage 4.2 and let b be an arbitraryelement of Q �i.e., :P (M)�. Let Qb denote the set fx 2 Q j x < bg andlet Kb denote the set Sb0<bH(M; b0). Put Mb = Qb [ Kb. It is easy tosee that (Mb; L) is a submodel of (M;L). Sine Th(M) admits quanti�erelimination, we have (Mb; L) � (M;L).Assertion 42. Let d1; d2 2 P (M) nMb and let d1 6= d2. If there existsn < ! suh that n > 0 and gn(d1) = gn(d2) < b then the type tp(d1d2=Mb) isnot de�nable.Proof. In view of axiom Ax (VII), the formula E(d1; d2; x) is de�ned bysome irrational ut (B1; B2) in (Q ; <) and the onditions gn(d1) = gn(d2) < band B1 < b. Hene, the irrational ut �B1; �B2\fbg�M �[P (Mb)� is not de�n-able in (Mb; L). This is a onsequene of Assertion 40 and ondition (Z3) fromthe onstrution of K (f. Stage 4.2). There exists a unique 1-type p 2 S1(Mb)extending the ut �B1; �B2 \ fbg�M� [ P (Mb)�. In view of Proposition 26,we have p ?w tp(d1=Mb) beause p is irrational while tp(d1=Mb) is quasir-ational. Put q := tp(d2=Mb [ d1) and take p0 2 S1(Mb [ d1) with p � p0.We have d1d2 6?w p. Hene, q 6?w p0 beause p(M) = p0(M). Observe that p0is an irrational type de�ned by a ut. Therefore, p0 is not de�nable. By Propo-sition 22, q is not de�nable either. Thus, tp(d1d2=Mb) is not de�nable. Thismeans that (Mb;M) is not a D-pair. �Observe that (Mb; L) is a quasi-Dedekind omplete model in (M;L). In-deed, we have P (M) n P (Mb) > P (Mb) and :P (M) n :P (Mb) > :P (Mb).Thus, Assertion 42 implies Theorem 37. �
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