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DEFINABILITY OF 1-TYPES IN
WEAKLY o-MINIMAL THEORIES

B. S. Baizhanov *

Abstract

In the article, we prove a criterion for definability of 1-types over sets in weakly
o-minimal theories in terms of left and right convergences of a formula to a type.

Van den Dries proved that every type over the field of reals is definable.
Marker and Steinhorn strengthened his result. They (and, later, Pillay) proved
the following assertion. Let M < N be a pair of models of some o-minimal
theory. If, for each element of N, the type of this element over M is definable
then, for each tuple of elements of IV, the type of this tuple over M is definable.

We construct a weakly o-minimal theory for which the Marker—Steinhorn
theorem fails; i.e., some pair of models of the theory possesses the following
property: For all elements of the larger model, the 1-type over the smaller model
is definable but there exists a tuple of elements of the larger model whose 2-type
over the smaller model is not definable.

Key words and phrases: definable type, weakly o-minimal theory, nonorthogo-
nality of types.

1. Introduction

The article consists of four sections. In Section 1, we present some general
facts about definability of types, introduce the notions of a quasimodel type,
weak and strong convergences of a formula to a type, and establish a connection
between these notions and the well-known notions of stability theory (Propo-
sition 15). In Section 2, we recall the notations, definitions, and available facts
(without proof) about nonorthogonality of 1-types in weakly o-minimal theo-
ries. In Section 3, we prove a criterion for definability of a 1-type over a set in
a model of a weakly o-minimal theory (Theorem 31) in terms of left and right
convergences of a formula to a type (Definition 28).
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Let M be an elementary submodel of N. The pair (M, N) is said to be
a D-1-pair if, for each a € N, the type tp(a/M) of o over M is definable.
The pair (M, N) is said to be a D-pair if, for each finite tuple @ of elements
of N, the type tp(a/M) is definable. We call M a D-1-model if every 1-type
over M is definable and a D-model if every type over M is definable. In [13],
Van den Dries showed that every D-1-model of the theory of a real closed field
is a D-model. In [17], Marker and Steinhorn proved that, for every o-mini-
mal theory, each D-1-pair is a D-pair and, consequently, each D-1-model is
a D-model.

In Section 4, we construct a D-1-pair of models in an w-categorical weakly
o-minimal theory that is not a D-pair (Theorem 37).

Throughout the article, we assume that M is a linearly ordered structure
of a fixed language L.

Definition 1. A partition (A4, B) of M is called a cut if A < B, i.e., for
alla € A and b € B, we have a < b. A cut is said to be rational if either A
possesses a maximal element, or B possesses a minimal element, or one of these
sets is empty. We say that a cut is quasirational if A (and, consequently, B)
is definable (with parameters). A cut that is not quasirational is said to be
irrational. We say that M is Dedekind complete if every cut of M is rational.
We say that M is quasi-Dedekind complete if every cut of M is quasirational.
Let M be an elementary submodel of N. We say that a cut (A, B) of M is
realized in N if A < a < B for some v € N\ M.

Definition 2 [12,20]. A linearly ordered structure M is o-minimal if
every definable (with parameters) subset of M is the union of a finite family
of points in M and intervals (a,b), where a € M U {—o0} and b € M U {occ}.

Observe that every quasirational cut of an o-minimal model is rational.

Definition 3 [17]. Let M be an elementary submodel of N, where N =T
and 7T is an o-minimal theory. The model M is Dedekind complete in N if every
cut of M realized in N is rational.

Definition 4. A subset A of a linearly ordered structure M is convex if
every element of M lying between two elements of A belongs to A. In partic-
ular, the empty set and all singletons are convex. We say that a formula ¢(x)
is conver if the set ¢(M) :={a € M | M | ¢(a)} is convex.

Definition 5 [11,15]. A linearly ordered structure M is said to be weakly
o-minimal if every definable (with parameters) subset of M is the union of
finitely many convex subsets.

A theory T is weakly o-minimal if every model of T is weakly o-minimal.

Observe that each o-minimal model is weakly o-minimal.

Definition 6. Let M be an elementary submodel of N, where N =T and
T is a weakly o-minimal theory. We say that M is quasi-Dedekind complete
in N if no irrational cut of M is realized in N.
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Definition 7. Let A be a set in a model M, where M | T, and
let p € Sp(A) for some n < w. The type p is ¢(Ty, U)-definable, where
¢(Tn, V) € L(Ty), if there exists a formula Ry(7) € L(A) (i.e., an A-definable
formula) such that, for every @ € A, we have ¢(Zp, @) € p if and only if
M ): ng(ﬁ).

Such a formula Ry(7) is called a ¢(Zp, U)-definition of p. We say that
the type p is definable if p is ¢( Ty, U)-definable for every formula ¢(@,, 7) €
L(Zy), n < w.

A tuple 7% € M is said to be ht-definable over A if its type over A is
definable.

In an o-minimal theory, for every cut of M, there exists a unique 1-type
over M extending the cut (see [17, Lemma 2.3]). This type is definable if and
only if the cut is rational. Hence, an o-minimal model M is a D-1-model if
and only if M is Dedekind complete. A pair (M, N) in an o-minimal theory
is a D-1-pair if and only if M is Dedekind complete in N.

Van den Dries studied definable types over a real closed field and proved
the following

Theorem 8 [13]. Every type over (R,+, +,0,1) is definable, where R
stands for the set of reals.

Marker and Steinhorn generalized this result to the case of o-minimal
theories.

Theorem 9 [17]. Let T be an o-minimal theory and let M = T.

(1) The model M is Dedekind complete if and only if every type in
S(M) := U, <, Sn(M) is definable.

(2) Let M be an elementary submodel of N. Then, for every @ € N\ M,
the type tp(@/M) is definable if and only if M is Dedekind complete
in N.

Let T be a weakly o-minimal theory. By Assertion 21, a pair (M, N)
of models in T is a D-1-pair if and only if M is quasi-Dedekind complete
in N, and a model M of T is a D-1-model if and only if M is quasi-Dedekind

complete.

Some general facts about definability of types. The notion of convergence
of a formula to a type is central to this article.

Let T" be a complete theory of language L, let N be a sufficiently saturated
model of T, let A C N, and let @ € N. Let ¢ € S(A) be a nonisolated type
and let ¢(T, 7) be an A-definable formula. We say that the formula ¢(, b),
b € N, divides C C N'!, where [ is the length of the tuple T and C is not
necessarily definable, if ¢(N',0) N C' # @ and =¢(N',b) N C # @. We often

write ¢(N, b) instead of p(N',b).
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We say that an A-definable formula ¢(Z, 7) converges weakly to a type
q(T) € S(A) and write WEC(¢(7, 9),¢(T)) if, for every © € g, there exists
@ € A such that ¢(7, @) divides O(N).

We say that an A-definable formula ¢( T, §) converges strongly to a type
q(7) and write STC (gzﬁ(f, 7), q(f)) if, for every © € ¢, there exists @ € A such
that ¢(N, @) C ©(N). We usually omit T in the notation ¢( ).

Assume that WEC(¢(7, 7), ¢(7)) holds for some ¢ € S(A). Let (T, 7)
be the graph of an A-definable function f(7) (ie., ¢(Z, y) = T = f(7)).
Then STC(¢(7, ¥),¢(Z)) holds. In this case, we say that the values of f
converge to the type q and write STC(f(7),q).

We say that a tuple @ is weakly orthogonal to a type q and write & 1% q
if, for every A-definable formula ¢(Z, ), the formula ¢(Z, @) does not divide
q(N) = n@Eq@(N)' We say that @ is not weakly orthogonal to a type ¢ and
write @ f¥ ¢ if there exists an A-definable formula ¢( T, ) such that ¢( T, @)
divides ¢(V).

Observe that ¢(Z, @) divides ¢(N) if and only if, for every © € g, the for-
mula ¢(Z, @) divides O(N). In this case, for all @ and (3 with tp(a@/A4) =
tp(B/A), we have & L% q <= [ L™ q. We say that a type p € S(A) is weakly
orthogonal to a type ¢ € S(A) and write p L™ ¢ if there exists @ € p(N)
such that @ 1" ¢ or, equivalently (see [21, Definition V. 1.1 (i)]), p(Z) U ¢(7)
defines a complete (l(f) + l(y))—type. Observe that p Y ¢ implies ¢ L% p
[21, Lemma V. 1.1 (i)].

Definition 10. Let ' be a nonisolated and consistent set of A-definable
formulas. We say that I' is a quasimodel set if, for every formula © € I, there
exists @ € A such that N = ©(a).

Assertion 11. Let I' be a nonisolated quasimodel set of formulas over A.
Assume that I' is closed under formation of finite conjunctions. Then I' can
be extended to a quasimodel type over A.

Proof. For every A-definable formula Q(7), at least one of the sets I'(7) U
{Q(g)}, I'(y)U {—Q(y)} is a quasimodel set. [

Let ¢(Z) € S(A), where A C N. We say that ¢ is a strictly definable
(or weakly isolated) type if, for every A-definable formula ¢(Z, 7), there exists
an A-definable formula O(7Z) € ¢ such that

N E37(0(T) A ¢(7, @) = VT (0(7T) = ¢(7T, a))

for every @ € AW,

It is clear that every isolated type is strictly definable. Every strictly de-
finable type ¢ € S(A) is definable; moreover, there exists a formula © € ¢ such
that the A-definable formula ¥y(7) := V7 (O(T) — &(T, 7)) is a ¢( T, 7)-def-
inition of ¢(T).

—~
<
~
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Assertion 12. A type ¢ € S(A) is strictly definable if and only if, for
every formula ¢(7, 7) of language L, we have “-WEC(¢(Z, 7),q).

Assertion 13. Let g € S(A).

(1) If there is an A-definable formula ¢(T, ) such that WEC(¢(T, 7),q)
holds then there exists a quasimodel type r € S(A) such that, for every
@ € r(N), the formula ¢(zx, @) divides q¢(N), i.e., r L* gq.

(2) If r L q for some quasimodel type r € S(A) then WEC(¢(7, 7),q)
holds for some A-definable formula ¢(T, 7).

Proof. (1) Denote by I' the following set of A-definable formulas:

{K(©)(7) |0 €q, K(©)(7) = 3[6(7, 7) AO()] ATa[~0(7, ) AO(7)] }.

It is clear that I is a quasimodel set; moreover, I is closed under formation
of finite conjunctions. By Assertion 11, there exists a quasimodel type r €
S(A) extending I'. Hence, for every 7 € r(N) C I'(N), the formula ¢(z, @)
divides ¢(V). Therefore, ¥ " ¢ and, consequently, r /" g.

(2) Let @ € r(N) and let @ L* ¢. Then, for some formula ¢(T, 7),
the formula ¢(7, @) divides ¢(NN). Hence, ¢(T, @) divides O(N) for every
©(Z) € ¢q. This means that N | K(0)(@). Therefore, we have K(0©)(7) € r.
Since r is a quasimodel type, there exists @ € A such that N = K(©)(a).
Thus, WEC(¢(Z, 7),¢) holds. O

Assertion 14. Let r,q € S(A). Assume that r is a quasimodel type
and H(Z,y) is an A-definable formula. If there exists 7 € r(N) such that
H(N, %) C q(N) then STC(H(Z, y),q) holds.

Proof. We have H(N,7%) C q(N) if and only if H(N,7) C ©(N) for
every formula © € ¢. The latter condition is equivalent to the fact that
N EVZ(H(7,7) — O(7)) for every formula © € ¢. Since VZ(H(Z, ) —
@(a_v)) € r and r is a quasimodel type, we conclude that STC (H(f, y),q)
holds. [

For a weakly o-minimal theory, the notion of weak convergence of a for-
mula to a 1-type transforms into the notions of left, right, and two-sided
convergences (cf. Definition 28 and Lemma 36). These notions are used in
the formulations of the criterion for definability of a 1-type over an arbitrary
set (Theorem 31) and of its corollary presenting the criterion for definability
of a 1-type over the union of a model and a finite sequence that is ht-definable
over the model (Proposition 35).

Remark. The notion of convergence of a formula to a nonisolated type
is implicitly used in proofs of theorems about ordered models (see [4,6,17,19])
and models of stable theories (see [1,3,8,9,14,21]). The notion of a quasimodel
type is implicitly used in [2,4]. To conclude the motivation for introducing
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these notions, we present a simple fact which explains the nature of convergence
of a formula to a type in terms of well-known notions of the stability theory.

Proposition 15. Let T be a stable theory, let N be a large saturated
model of T, let A C N, let ¢ € S(A), and let ¢(T,y) be an A-definable
formula. Then the following assertions hold:

(1) If q is a quasimodel type then q is stationary.

(2) IfWEC(¢(T, y),q) holds then there exists a quasimodel (stationary)

type r € S(A) such that r L q.

(3) Let M be an elementary submodel of N. Assume that p € S(N)

and p does not fork over M. Then py = {0(Z) € p | 0(%) is

T
an (M U @)-definable formula} is a quasimodel type for every @ €
N\ M.
(4) Let @ be a tuple in N \ A, let ¢ = tp(@/A), and let the formula
(T, @) be divided over A (see [21, Definition V.1.3]). Then, for every
p € S(A) with p(N) N ¢(N, @) # &, we have p(N) N —=p(N, @) # &,
i.e., @ f" p and, consequently, q /" p.

Proof. (1) By [21, Definition III. 1.7, Definition III.4.1, Lemma III. 4.18,
Corollary III. 2.9 (ii)], we conclude that ¢ is a stationary type provided, for
every A-definable equivalence relation E( T, Z) with finitely many cosets, there
exists @ € A such that E(7, @) € q.

Let E(T, y) be an A-definable equivalence relation with finitely many
cosets. Put ¢o(7Z) := (I2)E(T, Z) € q. Since ¢ is a quasimodel type, there
exists @9 € A such that N |= (32)E(Z, ap). If E(7T, ap) ¢ ¢q then ¢1(7) :=
3zZ[E(m, Z) A—E(T, ap)] is an A-definable formula and ¢; € ¢. Consider @; €
Assuch that N |= ¢1(@1). Put ¢;(7) := IZ[E(7, 2)A\,;; ~E(T, ;)] This s
an A-definable formula; moreover, ¢; € ¢. Then N |= /\j;én<i -E(aj, a,). If,
for every i < w, we have ¢;(T) ¢ ¢ then we arrive at a contradiction, because
there exist only finitely many cosets modulo E.

Thus, if E(Z, Z) is an A-definable equivalence relation with finitely many
cosets then ¢(IN) is a subset of one of A-definable cosets modulo E.

(2) By [8, p. 143], two types p, ¢ € S(A) are almost orthogonal, i.e., p 1% g,
if arbitrary tuples @ € p(N) and 3 € ¢(N) are A-independent; moreover,
if p L? r and at least one of these types is stationary then p L% r. In view
of Assertion 13, there exists a quasimodel type r € S(A) such that p L% r.
Since r is stationary, Proposition 15 (1) implies p £ r.

(3) From [21, Theorem III.0.1.(4), Corollary III.4.10] it follows that
a type p € S(INV) does not fork over M, where M < N, if and only if p is
finitely satisfiable in M (recall that p is finitely satisfiable in M if, for every
formula ¢ € p, there exists @ € M such that N = ¢(@)). Consider an arbitrary
(M U @)-definable formula 6(Z, @) € p. Since p is finitely satisfiable in M,
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there exists @ € M such that N |= 0(@, @). This means that p; is a quasimodel
type.

(4) Let 7 be a tuple in p(N) N ¢(N, @). The definition of division over A
implies that there exist n < w and @p, @2,..., @, € ¢(N) such that N |
-37(¢(T, @) A Ni<i<n (T, @)). Then, for some @;, we have 7 ¢ ¢(N, @;).
Since tp(a/A) = tp(@;/A) = ¢ and 7 € p(N), p € S(A), there exists 7; €
p(N) such that 7; ¢ ¢(N, @). This finishes the proof of Proposition 15 (4). O

2. Notations, definitions, and facts

In the sequel, we assume that M and N are models of a weakly o-minimal
theory T such that M < N and N is sufficiently saturated. Given A C N, put

At ={r € N|Vac A, z>al,
AT :={z e N|Vae€ A z<a}.

For an arbitrary tuple (y1,. .., yn), we use the abbreviation 3. Let I(7) denote
the length of such a tuple, i.e., [(7) = n. We often write @ € A instead of
ac AU®,

Let B be a set in a model N. By a B-definable formula we mean
the formula ¢( T, b) obtained from an L-formula ¢(Z, ) by substituting a tu-
ple of parameters b € B(® . A subset X ¢ M! is said to be B-definable
if X = ¢(MLb) = {@ae M | M [ ¢(ab)} for some B-definable for-
mula ¢(Z,b) with [(Z) = . We sometimes write “L(B)-formula” instead of
“B-definable formula” Let B be an arbitrary (not necessarily definable) con-
vex set. We say that a formula U(z) splits B if U(N) and ~U(N) are convex
sets, U(N) N B # @, and ~U(N)N B # @. Given A C M, let S,(A) de-
note the set of n-types over A and let S(A) = U, ., Sn(A). We often write

n<w ~N
first-order formulas as relations between definable sets. For example,

v < o(N) =Vy(sly) > = <y);
x € (1, 02) = 1 < x < o
$(N)NO(N) # @ = N = 3z(b(x) A (x));
S(N) < O(N)* = N = Vt<Vy(9(y) —y<t) > Vr(s(z) 2z < t))

We say that convex sets C' and D are separated by an element a (a-sepa-
rated) if C < a < D or D <a < C. A family of convex sets is F-separated if
the sets of this family are pairwise separated by elements of F.

Assertion 16 [2,6]. A theory T is weakly o-minimal if and only if, for
every formula ¢(x, ), there exists ny < w such that, for every M = T and
every @ € M, the set ¢(M, @) is the union of less than ny convex a-definable
—¢(M, a)-separated subsets.
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Remark 17. The intersection of a family of convex subsets of an ar-
bitrary linearly ordered set is convex. By Assertion 16, for every p € S;1(A),
where A C M = T, the set p(M) is convex. If the model M is |A|"-satu-
rated and the type p is nonalgebraic then p(M) possesses neither minimal nor
maximal elements.

Assertion 16 and Remark 17 yield

Remark 18. If there exists an @-definable formula dividing a convex
set B then there exists an @-definable formula splitting B.

Assertion 19. Let p € S1(A), where A is a set in a model M of T.
The type p is definable if and only if p is ¢(z, y)-definable for each for-
mula ¢(x, §) such that, for every b € M, the set ¢p(M,b) is convex.

Definition 20 [4]. Let p € Si(A), where A is a set in a model M
of T. We say that p is right quasirational if there exists an A-definable convex
formula Uy,(x) € p such that, for every sufficiently saturated model N > M,
we have U,(N)t = p(N)*. We say that p is left quasirational if there exists
an A-definable convex formula U,(z) € p such that, for every sufficiently
saturated model N > M, we have U,(N)~ = p(N)~. If a type p is both
right and left quasirational then p is said to be isolated. A nonisolated 1-type
is quasirational if it is either right or left quasirational. If a 1-type p is neither
quasirational nor isolated then p is said to be irrational.

Let p be an n-type over A and let F' C p. We say that p is defined by F
(or F' defines p) if, for every formula ¢(Z) € p, there exists §( T) € F such that
N EVZ(0(T) = ¢(7)).

We say that a 1-type p € S1(AUB) is defined by a quasirational cut (A, B)
if p is defined by either {a < 2 AU(z) | a € A} or {z <bA-U(z) | b€
B}, where U(z) is an (A U B)-definable formula such that A C U(N) and
UNN)NB=2g.

Assertion 21 [4,6]. Let p € S1(M), where M |=T. Then

(1) p is not definable if and only if p is irrational if and only if p is defined
by an irrational cut in M,

(2) p is definable if and only if p is quasirational if and only if p is defined
by a quasirational cut in M.

Assertion 21 generalizes a similar fact about o-minimal theories which was
proven by Marker and Steinhorn [17, Lemma 2.3]. Observe that, for o-minimal
theories, definable 1-types over models are defined by rational cuts.

Proposition 22 [4]. Let p,r € S1(A), where A is a set in a model N
of T. Assume that 7 € N\ A.

(1) Ifp J* r then r S p.

(2) If 7 is ht-definable over A and 7 /™ p then p is definable.

(3) Ifp L™ r then p is definable if and only if r is definable.
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Proof. (1) Recall that p LY r if and only if p(z) Ur(y) is a complete
2-type.

(2) Let K(z, y) be an A-definable formula such that K (N, 7)Np(N) # @
and " K (N, 7) N p(N) # @. By Remark 18, there exists an (A U 7)-definable
convex formula H (z, 7) such that H(N, 7) < =H (N, 7); moreover, there exist
B1, B2 € p(N) with 81 < B2, f1 € H(N, 7), and H(N, 7) < Po.

Let (x, Z) be an arbitrary formula. In view of Assertion 19, we may
assume that, for every b € N, the formula 6(z,b) is convex. For every @ €

Al?) | we have

9(1‘, ﬁ) €Ep<— (51;52) - p(N) - H(Na E)
<~ N ): V:E(x € (51,52) — 9(:5, 6))

— N ): Elxl,xz(H(xl, 7) /\—|H($2, 7) Nx1 < X9
AV z(z € (z1,12) — 0(x, 6))).

Let Q(0)(7, @) denote the last formula. By Definition 7, there exists an A-de-
finable formula R g)(Z) such that

N | Q(0)(7, a)==N |= Ry ().
Put pg(Z) := Rge)(Z). We obtain
0, ) € p = N pg(a).

(3) If p £* r then o L™ 1 for every o € p(N). Hence, (3) follows from (1)
and (2). O

We present an easy consequence of the definitions of a type and a saturated
model.

Assertion 23. Let M be a model of a first-order theory and let M be
|A|* -saturated for some A C M.

(i) Let there exist n,m <w, an A-definable formula (T1,..., Ty), and
p € Sn(A), where [(T1) = --+ = [(T,) = m, such that M = ¢(ay,..., ap)
for every ay,..., Gy, € p(M™). Then there exists 0(T) € p such that M =
VT, ..., VE (AO(T) = (T, ..., Tn)).

(ii) If p € Sm(A), where m < w, is a nonisolated type then the set p(M™)
is not M -definable.

(iii) Let p,r € S(A), let @ € p(M), let 31, By € r(M), and let ¢(T, y) be
an A-definable formula such that M = ¢(3,, @) A ~¢(By, @). Then, for every
B € r(M), there exist ay, as € p(M) such that M = ¢(B, a1) A ~¢(B, a).
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Definition 24. A formula K (x,y) increases monotonically in y on a con-
vex set B if the following condition holds:

Vb, Vb [(bl €EBAby € BAb < bg) — K(N,bl) < K(N,b2)+].

Monotone decreasing formulas are defined in a similar way.

Theorem 25 [4-6]. If p(y) LY q(z) then there exists an A-definable
formula K (x,y) satisfying the following conditions:

(1) K(z,y) is monotone in y on some O(N), where O(y) € p, and is

monotone in x on some p(N), where u(x) € g;
(2) K(x,a) splits ¢(N) and K(B,y) splits p(N) for all &« € p(N) and
B € q(N).

In the case of an o-minimal theory, the formula K (z,y) of Theorem 25 is
the graph of a suitable monotone function (see [2, 16, 18]).

Observe that Theorem 25 is valid in a more general case, namely, if A is
a subset of a weakly o-minimal model of finite depth whose theory need not
be weakly o-minimal [7].

Proposition 26 [4-6]. Let p,q € S1(A) and let p /" q. Then the fol-
lowing hold:
(1) p is strictly definable if and only if q is strictly definable;
(2) p is irrational if and only if ¢ is irrational,
(3) p is quasirational if and only if q is quasirational;

(4) L™ is an equivalence relation on Si(A).

Proposition 26 generalizes a similar fact about 1-types over o-minimal
models which was proven by Marker in [16].

3. Definability of 1-types
The main results of this section are the criterion for undefinability of
a 1-type (Theorem 31) and one of its versions (Proposition 35).
Assertion 27. Every quasirational type p € S1(A) is definable.

Proof. For definiteness, assume that p is right quasirational. The case in
which p is left quasirational is similar. Let Upy(z) be an A-definable formula

such that Up(z) € p and Up(N)*t = p(N)*. Let (z, §) be an arbitrary
A-definable (I(7) + 1)-formula. Consider the A-definable I(7)-formula
Ou,(7) := Hx((cp(x, ) AUp(x)) AVz(z < 2 <Up(N)* = (2, y)))

It is clear that, for every @ € A'Y), we have N | 0,(@) <= ¢(z,a) € p. O
Let ¢ € S1(A), where A C N. We introduce the notations:

L(q) := {G(z) | G(x) is an A-definable formula such that G(N) < ¢(N)},
R(q) := {D(z) | D(x)is an A-definable formula such that ¢(N) < D(N)}.
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Definition 28. Let ¢ € Si(A), where A C N. Assume that (%) and
H(z, y) are A-definable formulas. Put X := H(Nl(y)) N ALY,

We say that the condition of left convergence of H(x, 7) to the type ¢ on
the set X or 6(7) holds and write

LC(H(x, 7), X,q) or LC(H(x,7),0(7),q)
if the following is satisfied:
VG(z) € L(g), 3a€ X N E3z2(G(N) <z < H(N,a)"), H(N, a) < q(N).

We say that the condition of right convergence of H(z, i) to ¢ on X or ()
holds and write RC(H (z, 7), X, q) or RC(H(z, 7),0(7),q) if the following is
satisfied:

VD(z) € L(q), 3a€ X N E3z(H(N, a) <z < D(N)), ¢(N) < H(N, a)*.

We say that the condition of two-sided convergence of H(z, 3) to ¢ on X or
0(7) holds and write C (H(x, 7), X, q) orC (H(x, 7),0(7), q) ifboth LC(H, X, q)
and RC(H, X, q) are satisfied.

In the definitions of left and right convergences of H(z, 7), we have used
the right bound of the formula H(x,a), a € A. It is possible to define
convergence using the left bound of the formula but this will not be done
in the present article.

Observe that in fact the articles [17,19] dealt with (left) convergence of
the values of a function to a type q.

Remark 29. Let ¢ € S1(A). If ¢ is right quasirational then, for
all A-definable formulas H(z, y) and 6(7y), we have —=LC(H,#,q). If q is
left quasirational then, for all A-definable formulas H(z, ) and 6(7), we
have =RC(H, 6, q).

In view of Remark 29, if C(H, 6, q) holds for L(A)-formulas H(z, ) and
0(y) and for a 1-type ¢ € S1(A) then ¢ must be irrational. In view of
Assertion 27, the question on undefinability of a 1-type should be considered
for irrational types only.

Remark 30. Let H(z,y) and 0(7y) be A-definable formulas such that
C(H, 0, q) holds for some g € S1(A). Then, for every A-definable formula 6; (%),
we have

(i) if LC(H,61,q) and =RC(H, 01, q) hold then RC (H, 6(y) A —01(7), q)

holds;

(i) if =Vy(0(y) — 61(7)) then C(H, 61, q) holds.
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Theorem 31. Let A be a set in a model M of a weakly o-minimal
theory T'. Let q be an irrational 1-type over A. Then the following conditions
are equivalent:

(i) ¢ is not definable;

(ii) there exists an A-definable formula H(x, j) such that, for every A-de-

finable formula 0(7), we have

C(H(z, 7),0(7),q) v C(H(x, 7),~0(7), q)-

Proof. The condition “q is irrational” means that there is no greatest
formula in L(¢) and there is no least formula in R(q). We briefly outline
the proof. The crucial point in the proof of necessity is the observation that at
least one of the bounds (either left or right) for the formula with undefinability
of the type approximates both L(¢) and R(¢) on using constants in A. To prove
sufficiency, we start with a formula approximating both L(¢) and R(q) and
construct a formula proving that ¢ is not definable.

Necessity. Let o(z, 7) be an A-formula such that ¢ is not p(z, 7)-de-
finable. In view of Assertion 19, we may assume that, for every b € M,
the set (z, b) is convex. Put

Hl(x; ?) =x < QO(N, y), Hz(ff, g) = (p(l’, g)

Then H;(z, y), i = 1,2, are A-definable formulas.
Let 6(7) be an arbitrary A-formula.

Remark 32. Given j = 1,2, we have ~RC(H}, 0, ¢) if and only if there
exists D;(x) € R(q) such that

va e o(N'(M) 0 Al [N):Hx( (N,6)<x<Dj(N))<:>Hj(N,E)<q(N)].

Remark 33. For j = 1,2, we have ~LC(H;,0,q) if and only if there
exists Gj(z) € L(q) such that

va € o(N(M)n Al [N)zﬂx( J(N)<a<Hj(N, )+)<:>q(N)<Hj(N,a)+].

We claim that at least one of the formulas Hy, Hs satisfies (ii). Assume
the contrary, i.e., let there exist A-formulas 0;(7y) and 02(7%) such that

-C(Hy,61,q), —~C(Hi,—b1,q), —C(Hz,02,q), —~C(Hz,—0,q).
From the definition of two-sided convergence, we obtain
(-LC(Hu,61,q) vV ~RC(Hi,b1,q))
A (-LC(H1,—b1,q) V =RC(Hz, 01, q))
A (—|LC(H2, 62, q) V ~RC(H3, 02, q))
A (WLC(Hy, =3, q) V ~RC(Hy, 05, q)).
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For the conditions ~RC(H;, 6;, ¢) and ~RC(H;, ~0;,q), i = 1,2, let D; 1(x)
and D; 2 (x) denote the A-formulas whose existence is mentioned in Remark 32.
For the conditions ~LC(H;, 6;, ¢) and ~LC(H;, —0;,q), i = 1,2, let G; 1(x)
and G 2(z) denote the A-formulas whose existence is mentioned in Remark 33.
We introduce the notations:

( Hx(Hl(N, y)<x<D171(N)) ifﬂRC(Hl,Hl,q),
1 (y) == q H(N,9) <Gri(N)* if RC(Hy, 01, q)

L and —LC(Hjy, 61, q);

( Hx(Hl(N, y) <$<D172(N)) if ﬁRC(Hl,—ﬂl,q),
p12(y) =4 H(N,g) < G12(N)* if RC(Hy, 01, q)

L and —~LC(Hy, =01, q);

((D21(N)™ < Hy(N, 5)* if “RC(Hy, 02, q),
p2,(7) == Jx(G21(N) <z < H(N,y)*) if RC(Ha, 03, q)

{ and —=LC(Hz, 02, q);

(( D2a(N)~ < Ha(N, )" if “RC(Ha, =2, q),
p22(7) == 32(G22(N) <z < H(N,7)*) if RC(Ha,~0a,q)

L and _‘LC(H2,_|92,q).

It is clear that 1111, pt1,2, 12,1, and pig o are A-formulas. Consider the A-for-
mula

w(7) = 3wz, ) A [01(7) = (D)) A [201(7) = 1,2(7)]
A 102(7) = p21 (D)) A [H02(7) — p22(7)].

In view of Remarks 32 and 33, we have

va e A'D) [N | p(a@) <= Hi(N, a) < q(N) < Hy(N, a)*].
Recall that
p(r,@) € ¢ == q(N) C (N, @) <= ¢(N,a)” < q(N) < p(N,a)"

<= Hi(N,a) < q¢(N) < Hy(N, a)*".

Hence, Va[N k= u(a) <= ¢(z, @) € g|. Therefore, q is ¢(z, 7)-definable,

which is a contradiction.

Sufficiency. Let H(z, y) be an A-formula satisfying (ii). Take an ar-
bitrary A-formula D(x) such that ¢(N) < D(N).

Put p(z,y) .= H(N,7) < x < D(N). We show that the type ¢ is not
¢(x, 7)-definable.
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Assume that there exists an A-formula p(7) such that
[N (@) <= ¢(z,a) € q] (+)
for every @ € ANY). Since
[N b= (@) = (o, @) € g = H(N, @) < g(V)]

for every @ € A¥) we obtain the following condition:

(1) LC(H, p, q), "RC(H, p, q).

Consider an arbitrary formula G € L(¢q). By Remark 33, we have
-LC(H, —p,q). In view of condition (ii) of the theorem, condition (1) above,
and Remark 30 (i), we obtain the following condition:

(2) RC(H, ~p, q), ~LC(H, =y, q).

If both (1) and (2) hold then

_'C(Hv K, q) A _|C(H, Y, Q)a

which contradicts the choice of H(x, 7). Thus, condition (%) cannot hold;
hence, the type ¢ is not o(z, y)-definable.

Assertion 34*. Let @ be a tuple in N \ M, let tp(a/M) be definable,
and let LC(H (z, §, @), (¥, @), ¢) hold. Then there exists an M -formula ju(7)
such that L.C (H(x, 7, @), (), q) holds.

Proof. By the definition of tp(@/M), there exists an M-formula pg(7)
such that Va € M [N | O(a, @) <= M &= pe(a)]. To check convergence,
it suffices to consider tuples of elements of M only. [

Proposition 35. Let @ be a tuple in N \ M, let tp(@/M) be definable,
let € N\ (MU @), and let q :== tp(5/M U @) be an irrational type that is
not strictly definable. Then the following conditions are equivalent:

(i) there exist (M U @)-definable formulas H (z, ) and ©(7y) such that

either LC(H,©, q), -RC(H,©,q) or-LC(H, 0, q), RC(H, O, q) hold,

(ii) the type q is definable.

Proof. (i) = (ii). Assume that LC(H,©,q) and —RC(H,O,q) hold.
The case in which —LC(H, 0, q) and RC(H, O, q) hold is similar. We may
assume (see Assertion 34) that ©(7) is an M-formula. Put X := ©(MF) and
7 = O(N*). We have H(N, @, @) < q(N) for every @ € X. Let p(z, 7, @) be
an (M U @)-formula such that, for every 7 € N, the set ¢(N, 7, @) is convex.
Put

S1(
Sa(

N
<

1 a) = SO(Na z, a)_ < H(Na gla a)-1- A 01(?1);
2 a) = SO(Na z, a) < H(Na gZa a)-1- A 01(?2)

N
<2

* For the case of o-minimal theories, this assertion was proven in [17].



Definability of 1-Types in Weakly o-Minimal Theories 15

Since tp(@/M) is definable, there are M -formulas Q1(Z, 7;) and Q2( Z, ¥»)
such that B B
N ): 51(5, b1, a) — M ): Ql(ﬁ, bl),

N k= Sy(@, bo, @) <= M = Q2(@, by)
for all @, b1, by € M. Put

Q(Z) =31 Q1(Z, T1) A ~372Q2(7Z, Ja).

We have 1%
vae M'® [ME Q(a) < ¢(z,a, a) € q].

Indeed, M = Q(@) implies that there exists by € M such that
M Q1(a, by) and M | VY7,=Q2(a, 7).

It remains to notice that the following equivalences are valid:

[M ): Ql(aa 51) — (p(N, a, a)_ < q(N)],
[M ): VnyQ(E, y2) — Q(N) < QO(Na a, a)+]'
Implication (i) = (ii) is proven.

(ii) = (i). In the proof of this implication, we will need the first part of
the following

Lemma 36. Let ¢ € S1(A), where A is a set in a model N, and let
é(x, y) be a parameter-free formula.

(a) If WEC(¢(z, ¥),q) holds then
LC(H(x,9), § = ¥,q) and/or RC(H(x,9), 7= ¥.q),

where H (z, ) is either ¢(z, §) or ¢(x, J)~ = —¢(x, J)Ax < ¢(N, 7).
(b) If STC (ng(x, y),q) holds then

LC(¢(x, )", ¥=¥,q) and RC(¢(x, ), .= 7,q).

Proof. (a) For every L-formula ¢(z, 77), we define formulas ¢;, i < w, by
induction as follows:

bo(x, §) = d(z, ) AV [(¢(x1, 7) A x1 <x) —>Vz(x1 <z<z — ¢z, g))],

biy1(x, 7) = o(z, ) AN di(N, J) <x AV [(¢($1a 7 A¢i(N,7) <21 < z)
—Vz(z1 <z <z — ¢(z, y))]

By this definition, for every i < w and b € N, the set ¢(N, b) is convex (notice
that the empty set is convex by definition).
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In view of Assertion 16, we have

oz, 7) = \/ iz, 7)

i<n¢

for some ng < w. We show that validity of WEC (qb(x, 7), q) yields existence
of i < ng such that WEC (gzﬁi(x, y),q) holds. Assume the contrary, i.e., let
-WEC (¢i(x, y),q) hold for every i < ng. Then there exist L(A)-formulas
pi(x) € q, i < ng, such that, for each b e Aand each i < ng, we have either
¢i(N, b)Npi(N) = @ or p;(N) C =¢;(N, b). Put pu(x) := A pi(x). It is obvious
that u(z) € q. Fix an arbitrary tuple b € A. Assume that ¢;(N, b)Nu;(N) = @

for all 7 < ng. Since u(N) C pi(N), we have ¢;(N, b) N pu(N) = &. Hence,

$(N, b) N u(N) = J(¢i(N, ) N (V) = @

1

and, consequently, ¢(xz, b) does not divide u(N).
If 11i(N) C ¢;(N, b) for some i < ng then

and, consequently, ¢(z, b) does not divide p(N). In both cases, ¢(z, b) does
not divide p(N), which contradicts validity of WEC (qb(x, 7), q) because b € A
is arbitrary.

Thus, we assume in the sequel that the formula ¢(x, 7) in the condition
WEC (d)(x, 7), q) possesses the following additional property: ¢(z, b) is convex
for every b € N.

Consider a convex L(A)-formula u(z) such that u(z) € q. The latter

means that ¢(IN) C u(N). Since ¢ is an irrational 1-type, there exist v,y €
p(N) such that

71 < q(N) < 2.

Hence, ;(N) falls into three undefinable (by formulas) convex subsets, u(N) =
X1 () U (V) U Xs(u); moreover,

Xi(p) < q(N) < Xo(p).

Since WEC (d)(x, y),q) holds, there exists b € A such that ¢(z, b) divides
p(N). Since g is irrational, neither left nor right bound of the convex set ¢(N)

is definable by formulas. Hence, the following assertion holds.
(¥) If a convex formula ¢(z, b) divides u(N) then ¢(x, b) cannot pass
along the bounds of ¢(/NV) and must divide at least one of the convex

sets :U/(N)a Xl(lu’)a X2(:U’)'
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Assume that ¢(z, b) divides X1(u). Since the definable set ¢(N, b) and
undefinable set X7(p) are convex, we have either ¢(N, b) < q(N) or ¢(N) C
¢(N, b). If, for every convex L(A)-formula pu(z) € q, there exists b € A such
that ¢(z, b) divides X1(u) and ¢(N, b) < ¢(N) then we obtain LC(¢(z, 7),
7 = ¥,q). If, for every convex L(A)-formula yi(z) € ¢, there exists b € A such
that ¢(z, b) divides Xi(u) and ¢(N) C ¢(N, b) then we obtain LC(¢(z, 7)™,
Y= Y,q), where ¢(z, 7)~ Fﬁﬂwa$<¢( v).

If, for some convex L(A)-formula u(r) € ¢ and every b € A such
that ¢(z, b) divides Xi(u), we have —(q(N) C ¢(V, b)) and, consequently,
¢(N, b) < q(N) then, for every convex L(A)-formula p/(x) € ¢ with p/(N) C
1(N) and every b € A such that ¢(z, b) divides X1(y'), we have =(g(N) C
o(N, 5)) and, consequently, ¢(N, b) < ¢(N). In other words,

(¥x) if, for every convex L(A)-formula p(x) € ¢, there exists b € A such
that ¢(z, b) divides Xi(p) then =LC(¢(z, 7)™, ¥ = ¥,q) implies
LC(é(x, 9), ¥ = 7,4)-

In a similar way, we obtain the following assertion.

(xx)" If, for every convex L(A)-formula p(x) € ¢, there exists b € A such
that ¢(z, b) divides Xs(u) then =RC(¢(z, )™, ¥ = 7,q) implies
RC(QS(*T) y)a y=1, Q)-

Assume that there exists a convex L(A)-formula u(x) € ¢ such that
¢(z, b) does not divide Xo(u) for any b € A. Then, for every b € A such
that ¢(x, b) divides u(N), the formula ¢(x, b) divides X7 (y).

Moreover, let 1/ () € g be a convex L(A)-formula such that p/(N) C u(N)

and let b € A be such that ¢(z, b) divides p/(N). Then the formula ¢(x, b)
does not divide Xo(p') but divides Xy (u').

Let both conditions =RC (gzﬁ(x, 7),7=7, q) and —RC (gzﬁ(x, 7, y=T1, q)
hold. Then there exists a convex formula u(z) € ¢ such that, for any b € A,
if ¢(z, b) divides (V) then ¢(x, b) does not divide Xo(x) but divides X1 (u).
The latter, in view of WEC (d)(x, 7), q), (%), and (**), means that the following
hold:

(%) LC(é(,7), 7= 7,q) and/or LC(é(z, 7)™, T = 7.q)-

From (%), (s*), and (* % %) we readily obtain assertion (a) of Lemma 36.

The proof of assertion (b) is similar. [

Since the irrational type ¢ is not strictly definable, from Lemma 36 (a)
it follows that LC(H(w, 7,7 = T, q) and/or RC(H(x, 7,7 = 7, q) hold.
If the formula ¥ = 7 does not satisfy requirements on ©(7) in condition (i)
then C(H (z, J), y=7¥,q) must hold. Since g is a definable type, we apply
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Theorem 31 and find the required L(M U @)-formula ©(7) for the formula
H(z, 7). O

4. An example of a D-1-pair of models
in a weakly o-minimal theory which is not a D-pair

Theorem 37. There exists a weakly o-minimal theory T' with two models
My < M such that the type tp(@/My) is not definable for some tuple @ € M,
while the model My is quasi-Dedekind complete in M.

Proof. 'We simultaneously construct a model (M, Ly) and prove that
the elementary theory Th(M, Lg) of (M, L) is weakly o-minimal. We describe
this theory in terms of a finite set of axioms 7y and prove that Ty gives rise
to a consistent, complete, and weakly o-minimal theory. Our proof falls into
the following stages:

4.1. The set Ty of axioms. If T} is a consistent set then the theory derived
from T} is w-categorical.

4.2. Construction of a model (M, L), LD Ly, with Ty 7, T := Th(M, L).

4.3. A proof of the facts that 7" admits quantifier elimination and is weakly
o-minimal.

4.4. An example of a pair of models (My, L) < (M, L) such that (M, M)
is a D-1-pair but is not a D-pair.

4.1. Set Ty of axioms. IfTy is a consistent set then the theory derived
from Ty is wg-categorical.

Let Tp stand for the set of axioms Ax (I)-Ax (IX) of language Lo :=
{=, P! < E3}.

Ax (I). The relation < is a dense linear order without endpoints.

Ax (IT). The following sentence holds:

VxVy(((P(x) A=P(y)) =y < x) AV 2V Y y(P(2) —>—|E(x,y,z))>.

Ax (III). For every z, if =P (z) then E(x,y, z) is an equivalence relation
(with respect to x and y) on P, each coset modulo E, is a nonempty convex
set without endpoints, the induced order on the set of cosets modulo F, is
dense, there exists a minimal coset modulo E, but there is no maximal coset
modulo E,.

Ax (IV). For all z, t, and z, if P(z) N —=P(z) A=P(t) A z < t holds then
each coset modulo FE, from x is contained in some coset modulo E; from x,
each coset modulo Ey (except for the minimal coset) contains neither minimal
nor maximal cosets modulo E,, and the minimal coset modulo E; contains
the minimal coset modulo E, but contains no maximal cosets modulo E,.
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We denote

Hz(x, z) := P(x) A =P(2) /\Vy((P(y) Ny < x) — E(z,vy, z)),
e (x,y) = 32z(—P(z) A E(z,y,2) A —=H(z,2)).

The formula H?(z, z) says that z is contained in the minimal coset modulo E..
The formula £%(z,y) says that x and y do not belong to the minimal coset
modulo E, for some z € =P.

Ax (V). The following sentence holds:

‘v’x‘v’y(sz(x,y) < Vz(H(z,2) ¢ H(y,z)))

Axioms Ax (V) and Ax (IV) mean that £2 is an equivalence relation on P.
Moreover, each coset modulo €2 is an infinite convex set and the induced
order on the set of cosets modulo £2 is a dense linear order without end-
points. These assertions can be written as first-order formulas and derived
from Ax (I)-Ax (V).

Ax (VI). The following sentences hold:
(i) VxVy((eQ(x,y) Az #y) = Tz(=P(2) A ﬁE(x,y,z)));
(ii) VxVsz((E(a:,y, 2)A=H(z,z)) = 3t(t < z A E(a:,y,t))).

We denote

64(x,y; u,v) = <yAu<v Aez(a:,y) A 82(y,u) Aez(u,v)

/\Vz(—'P(z) — (E(x,y,z) > E(u,v,z))).

Observe that ¢* is an equivalence relation on the set of ordered pairs of
cosets modulo £2; moreover, each coset modulo £* gives rise to a partition
of =P into two convex sets without endpoints (splits =P). For every ordered
pair (a1, as) whose components belong to the same coset modulo €2, the convex
set, of elements b € =P such that a; and as belong to the same coset modulo Ej,
can serve as an “indicator of nearness” of a; and ag: the larger such a convex
set, the “closer” aj to as. We also notice that, for all ay, as,as € P, the for-
mulas e*(ay, az, r, a3), *(a1, as, a3, x), e*(ay, az, r, az), and £*(ay, as, a1, ) are
convex.
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Ax (VII). The following sentences hold:

(i) VUQVU4<(82(UQ,U4) Nug < U4)

—>E|U1§|U3HU5</\ZL¢ <Uj/\62(U1,U5)

i<j
AN E(Uiaujaukaur)>>;

1<i<j<k<r<s
(il) YugVusVuy ((52(U2,U4) ANug < ug < u4)

— Ju EIU5(u1 <wug < uzA 64(U2,U4,u1,u3)
/\84(U2,U4,U3,U5))>;

(iii) VU,QVU4<(€2(U2,U4) Aug < U4)
— Jug Fug Fuy Jus(ug < ug < ug < ug < ug < usp)

AVuvVu ((ug Su<uzAuy <u < uj
VuVu <u< !
- (54(U2,U4,U,u4) N 54(u2,u4,u2aul))>>-

From Axiom Ax (VII) it follows that each coset modulo * is infinite and
dense with respect to the induced order; moreover, if elements a1, a2, a3 € P
belong to the same coset modulo £2 and satisfy the condition a1 < az < a3
then the formulas

(a1, a2,2,a9), £*(ar,a2,a1,2), e*(a1,a9,7,a3), &*(a1,az,a3,v)

define nonempty convex sets without endpoints.
Ax (VIII). The following sentence holds:

VxVquVv((ez(x,y) ANt (u,v) Az <yAu<vA-e(z,u))
— Elz(—'P(z) A ((E(z,y,2) A —E(u,v,2))

v (E(u, v, 2) A ﬁE(x,y,Z)))>>

Axiom Ax (VIII) says that two distinct cosets modulo £2 are “separated”
by the relation E, for some z € = P.
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Ax (IX). The following sentence holds:

VxVy‘v’u(P(x) A P(u) A2(z,y) A —=2(x, )

— 32((H(u, 2) A E(z,y,2)) V (-H(u, 2) A E(x,y,z)))).

Axiom Ax (IX) says that each element of P that does not belong to a given
coset modulo £2 is “separated” from this coset by the relations H, and E, for
some z € = P.

Proposition 38. IfTj is a consistent set then the theory derived from Ty
is w-categorical.

Proof. Let M be a model of Tj. Consider the set N consisting of cosets
modulo £2, cosets modulo £*, and elements satisfying =P. On this set, a linear
order < can be defined. The resultant linearly ordered set is called a model
of language L' = {=,<}. This model is denoted by (N, L'). For arbitrary
countable models (M7, Lg) and (My, Ly) of Ty, we construct an isomorphism g
using an isomorphism ¢ between (N, L’) and (Na, L'). These two isomorphisms
will be constructed simultaneously by induction on n < w. Each of them is
the union of an increasing chain of partial isomorphisms.

Let (M, Lp) be an arbitrary model of Ty. Put A := P(M), B := ~P(M),
and C := {(a,d') | a,d’ € A M | £*a,d’) Na < d'}. We introduce
the following notations for elements of C. Given ¢ = (a1,a2) € C, let ¢ =
c(a1,a2), I(c) = a1, and r(c) = ay. We have M = £2(I(c),r(c)) Al(c) < r(c)
for every c € C.

Let a € A and let ¢ € C. Put

o)

(M2, ¢) = {deC|M ):54(0',0)}, C:={c|ce’},
=e2(M,a) ={d' € A| M E2(d,a)}, A:={a|ac A}

Q)

From the definitions of 2 and &4 it follows that
VereCVeyeC [(a =% > (1) = () = Tle1) = ?(cz))].

We define a model as follows:

(N,I)):= (Au CUB,=,4).

Y

Let a,a1 € A, b,by € B, and ¢,c; € C. Then
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NEbaby & MEDb<Db,

NE@Gaa & ME-e*(a,a1) Na < ay,

NE¢dab & M E=E(l(c),r(c),b),

NEbae & ME-E((c),r(c),b),

NEa<b < M E=H(a,b),

NEb<sa < ME-H(a,b),

NEeaa o MEIr(~P@)AB((e).r(e).x) A~H(ax)).

NEaaz &M EIr(~P@) A-B(i(),r(c).2) A Hla,x)).

N):/C\1<I/C\Q<:>M):E|$

N TN N

~P(x) A E(I(c1), 7(c1), ) A ﬁE(z(cz),r(@),x)).

The definitions of 2, ¢4, and H? together with axioms Ax (I)-Ax (IX)
imply that < is well defined.
From the definition of < we immediately obtain

NE¢<aa & 3JbeBNETcabAbaa,
NEa<c ©3beBNEaabAbaT,
N):/C\1<1/C\2<:>E|bEBN):/C\1<Ib/\b</C\2.

We put Cj(a) := {c € C | l(c) = a} and Cy(a) := {c € C'| r(c) = a}.
Assertion 39.
(i) For alla € A and c1,¢3 € Cj(a), if N | ¢1 < ¢ then r(c1) < r(ca)
and ¢(r(c1),r(c2)) = Co.
(i) For alla € A and c1,co € Cy(a), if N |E €1 < ¢ then l(c1) < I(c2)
and E(l(cl),l(CQ)) = /C\Q.
(ii) The structures (;4\,:,4), (B,=,<), and (6,:,4) are dense linearly
ordered sets without endpoints.
(ili) The relation < is a dense linear order on AU C' U B; moreover, each
of the sets ;4\, 6’, and B is <-dense in AU C' U B.
(iv) For every a € A, we have Cj(a) = Cy(a).
(iv)" For every a € A, the set Cj(a) is dense in (—oo, @) .

Proof. (i)' Let N = €1 < ¢. Then, for some by € B, we have
M E E(a,r(c1),b) A=E(a,7(c2),bp) and a <r(c1), a<r(c2).

Since E(a, M, by) is convex, we find that r(c;) < r(c2).
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Show that ¢(r(c1),r(c2)) = €. Let b € B and let M = E(a,r(c2),b).
Since each coset modulo Ej is a convex set and a < r(c1) < r(c2), we obtain
M E E(r(c1),7(c2),b).

Assume that there exists b1 € B such that

M = E(r(c1),r(c2),b1) A —E(a,r(c2),b1).

Then E(M, a,b1)AE(M,r(c1),b1) = @ and, consequently, 7(c1) ¢ E(M, a,by).
In view of Ax (IV), the latter means that E(M,a,b1) C E(M,a,by) and by <
bo. Since r(c1) € E(M,a,by), from Ax (IV) it follows that E(M,r(c1),b1) C
E(M,a,b). If r(cz) € E(M,r(c1),b1) then r(co) € E(M,r(c1),bo), which
contradicts the choice of by. Hence, for every b € B, we have

[M = E(a,r(c2),b) <= M E(r(cl),r(q),b)].

The proof of assertion (i)” is similar.
(ii) From Ax (I) and Ax (II) it follows that (B,=,<) is a dense linearly

~

ordered set without endpoints. From Ax (I)-Ax (V) it follows that (A, =, <)

~

is a dense linearly ordered set without endpoints. We show that ( C,=,<)

possesses the required properties. The relation < on C' is antireflexive in
view of the definitions of £* and <. We show that this relation is transitive.
Let c1,c9,c3 € C and let N |= €1 < ¢ A ¢3 < ¢3. Then there exist b,b; € B
such that

M E E(l(cl),r(cl),b) A ﬁE(l(CQ),T(CQ),b) A E(l(CQ),T(CQ),bl)
N ﬂE(l(Cg),T(Cg),bl).
Since M | —E(l(c2),7(c2),b) A E(I(c2),7(c2),b1), from Ax (IV) we obtain

b < by. Since M = —=E(I(c3),7(c3),b1) Ab < by, from Ax (IV) we obtain M |=
—E(I(c3),7(c3),b). From M = E(l(c1),7(c1),b) it follows that N = ¢ < .
The relation < cannot be symmetric because it is transitive and antireflexive.

We prove that this order relation is dense. Let N = ¢; < ¢3. Then there
exists b € B such that

M E E(l(c1),7(c1),b) A=E(l(c2),7(c2),b).

By Ax (VI) (ii), there exists b such that by < band M = E(l(c1),7(c1), b1)-
In view of Ax (IV), there exists a € E(I(c1), M,b) \ E(I(c1), M,b) such
that a > E(I(c1), M,b1). Let ¢ denote the pair (I(c1),a). Then N = ¢ < C.
Since M | E(I(c1),a,b) A=E(I(c2),7(c2),b), we obtain N = €< €.
(iii) Let b,b; € B and let M = b < b;. From Ax(IV) it follows that
H(M,b) \ H(M,b) # @. Take an element a € H(M,by) \ H(M,b). Then
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N Eb<aa@A @<by. In view of Ax (VI) (i), there exist a; € £2(M,a) and by € B
such that M = —FE(a,a1,b) A E(a,a1,b2). This means that

N Ebat(a,a1) A €c(a,ar) by,

E(M,a,by) C £2(M,a) C H(M,by), and by<iby. Since < is transitive, we obtain
N Ebacab.

In a similar way, we can prove that
(d,dYNn A+, (dd)nB+o, (d,d)NC+o

foralld, d’ € AU C U B with d<d’.

(iv) Let ¢ € Cj(a). By Ax (VII), there exist a; and a such that a1 < a
and ¢ = ¢ (a1, a). Since c(ay,a) € Cp(a), we have Cy(a) C Cp(a). In a similar
way, we conclude that Cy(a) C Cj(a).

(iv)" Let b1,by € (—00,@). Then N = by < @A by < a. Hence, M
—H(a,b1) AN —H(a,bz). Assume that by < by. Then E(M,a,b;) C E(M,a,bs).

Let a1,a2 € E(M,a,b2)\ E(M,a,b) and let ap < E(M,a,b1) < a;. Then

N ):b1<l/c\1/\b1<l/c\2/\/c\1<lb2/\/c\2<lb2,
where ¢1 = (a,a1) € Cj(a) and ca = (ag,a) € Cy(a). It remains to choose

arbitrary by,bo € B. [

Let (Mj, Lg) and (Ma, Lg) be arbitrary countable models of Tp. Let
(N1, L") and (N2, L") be models of language L'. Recall that the universe of
such a model is the union of the corresponding sets B; and the sets of cosets
modulo €2 and e* Using induction on n, we define a sequence of partial
isomorphisms

gn: (Ml(n)aLO) — (M2(n)7L0)7
n<w,
ta s (N LD) — (NS, 1),

so that the finite sets Mi(n) C M; and Ni(") C N;, constructed at Step n remain
unchanged in the sequel and the following conditions hold:

(U1) gn-1 C gn, tn1 C tn, gn is a bijective map preserving < and P!,
and ¢, is an L’-isomorphism;
(U2) ta(@) = Gula) for every a € A C Ay;
(Us) tn(2) = F(g9(l(c)), g(r(c))) for every c € C'N Ag") X Agn).
Here v is an element of ' = {(al, ) ‘ a1, 0 € Ay, M=o < g A e (an, ag)}.
At Step n, we define g, if n is even and g, ! if n is odd. Fix arbitrary
numberings m and p of My and Mo, i.e., let

My={m;|i<w}, My={pli<w}.
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Step n. Let n be even. The case of an odd n is similar. In M; \ (Agn) U
Bgn)), we choose the element with the least m-number. Consider two cases.

Case 1. Let a, € A \Ag") be the element with the least m-number.
Consider the set £2(Mj, an)ﬂAgn_l). The following three subcases are possible:

1.1. £2(My,a)N Agn_l) = &;

1.2, [2(My,a)n AVTY| = 1

1.3 |e2(My,a) n A Y] > 2,

—~

1.1. Consider d,d’ € N"™" such that G, € (d,d")q and (d,d")q N
Nl("_l) = &, where (-, +)q denotes an interval with respect to <. Let t,,(a2y) €

(tn_l(d),tn_l(d’))<1 N Ay be arbitrary. Since #,_1 is an L'-isomorphism, we

have (tn—1(d), ta1(d")) A NSV = &

Let t,(d,) = @ for some a € As. Choose an arbitrary o, € £2(Ms, )
and put gn(an) = ap.

1.2. Let a; € Ag"_l) and let e2(M, ay) N Ag"_l) = {a;}, i < n.

Assume that a; < a,. Let d,d’ € Nl(n_l), let ¢(a;,an) € (d,d")q, and let

(d,d")e " NV = &, In view of Ax (VIII), Ax(IX), and Assertion 39 (i),

such elements d and d’ exist. From Assertions 39 (iv)’ and 39 (iv)” it follows
that ¢(a;,an) < @, = a;. Hence, we obtain either d’ < @; = @, or d’' = a;.
By (UQ), we have either tn_l(dl) <1tn_1(a,-) = ’g\n_l(a,—) = @; or tn_l(dl) = 0.
By Assertion 39 (iv)”, the set T;(a;) is dense in (tp—1(d),tn-1(d")) . Let v €
(t(d),t(d")) N Ty(ey). Tt is clear that [(y) = . Put tp(@n) := 7, gnlan) =
r(vy), and ay, == r(7).

The case in which a, < a; is similar.

1.3. Put

Cn = mjn{'c\| c = (an,a;) or c=(aj,ay), a; € Ag"_l), M = 62(an,ai)}.

Consider the following two possible subcases:

1.3(a) there exist ay,a; € Ag"_l) such that €(ag,a;j) = Cp;

1.3(b) ¢, # ¢(ax,a;) for all ag,a; € Ag"_l).
1.3(a) Let ar < a; and let ¢, = (an,a;). Assume that a; <a, <aj < a;.
Since ¢, is minimal, from Ax (VII) we obtain

c(ag, an) = C(an, a;) = ¢(an,a;) = ¢(ag,a;j).

Therefore, we may assume that a, € (ax, a;)q and (ag,aj) N Agn_l) =g.
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In a similar way, using Ax(VII) and the fact that ¢, is minimal, we

conclude that the following three subcases are possible:
~1

(1) on € (ai,07), (ai,a) N AP = 2

(2) an < ai, (an,a;) N AY’_” = 9;

(3) aj <ap, (aj,a,)N Agn_l) =g.

(1) Let a; = gn—1(a;) and let oj = gp—1(a;). Find an external o, €
(cvi, o) such that y(ay, an) = Y(am, o) = Y(ai, ;). Such an element exists
in view of Ax (VII). Put g,(an) := an.

(2) Find an external o, < o such that J(ay, ;) = F(a4, o) = F(ay, o).
Such an element exists in view of Ax (VII). Put gp(an) := an.

(3) The reasoning is similar to (2).

In each of the above cases, we have Nl(n_l) = Nl(") because A, = i,

¢(an,a;) = ¢(ai,aj), and, for every as € Agn_l), the fact that ¢, is mini-

mal implies either €(ay,,as) = €(a;, as) or €(as,an) = ©(as,aj) (see Asser-
tions 39 (i)’ and 39 (i)").

1.3 (b) We consider the case in which a,, < a;, ¢, = ¢(an,a;), i < n, and
a; € Agn_l).

Since ¢, is minimal, from Assertions 39 (i)’ and 39 (i)” it follows that

Vi < n[(2(aj,an) = 2(aj,05) V (an,a5) = P(an, )
A (ap,a;)N Agn_l) = @].

Let d,d’ € NV let ¢(an,a;) € (d,d")q, and let (d,d") e N""=2. Such
elements d and d’ exist because Nl("_l) is bounded. Observe that d’ < @;.

Hence, t,—1(d’) < tp—1(0;) = Gn-1(a;) = @;. Therefore, T'r(c;) is dense
in (t(d),t(d")) ..

Put a, = I(y), t(E(an,aj)) = 7 = F(ap, a;), and g(a,) = ay.

Case 2. Let b, € By \B%n_l) be the element with the least m-number.
Take elements d,d’ € Nl("_l) such that by, € (d,d’)q and (d,d’) ﬂNl("_l) = 0.
Consider the interval (t,-1(d),t,-1(d")) . Since t,_1 is a partial L'-isomor-
phism, we have (tn_l(d),tn_l(d’))q N Nl("_l) = @&. Let (3, be an arbitrary
element of (¢(d),t(d")) N Ba. Put ty(bn) = gn(bn) = Sn.

We now return to the proof of Proposition 38. For each d € Nl(n_l) and
e € Ml("_l), put t,(d) = t,—1(d) and gp(e) = gn—1(e). From the definition
and the choice of the elements gy, (ay), gn(bn), tn(E(an, ai)), tn(@y), and t,(by)
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it follows that g, and ¢, satisfy (U;)—(Us). By (Uj), we conclude that

g = U gn: (M17:7<7P1) — (M27:7<7P1)7
n<w
t= U tn: (N1,2,<l) — (NQ,:,<1),
n<w
g is an Lj-isomorphism, and ¢ is an L’-isomorphism, where Lj = {=, <, P }.

We prove that ¢ is an Lg-isomorphism. Let a,a’ € Ay and let b € Bj.

Then
M E E(a,d',b) ANa < d

< N1 E ¢(a,d)<b

— Ny Et(¢(a,a’)) < g(b)

= Na = 7(g(a),g(a')) ag(b) by (Us)

& My |= E(g(a), g(d'), g(b)) A g(a) < g(d).

Therefore, M1 = E(a, a,b) <= M, = E(g(a),g(a),g(b)). O
From the proof of Proposition 38, we immediately obtain the following
Assertion 40. Assume that Ty is consistent. Let M be a model of Tj.
Then every irrational cut (By, B2) in (B, <) is M -definable in (M, Ly) if and
only if either Ja € P(M)(Bl |ad Bz) or day,as € P(M) (Bl < E(al, a2) <le).
4.2. We construct a model (M, L) such that L D Ly and Ty by T =
Th(M, L). Fix the language L := {=, P!, <? E3, H?, %% 84 S3}. Put M :=
K UQ, where Q is the set of rational numbers and K is defined by induction.
Construction of K. Let R be the set of real numbers, put I := {C’ |
CCR CnQ = g, C is countable and dense in R}, and let J be a subset

of I such that |J| > w and, for all C;,Cy € J, we have C1 N Cy = & provided
C1 # Cs. Let

S = {a|a:(...,ab,...)b€Q, (VbeQ,aeQ), ¥ CQ
ifQ CQ then 366R\Q,Vb€@(b<e—>be(@()}

be the set of all Q-sequences of rational numbers and let
2<W = {7’ ‘ In<w, 7= (7(1),...,7(n)), Vi(l <i<n), 7(i) € {0,1}}.

We construct K and functions g and C such that the following conditions
are satisfied:

(Z1) We have K =J,,., Kn C S, K, N Kpy1 =9, and |K,| = w.

n<w
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(Z3) The function g maps K, into (R\ Q)"*!. For every d € K,, let

g(d) = (g0(d), ..., gn(d)). Then go(d) > g1(d ) + > gn(d).
(Z3) The function C maps K into J. Let C(d) := Then Cy, # Cy,
for all dy,ds € K with di # da.

Fix an arbitrary element a = (..., ap,...)peq of S.

Step 0. Fix an arbitrary element Cy € J. For every v € (), let
al = (..., az, ... )beQ, b<y be an element of S such that az =aqapforallbeQ
with b < . Put Ky :={a” | v € Cp}, go(a?) := 7, and g(a?) := (7).

Step n+1. Foralld € K,, v € Cg with v < g,(d), and 7 € 2<% we
define d'7 := (..., dJ}" ... )peq b<go(a) as follows:

I(7)
—1)7()
Vb e Q[(’y<b<g0(d) = d]" =dy) A <b<7:>dZT =dy+ ) (n+2)i>
i=1

We put
Kpy1:={d" | d € Ky, y€Cq, v < gnld), 7€ 2%}, g(d7):= (g9(d), 7).

Since |Kn| = |Ugex, Ca| = 12<¢] = w, we have |Kp41] = w.
Since |J| > w, we can define a map C: K,4+1 — J. Observe that

Ve de K, Vbe Q[(b < go(d) = go(c) Ady = c3)
=V € Q(b <l < go(d) :>de :Cb’)]-

Definition of (M, L). Let d,c,e, f,b € M. The following relations hold:
[M = Pl(d) <:>deK];

[M):d<20<:>({d,c}CQ/\d<C)\/(dEQ/\cEK)
v ({d,c}CK
A <go(d) < go(c)

v (90(d) = goe) A3z € R\ Q
ATV € Q[b’ << go(d)

/\VbEQ([m<b<go(d):>cb:db]

A [b’<b<x:>db<cb]>])>>];
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-M = E3(c,d,b) <= {c,d} CKAbeQ

- A (b > max{gg(d),gg(c)} V (b < go(d) =golc) Ny = db)>];

:M = H2(d,b) <= de K Abe QA go(d) <b];

:M = e2(e,d) <= {c,d} C K A golc) = go(d)];

M E=ei(d e, f) <= {de,c, fY CKATn<w

9n(d) = gn(c) = gn(e) = gn(f) A gnt+1(d) # gn+1(c) A gnr1(e) # gn1(f),

Jz e R\ Q, 3V e(@[b’<x<gn(d)/\VbeQ
([r < b< guld) = (= dy A et = fi)]

/\[bl<b<I:>(db<Cb/\6b<fb)]):|];

Mk Si(d,c.e, f) <= {d,c,e, f} C K

A go(d) = go(c) Agole) = go(f) ANTbEQdp =cr Aey # fy) NIz €R\Q
ATV €Q b'<x<go(d)/\VbEQ([x<b<90(d):>cb:db]

A [V <b<z = db<cb])] AJzeR\Q

/\Hb'EQ_b'<x<go(e)/\‘v’b€(@([x<b<go(e) :>eb:fb]
L /\[b<b<x:>6b<fb])]];
[M = S3d, ¢, 1) <= {d, e, f} € K A go(d)

= g0(c) A (90(d) > g0(f) > 3b € QL < go(f) A dy = ) ) ATz € R\ Q
ATV eQ{b’ <z <g0(d)/\VbeQ([x <b<go(d) = cp = dy]

/\[b'<b<x:>db<cb])u.



30 B. S. Baizhanov

Observe that the relations £2, 4, Sf, SS’, and H? are defined in (M, = Pl
<%, E3); moreover, (M, Ly) satisfies Ax (I)-Ax (IX).

Let a,a1,as,a3 € P(M) and let N be the model constructed in Proposi-
tion 38. Then the following conditions hold:

(F1) [M k= S3(a1,as,a) <= N | ¢(a1,a) < al;
(F2) [M |= S*(a,a1,a2,a3) <= N |= ¢(a,a1) < ¢(ag, a3)];
(F3) [M ): —|62(a1,a2) ANap < ag < N ): a1 < 62]
4.3. We prove that T admits quantifier elimination and is weakly o-min-
imal.

Proposition 41. The theory T = Th(M, L) is w-categorical and finitely
axiomatizable, admits quantifier elimination, and is weakly o-minimal.

Proof. Let M be a countable model of T'. Consider subsets A; C P(M)
and B; C =P(M), i = 1,2, such that the set (A; U By) is finite and (A; U
B1,L) = (A3 U By, L). Introduction of H?, £2, ¢*, S3, and S* allows us to
define finite L'-structures (N(A4; U B;),=,<) and an L'-isomorphism

t: (N(Al UBl),:,Q) — (N(A2 UBQ),:,Q)

in such a way that ¢ satisfies (Ua) of Proposition 38.

Indeed, let a,aq,a2,a3 € A and let b € B. Then @ is defined via 2 and
©(a,a1) is defined via £*, €2, and <2. Moreover, @ and b are <-comparable
on using H?; @ and ¢(ay,as) are <-comparable on using S® (see (F1)); b and
¢ (a1, az) are <-comparable on using S3; ¢(a,a;) and ¢(asg, a3) are 4-compa-
rable on using S* (see (F2)); @; and @y are <-comparable on using £2 and <2
(see (F3)).

Employing the method of the proof of Proposition 38, we can extend
an isomorphism between (A; U By, L) and (Ay U Ba, L) to an automorphism
of (M,L). This means that 7" admits quantifier elimination [10]. We prove
that T' is weakly o-minimal. Since T' is w-categorical (see Proposition 38) and
admits quantifier elimination, it suffices to show that every atomic 1-formula
with parameters is convex. Observe that every 1-formula definable by a finite
set of parameters from (AU B) is a Boolean combination of (AU B)-definable
atomic 1-formulas. Atomic 1-formulas of the form

z <a(b), a(b) <z, P(x), H(zx,b), H(a,y), E(x,a,b), E(a,z,b),
E(al,ClQ,y), 82(.1',@), 62(0,,1'), 84(x,a1,a2,a3), 64(a1,x,a2,a3),
et(ar,a2,7,a3), *(a1,a9,a3,2), S3(v,a1,az), S3(a1,7,a2), S(a1,as,z),

S*(z,a1,a9,a3), S*(a1,x,a2,a3), S*(a1,a2,,a3), S*(a1,as,a3,)
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are convex in view of Ax (I)~Ax (IX) and the properties of the linear order <«
on N. Indeed, let a}, a1, af, a2, and ag be elements of P(M) such that

M = S3(dy, ag,a3) A S3(aY, a2, a3) A dy < ay < df.

By (F1), we have N | ¢(a}, as,a3) < as A ¢(af,a2) < @s. Since a} < a1 < af,
from the definitions of £* and < it follows that

N ):(E(a'l,@) a@(a1,a9) V E(a), a2) = € (a1, az))
A (aal,@) 1 2(d!,az) V (a1, a) = E(a'{,@)).

Since < is transitive, we find that N = ¢(aj,a2) < a3. By (F1), we have
M |= S3(a1, a2, a3) which means that S3(x, az, a3) is convex. In a similar way,
we can verify that all atomic 1-formulas of the form S3 and S* are convex.
For the remaining atomic 1-formulas, the required assertion is immediate from
definitions and axioms. [

4.4. An example of a pair of models (My, L) < (M, L) such that (M, M)
is a D-1-pair but is not a D-pair.

Let (M, L) be the model constructed at Stage 4.2 and let b be an arbitrary
element of Q (i.e., ~P(M)). Let Qp denote the set {z € Q | = < b} and
let K3 denote the set (Jy o, H(M, V). Put M, = QU Kj. It is easy to
see that (Mp, L) is a submodel of (M, L). Since Th(M) admits quantifier
elimination, we have (M, L) < (M, L).

Assertion 42. Let dy,dy € P(M) \ My, and let di # ds. If there exists
n < w such that n > 0 and g (d1) = gn(da) < b then the type tp(dida/Mpy) is
not definable.

Proof. In view of axiom Ax (VII), the formula F(d;,dz,z) is defined by
some irrational cut (B1, B2) in (Q, <) and the conditions gy, (d1) = gn(da) < b

and B; < b. Hence, the irrational cut (Bl, (B2n{b}3,) UP(Mb)) is not defin-

able in (Mp, L). This is a consequence of Assertion 40 and condition (Z3) from
the construction of K (cf. Stage 4.2). There exists a unique 1-type p € S1(Mjp)

extending the cut (Bl, (Bo N {b}y3) U P(Mb)). In view of Proposition 26,

we have p 1" tp(dy/Mp) because p is irrational while tp(di/Mp) is quasir-
ational. Put ¢ := tp(da/M, U d1) and take p' € Sy(My U dy) with p C p'.
We have didy J* p. Hence, ¢ £* p' because p(M) = p'(M). Observe that p’
is an irrational type defined by a cut. Therefore, p’ is not definable. By Propo-
sition 22, ¢ is not definable either. Thus, tp(did2/M;) is not definable. This
means that (M, M) is not a D-pair. [J

Observe that (Mp, L) is a quasi-Dedekind complete model in (M, L). In-
deed, we have P(M)\ P(My) > P(M,) and =P(M) \ ~P(My) > ~P(My).
Thus, Assertion 42 implies Theorem 37. [
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In conclusion, the author thanks E. A.Palyutin for simplifying the for-

mulation and proof of Theorem 31. The author also expresses his gratitude
to V. V. Verbovskii and B. Sh. Kulpeshov for useful discussions of the example
justifying Theorem 37 and their help in the preparation of the article.
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